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Abstract

We study the Cauchy problem for a semilinear stochastic Maxwell equation with Kerr-type
nonlinearity and a retarded material law. We show existence and uniqueness of strong solu-
tions using a refined Faedo-Galerkin method and spectral multiplier theorems for the Hodge-
Laplacian. We also make use of a rescaling transformation that reduces the problem to an
equation with additive noise to get an appropriate a priori estimate for the solution.
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1 Introduction

In this article, we consider the semilinear stochastic Maxwell equation{
du(t) =

[
Mu(t)− |u(t)|qu(t) + (G ∗ u)(t) + J(t)

]
dt +[b(t) +B(t, u(t))]dW (t),

u(0) = u0

(1.1)

in L2(D)6 = L2(D)3 × L2(D)3 driven by a cylindrical Brownian motion W (t) with the retarded
material law

(G ∗ u)(t) =

∫ t

0

G(t− s)u(s) ds

and the perfect conductor boundary condition u1 × ν = 0 on ∂D. Here, the Maxwell operator is
given by

M

(
u1

u2

)
=

(
curlu2

− curlu1

)
for 3d vector fields u1 and u2. We allow D to be a bounded domain or D might also be the
full-space R3 (in this case the boundary condition drops).

This equation is a model for a stochastic electromagnetic system in weakly-nonlinear chiral
media and was derived in [27] in chapter 2. It originally comes from the deterministic Maxwell
system {

∂t(Lu(t)) = Mu(t) + J(t)

u(0) = u0

with constitutive relation

Lu(t, x) = κ(x)u(t, x) +

∫ t

0

K1(t− s, x)u(s, x) ds +

∫ t

0

K2(t− s, x)|u(s, x)|qu(s, x) ds .
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This material law consists of an instantaneous part κu with a hermitian, uniformly positive
definite and uniformly bounded matrix κ : D → C6×6, a linear dispersive part K1 ∗ u and of
a nonlinear dispersive part K2 ∗ |u|qu. This power-type nonlinearity is motivated by the Kerr-
Debye model. Note, that in applications, one would only take the nonlinearity |u1|qu1 or |u2|qu2

to model a nonlinear polarisation or magnetisation. We take the two quantities together to study
both phenomena at once. Using the product rule, we end up with{

κu′ = Mu−K1(0)u−K2(0)|u|qu− (∂tK1) ∗ u− (∂tK2) ∗ |u|qu+ J

u(0) = u0

At this point, we introduce additional simplifications. We assume that the term (∂tK2) ∗ |u|qu
can be neglected. This is typical for a weakly nonlinear medium since one assumes that both
the dispersion and the nonlinear effects are weak, so that the combination then satisfies (∂tK2) ∗
|u|qu << K2(0)|u|qu.Usually one demandsK1(0) : D → C6×6 to be bounded and positive semi-
definite and K2(0) : D → C6×6 to be bounded and uniformly positive definite. But for sake of
simplicity, we choose K1(0) ≡ 0 and K2(0) ≡ I. We just note that the results are unchanged
by this simplification and the proofs could be adjusted easily. Moreover, we choose κ = I . We
must admit that this simplification is necessary at this point since our methods cannot deal with
coefficients so far. The problems one has to overcome if κ 6= I are discussed in section 6 in detail.
Setting G := −∂tK1, we get a deterministic version of (1.1).

In many applications, there is some uncertainty concerning the external sources or the pre-
cise behaviour of the medium itself. In these cases, it is useful to model u as random variables
on a probability space Ω and impose a stochastic noise perturbation. Here one distinguishes
between the additive noise b perturbing J and the multiplicative noise B(u) perturbing the
medium. A linear stochastic version of (1.1) was already discussed in [27], chapter 12. More-
over, in [9], the authors show that typical conservation laws of linear electromagnetic system
are preserved under additive noise perturbation. The authors in [16] also treat linear stochastic
Maxwell equations numerically with energy-conserving methods. More about the application
of random media in scattering, wave propagation and in the theory of composites can be found
in [2], [12], [13] and [23].

However, as far as we know, there are no known results about a nonlinear stochastic Maxwell
equation. One reason might be that in the absence of Strichartz estimates for (etM )t∈R, even local
solvability is a tricky issue. Moreover, there is no embedding of the D(M) ↪→ Lp, that helps to
control the nonlinearity. Even the deterministic version of (1.1) has not beed treated rigorously
so far. In [27], the authors profess to prove well-posedness, but their argument ignores some
severe complications. Since they claim to have better deterministic results than ours, we discuss
their approach in section 6 in detail.

Now, we briefly sketch our strategy. At first, we show in section 4, that (1.1) has a unique
weak solution

u ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω× [0, T ]×D)6. (1.2)

This is done in two steps. First, we use a version of the Galerkin method from Röcker and Prévot
(see [26]) to solve (1.1) in the special case G ≡ 0 and make use of the monotone structure of our
nonlinearity. As this is approach is well-known, we just discuss the different steps and concen-
trate on how to deal with the additional term Mu, despite the fact, that u /∈ D(M). Afterwards,
we inflict the retarded material law with Banach’s fixed point theorem.

The proof of the existence and uniqueness of a strong solution, that additionally satisfies

Mu ∈ L2(Ω;L∞(0, T ;L2(D)))6 + L
q+2
q+1 (Ω× [0, T ]×D)6

is more tricky. Again, we start with G ≡ 0 and we add a nontrivial G at the very end. In a
deterministic setting, one would try to estimate ‖u′(t)‖L2(D)6 and then use (1.2) to control Mu.
However, solutions of stochastic differential equations are not differentiable in time. The first
idea was to derive an estimate for ‖Mu(t) − |u(t)|qu(t) + J(t)‖2L2(D)6 with Gronwall’s Lemma,
but we failed since the Itô formula for this quantity contains the term

‖Dvv(|v|qv)(u(t))
(
B(u(t)), B(u(t)

)
‖2L2(D)6 ,
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we could not estimate properly. Hence, we choose the noise
∑N
j=1

(
bj(t) + iBju(t)

)
dβj(t) and

use the rescaling transform
y(t) = u(t)e−i

∑N
j=1 Bjβj(t)

to get rid of the multiplicative noise in the same way as Barbu and Röckner in [3] and [4] (see also
[5],[6]) and [7]). The difference in our approach is that the authors have natural a priori estimates
before transforming the equation and just transform to solve the transformed equation with
deterministic techniques. Moreover, they just use multiplicative noise. We use the transform to
get better a priori estimates and consider an equation that also has additive noise. The arising
equation has the form

(TSEE)

{
dy(t) = [My(t)− |y(t)|qy(t) +A(t)y(t) + J̃(t)] dt +

∑N
i=1 b̃i(t) dβi(t),

u(0) = u0,

with a nonautonomous operator A(t) having random coefficients. We truncate (TSEE) with a
refined Faedo-Galerkin approach, i.e. we solve{

dyn(t) = [PnMyn(t)− Pn|yn(t)|qyn(t) + PnA(t)yn(t) + PnJ̃(t)] dt +
∑N
i=1 Sn−1b̃i(t) dβi(t),

yn(0) = Sn−1u0.

Here, Pn = 1[0,2n](−∆H) and Sn = ψ(−2−n∆H) for some ψ ∈ C∞c (D) with suppψ ⊂ [0, 2] and
ψ = 1 on [0, 1] are spectral multipliers with respect to the Hodge-Laplacian ∆H on Lp, that is the
component-wise Laplacian with domain{

(u1, u2) ∈ Lp(D)6 : curlu1, curlu2, curl curlu1, curl curlu2 ∈ Lp(D)3,div u1 ∈W 1,p
0 (D),

div u2 ∈W 1,p(D), u1 × ν = 0, u2 · ν = 0, curlu2 × ν = 0 on ∂D
}
.

Now Pn and Sn reduce the problem to an ordinary stochastic differential equation that can be
solved easily. Moreover, we show that Pn, Sn are self-adjoint on L2(D)6 and commute with both
∆H and M . Further, we have ‖Snu‖Lp(D)6 ≤ C‖u‖Lp(D)6 with a constant C > 0 depending on
p, but not on u and n. Note that such an estimate is not available for Pn in a general situation.
This remarkable uniform Lp-boundedness is a consequence of [21], together with generalized
Gaussian bounds for the Hodge-Laplacian (see [25], [22]). The deep connection between ∆H

and M is a consequence of the formula

−∆H = curl curl− grad div,

which implies ∆H = M2 in the range of the Helmholtz projection PH andM2 = 0 in the range of
(I−PH). This interplay will be examined in detail in section 3. The idea to use spectral multiplier
results in such a way was firstly used by Brzezniak, F. Hornung and Weis in [8]. Afterwards, we
estimate

‖PnMyn(t)− Pn|yn(t)|qyn(t) + PnA(t)yn(t) + PnJ̃(t)‖2L2(D)6

using Itô’s formula, the monotone structure of the equation and the properties of Pn, Sn. This
yields the desired estimate for Myn uniformly in n. Finally, we pass to the limit again using the
monotonicity of the nonlinearity and undo the transformation.

In section 6, we explain how the result changes if one strengthens some of the assumptions
and we discuss interesting special cases, such as the deterministic version of (1.1), b ≡ 0 or a
constant B. Moreover, we sketch a program to extend this approach to non-constant coefficients
κ 6= I .

2 Preliminaries

The purpose of this section is to provide a short overview over the basic tools used in this paper.
For most of the proofs and further details, we give references to the literature.

3



Throughout this paper, let (Ω,F,F = (Ft)t≥0,P) be a filtered probability space that satisfies
the usual conditions, i.e. F0 contains all P-null sets and the filtration is right-continuous. More-
over, given normed spacesX and Y ,B(X,Y ) denotes the set of all linear and bounded operators
from X to Y . Further, we write C(a, b;X) for the space of uniformly continuous functions on
[a, b] with values in X equipped with its usual norm and L2(H1, H2) for the space of Hilbert-
Schmidt operators between the Hilbert spaces H1 and H2. Throughout this article, D ⊂ R3 will
either be a bounded C1-domain or D = R3. If we evaluate a function on ∂D, this always corre-
sponds to the first case and has no meaning in the second case.

2.1 The operators curl and div

First, we give a short introduction into vector calculus. To motivate the definition of functions
with vanishing tangential component or normal component on the boundary, we make the fol-
lowing calculation with smooth functions f, g : D → R3. Using vector calculus and the Diver-
gence theorem, we obtain∫

∂D

f · (g × ν) dσ =

∫
∂D

ν · (f × g) dσ =

∫
D

div(f × g)(x) dx

=

∫
D

curl g(x) · f(x) dx−
∫
D

g(x) · curl f(x) dx .

Similarly, we get ∫
∂D

y(z · ν) dσ =

∫
D

div(y · z)(x) dx

=

∫
D

∇y(x) · z(x) dx +

∫
D

y(x) div z(x) dx .

for smooth y : D → R and z : D → R3. Hence, we can define vanishing tangential and normal
components on the boundary in a natural way.

Definition 2.1. Let D ⊂ R3 be bounded C1-domain with boundary ∂D and p ∈ [1,∞).

a) Let g ∈ Lp(D)3 with curl g ∈ Lp(D)3. We say g × ν = 0 on ∂D, if∫
D

curlφ(x) · g(x) dx =

∫
D

φ(x) · curl g(x) dx

for every φ ∈ C∞(D)3.

b) Let z ∈ Lp(D)3 with div z ∈ Lp(D). We say z · ν = 0 on ∂D, if∫
D

∇φ(x) · z(x) dx = −
∫
D

y(x) div z(x) dx

for every φ ∈ C∞(D).

Next, we introduce the subspaces of L2(D)3 associated with curl and div .

Definition 2.2. We set

a) H(curl)(D) :=
{
u ∈ L2(D)3 : curlu ∈ L2(D)3

}
.

b) H(curl, 0)(D) :=
{
u ∈ H(curl)(D) : u× ν = 0 on ∂D

}
.

c) H(div)(D) :=
{
u ∈ L2(D)3 : div u ∈ L2(D)

}
.

d) H(div, 0)(D) :=
{
u ∈ H(div)(D) : u · ν = 0 on ∂D

}
.
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We define the Maxwell operator M with perfect conductor boundary condition by

M

(
u1

u2

)
=

(
curlu2

− curlu1

)
on the domain D(M) = H(curl, 0)(D)×H(curl)(D).

Proposition 2.3. The Maxwell operator M is skew-adjoint on L2(D)6, i.e. we have∫
D

My(x) · z(x) dx = −
∫
D

y(x) ·Mz(x) dx

for every y, z ∈ D(M) and D(M) = D(M∗).

Proof. This result is well-known. See e.g. [15], section 3.

The next technical Lemma will be needed later on. We state it for functions in the sum of
Lp-spaces for technical reasons. This will only be necessary, when D = R3.

Lemma 2.4. Let D be a bounded C1- domain or D = R3, y ∈ L2(D)6 and p ∈ [1,∞). If there exists
z ∈ L2(D)6 + Lp(D)6, such that∫

D

y(x) ·Mφ(x) dx = −
∫
D

z(x) · φ(x) dx (2.1)

for every φ ∈ C∞(D)6 ∩ L2(D)6 ∩ L
p

p−1 (D)6 with Mφ ∈ L2(D)6 and φ1 × ν = 0 on ∂D, we have
My = z in the sense of distributions and y1 × ν = 0 on ∂D.

