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Abstract. In this paper we prove the existence and uniqueness of maxi-
mal strong (in PDE sense) solution to several stochastic hydrodynamical
systems on unbounded and bounded domains of Rn, n = 2, 3. This max-
imal solution turns out to be a global one in the case of 2D stochastic
hydrodynamical systems. Our framework is general in the sense that it
allows us to solve the Navier–Stokes equations, MHD equations, Magnetic
Bénard problems, Boussinesq model of the Bénard convection, Shell mod-
els of turbulence and the Leray-α model with jump type perturbation.
Our goal is achieved by proving general results about the existence of
maximal and global solution to an abstract stochastic partial differential
equations with locally Lipschitz continuous coefficients. The method of
the proofs are based on some truncation and fixed point methods.
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1. Introduction

Stochastic Partial Differential Equations (SPDEs) are a powerful tool for un-
derstanding and investigating mathematically hydrodynamic and turbulence
theory. To model turbulent fluids, mathematicians often use stochastic equa-
tions obtained from adding a noise term in the dynamical equations of the flu-
ids. This approach is basically motivated by Reynolds’ work which stipulates
that turbulent flows are composed of slow (deterministic) and fast (stochas-
tic) components. Recently by following the statistical approach of turbulence
theory, Flandoli et al. [25], Kupiainen [35] confirm the importance of studying
the stochastic version of fluids dynamics. Indeed, the authors of [25] pointed
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out that some rigorous information on questions of turbulence theory might
be obtained from these stochastic versions. It is worth emphasizing that the
presence of the stochastic term (noise) in these models often leads to quali-
tatively new types of behavior for the processes. Since the pioneering work of
Bensoussan and Temam [4], there has been an extensive literature on stochas-
tic Navier–Stokes equations with Wiener noise and related equations, we refer
to [1,2,5,6,17,20,26,40,41,48] amongst other.

In the last 5 years, there has been an extensive effort to tackle SPDEs
with Levy noise. There are several examples where the Gaussian noise is not
well suited to represent realistically external forces. For example, if the ratio
between the time scale of the deterministic part and that of the stochastic
noise is large, then the temporal structure of the forcing in the course of each
event has no influence on the overall dynamics, and—at the time scale of
the deterministic process—the external forcing can be modelled as a sequence
of episodic instantaneous impulses. This happens for example in Climatology
(see, for instance, [32]). Often the noise observed by time series is typically
asymmetric, heavy-tailed and has non trivial kurtosis. These are all features
which cannot be captured by a Gaussian noise, but rather by a Lévy noise with
appropriate parameters. Lévy randomness requires different techniques from
the ones used for Brownian motion and are less amenable to mathematical
analysis. We refer to [9,11,21,24,31,39,47] that deal with stochastic hydrody-
namical systems driven by Lévy type noise. Most of these articles are about
the existence of solution which are weak in the PDEs sense.

In this paper, we are interested in proving the existence and uniqueness
of maximal and global strong solution of Lévy driven hydrodynamical systems
such as the Navier–Stokes equations (NS), Magnetohydrodynamics equations
(MHD), Magnetic Bénard problem (MB), Boussinesq model for Bénard con-
vection (BBC), Shell models of turbulence, and 3-D Leray-α for Navier–Stokes
equations. Here, strong solutions should be understood in both the Probability
and PDEs senses. Our objectives are achieved by adopting the unified approach
initiated and developed in [17] and used later in [9]. This approach is based
on rewriting the various equations above into an abstract stochastic evolution
equations in a Hilbert space V of the following form

u(t) = u0 −
∫ t

0

[Au(s) + F (u(s))] ds +
∫ t

0

∫
Z

G(z,u(s−))η̃(dz, ds), (1.1)

where
∫

Z
G(z,u(s−))η̃(dz, ds) represents a global Lipschitz continuous multi-

plicative noise of jump type. In Theorem 3.5 we give sufficient conditions (on
A and F ) for the existence and uniqueness of a maximal solution to (1.1).
Sufficient conditions for non-explosion of the maximal solution in finite time is
given in Theorem 3.7. These two theorems are our main results and their as-
sumptions are carefully chosen so that they are verified by the NS, MHD, MB,
BBC, Shell models and the Leray-α models. In Sect. 4 we borrow the examples
and the notations in [17] and give a detailed account of the applicability of our
framework to the fluid models we cited in the previous sentence.
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The book [44] contains several results about existence of solution to ab-
stract SPDEs driven by Lévy noise in Hilbert space setting, but the hypotheses
in this book do not cover the various hydrodynamical systems that we enumer-
ated above. We also note that while there are several results about the exis-
tence of solution which are strong in PDEs sense for stochastic hydrodynamical
systems perturbed by Wiener noise (see, for instance, [3,8,29,34,38,41] and
references