Proof. By inserting φ = (φ1, 0) and φ = (0, φ2) into (2.1), we derive∫
D

y2(x) · curlφ1(x) dx =

∫
D

z1(x) · φ1(x) dx∫
D

y1(x) · curlφ2(x) dx = −
∫
D

z2(x) · φ2(x) dx

for any smooth φ1 with φ1 × ν = 0 on ∂D and for any smooth φ2. Inserting φ1, φ2 ∈ C∞c (D)3

yields curl y2 = z1 and curl y1 = −z2 in the sense of distributions, i.e. My = z in the sense of
distributions. If D 6= Rd, we have to show the claimed boundary condition. The second identity
implies ∫

D

y1(x) · curlψ(x) dx +

∫
D

curl y1(x) · ψ(x) dx = 0

for every ψ ∈ C∞(D)3 and hence, y1 × ν = 0 on ∂D in the sense of Definition 2.1.

2.2 The power nonlinearity |u|qu
In this subsection, we mention the basic properties of nonlinearity u 7→ F (u) = |u|qu as a map-
ping from Lq+2(D)6 to L

q+2
q+1 (D)6 with q > 0. We start with its monotonicity.

Lemma 2.5. F satisfies the estimate∫
D

Re〈F (v)(x)− F (u)(x), u(x)− v(x)〉C6 dx ≤ −C‖u− v‖q+2
Lq+2(D)6 (2.2)

for some C > 0 and for all u, v ∈ Lq+2(D)6.

Proof. Clearly, ‖F (u)‖
L

q+2
q+1 (D)6

= ‖u‖Lq+2(D)6 and therefore F has the claimed mapping proper-

ties. The estimate (2.2) is a direct consequence of Lemma 4.4 in [11].
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Since we often use Itô’s formula, we need to know the differentiability properties of F.

Lemma 2.6. The nonlinearity F : Lq+2(D)6 → L
q+2
q+1 (D)6, u 7→ |u|qu is real Fréchet continuously

differentiable with Re〈F ′(u)v, v〉L2(D)6 ≥ 0 and

|F ′(u)v(x)| . |u(x)|q|v(x)|

for all u, v ∈ Lq+2(D)6 and x ∈ D. In particular, it is locally Lipschitz continuous, i.e.

‖F (u)− F (v)‖
L

q+2
q+1 (D)6

.
(
‖u‖qLq+2(D)6 + ‖q + 2‖qL2(D)6

)
‖u− v‖Lq+2(D)6 .

Moreover, if q ∈ (1,∞), it is twice real continuously differentiable with

F ′′(u)(v, v)(x) . |u(x)|q−1|v(x)|2

for all u, v ∈ Lq+2(D)6.

Proof. It is well-known, that F : Lq+2(D)6 → L
q+2
q+1 (D)6 is real differentiable with

F ′(u)v = q|u|q−2 Re〈u, v〉C6u+ |u|qv

for every u, v ∈ Lq+2(D)6. See e.g. given [17], Corollary 9.3
Consequently, we also have

Re
〈
F ′(u)v, v

〉
L2(D)6

=

∫
D

q|u(x)|q−2
(

Re〈u(x), v(x)〉C6

)2
+ |u(x)|q|v(x)|2 dx ≥ 0.

Moreover, we estimate

F ′(u)v(x) ≤ C|u(x)|q|v(x)|

for some C > 0. For the second derivative, we start with formal calculation for F ′′ and get

F ′′(u)(v, w) =q|u|q−2
(

(q − 2)|u|−2 Re〈u,w〉L2(D)6 Re〈u, v〉L2(D)6u+ Re〈w, v〉L2(D)6u

+ Re〈u,w〉L2(D)6v + Re〈u, v〉L2(D)6w
)

For sake of readability, we do not rigorously show that F : Lq+2(D)6 → Lq+2(D)6 is twice
Fréchet differentiable with this derivative. However, to give an impression how to show this, we
check that last term in F ′(u)v, namely u 7→ [v 7→ |u|qv] : Lq+2(D)6 → B(Lq+2(D), L

q+2
q+1 (D)6), is

Fréchet differentiable with derivative G(u)(v, w) = q|u|q−2 Re〈u,w〉C6v. Let u, v, w ∈ Lq+2(D)6

with v, w 6= 0. Then, Hölders inequality together with the mean value theorem yield∥∥|u|qv−|u+ w|qv −G(u)(v, w)
∥∥
L

q+2
q+1 (D)6

≤
∥∥|u|q − |u+ w|q − q|u|q−2 Re〈u,w〉C6

∥∥
L

q+2
q (D)6

‖v‖Lq+2(D)6

.
∥∥∫ 1

0

Re〈|u+ θw|q−2(u+ θw)− |u|q−2u,w〉C6 dθ
∥∥
L

q+2
q (D)6

‖v‖Lq+2(D)6

≤
∫ 1

0

∥∥|u+ θw|q−2(u+ θw)− |u|q−2u
∥∥
L

q+2
q−1 (D)6

dθ ‖w‖Lq+2(D)6‖v‖Lq+2(D)6

Hence, we showed

‖w‖−1
Lq+2(D)6

∥∥v 7→ |u|qv−|u+ w|qv −G(u)(v, w)
∥∥
B(Lq+2(D)6,L

q+2
q+1 (D)6)

.
∫ 1

0

∥∥|u+ θw|q−2(u+ θw)− |u|q−2u
∥∥
L

q+2
q−1 (D)6

dθ (2.3)
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for all u,w ∈ Lq+2(D)6 with w 6= 0.
It remains to prove that this quantity tends to 0 as w → 0 in Lq+2(D)6. Let (wn)n be a se-

quence in Lq+2(D)6 with wn → 0 as n → ∞ and let (wnk
)k be an arbitrary subsequence. Hence

there exists another subsequence, still denoted with (wnk
)k, such that wnk

→ 0 almost every-
where for k →∞ and such that |wnk

| ≤ g for some g ∈ Lq+2(D)6. We also have

|u+ θwnk
|q−2(u+ θwnk

)− |u|q−2u→ 0

almost everywhere as k →∞. Together with the bound∣∣∣|u+ θwnk
|q−2(u+ θwnk

)− |u|q−2u
∣∣∣ ≤ |u|q−1 + |wnk

|q−1 ≤ |u|q−1 + gq−1,

for θ ∈ [0, 1] and the fact that u ∈ Lq+2(D)6, we get∫ 1

0

∥∥|u+ θwnk
|q−2(u+ θwnk

)− |u|q−2u
∥∥
L

q+2
q−1 (D)6

dθ → 0

as k → ∞. All in all, this shows that the left hand side of 2.3 tends to 0 as w → 0 and we
established the Fréchet differentiability of u 7→ [v 7→ |u|qv] with derivative G(u). The claimed
estimate for F ′′(u)(v, v)(x) is immediate. This closes the proof.

3 The Hodge-Laplacian on a bounded C1-domain and its spec-
tral multipliers

In this section, we introduce the Hodge-Laplace operator on a bounded C1-domain D, and we
define the spectral projections needed in the sequel. We consider the bilinear form

a(u, v) =

∫
D

(curlu)(x)(curl v)(x) dx +

∫
D

(div u)(x)(div v)(x) dx

with D(a) either given by V (1) := H(curl, 0)(D) ∩ H(div)(D) or by V (2) := H(curl)(D) ∩
H(div, 0)(D) equipped with the norm

‖u‖2V (i) := ‖ curlu‖2L2(D) + ‖div u‖2L2(D) + ‖u‖L3(D)2

for i = 1, 2. In both cases, a is symmetric and bounded. Moreover, a is coercive in sense

a(u, u) = ‖u‖2V (i) − ‖u‖2L2(D)

for all u ∈ V (i), i = 1, 2. Setting

D(A(1)) = {u ∈ V (1) : curl curlu ∈ L2(D)3, div u ∈W 1,2
0 (D)}

D(A(2)) = {u ∈ V (2) : curl curlu ∈ L2(D)3, curlu× ν = 0 on ∂D, div u ∈W 1,2(D)}

it turns out, that a with D(a) = V (1) is associated with the operator A(1) = −∆ on the domain
D(A(1)), whereas a with D(a) = V (2) is associated with the operator A(2) = −∆ on the do-
main D(A(2)). To see this, use partial integration for curl and div and the formula curl curl =
grad div−∆. By the coercivity of the corresponding forms, the operators I + A(i), i = 1, 2,
are strictly positive. Moreover, the symmetrie implies that they are self-adjoint on L2(D)3

and since the embeddings V (i) ↪→ L2(D)3 are compact (see [1], Theorem 2.8), the embeddings
D(A(i)) ↪→ L2(D)3 are also compact. Consequently, there exists two orthonormal basis of eigen-
vectors (h

(i)
j )j∈N to the positive eigenvalues (λ

(i)
j )j∈N of I +A(i) with λ(i)

j →∞ for j →∞.
The next Proposition shows, that these operators satisfy generalized Gaussian estimates. We

add an additional sectral shift, since some of the theorems we apply require strictly positive
operators.
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Proposition 3.1. Both I + A(1) and I + A(2) satisfy generalized Gaussian (2, q) estimates for every
q ∈ [2,∞), i.e. for every q ∈ [2,∞) there exists C, b > 0, such that

‖1
B(x,t

1
2 )
e−t(I+A

(i))1
B(y,t

1
2 )
‖B(L2(D)3,Lq(D)3 ≤ Ct−

3
2 ( 1

2−
1
q )e−

b|x−y|2
t

for all t > 0 and all x, y ∈ D.

Proof. In [22], the authors argue on page 239, that bothA(1) andA(2) satisfy generalized Gaussian
(2, q)-bounds for every q ∈ [2, qD). Here, qD ∈ [2,∞) denotes the supremum over all indexes p
for which the boundary value problems

∆u = f in D,
curlu, curl curlu ∈ Lp(D)3, div(u) ∈W 1,p(D),

u · ν = 0, curl(u)× ν = 0 on ∂D

and 
∆u = f in D,
curlu, curl curlu ∈ Lp(D)3, div(u) ∈W 1,p

0 (D),

u× ν = 0 on ∂D

have a unique solution. This argument heavily makes use of iterative resolvent estimate for the
Hodge-Laplacian (see [25], section 5 and 6). By [24], Theorem 1.2 and 1.3, we know that qD =∞
since D is a C1-domain in R3. Finally note that Gaussian estimates are preserved under positive
spectral shifts.

For more details about these operators, we refer to [25], where they are discussed in a more
general differential geometric setting.

We define spectral multipliers with the natural functional calculus for self-adjoint operators
having a basis of eigenvectors. Let Ψ ∈ C∞c (R) with supp(Ψ) ⊂ [ 1

2 , 2] and
∑
l∈Z Ψ(2−lx) = 1 for

all x > 0. The operators Pn : L2(D)6 → L2(D)6 and Sn : L2(D)6 → L2(D)6 are defined by

Pn(u) =

(
1[0,2n](I +A(1))(u1)

1[0,2n](I +A(2))(u2)

)
, Sn(u) =

(∑n
l=−∞Ψ(2−l(I +A(1)))(u1)∑n
l=−∞Ψ(2−l(I +A(2)))(u2)

)
for u = (u1, u2) ∈ L2(D)6 and n ∈ N. Note, that the above sums are finite, since only finitely
many eigenvalues of A(i) are smaller than n. The next Proposition summarizes the most impor-
tant properties of Sn and Pn as operators on L2(D)6.

Proposition 3.2. Pn and Sn satisfy

i) Pn is a projection, i.e. P 2
n = Pn.

ii) The operators Pn, Sn are self-adjoint with ‖Pn‖B(L2(D)6) = ‖Sn‖B(L2(D)6) = 1 for every n ∈ N.

iii) Pn and Sm commute for every n,m ∈ N.

iv) The range of Pn and Sn is finite dimensional. Moreover, we haveR(Pn), R(Sn) ⊂ D(M) for every
n ∈ N.

v) We have R(Sn−1) ⊂ R(Pn) ⊂ R(Sn), SnPn = Pn and PnSn−1 = Sn−1.

vi) We have limn→∞ Pnx = limn→∞ Snx = x for every x ∈ L2(D)6.

Proof. We have
∑n
l=−∞Ψ(2−l·) = 1(0,2n) + ψ(2−n·)1[2n,2n+1), by choice of ψ. Hence, all these

properties follow from the functional calculus for self-adjoint operators in Hilbert spaces.

Moreover, the operators Sn have the following property, that will be crucial in what follows.
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Lemma 3.3. For every p ∈ (1,∞), the operators Sn are operators from Lp(D)6 to Lp(D)6 with a
bound depending on p, but not on n ∈ N. Moreover, we have Snf → f in Lp(D)6 as n → ∞ for all
f ∈ Lp(D)6.

Proof. The first statement follows from the spectral multiplier theorem 5.4 in [21] as a conse-
quence of the generalized Gaussian bounds for A(1) and A(2). One could also argue with the
more general Theorem 7.1 in [20]. The claimed convergence property is then a special case from
[19], Theorem 4.1. To apply this Theorem the 0-sectoriality of −∆H and the boundedness of a
Mikhlin functional calculus Mα in Lp(D)6 for some α > 0 are needed. The first is checked
in [25], Theorem 6.1, whereas the second holds true with α > 4 by the generalized Gaussian
bounds (see [19], Lemma 6.1, (3)).

Next, we introduce two different Helmholtz projections on L2(D)3. The proof for the follow-
ing statement is well-known and can be found amongst others in [18], section 4.1.3.

Proposition 3.4. Let D ⊂ R3 be a bounded Lipschitz domain. Given u ∈ L2(D)3, the following
decompositions hold true.

(1) There exists a unique p ∈ W 1,2
0 (D) and ũ ∈ H(div)(D) with div ũ = 0 such that u = ũ +∇p.

The corresponding operator P (1)
H : L2(D)3 → L2(D)3, u 7→ ũ is an orthogonal projection.

(2) There exists a unique p ∈ W 1,2(D) with
∫
D
p(x) dx = 0 and ũ ∈ H(div, 0)(D) with div ũ = 0

such that u = ũ + ∇p. The corresponding operator P (2)
H : L2(D)3 → L2(D)3, u 7→ ũ is an

orthogonal projection.

In particular, PH(u1, u2) :=
(
P

(1)
H u1, P

(2)
H u2

)
for u1, u2 ∈ L2(D)3 defines an orthogonal projection on

L2(D)6.

To simplify the notation in what follows, we combine A(1) and A(2) to a self-adjoint operator
−∆H(u1, u2) := (A(1)u1, A

(2)u2) for (u1, u2) ∈ D(A(1))×D(A(2)). The Helmholtz projection PH
is closely related to both M and ∆H . In the following Lemma, we exploit the fact M2 = ∆H on
D(M) ∩ PH(L2(D)6) to show some powerful identities.

Lemma 3.5. We have PH∆H = ∆HPH on D(∆H), MPH = PHM on D(M) and PnM = MPn,
SnM = MSn on D(M).

Proof. The first claim can be found in [25], section 3 or in [22], Lemma 5.4. Consequently, we also
have SnPH = PHSn and PnPH = PHPn, since Sn and Pn are in the functional calculus of ∆H .

For the second statement, we first show that M = PHM . Due to div curl = 0, we just have to
show curlu1 · ν = 0 on ∂D for u1 ∈ H(curl, 0)(D). Definition 2.1 a) yields∫

D

∇φ(x) · curlu1(x) dx =

∫
D

curl∇φ(x) · u1(x) dx = 0 =

∫
D

φ(x) div curlu1(x) dx,

for every φ ∈ C∞(D), which implies curlu1 · ν = 0 according to Definition 2.1 b). As a conse-
quence of curl∇ = 0, we know M(I − PH) = 0. All in all we get

MPH − PHM = MPH −M = M(I − PH) = 0.

Finally, the identity

∆H =

(
− curl curl + grad div

− curl curl + grad div

)
= M2

on D(M2) ∩ PH(L2(D)6) = D(∆H) ∩ PH(L2(D)6) together with M(I − PH) = 0 imply

MPn = MPH1[0,2n](−∆H) = M1[0,2n](−M2)PH = 1[0,2n](−M2)MPH = PnM

on D(M). For SnM = MSn, one may argue analogously.
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Corollary 3.6.
⋃∞
n=1R(Pn) is dense in D(M) and in Lp(D)6 for any p ∈ (1,∞).

Proof. Let u ∈ D(M). Using the commutation property of Pn from Lemma 3.5, we get

‖Mu−MPnu‖L2(D)6 = ‖Mu− PnMu‖L2(D)6
n→∞−−−−→ 0.

If on the other hand u ∈ Lp(D)6, we get Snu→ u in Lp(D)6 from Lemma 3.3. This together with
Proposition 3.2 v) proves the claimed result.

We also consider (1.1) on R3 and hence, we need an analogue to the Pn and Sn we defined
above. However, in the absence of boundary conditions, things are far more easy. We define

Pnf = Snf := F−1
(
ξ 7→ 1[−2n,2n](ξ1)1[−2n,2n](ξ2)1[−2n,2n](ξ3)f̂(ξ)

)
for f ∈ L2(D)6. As M is a differential operator, it commutes with this frequency cut-off. More-
over, Pn, Sn satisfy the same properties as in Propositions 3.2 expect iv). Further, as a conse-
quence of the boundedness of the Hilbert transform on Lp(R3), they are bounded on Lp(R3)6.
This finally results in an analogue to Lemma 3.3 and Corollary 3.6. For details, we refer to [14],
chapter 6.1.3. We end this section with a Lemma showing mapping properties of Pn as operator
between L2(D)6 and Lp(D)6.

Lemma 3.7. For fixed n ∈ N, p ∈ [2,∞) and q ∈ (1, 2], the operator Pn : Lq(D)6 → L2(D)6 and
Pn : L2(D)6 → Lp(D)6 is linear and bounded.

Proof. This is trivial, if D is bounded, since all norms on a finite dimensional space are equiva-
lent. In the other case, it is sufficient to show that Pn : Lq(R3)6 → L2(R3)6 is bounded, the rest
then follows by duality. The Hölder and the Hausdorff-Young inequality yield

‖Pnf‖L2(R3)6 = ‖ξ 7→ 1[−2n,2n](ξ1)1[−2n,2n](ξ2)1[−2n,2n](ξ3)f̂(ξ)‖L2(R3)6 .n ‖f̂‖
L

q
q−1 (R3)6

≤ ‖f‖Lq(R3)3 .

4 Existence and uniqueness of a weak solution

In this section, we will prove existence and uniqueness of a weak solution in the sense of partial
differential equations of

(WSEE)

{
du(t) =

[
Mu(t)− |u(t)|qu(t) + (G ∗ u)(t) + J(t)

]
dt +B(t, u(t))dWt,

u(0) = u0

for any q > 0. For sake of readability, we sometimes write F (u) := |u|qu. Before we start, we
explain our solution concept.

Definition 4.1. We say that an adapted process u : Ω× [0, T ]→ L2(D)6 with

u ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω× [0, T ]×D)6

is a weak solution of (WSEE), if

〈u(t)− u0, φ〉L2(D)6 =

∫ t

0

−
〈
u(s),Mφ

〉
L2(D)6

+
〈
− |u|qu+ J(s) + (G ∗ u)(s), φ

〉
L2(D)6

ds

+

∫ t

0

〈
B(s, u(s)), φ

〉
L2(D)6

dW (s).

holds almost surely for all t ∈ [0, T ] and for all φ ∈ D(M)∩Lq+2(D)6.Moreover, we call a weak solution
u unique, for any other weak solution v, there exists N ⊂ Ω with P(N) = 0, such that u(ω, t) = v(ω, t)
for all ω ∈ Ω \N and all t ∈ [0, T ].
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We make the following assumptions.

[W1] Let D ⊂ R3 be a bounded C1-domain or D = R3.

[W2] The initial value u0 : Ω→ L2(D)6 is strongly F0- measurable.

[W3] Let G : Ω × [0, T ] → B(L2(D)6), such that x 7→ G(t)x is for all x ∈ L2(D)6 strongly
measurable and F-adapted. Moreover, we assume

ess sup
ω∈Ω

∫ T

0

‖G(ω, t)‖B(L2(D)6) dt <∞.

[W4] Let U be a separable Hilbert space and W a U -cylindrical Brownian motion. Moreover,
let B : Ω × [0, T ] × D × L2(D)6 → L2(U,L2(D)6) be strongly measurable, such that ω 7→
B(ω, t, x, u) is for almost all t ∈ [0, T ], x ∈ D and all u ∈ L2(D)6 F-adapted. Moreover,
there exists C > 0, such that B is of linear growth, i.e.

‖B(t, u)‖L2(U ;L2(D)6) ≤ C‖u‖L2(D)6

and Lipschitz
‖B(t, u)−B(t, v)‖L2(U ;L2(D)6) ≤ C‖u− v‖L2(D)6

almost surely for almost all t ∈ [0, T ] and all u, v ∈ L2(D)6.

[W5] J : Ω × [0, T ] → L2(D)6 is strongly measurable, F-adapted and we assume J ∈ L2(Ω ×
[0, T ]×D)6.

At first, we need an Itô formula, that is appropriate to deal with weak solutions. Our result
is a version of [26], Theorem 4.2.5, that additionally allows a skew-adjoint operator M in spite
of the fact that our weak solution is not in D(M). Our proof relies on a more straightforward
regularization technique than the original using the spectral multipliers Sn from section 2.2.

Lemma 4.2. Let X0 ∈ L2(Ω × D)6 and Y ∈ L
q+2
q+1 (Ω × [0, T ] × D)6 + L2(Ω × [0, T ] × D)6 and

Z ∈ L2(Ω× [0, T ];L2(U ;L2(D)6)) be F-adapted. If

〈X(t), φ〉L2(D)6 =〈X0, φ〉L2(D)6 +

∫ t

0

−〈X(s),Mφ〉L2(D)6 + 〈Y (s), φ〉L2(D)6 dt

+

∫ t

0

〈Z(s), φ〉L2(D)6dW (s)

almost surely for all t ∈ [0, T ] and all φ ∈ D(M) ∩ Lq+2(D)6 and we additionally have the regularity
X ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω× [0, T ]×D)6, the Itô formula

‖X(t)‖2L2(D)6 − ‖X0‖2L2(D)6

=

∫ t

0

2 Re〈X(s), Y (s)〉L2(D)6 + ‖Z(s)‖2L2(U ;L2(D)6 ds +2

∫ t

0

Re
〈
X(s), Z(s)dW (s)

〉
L2(D)6

.

(4.1)

holds almost surely for all t ∈ [0, T ] and X ∈ L2(Ω;C(0, T ;L2(D)))6.

Proof. We plug in φ = SnΦ for Φ ∈ C∞c (D)6. Note, that by Lemma 3.5, Sn and M commute.
Moreover, R(Sn) ⊂ D(M). Consequently, since Sn is self-adjoint and Φ is chosen arbitrarily, we
obtain

SnX(t)− SnX0 =

∫ t

0

MSnX(s) + SnY (s) ds +

∫ t

0

SnZ(s)dW (s).
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almost surely for all t ∈ [0, T ] in L2(D)6 and we can apply the standard Itô formula for Hilbert
space valued processes (see e.g. [10], Theorem 4.32) to get

‖SnX(t)‖2L2(D)6 − ‖SnX0‖2L2(D)6

=

∫ t

0

2 Re〈SnX(s),MSnX(s)〉L2(D)6 + 2 Re〈SnX(s), SnY (s)〉L2(D)6

+ ‖SnZ(s)‖2L2(U ;L2(D))6 ds +2

∫ t

0

Re
〈
SnX(s), SnZ(s)dW (s)

〉
L2(D)6

.

By Lemma 2.3 and Proposition 3.2 SnMSn is skew-adjoint and the first term on the right hand
side drops. In all the other terms, we can pass to the limit. Thereby we need, that Snu → u for
n→∞ in Lq+2(D)6 and L

q+2
q+1 (D)6 (see Lemma 3.3). This finally yields

‖X(t)‖2L2(D)6 − ‖X0‖2L2(D)6

=

∫ t

0

2 Re〈X(s), Y (s)〉L2(D)6 + ‖Z(s)‖2L2(U ;L2(D)6) ds +2

∫ t

0

Re
〈
X(s), Z(s)dW (s)

〉
L2(D)6

.

This identity together with X ∈ Lq+2(Ω × [0, T ] × D)6 ∩ L2(Ω × [0, T ] × D)6 implies u ∈
L2(Ω;L∞(0, T ;L2(D)))6. The pathwise continuity in time can be shown by applying the above
result to the difference X(t)−X(s). This closes the proof.

At first, we assume G ≡ 0 and solve (WSEE) without retarded material law. The reason for
this simplification is that we make use of the monotone structure of the rest of the equation. We
start with a Galerkin approximation with the spectral projection Pn, we defined in section 2. We
investigate the truncated equation{

dun =
[
PnMun − PnF (un(t)) + PnJ

]
dt +PnB(t, un(t))dW (t),

un(0) = Pnu0

(4.2)

in the range of Pn. This is a stochastic ordinary differential equation in R(Pn) ⊂ L2(D)6 with
a locally Lipschitz nonlinearity (see Lemma 2.6). Hence, there exists an increasing sequence of
stopping times (τ

(m)
n )m∈N with 0 < τ

(m)
n ≤ T almost surely, a stopping time τn = limm→∞ τ

(m)
n

and an adapted process un : Ω× [0, τ) → R(Pn) with continuous paths, that solves (4.2). More-
over, we have the blow-up alternative

P
{
τn < T, sup

t∈[0,τ)

‖un(t)‖L2(D)6 <∞
}

= 0. (4.3)

The next result shows τn = T for every n ∈ N and a uniform estimate for un.

Proposition 4.3. We have τn = T for every n ∈ N and un additionally satisfies

sup
n∈N

E sup
t∈[0,T ]

‖un(t)‖2L2(D)6 + sup
n∈N

E
∫ T

0

∫
D

|un(t, x)|q+2 dx dt <∞.

Proof. Lemma 4.2 applied to un, the self-adjointness of Pn and P 2
n = Pn2 yield

‖un(s)‖2L2(D)6 − ‖Pnu0‖2L2(D)6

=2

∫ s

0

Re〈un(r),−|un(r)|qun(r) + J(r)〉L2(D)6 dr

+ 2

∫ s

0

Re
〈
un(r), B(s, un(r))dW (r)

〉
L2(D)6

+

∫ s

0

‖PnB(r, un(r))‖2L2(U ;L2(D)6) dr .

almost surely for every s ∈ [0, τ
(m)
n ]. This expression simplifies to

‖un(s)‖2L2(D)6 +

∫ s

0

∫
D

|un(s, x)|q+2 dx dt−‖Pnu0‖2L2(D)6
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≤2

∫ s

0

Re
〈
un(r), J(r)〉L2(D)6 + 1

2‖B(r, un(r))‖2L2(U ;L2(D)6) dr

+ 2

N∑
j=1

∫ s

0

Re
〈
un(r), B(s, un(r))dW (r)

〉
L2(D)6

. (4.4)

almost surely for every s ∈ [0, τ
(m)
n ]. Since the second term on the left hand side is positive, we

can drop it for a moment. We first take the supremum over [0, τ
(m)
n ∧ t] for t ∈ [0, T ] and than

the expectation value and estimate the remaining quantities term by term. We start with the
deterministic part using [W6] and [W7].

E sup
s∈[0,τ

(m)
n ∧t]

∣∣∣ ∫ s

0

Re
〈
un(r), J(r)〉L2(D)6 + 1

2‖B(r, un(r))‖2L2(U ;L2(D)6) dr
∣∣∣

.B

∫ t

0

E1
s≤τ(m)

n
‖un(s)‖L2(D)6‖J(s)‖L2(D)6 + ‖un(s)‖2L2(D)6 ds

.
∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖un(r)‖2L2(D)6 ds +‖J‖2L2(Ω×[0,T ]×D)6 .

The stochastic part can be estimated with the Burkholder-Davies-Gundy inequility.

E sup
s∈[0,t∧τ(m)

n ]

∣∣∣ ∫ s

0

Re〈un(s), B(s, un(s))〉L2(D)6dW (s)
∣∣∣

≤ CE
(∫ τ(m)

n ∧t

0

∣∣〈un(s), B(s, un(s)〉L2(U,L2(D)6)

∣∣2 ds
)1/2

≤ C̃E
(

sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖L2(D)6
( ∫ t∧τ(m)

n

0

‖u(t)‖2L2(D)6 dt
) 1

2

)
≤ 1

4
E sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖2L2(D) + C̃2

∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖u(r)‖2L2(D)6 ds

Putting these estimates together, we get

E sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖2L2(D)6 . ‖u0‖2L2(D)6 + ‖J‖2L2(Ω×[0,T ]×D)6 +

∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖un(r)‖2L2(D)6 ds

for all t ∈ [0, T ]. Consequently, Gronwall yields

E sup
t∈[0,τ

(m)
n ]

‖un(t)‖2L2(D)6 . ‖J‖2L2(Ω×[0,T ]×D) + ‖u0‖2L2(D)6 .

Now, we can go back to (4.4) and deal with the term, we dropped at first. The estimates of
E sup

t∈[0,τ
(m)
n ]
‖un(t)‖2L2(D) imply

E
∫ τ(m)

n

0

∫
D

|un(s, x)|q+2 dx dt . ‖J‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)6

We use Fatou’s Lemma to pass to the limit m → ∞ in these estimates. Note, that one can
interchange sup and lim inf in an upper estimate, since lim inf can be written in the form sup inf
and supremums can be interchanged, whereas sup inf ≤ inf sup. Hence, we have

E sup
t∈[0,τn)

‖un(t)‖2L2(D)6 + E
∫ τn

0

∫
D

|un(s, x)|q+2 dx dt . ‖J‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)6 . (4.5)
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Consequently, we also have τn = T almost surely. Indeed, there exists N ⊂ Ω with P(N) = 0,
such that Ω \

(
N ∪ {τn = T}

)
can be decomposed into disjoint sets{

τn < T, sup
t∈[0,τn)

‖un(t)‖2L2(D)6 <∞
}
,
{
τn < T, sup

t∈[0,τn)

‖un(t)‖2L2(D)6 =∞
}
.

The first set has measure zero by (4.3) and the second one has measure zero, since (4.5) implies
supt∈[0,τn) ‖un(t)‖L2(D)6 <∞ almost surely. Pathwise uniform continuity on [0, T ] follows from
Lemma 4.2. This closes the proof.

In Proposition 4.3, we derived uniform estimates for un. As a consequence, Lemma 2.2 yields
the uniform boundedness of F (un) in L

q+2
q+1 (Ω × [0, T ] × D)6. Thus, by Banach-Alaoglu, there

exists u ∈ L2(Ω;L∞(0, T ;L2(D)6)),N ∈ L
q+2
q+1 (Ω× [0, T ]×D)6, B̃ ∈ L2(Ω× [0, T ];L2(U ;L2(D)))6

and subsequences, still indexed with n, such that

a) un → u for n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6.

b) un → u for n→∞ in the weak sense in Lq+2(Ω× [0, T ]×D)6.

c) F (un)→ N for n→∞ in the weak sense in L
q+2
q+1 (Ω× [0, T ]×D)6.

d) B(·, un)→ B̃ for n→∞ in the weak sense in L2(Ω× [0, T ];L2(U ;L2(D)))6.

Testing (4.2) with ρφ for arbitrary ρ ∈ Lq+2(Ω× [0, T ]) and φ ∈
⋃∞
n=1R(Pn), the symmetry of Pn

and the skew-symmetry of M yield

E
∫ T

0

〈un(t)− u0,φ〉L2(D)6ρ(t) dt

=E
∫ T

0

∫ t

0

−〈un(s),MPnφ〉L2(D)6 + 〈−F (un(s)) + J(s), Pnφ〉L2(D)6 ds ρ(t) dt

+ E
∫ T

0

∫ t

0

〈B(s, un(s)), Pnφ〉L2(D)6dW (s)ρ(t) dt .

By weak convergence, we can pass to the limit and obtain

E
∫ T

0

〈u(t)− Pnu0,φ〉L2(D)6ρ(t) dt

=E
∫ T

0

∫ t

0

−〈u(s),Mφ〉L2(D)6 + 〈y(s),−N(s) + J(s), φ〉L2(D)6 ds ρ(t) dt

+ E
∫ T

0

∫ t

0

〈B̃(s), φ〉L2(D)6dW (s)ρ(t) dt .

Thereby, we used Pnφ = φ for n large enough since φ ∈
⋃∞
n=1R(Pn) and that linear and bounded

operators are also weakly continuous. Since ρ was chosen arbitrarily, we finally get

〈u(t)− u0,φ〉L2(D)6

=

∫ t

0

−〈u(s),Mφ〉L2(D)6 + 〈u(s),−N(s) + J(s), φ〉L2(D)6 ds +

∫ t

0

〈B̃(s), φ〉L2(D)6dW (s).

(4.6)

Hence, by density (see Lemma 3.6), this holds true for every φ ∈ D(M)∩Lq+2(D)6. To show that
u is a weak solution of (WSEE) with G ≡ 0, it remains to show N = F (u) and B̃ = B(·, u). This
will be done by adapting a standard argument for stochastic evolution equations with monotone
nonlinearies (see [26], proof of Theorem 4.2.4, page 86) to our situation. To do this, we just need
an Itô formula for Ee−Kt‖u(t)‖2L2(D)6 , although Mu(t) /∈ L2(D)6. The rest follows the line of the
original.
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Lemma 4.4. For any K > 0, the Itô formula

Ee−Kt‖u(t)‖2L2(D)6 − E‖u0‖2L2(D)6

= E
∫ t

0

e−Ks〈u(s),−N(s) + J(s)〉L2(D)6 + e−Ks‖B̃(s)‖2L2(U ;L2(D)6) −Ke
−Ks‖u(s)‖2L2(D)6 ds

holds true almost surely for all t ∈ [0, T ].

Proof. This formula is immediate by Lemma 4.2, the Itô product rule and the fact, that the ex-
pectation of a stochastic integral is zero.

All in all, we showed the following result.

Proposition 4.5. If we assume [W1] − [W5], the equation (WSEE) with G ≡ 0 has a unique weak
solution u in the sense of Definition 4.1.

Finally, we add a nontrivial the retarded material law G with a perturbation argument.

Theorem 4.6. If we assume [W1] − [W5], the equation (WSEE) has a unique weak solution u in the
sense of Definition 4.1.

Proof. Let T0 ∈ (0, T ]. By Proposition 4.5{
du(t) =

[
Mu(t)− F (u(t)) + (G ∗ v)(t) + J(t)

]
dt +B(t, u(t))dWt,

u(0) = u0

has for every v ∈ L2(Ω;C(0, T0;L2(D)))6 a unique solution u =: Kv ∈ L2(Ω;C(0, T0;L2(D)6)).
Indeed, by [W3],

t 7→
∫ t

0

G(t− s)u(s) ds ∈ L2(Ω× [0, T ]×D)6

and thus G ∗ v satisfies [W5]. In the following, we will show that K is a contraction in X :=
L2(Ω;C(0, T0;L2(D)))6, if we choose T0 > 0 small enough. For given v, w ∈ X, we calculate
with Lemma 4.2

‖Kv(s)−Kw(s)‖2L2(D)6 =

∫ s

0

2 Re〈Kv(r)−Kw(r), F (Kw(r))− F (Kv(r)) + (G ∗ (v − w))(r)〉L2(D)6

+ ‖B(r,Kv(r))−B(r,Kw(r))‖2L2(U ;L2(D)6) dr

+ 2

∫ t

0

Re
〈
Kv(r)−Kw(r), B(r,Kv(r))−B(r,Kw(r))dW (r)

〉
L2(D)6

.

In the following estimates, we take the supremum over [0, t] for t ∈ [0, T0] and afterwards the
expectation value. We now estimate the occurring quantities term by term.∫ s

0

Re〈Kv(r)−Kw(r), (G ∗ (v − w))(r)〉L2(D)6ds

≤
∫ s

0

1

2
‖Kv(r)−Kw(r)‖2L2(D)6 +

1

2

∥∥ ∫ r

0

G(r − λ)(v(λ)− w(λ)) dλ
∥∥2

L2(D)6
dr

≤
∫ s

0

1

2
sup
λ∈[0,r]

‖Kv(λ)−Kw(λ)‖2L2(D)6 dr +
T0‖G‖2L1(0,T ;B(L2(D)6))

2
sup

λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

for all s ∈ [0, T0]. We can drop the contribution of F, as

〈Kv(r)−Kw(r), F (Kw(s))− F (Kv(s))〉L2(D)6 ≤ −α‖Kv(r)−Kw(r)‖q+2
Lq+2(D)6

for all s ∈ [0, T0] and some α > 0 by Lemma 2.2. Moreover, by [W4], we have∫ t

0

‖B(s,Kv(s))−B(s,Kw(s))‖2L2(U ;L2(D)6) ds ≤ C2

∫ t

0

sup
r∈[0,s]

‖Kv(r)−Kw(r)‖2L2(D)6 ds .
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Last but not least, the Burkholder-Davies-Gundy inequality and [W4] yield

E sup
s∈[0,t]

∣∣∣ ∫ s

0

Re
〈
Kv(r)−Kw(r), B(r,Kv(r))−B(r,Kw(r))dW (r)

〉
L2(D)6

∣∣∣
≤ CE

(∫ t

0

∥∥〈Kv(r)−Kw(r), B(r,Kv(r))−B(r,Kw(r))〉L2(D)6)

∥∥2

L2(U)
dr
)1/2

≤ CE sup
s∈[0,t]

‖Kv(s)−Kw(s)‖L2(D)6

(∫ t

0

‖B(r,Kv(r))−B(r,Kw(r))‖2L2(U ;L2(D)6) dr
)1/2

≤ 1

4
E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6 + C̃2

∫ t

0

E sup
r∈[0,s]

‖Kv(r)−Kw(r)‖2L2(D)6 ds .

All in all, we derived

E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6 ≤
∫ t

0

2(1 + 2C̃2 + C2)E sup
λ∈[0,r]

‖Kv(λ)−Kw(λ)‖2L2(D)6 dr

+
T0‖G‖L∞(Ω;L1(0,T ;B(L2(D)6)))

2
E sup
λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

for every t ∈ [0, T0]. Hence, Gronwall implies

E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6

≤
T0‖G‖L∞(Ω;L1(0,T ;B(L2(D)6)))

2

(
E sup
λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

)
e2(1+2C̃2+C2)T0 .

Now, we choose T0 > 0 small enough to ensure thatK is a contraction. In particular, by Banach’s
fixed point theorem, there exists u1 ∈ L2(Ω;C(0, T0;L2(D)6)) solving (WSEE) on [0, T0] and
from Ku1 = u1, we deduce u1 ∈ Lq+2(Ω× [0, T0]×D)6. Clearly, by continuity in time, we have
u1(T0) ∈ L2(Ω×D)6 and ω 7→ u1(ω, T0) is FT0

-measurable.
Next, given v ∈ L2(Ω;C(T0, 2T0;L2(D)6)), we consider the equation{

dy =
[
My − F (y) +

∫ T0

0
G(· − s)u1(s) ds +

∫ ·
T0
G(· − s)v(s) ds +J

]
dt +B(·, y)dWt,

y(T0) = u1(T0)

for t ∈ [T0, 2T0]. By Proposition 4.5, we have a unique solution y := K2v. This defines an
operator K2 : L2(Ω;C(T0, 2T0;L2(D)))6 → L2(Ω;C(T0, 2T0;L2(D)))6. However, K2v − Kw2

can be estimated in the very same way as above, since the additional term
∫ T0

0
G(· − s)u1(s) ds

vanishes in this difference. As a consequence, K2 is a contraction on L2(Ω;C(T0, 2T0;L2(D)))6

and has a unique fixed point u2. Inductively, we construct, un ∈ L2(Ω;C((n−1)T0, nT0;L2(D))6

solving{
dy =

[
My − F (y) +

∫ (n−1)T0

0
G(· − s)u1(s) ds +

∫ ·
(n−1)T0

G(· − s)y(s) ds +J
]

dt +B(·, y)dWt,

y((n− 1)T0) = un−1((n− 1)T0)

and stop, when nT0 ≥ T. Finally, the process u :=
∑b TT0

c+1

n=1 un1[(n−1)T0,nT0) solves the (WSEE)
on [0, T ] and satisfies

u ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω× [0, T ]×D)6.

By construction, u is unique on every interval [(n − 1)T0, nT0), which implies uniqueness on
[0, T ].
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5 Existence and uniqueness of a strong solution

In this section, we will discuss the following stochastic Maxwell equation

(MSEE)

{
du =

[
Mu− |u|qu+G ∗ u+ J

]
dt +

∑N
n=1

[
bn + iBnu

]
dβn(t),

u(0) = u0.

on L2(D)6 with a monotone polynomial nonlinearity and a retarded material law and we derive
existence and uniqueness of a strong solution in the sense of partial differential equations. For
sake of readability, we sometimes write F (u) := |u|qu. Before we start, we explain our solution
concept.

Definition 5.1. A weak solution u is called strong solution of (MSEE) if it additionally satisfies

Mu ∈ L2(Ω;L∞(0, T ;L2(D)))6 + L
q+2
q+1 (Ω× [0, T ]×D)6.

Note, that in case of a bounded domain D ⊂ R3, this integrability property reduces Mu ∈
L

q+2
q+1 (Ω× [0, T ]×D)6. We make the following assumptions.

[M1] Let q ∈ (1, 2] and D ⊂ R3 be a bounded C1- domain or D = R3.

[M2] Let u0 be strongly F0-measurable with

E‖Mu0‖2L2(D)6 + E‖u0‖2(q+1)

L2(q+1)(D)6
<∞.

[M3] Let G ∈ L∞(Ω;W 1,1(0, T ;B(L2(D)6))), such that ω 7→ G(t)x is for all x ∈ L2(D)6 and all
t ∈ [0, T ] strongly Ft-measurable.

[M4] Let J : L2(Ω;W 1,2(0, T ;L2(D)))6 be F-adapted.

[M5] Let bj : L2(Ω;W 1,2(0, T ;L2(D)))6, j = 1, . . . , N be F-adapted. If q ∈ (1, 2), we additionally

assume bj ∈ L
2(q+2)
2−q (Ω× [0, T ]×D)6, whereas we need bj ∈ L∞(Ω× [0, T ]×D)6, if q = 2.

Moreover, we assume
Pn
(
bje
−i

∑N
l=1 Blβl

)
= bje

−i
∑N

l=1 Blβl

for n ∈ N large enough in the case q = 2.

[M6] Let Bj ∈W 1,∞(D) for j = 1, . . . , N.

At first, we assume G ≡ 0 and solve (MSEE) without retarded material law as in the last
section. The reason for this simplification is that we make use of the monotone structure of
the rest of the equation. As described in the introduction, we failed to derive an a priori es-
timate for Mu directly with Itô’s formula and Gronwall, since we could not control the terms
‖F ′′(u)(Bju(s), Bju(s)‖L2(D)6 and ‖F ′(u)(Bju(s)‖L2(D)6 . Hence, we start with a rescaling trans-
formation, such that the multiplicative noise vanishes. We end up with

(TSEE)

{
dy(t) = [My(t)− |y(t)|qy(t) +A(t)y(t) + J̃(t)] dt +

∑N
i=1 b̃i(t) dβi(t),

u(0) = u0,

where A(t), J̃ and the new additive noise
∑N
j=1 b̃j dβj are given by

A(t, x)y(t, x) : = 1
2

N∑
j=1

Bj(x)2y(t, x) +

N∑
j=1

iβj(t)

(
∇Bj(x)× y2

−∇Bj(x)× y1

)
,

J̃(t, x) : =

N∑
j=1

(
− ibj(t, x)Bj(x) + J(t, x)

)
e−i

∑N
n=1 Bn(x)βn(t),

b̃i(t, x) : = bi(t, x)e−i
∑N

j=1 Bj(x)βj(t)

for t ∈ [0, T ], x ∈ D and i = 1, . . . , N. First, we show that a solution of (TSEE) can be trans-
formed to a solution of (MSEE).
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Proposition 5.2. A stochastic process u : Ω× [0, T ]→ L2(D) with almost surely continuous paths is a
strong solution of (MSEE) with G ≡ 0 if and only if the process y(t) := e−i

∑N
l=1 Blβl(t)u(t) has almost

surely continuous paths, satisfies

i) E supt∈[0,T ] ‖y(t)‖2L2(D)6 + E
∫ T

0

∫
D
|y(t, x)|q+2 dx dt <∞

ii) My + i
∑N
j=1 βj

( ∇Bj×y2
−∇Bj×y1

)
∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)))6

and solves the equation (TSEE).

Proof. We assume that u is a solution of (MSEE) in the sense of Definition 5.1 with the described
regularity properties. At first, we calculate d(ei

∑N
j=1 Bjβn(t)) with Itô’s formula and obtain

ei
∑N

j=1 Bjβj(t) − 1 =

N∑
j=1

∫ t

0

iBje
i
∑N

l=1 Blβl(s)dβn(s)− 1
2

N∑
j=1

∫ t

0

B2
j e
i
∑N

l=1 Blβl(s)ds.

Therefore, Itô’s product rule yields

〈y(t), x′〉L2(D)6 − 〈u0, x
′〉L2(D)6 = 〈u(t), ei

∑N
l=1 Blβl(t)x′〉L2(D)6 − 〈u0, x

′〉L2(D)6

=

N∑
j=1

∫ t

0

−〈u(s), 1
2B

2
j e
i
∑N

l=1 Blβl(s)x′〉L2(D)6 + 〈bj(s) + iBju(s), iBje
i
∑N

l=1 Blβl(s)x′〉L2(D)6 ds

+

∫ t

0

〈Mu(s)− |u(s)|qu(s) + J(s), ei
∑N

l=1 Blβl(s)x′〉L2(D)6 ds

+

N∑
j=1

∫ t

0

〈u(s), iBje
i
∑N

l=1 Blβl(s)x′〉L2(D)6 + 〈bj(s) + iBju(s), ei
∑N

l=1 Blβl(s)x′〉L2(D)6dβn(s)

(5.1)

almost surely for every x′ ∈ C∞c (D) and for every t ∈ [0, T ]. As a consequence, we have

y(t)− u0 =

∫ t

0

e−i
∑N

l=1 Blβl(s)M
(
ei

∑N
l=1 Blβl(s)y(s)

)
− |y(s)|qy(s) ds

+

∫ t

0

e−i
∑N

l=1 Blβl(s)J +

N∑
j=1

1
2B

2
j y(s)− ibj(s)Bj(s)e−i

∑N
l=1 Blβl(s) ds

+

N∑
n=1

∫ t

0

bn(s)e−i
∑N

l=1 Blβl(s)dβn(s)

almost surely for every t ∈ [0, T ]. Here, we used that u ∈ Lq+2(Ω × [0, T ] ×D)6 implies |y|qy ∈
Lq+2(Ω × [0, T ] × D)6. Since we want to derive an equation for y, we have to commute the
exponential function with M. Therefore we compute

My(t) = M(e−i
∑N

l=1 Blβl(t)u(t))

=

(
curl(e−i

∑N
l=1 Blβl(t)u2(t))

− curl(e−i
∑N

l=1 Blβl(t)u1(t))

)
=

N∑
j=1

−iβj(t)
(

(∇Bj)e−i
∑N

l=1 Blβl(t) × u2(t)

−(∇Bj)e−i
∑N

l=1 Blβl(t) × u1(t)

)
+

(
e−i

∑N
l=1 Blβl(t) curl(u2(t))

−e−i
∑N

l=1 Blβl(t) curl(u1(t))

)

=

N∑
j=1

iβj(t)

(
−∇Bj × y2(t)

∇Bj × y1(t)

)
+ e−i

∑N
l=1 Blβl(t)Mu(t).

Inserting this into (5.1) finally proves that y solves (TSEE). The other direction follows the same
lines.
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We solve (TSEE) by a refined Galerkin approximation of the skew-adjoint operator M . To
do this, we truncated the equation with the spectral multipliers Pn and Sn, we defined in section
3. We study{

dyn(t) = [PnMyn(t)− PnF (yn(t)) + PnA(t)yn(t) + PnJ̃(t)] dt +
∑N
i=1 Sn−1b̃i(t) dβi(t),

yn(0) = Sn−1u0.

(5.2)
In the next Proposition, we derive a priori estimates for the solution exploiting the structure of
the equation.

Proposition 5.3. The truncated equation (5.2) has for every n ∈ N a unique, pathwise continuous
solution yn : Ω× [0, T ]→ L2(D)6, that additionally satisfies

E sup
t∈[0,T ]

‖yn(t)‖2L2(D)6+E
∫ T

0

‖yn(t)‖q+2
Lq+2(D)6dt

≤ C
(
‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D) + ‖u0‖2L2(D)

)
(5.3)

for some constant C > 0 only depending on supj=1,...,N ‖Bj‖L∞(D), but not on n ∈ N.

Proof. First, we define the stopping time

τm := inf
{
t ∈ [0, T ] : |βi(t)| > m for some i = 1, . . . , N

}
and solve the equation{
dy

(m)
n (t) = [PnMy

(m)
n (t)− PnF (y

(m)
n (t)) + PnA

(m)(t)ymn (t) + PnJ̃(t)] dt +
∑N
i=1 Sn−1b̃i(t) dβi(t),

u(0) = Sn−1u0,

(5.4)
where the truncated linear operator A(m) is given by

A(m)(t)y(t) :=

N∑
j=1

(
iβj(t ∧ τm)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
+B2

j y(t).

By Lemma Lemma 2.6 and 3.7, this an ordinary stochastic differential equation in the closed
subspaceR(Pn) ⊂ L2(D)6 with locally Lipschitz nonlinearity. The stopping time τm is necessary
at this point, since it leads to L∞-coefficients that are required to apply the classical results for
stochastic ordinary differential equations.

There exists a stopping time τ (m,n), an increasing sequence of stopping times (τ
(m,n)
k )k with

τ
(m,n)
k → τ (m,n) almost surely for k →∞ and a process y(m)

n with

y(m)
n ∈ C(0, τ

(m,n)
k ;L2(D)6)

almost surely, such that y(m)
n solves (5.4) on [0, τ

(m,n)
k ]. Moreover, we have the blow-up alterna-

tive

P
{
τ (m,n) < T, sup

t∈[0,τ(m,n))

‖yn(t)‖L2(D)6 <∞
}

= 0. (5.5)

For the a priori estimate, we use the Itô formula from Lemma 4.2 to get

‖y(m)
n (t)‖2L2(D)6 − ‖u0‖2L2(D)6

=2

∫ t

0

Re〈y(m)
n ,−|y(m)

n (s)|qy(m)
n (s) +A(m)(s)y(m)

n (s) + J̃(s)〉L2(D)6 ds
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+ 2

N∑
j=1

∫ t

0

Re〈y(m)
n (s), Sn−1b̃j(s)〉L2(D)6dβj(s) +

N∑
j=1

∫ t

0

‖Sn−1b̃j(s)‖2L2(D)6 ds .

Using the skew-symmetry of the cross-product, we calculate

〈
y(m)
n , iβj(t ∧ τm)

( ∇Bj × y(m)
n,2

−∇Bj × y(m)
n,1

)〉
L2(D)6

= −
〈
iβj(t ∧ τm)y(m)

n ,

( ∇Bj × y(m)
n,2

−∇Bj × y(m)
n,1

)〉
L2(D)6

=
〈
iβj(t ∧ τm)

( ∇Bj × y(m)
n,2

−∇Bj × y(m)
n,1

)
, y(m)
n

〉
L2(D)6

,

which implies

Re
〈
y(m)
n (s), iβj(t ∧ τm)

( ∇Bj × y(m)
n,2

−∇Bj × y(m)
n,1

)〉
L2(D)6

= 0.

Hence, the expression from above simplifies to

‖y(m)
n (t)‖2L2(D)6 + 2

∫ t

0

∫
D

|y(m)
n (s, x)|q+2 dx dt

=‖u0‖2L2(D)6 + 2

∫ t

0

Re
〈
y(m)
n (s), J̃(s) +

N∑
j=1

B2
j y

(m)
n (s)

〉
L2(D)6

ds

+ 2

N∑
j=1

∫ t

0

Re〈y(m)
n (s), Sn−1b̃j(s)〉L2(D)6dβj(s) +

N∑
j=1

∫ t

0

‖Sn−1b̃j(s)‖2L2(D)6 ds (5.6)

almost surely for t ∈ [0, τ
(m,n)
k ]. Since the second term on the left hand side is positive, we can

drop it for a moment. We first take the supremum over time and then the expectation value and
estimate the remaining quantities term by term. We start with the deterministic part.

E sup
s∈[0,t∧τ(m,n)

k ]

∣∣∣ ∫ s

0

Re
〈
y(m)
n (r), J̃(r) +

N∑
j=1

B2
j y

(m)
n (r)

〉
dr +

N∑
j=1

∫ s

0

‖Sn−1b̃j(r)‖2L2(D)6 dr
∣∣∣

≤E
∫ t∧τ(m,n)

k

0

‖y(m)
n (r)‖L2(D)6‖J̃(r)‖L2(D)6 + sup

j=1,...,N
‖Bj‖2L∞(D)‖y

(m)
n (r)‖2L2(D)6 dr

+

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6

≤
∫ t

0

E sup
r∈[0,s∧τ(m,n)

k ]]

‖y(m)
n (r)‖2L2(D)6

(
sup

j=1,...,N
‖Bj‖2L∞(D) + 1

2

)
ds +

1

2
‖J̃‖2L2(Ω×[0,T ]×D)6

+

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 .

The stochastic part can be estimated with the Burgholder-Davies-Gundy inequility.

E sup
s∈[0,t∧τ(m,n)

k ]

∣∣∣ N∑
j=1

∫ s

0

Re〈y(m)
n (s), Sn−1b̃j(s)〉L2(D)6dβj(s)

∣∣∣
≤ CE

( N∑
j=1

∫ t∧τ(m,n)
k

0

∣∣Re〈y(m)
n (s), Sn−1b̃j(s)〉L2(D)6

∣∣2 ds
)1/2

≤ CE sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖L2(D)6

( N∑
j=1

‖Sn−1b̃j‖2L2([0,T ]×D)

)1/2
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≤ 1

4
E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(D)6 + C2E

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D).

Putting these estimates together, we get

E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(Ω×D)

.‖u0‖2L2(D)6 + ‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)

+
(

sup
j=1,...,N

‖Bj‖2L∞(D) + 1
) ∫ t

0

E sup
r∈[0,s∧τ(m,n)

k ]

‖y(m)
n (r)‖2L2(D)6 ds

Consequently, Gronwall yields

E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(D)6

.Bj

(
‖J̃‖2L2(Ω×[0,T ]×D)6 +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(Ω×D)

)
for every t ∈ [0, T ]. Next, we pass to the limit k →∞with Fatou’s Lemma.

E sup
t∈[0,τ(m,n))

‖y(m)
n (t)‖2L2(D)6 ≤ lim inf

k→∞
E sup
t∈[0,τ

(m,n)
k ]

‖y(m)
n (t)‖2L2(D)6

.Bj

(
‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D) + ‖u0‖2L2(Ω×D)

)
.

(5.7)

Note that this bound is independent of m and n. In particular, this estimate implies τ (m,n) = T
almost surely. Indeed, there exists N ⊂ Ω with P(N) = 0, such that Ω \

(
N ∪ {τ (m,n) = T}

)
can

be decomposed into disjoint sets{
τ (m,n) < T, sup

t∈[0,τ(m,n))

‖y(m)
n (t)‖L2(D)6 <∞

}
,
{
τ (m,n) < T, sup

t∈[0,τ(m,n))

‖y(m)
n (t)‖L2(D)6 =∞

}
.

Here, the first set has measure zero by (5.5) and the second one has measure zero, since (5.7)
implies supt∈[0,τ(m,n)) ‖y

(m)
n (t)‖L2(D)6 <∞ almost surely. As a consequence of (5.6), we also get

E
∫ T

0

∫
D

|y(m)
n (s, x)|q+2 dx dt .Bj

(
‖J̃‖2L2(Ω×[0,T ]×D)6 +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)

)
.

(5.8)

We already know that y(m)
n is almost surely continuous on [0, T ) as a function with values in

L2(D)6, the pathwise continuity up to y(m)
n (T ) follows from Lemma 4.2.

It remains to take the limit m→∞. By uniqueness, we have y(m)
n (ω, t) = y

(k)
n (ω, t) for almost

all ω ∈ Ω, all t ∈ [0, τm] and for every k ≥ m. Moreover, for almost all ω ∈ Ω, there exists m(ω),

such that τm(ω)(ω) = T. Hence, we the limit yn = limm→∞ y
(m)
n is well-defined, adapted and

satisfies (5.4). Again using Fatou’s Lemma yields analogous estimates to (5.7) and (5.8) for yn.
This closes the proof.

To obtain strong solutions, we need an estimate for Myn, uniformly in n ∈ N. In a determin-
istic setting, one would try to control y′n using the structure of the equation and then use the
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uniform estimates for yn to find a bound for Myn. However, solutions of stochastic differential
equations are not differentiable in time and hence, we have to follow a different approach. We
derive an a priori estimate for

∥∥∥PnMyn(t)− PnF (yn(t)) + Pn

N∑
j=1

B2
j yn(t) + Pniβj(t)

(
∇Bj × yn,2(t)

−∇Bj × yn,1(t)

)
+ PnJ̃(t)

∥∥∥2

L2(D)6
.

To do this, we have to show, that this quantity is an Itô process.

Lemma 5.4. The stochastic process

Λn(t) := PnMyn(t)− PnF (yn(t)) + Pn

N∑
j=1

B2
j yn(t) + Pniβj(t)

(
∇Bj × yn,2(t)

−∇Bj × yn,1(t)

)
+ PnJ̃(t)

is an Itô process with

dΛn(t) =Pn

[
MΛn − F ′(yn(t))(Λn(t)) +

N∑
j=1

(
iβj(t)

(
∇Bj × Λn,2(t)

−∇Bj × Λn,1(t)

)
+B2

jΛn

)

− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibk(t)Bk + J(t)
)
e−i

∑N
l=1 Blβl(t)

+
( N∑
k=1

−i∂tbk(t)Bk + ∂tJ(t)
)
e−i

∑N
l=1 Blβl(t) − 1

2

N∑
j=1

F ′′(yn)(Sn−1b̃j , Sn−1b̃j)
]

dt

+

N∑
j=1

Pn

[
MSn−1b̃j − F ′(yn)(Sn−1b̃j) +

N∑
k=1

iβk(t)

( ∇Bk × Sn−1b̃j,2(t)

−∇Bk × Sn−1b̃j,1(t)

)

+

N∑
k=1

B2
kSn−1b̃j + i

(
∇Bj × yn,2(t)

−∇Bj × yn,1(t)

)
− iBj

( N∑
k=1

−ibk(t)Bk + J(t)
)
e−i

∑N
l=1 Blβl(t)

]
dβj

almost surely for every t ∈ [0, T ].

Proof. With Lemma 2.6 and Lemma 3.7, one shows, that PnF (yn) is an Itô process in L2(D)6

with

d(PnF (yn)) =
[
PnF

′(yn)Λn + 1
2

N∑
j=1

PnF
′′(yn)(Sn−1b̃j , Sn−1b̃j)

]
dt+

N∑
j=1

PnF
′(yn)Sn−1b̃jdβj .

Moreover, by the product rule,

PnJ̃(t, x) = Pn

( N∑
j=1

−ibj(t, x)Bj(x) + J(t, x)
)
e−i

∑N
l=1 Blβl(t)

is an Itô process in L2(D)6 of the form

d(PnJ̃)(t)

=Pn

(
− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibk(t)Bk + J(t)
)

+

N∑
k=1

−i∂tbk(t)Bk + ∂tJ(t)
)
e−i

∑N
l=1 Blβl(t) dt

− Pn
N∑
j=1

[
iBj
( N∑
k=1

−ibk(t)Bk + J(t)
)
e−i

∑N
l=1 Blβl(t)

]
dβj
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The remaining expression Λn + PnF (yn)− PnJ̃ is a C2-function of the Itô processes

dyn(t, x) = Λn(t)dt+ Sn−1

N∑
j=1

b̃jdβj(t)

and βj , j = 1, . . . , N. Therefore, we can calculate d(Λn + PnF (yn) − PnJ̃) with Itô’s formula.
Thereby it is crucial that all occurring terms depend only linearly on yn and βj and consequently
the second derivatives vanish. This finally proves the claimed result.

Proposition 5.5. The process Λn satisfies the estimate

E sup
t∈[0,T ]

‖Λn(t)‖2L2(D)6 ≤ C
(
1 + E‖Mu0‖2L2(D)6 + E‖u0‖2L2(D)6 + E‖u0‖2q+2

L2q+2(D)3

)
,

with a constant C > 0 depending on J, bj and Bj for j = 1, . . . , N , but not on n ∈ N.

Proof. At first, we calculate ‖Λn(t)‖2L2(D)6 with the Itô formula from Lemma 4.2. We obtain

‖Λn(t)‖2L2(D)6 − ‖Λn(0)‖2L2(D)6

=2

∫ t

0

Re
〈

Λn(s),−F ′(yn(s))(Λn(s)) +

N∑
j=1

(
iβj(s)

(
∇Bj × Λn,2(s)

−∇Bj × Λn,1(s)

)
+B2

jΛn(s)
)

− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)

+
( N∑
k=1

−i∂tbk(s)Bk + ∂tJ(s)
)
e−i

∑N
l=1 Blβl(t)

− 1

2

N∑
j=1

F ′′(yn)(Sn−1b̃j(s), Sn−1b̃j(s))
〉
L2(D)6

ds

+

∫ t

0

∥∥∥MSn−1b̃j(s)− F ′(yn)(Sn−1b̃j(s)) +

N∑
k=1

iβk(s)

( ∇Bk × Sn−1b̃j,2(s)

−∇Bk × Sn−1b̃j,1(s)

)

+

N∑
k=1

B2
kSn−1b̃j(s) + i

(
∇Bj × yn,2(s)

−∇Bj × yn,1(s)

)

− iBj
( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)

∥∥∥2

L2(D)6
ds

+ 2

N∑
j=1

∫ t

0

Re
〈

Λn,MSnb̃j(s)− F ′(yn)(Sn−1b̃j(s)) +

N∑
k=1

iβk(s)

( ∇Bk × Sn−1b̃j,2(s)

−∇Bk × Sn−1b̃j,1(s)

)

+

N∑
k=1

B2
kSn−1b̃j(s) + i

(
∇Bj × yn,2(s)

−∇Bj × yn,1(s)

)

− iBj
( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)〉L2(D)6dβj(s).

As we have seen before in the proof of Proposition 5.3, the term

Re
〈
Λn(s),

N∑
j=1

iβj(s)

(
∇Bj × Λn,2(s)

−∇Bj × Λn,1(s)

)〉
L2(D)6

vanishes. Moreover, by Lemma 2.6, we have

Re〈Λn, F (yn(s))′Λn(s)〉L2(D)6 ≤ 0
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almost surely for every s ∈ [0, T ] and we can drop this term in an upper estimate because of
the sign. We split this expression into the deterministic integral Idet and the stochastic integral
Istoch.

We take the supremum over time and afterwards the expectation value and we aim to control
the left hand side with Gronwall. We start with an estimate for the deterministic integral Idet.
Using Cauchy-Schwartz and the assumptions on Bj , ∇Bj ∂tbj , J and ∂tJ from [M4]− [M6], we
get

E sup
s∈[0,t]

|Idet(s)|

.
∫ t

0

‖Λn(r)‖2L2(D)6 +

N∑
j=1

‖Λn(r)‖L2(D)6‖F ′′(yn)(Sn−1b̃j(r), Sn−1b̃j(r)‖L2(D)6

+
∥∥MSnb̃j(r)‖2L2(D)6 + ‖F ′(yn(r))(Sn−1b̃j(r))‖2L2(D)6 +

N∑
k=1

‖βk(r)Sn−1b̃j(r)‖2L2(D)6

+

N∑
k=1

‖Sn−1b̃j(r)‖2L2(D) + ‖yn(r)‖2L2(D) dr

The growth estimates for F ′ and F ′′ from Lemma 2.6 together with the uniform boundedness of
Sn−1 on L2(D)6 yield

E sup
s∈[0,t]

|Idet(s)| .
∫ t

0

‖Λn(r)‖2L2(D)6 +

N∑
j=1

‖|yn|q−1|Sn−1b̃j |2‖2L2(D)6 + ‖Mb̃j‖2L2(D)6 + ‖b̃j‖2L2(D)

+ ‖|yn|qSn−1b̃j‖2L2(D)6 +

N∑
k=1

βk(r)2‖b̃j(r)‖2L2(D)6 + ‖yn(r)‖2L2(D) dr

In the following estimate, we have to distinguish the cases q ∈ (1, 2) and q = 2. We start with
the first one. Hölder’s inequality, the fact βk ∈ Lα(Ω;C(0, T )) for every α ∈ [2,∞) and the
boundedness of Sn−1 on Lp(D)6 for every p ∈ (1,∞) with norm independent of n yield

E sup
s∈[0,t]

|Idet(t)| .
∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds +‖yn‖2(q−1)
Lq+2(Ω×[0,T ]×D)6‖b̃j‖

4

L
4(q+2)
4−q (Ω×[0,T ]×D)6

+ ‖Mb̃j‖2L2(Ω×[0,T ]×D)6 + ‖yn‖2qLq+2(Ω×[0,T ]×D)6‖b̃j‖
2

L
2(q+2)
2−q (Ω×[0,T ]×D)6

+ ‖b̃j(s)‖2L2+ε(Ω;L2([0,T ]×D))6 + ‖b̃j‖2L2(Ω×[0,T ]×D) + ‖yn(s)‖2L2(Ω×[0,T ]×D).

for any ε > 0. In the case q = 2, the same argument yields

E sup
s∈[0,t]

|Idet(t)| .
∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds +‖yn‖2L4(Ω×[0,T ]×D)6‖b̃j‖
4
L8(Ω×[0,T ]×D)6

+ ‖Mb̃j‖2L2(Ω×[0,T ]×D)6 + ‖yn‖4L4(Ω×[0,T ]×D)6‖Sn−1b̃j‖2L∞(Ω×[0,T ]×D)6

+ ‖b̃j‖2L2+ε(Ω;L2([0,T ]×D))6 + ‖b̃j‖2L2(Ω×[0,T ]×D) + ‖yn‖2L2(Ω×[0,T ]×D).

for any ε > 0. At this point, we need the requirement Sn−1b̃j = b̃j for large enough n from [M5].
Note, that we already bounded ‖yn‖Lq+2(Ω×[0,T ]×D)6 and ‖yn‖L2(Ω×[0,T ]×D)6 in Proposition

5.3 uniformly in n. Hence,we can conclude

E sup
s∈[0,t]

|Idet(s)| .1 +

∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds

and the estimate only depends onBj , bj and J but not on n ∈ N. The stochastic term Istoch can be
controlled in the same way as in the proof of Proposition 5.3 with the Burkholder-Davies-Gundy
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inequality and the assumptions on Bj , bj and J together with the growth estimates for F ′ and
F ′′. Thus, we end up with

E sup
s∈[0,t]

‖Λn(s)‖2L2(D) . 1 + E‖Λn(0)‖2L2(D) +

∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds .

It remains to bound

Λn(0) = PnMSnu0 − PnF (Snu0) + Pn

N∑
j=1

B2
jSnu0 − Pn

N∑
j=1

ibj(0)Bj + PnJ(0)

in L2(Ω × D)6 independent of n ∈ N. Since both bj and J are in L2(Ω;W 1,2(0, T ;L2(D)))6, the
corresponding initial data bj(0) and J(0) is contained in L2(Ω × D)6. As a consequence, the
uniform boundedness of Sn on Lp(D)6 for every p ∈ (1,∞) and of Pn on L2(D)6 yield

E sup
s∈[0,T ]

‖Λn(s)‖2L2(D)6 . 1 + E‖MSnu0‖2L2(D)6 + E‖|Snu0|qSnu0‖2L2(D)6

+

N∑
j=1

‖Bj‖2L∞(D)‖Snu0‖2L2(D)6

. 1 + E‖Mu0‖2L2(D)6 + E‖u0‖2(q+1)

L2(q+1)(D)6
+ E‖u0‖2L2(D)6 .

Finally, an application of Gronwall’s Lemma closes the proof.

In Proposition 5.3 and 5.5, we derived uniform estimates for yn and Λn. As a consequence,
we also get the uniform boundedness of F (yn), since

‖F (yn)‖
L

q+2
q+1 (Ω×[0,T ]×D)

. ‖|yn|q+1‖
L

q+2
q+1 (Ω×[0,T ]×D)6

= ‖yn‖q+1
Lq+2(Ω×[0,T ]×D)6

Hence, by Banach-Alaoglu, there exists processes y ∈ L2(Ω;L∞(0, T ;L2(D)))6, N ∈ L
q+2
q+1 (Ω ×

[0, T ]×D)6, Λ ∈ L2(Ω;L∞(0, T ;L2(D)))6 and subsequences, still indexed with n, such that

a) yn → y for n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6.

b) yn → y for n→∞ in the weak sense in L2(Ω× [0, T ]×D)6.

c) F (yn)→ N for n→∞ in the weak sense in L
q+2
q+1 (Ω× [0, T ]×D)6.

d) Λn → Λ for n→∞ in the weak sense in L2(Ω× [0, T ]×D)6.

e) Λn → Λ for n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6.

In the next Lemma, we show that Λ has the correct form.

Lemma 5.6. The process y : Ω × [0, T ] → L2(D)6 additionally satisfies y(ω, t) × ν = 0 on ∂D for
almost all ω ∈ Ω and t ∈ [0, T ]. Moreover, we have

My +

N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
∈ L2(Ω;L∞(0, T ;L2(D)))6 + L

q+2
q+1 (Ω× [0, T ]×D)6,

and the identity

Λ = My −N +

N∑
j=1

B2
j y + iβj

(
∇Bj × y2

−∇Bj × y1

)
+ J̃ .

holds.
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Proof. Let φ : Ω× [0, T ]→ ∪∞n=1R(Pn) be a simple function. By weak convergence, we obtain

−〈y,Mφ〉L2(Ω×[0,T ]×D)6

= lim
n→∞

〈yn,Mφ〉L2(Ω×[0,T ]×D)6

= lim
n→∞

〈
Λn + PnF (yn)− PnJ̃ − Pn

N∑
j=1

Bjyn − Pn
N∑
j=1

iβj

(
∇Bj × yn,2
−∇Bj × yn,1

)
, φ
〉
L2(Ω×[0,T ]×D)6

=
〈
Λ +N − J̃ −

N∑
j=1

Bjy −
N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
, φ
〉
L2(Ω×[0,T ]×D)6

Here, we could drop the Pn, since Pnφ = φ for large enough n. By density of simple functions
and by the density of ∪∞n=1R(Pn) inD(M) and in Lp(D)6 for every p ∈ (1,∞) (see Corollary 3.6),
we get

−〈y(t),Mψ〉L2(D)6 =
〈
Λ(t) +N(t)− J̃(t)−

N∑
j=1

Bjy(t)−
N∑
j=1

iβj(t)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
, ψ
〉
L2(D)6

almost surely for almost every t ∈ [0, T ] and for every ψ ∈ D(M) ∩ Lq+2(D)6. By Lemma 2.4,
this implies y1(ω, t)× ν = 0 on ∂D almost surely for almost every t ∈ [0, T ] and

My = Λ +N − J̃ −
N∑
j=1

Bjy −
N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
.

This identity also gives the claimed regularity result.

Consequently,we pass to the limit weakly in (4.2) and obtain{
dy(t) = [My(t)−N(t) +A(t)y(t) + J̃(t)] dt +

∑N
i=1 b̃i(t) dβi(t),

yn(0) = u0.
(5.9)

as an equation in L2(Ω;L∞(0, T ;L2(D)))6. So far, we just showed y ∈ L2(Ω;L∞(0, T ;L2(D)6)).
However, Lemma 4.2 implies pathwise continuity of t 7→ y(t) ∈ L2(D)6.

It remains to show N(t) = F (y(t)). But this proof is step by step the same as in Proposition
4.5 and uses the monotonicity of the deterministic part of the equation.

All in all, we showed that y ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)6)) solves{
dy(t) = [My(t)− F (y(t)) +A(t)y(t) + J̃(t)] dt +

∑N
i=1 b̃i(t) dβi(t),

yn(0) = u0.
(5.10)

as an equation in L2(Ω;L∞([0, T ];L2(D)))6. Transforming the equation backwards with Propo-
sition 5.2, we get the following result.

Proposition 5.7. (MSEE) with G ≡ 0 has a unique strong solution u satisfying with

u ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)))6

and
Mu ∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)))6.

Proof. The product rule yields

M(ei
∑N

j=1 Bjβjy) = ei
∑N

j=1 BjβjMy + iei
∑N

j=1 Bjβj

N∑
j=1

βj

(
∇B × y2

−∇B × y1

)

26



and hence, we have

M(ei
∑N

j=1 Bjβjy) ∈ L
q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)))6

if and only if

My + i

N∑
j=1

βj

(
∇B × y2

−∇B × y1

)
∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)))6.

This holds true by 4.2. Consequently, we can apply Proposition 5.2 and obtain a solution u of
(MSEE) with G ≡ 0. Uniqueness is immediate by Proposition 4.5, since our solution is also a
weak solution of the equation.

Last but not least, we want to add the term (G∗u). This leads to the main result of this article.

Theorem 5.8. (MSEE) has a unique solution u satisfying with

u ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)))6

and
Mu ∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞([0, T ];L2(D)))6.

Proof. Let u ∈ Lq+2(Ω × [0, T ] × D)6 ∩ L2(Ω;C(0, T ;L2(D)6)) be the unique weak solution of
(MSEE) from Proposition (4.6). The expression (G ∗ u)(t) =

∫ t
0
G(t − s)u(s) ds is differentiable

in time with

∂t(G ∗ u)(t) = G(0)u(t) +

∫ t

0

G′(t− s)u(s) ds .

By [M5], both (G ∗u) and ∂t(G ∗u) are contained in L2(Ω× [0, T ]×D)6. Hence, u is a solution of
(MSEE) with the current G ∗u+J satisfying [M4]. Consequently, u has the regularity properties
from Proposition 5.7. This closes the proof.

6 Remarks and discussion

In this section, we want to compare our results to the literature and we discuss some instructive
special cases of our assumptions.

First, we want to mention, that Roach, Stratis and Yannacopoulus already treated our equation
in the deterministic setting in [27]. They claim in Theorem 11.3.14, that{

u′(t) = κ−1Mu(t)− κ−1|u(t)|qu(t) + κ−1(G ∗ u)(t) + κ−1J(t),

u(0) = u0

has a unique strong solution u ∈ Lq+2(Ω×[0, T ]×D)6 withMu ∈ L
q+2
q+1 (Ω×[0, T ]×D)6 ifD ⊂ R3

is a bounded Lipschitz domain and κ : D → R6×6 is a uniformly bounded and uniformly elliptic
matrix with measurable dependence in space. Their idea is to make a Galerkin approximation
with respect to an arbitrary orthonormal basis (hn)n of H(curl, 0)(D) ×H(curl)(D), that is also
a basis of L2(D)6. However, besides many inaccuracies, they make two severe mistakes.

Beginning from (11.12) on page 239, they derive∫ T

0

〈(G ∗ un)(s), un(s)〉L2(D)6 ds→
∫ T

0

〈(G ∗ u)(s), u(s)〉L2(D)6 ds

for n → ∞ as a consequence of the weak convergences of G ∗ un → G ∗ u and un → u in
L2([0, T ] × D)6 as n → ∞. However, such an argument is not available in general. Moreover,
they in their a priori estimate for the approximating problem, they implicitly use

‖
n∑
j=1

〈u0, hj〉L2(D)6hj‖L2(q+1)(D)6 ≤ C‖u0‖L2(q+1)(D)6
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with a constant independent of n ∈ N. 5.5. However, this is not true in general. As far as we
know, such a result is only known on the torus, with the choice hn(x) = einx. This is one of the
reasons, why we had to use the operators Sn that are also bounded on Lp(D)6.

Getting back to our result, we want to point out that the restriction to q ∈ (1, 2] only comes
from the Hölder estimate

‖F ′(yn)Sn−1b̃j‖L2(Ω×[0,T ]×D)6 ≤ ‖yn‖2qLq+2([0,T ]×D)‖Sn−1b̃j‖2
L

2(q+2)
2−q (Ω×[0,T ]×D)6

in the proof of Proposition 5.5. Hence, if one assumes bj ≡ 0 one gets the same result as in
Theorem 5.8 for all q ∈ (1,∞). In particular, this is true for the deterministic equation. Hence,
we gave a correct proof for the theorem of Roach, Stratis and Yannacopoulus if κ ≡ I and D is a
bounded C1-domain or D = R3.

Next, we want to comment on the odd-looking condition

Pn
(
bi(s)e

−i
∑N

j=1 Bjβj(s)
)

= bi(s)e
−i

∑N
j=1 Bjβj(s)

from [M5] for n ∈ N large enough and for all s ∈ [0, T ], i = 1, . . . , N in case that q = 2. We need
it in the proof of Proposition 5.5 for the estimate

‖Sn
(
bi(s)e

−i
∑N

j=1Bjβj(s)
)
‖L∞(D)6 ≤ C‖bi(s)e−i

∑N
j=1Bjβj(s)‖L∞(D)6

with a constant independent of n ∈ N. It might be possible to get this inequality without our
restrictive assumption in special cases. However, we want to point out, that even in the case
D = R3 the boundedness of Sn on L∞(D)6 is wrong, since it would imply the boundedness
of the Hilbert transform L∞(D). If the Bj are constant, the assumption reduces to Pnbi(s) =

bi(s). If D = R3, this means that the Fourier transform b̂i(s) is compactly supported in a timely
independent set. In case that D is a bounded C1-domain, this means, that bi is of the form

bi(s) =

M∑
k=1

b
(k)
i (s)hk

for some scalar valued b
(k)
i : Ω × [0, T ] → C. Here, hk = (hk,1, hk,2) and hk,1 and hk,1 are eigen-

vectors of the operators A(1) and A(2), we introduced in Proposition 3.1.

Last but not least, we want to discuss, why we did not treat coefficients in front of the Maxwell
operator. Our approach is based on the interplay between −M2, ∆H and the Helmholtz projec-
tion PH . In fact, we showed−M2 = ∆H onR(PH) and−M2 = 0 inN(PH) = N(M).One might
say, that we added a self-adjoint operatorA = − grad div withN(A) = R(PH) to−M2, such that
the sum, namely −∆H , has generalized Gaussian bounds. If we now replace M with

Mε,µ

(
u1

u2

)
=

(
ε(x)−1 curlu2

−µ(x)−1 curlu1

)
with the same perfect conductor boundary condition u1 × ν = 0 on ∂D, we end up with

−M2

(
u1

u2

)
=

(
ε(x)−1 curlµ(x)−1 curlu1

µ(x)−1 curl ε(x)−1 curlu2

)
with the boundary condition u1×ν = 0 and

(
ε−1 curlu2

)
×ν = 0 on ∂D and uniformly bounded,

positive definite and hermitian ε, µ : D → C3×3. The operator −M2 is then positiv and self-
adjoint with respect to a weighted scalar product on L2(D)6, namely

〈v, w〉ε,µ :=

∫
D

ε(x)v1(x) · w1(x) dx +

∫
D

µ(x)v2(x) · w2(x) dx .
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We need a weighted version of the Helmholtz projection Pε,ν . We project orthogonally with
respect to 〈·, ·〉ε,µ onto{

(u1, u2) ∈ L2(D)6 : div(εu1) = 0,div(µu2) = 0 and (µu2) · ν = 0 on ∂D
}
.

If we define

Aε,µ

(
u1

u2

)
= −

(
grad div(εu1)

grad div(µu2)

)
,

one calculates thatAε,µ is symmetric with respect to 〈·, ·〉ε,µ.Moreover,−M2
ε,µ,−M2

ε,µ+Aε,µ and
Pε,µ have the same relationship as their counterparts with ε = µ = I.

Hence, one has to show that −M2
ε,µ +Aε,µ on the domain{

curlu1, curlu2, curlµ−1 curlu1, curl ε−1 curlu2 ∈ Lp(D)3,div(εu1) ∈W 1,p
0 (D),

div(µu2) ∈W 1,p(D), u1 × ν = 0, (µu2) · ν = 0, (ε−1 curlu2)× ν = 0 on ∂D
}
.

has generalized Gaussian bounds, if one wants to generalize our result. However, even in case
of smooth ε, µ and ∂D, such a result is unknown so far.

6.1 Acknowledgement

I gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG)
through CRC 1173. Moreover, I thank my advisor Lutz Weis and Roland Schnaubelt for many
useful discussions and for pointing out references on the subject. I am also grateful, that Peer
Kunstmann answered many questions about the Hodge Laplacian and about generalized Gaus-
sian bounds. Last but not least, I want to mention the help of Fabian Hornung and Christine
Grathwohl. They read the article carefully and gave many useful comments.

29



References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-
dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998.
ISSN 0170-4214. doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;
2-B. URL http://dx.doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::
AID-MMA976>3.0.CO;2-B.

[2] G. Bal. Lecture notes. waves in random media. http://www.columbia.edu/~gb2030/
COURSES/E6901-Waves/Lectures-Waves.pdf, Columbia, 2006.

[3] V. Barbu and M. Röckner. On a random scaled porous media equation. J. Differential
Equations, 251(9):2494–2514, 2011. ISSN 0022-0396. doi: 10.1016/j.jde.2011.07.012. URL
http://dx.doi.org/10.1016/j.jde.2011.07.012.

[4] V. Barbu and M. Röckner. Stochastic variational inequalities and applications to the total
variation flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal., 209(3):
797–834, 2013. ISSN 0003-9527. doi: 10.1007/s00205-013-0632-x. URL http://dx.doi.
org/10.1007/s00205-013-0632-x.

[5] V. Barbu, M. Röckner, and D. Zhang. Stochastic nonlinear Schrödinger equations. 2014.

[6] V. Barbu, M. Röckner, and D. Zhang. Stochastic nonlinear Schrödinger equations with
linear multiplicative noise: Rescaling approach. Journal of Nonlinear Science, 24(3):383–409,
2014. ISSN 0938-8974. doi: 10.1007/s00332-014-9193-x. URL http://dx.doi.org/10.
1007/s00332-014-9193-x.

[7] V. Barbu, M. Röckner, and D. Zhang. Stochastic nonlinear Schrödinger equations. Nonlinear
Anal., 136:168–194, 2016. ISSN 0362-546X. doi: 10.1016/j.na.2016.02.010. URL http://dx.
doi.org/10.1016/j.na.2016.02.010.

[8] Z. Brzezniak, F. Hornung, and L. Weis. Martingale solutions for the NLS in the energie
space. to appear, 2017.

[9] C. Chen, J. Hong, and L. Zhang. Preservation of physical properties of stochastic maxwell
equations with additive noise via stochastic multi-symplectic methods. Journal of Com-
putational Physics, 306:500 – 519, 2016. ISSN 0021-9991. doi: http://dx.doi.org/10.1016/
j.jcp.2015.11.052. URL http://www.sciencedirect.com/science/article/pii/
S0021999115007925.

[10] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Encyclopedia of math-
ematics and its applications ; 152. Cambridge Univ. Press, Cambridge, 2. ed. edition, 2014.
ISBN 978-1-107-05584-1. FrÃijhere Aufl. ersch. als Bd. 45 der "Encyclopedia of mathematics
and its applications".

[11] E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer, New York,
1993. ISBN 0-387-94020-0; 3-540-94020-0. URL http://bvbr.bib-bvb.de:
8991/F?func=service&doc_library=BVB01&doc_number=005429587&line_
number=0001&func_code=DB_RECORDS&service_type=MEDIA.

[12] T. Field. Electromagnetic Scattering from Random Media. International Series of Monographs
on Physics. OUP Oxford, 2008. ISBN 9780198570776. URL https://books.google.de/
books?id=wB1likp5EekC.

[13] J.-P. Fouque, editor. Wave propagation and time reversal in randomly layered media. Stochastic
Modelling and Applied Probability ; 56. Springer, New York, 2007. ISBN 978-0-387-
30890-6; 978-0-387-49808-9. URL http://swbplus.bsz-bw.de/bsz270047344vlg.
htm;http://swbplus.bsz-bw.de/bsz270047344cov.htm;http://deposit.
ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=

30

http://dx.doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
http://www.columbia.edu/~gb2030/COURSES/E6901-Waves/Lectures-Waves.pdf
http://www.columbia.edu/~gb2030/COURSES/E6901-Waves/Lectures-Waves.pdf
http://dx.doi.org/10.1016/j.jde.2011.07.012
http://dx.doi.org/10.1007/s00205-013-0632-x
http://dx.doi.org/10.1007/s00205-013-0632-x
http://dx.doi.org/10.1007/s00332-014-9193-x
http://dx.doi.org/10.1007/s00332-014-9193-x
http://dx.doi.org/10.1016/j.na.2016.02.010
http://dx.doi.org/10.1016/j.na.2016.02.010
http://www.sciencedirect.com/science/article/pii/S0021999115007925
http://www.sciencedirect.com/science/article/pii/S0021999115007925
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=005429587&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=005429587&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=005429587&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
https://books.google.de/books?id=wB1likp5EekC
https://books.google.de/books?id=wB1likp5EekC
http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm
http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm
http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm


htm;http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=
2200252&custom_att_2=simple_viewer;http://deposit.ddb.de/cgi-bin/
dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm.

[14] L. Grafakos. Classical fourier analysis. Graduate texts in mathematics ; 249. Springer, New
York, 3. ed. edition, 2014. ISBN 978-1-4939-1193-6. URL http://swbplus.bsz-bw.de/
bsz420263756cov.htm.

[15] M. Hochbruck, T. Jahnke, and R. Schnaubelt. Convergence of an ADI splitting for
Maxwell’s equations. Numer. Math., 129(3):535–561, 2015. ISSN 0029-599X. doi: 10.1007/
s00211-014-0642-0. URL http://dx.doi.org/10.1007/s00211-014-0642-0.

[16] J. Hong, L. Ji, and L. Zhang. A stochastic multi-symplectic scheme for stochastic maxwell
equations with additive noise. Journal of Computational Physics, 268:255 – 268, 2014.
ISSN 0021-9991. doi: http://dx.doi.org/10.1016/j.jcp.2014.03.008. URL http://www.
sciencedirect.com/science/article/pii/S0021999114001818.

[17] D. Hundertmark, M. Meyries, L. Machinek, and R. Schnaubelt. Operator semigroups
and dispersive equations. Karlsruhe, 2013. URL http://www.math.kit.edu/iana3/
~schnaubelt/media/isem16-skript.pdf.

[18] A. Kirsch and F. Hettlich. The mathematical theory of time-harmonic Maxwells equations
: expansion-, integral-, and variational methods. Applied mathematical sciences ; 190.
Springer, Cham, 2015. ISBN 978-3-319-11085-1. URL http://swbplus.bsz-bw.de/
bsz415719011cov.htm.

[19] C. Kriegler and L. Weis. Paley-Littlewood decomposition for sectorial operators and inter-
polation spaces. ArXiv e-prints, July 2014.

[20] C. Kriegler and L. Weis. Spectral multiplier theorems viaH∞ calculus andR-bounds. ArXiv
e-prints, Dec. 2016.

[21] P. C. Kunstmann and M. Uhl. Spectral multiplier theorems of Hörmander type on Hardy
and Lebesgue spaces. J. Operator Theory, 73(1):27–69, 2015. ISSN 0379-4024. doi: 10.7900/
jot.2013aug29.2038. URL http://dx.doi.org/10.7900/jot.2013aug29.2038.

[22] P. C. Kunstmann and M. Uhl. Lp-spectral multipliers for some elliptic systems. Proc. Edinb.
Math. Soc. (2), 58(1):231–253, 2015. ISSN 0013-0915. doi: 10.1017/S001309151400008X. URL
http://dx.doi.org/10.1017/S001309151400008X.

[23] G. Milton. The Theory of Composites, volume 6 of Cambridge monographs on applied and
computational mathematics. Cambridge, Cambridge, 2002. ISBN 0-521-78125-6. URL
http://www.math.utah.edu/books/tcbook.

[24] M. Mitrea. Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson prob-
lems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J., 125(3):467–
547, 2004. ISSN 0012-7094. doi: 10.1215/S0012-7094-04-12322-1. URL http://dx.doi.
org/10.1215/S0012-7094-04-12322-1.

[25] M. Mitrea and S. Monniaux. On the analyticity of the semigroup generated by the
Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of
Riemannian manifolds. Trans. Amer. Math. Soc., 361(6):3125–3157, 2009. ISSN 0002-
9947. doi: 10.1090/S0002-9947-08-04827-7. URL http://dx.doi.org/10.1090/
S0002-9947-08-04827-7.

[26] C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations, volume
1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007. ISBN 978-3-540-70780-6; 3-540-
70780-8.

31

http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm
http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm
http://swbplus.bsz-bw.de/bsz270047344vlg.htm ; http://swbplus.bsz-bw.de/bsz270047344cov.htm ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok%5Fvar=1&dok%5Fext=htm ; http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2200252&custom_att_2=simple_viewer ; http://deposit.ddb.de/cgi-bin/dokserv?id=2707446&prov=M&dok_var=1&dok_ext=htm
http://swbplus.bsz-bw.de/bsz420263756cov.htm
http://swbplus.bsz-bw.de/bsz420263756cov.htm
http://dx.doi.org/10.1007/s00211-014-0642-0
http://www.sciencedirect.com/science/article/pii/S0021999114001818
http://www.sciencedirect.com/science/article/pii/S0021999114001818
http://www.math.kit.edu/iana3/~schnaubelt/media/isem16-skript.pdf
http://www.math.kit.edu/iana3/~schnaubelt/media/isem16-skript.pdf
http://swbplus.bsz-bw.de/bsz415719011cov.htm
http://swbplus.bsz-bw.de/bsz415719011cov.htm
http://dx.doi.org/10.7900/jot.2013aug29.2038
http://dx.doi.org/10.1017/S001309151400008X
http://www.math.utah.edu/books/tcbook
http://dx.doi.org/10.1215/S0012-7094-04-12322-1
http://dx.doi.org/10.1215/S0012-7094-04-12322-1
http://dx.doi.org/10.1090/S0002-9947-08-04827-7
http://dx.doi.org/10.1090/S0002-9947-08-04827-7


[27] G. F. Roach, I. G. Stratis, and A. N. Yannacopoulos. Mathematical analysis of deterministic and
stochastic problems in complex media electromagnetics. Princeton Series in Applied Mathemat-
ics. Princeton University Press, Princeton, NJ, 2012. ISBN 978-0-691-14217-3. Appendix D
by George Dassios.

32


	Introduction
	Preliminaries
	The operators curl and div
	The power nonlinearity

	The Hodge-Laplacian on a bounded domain
	Existence and uniqueness of a weak solution
	Existence and uniqueness of a strong solution
	Remarks and discussion
	Acknowledgement


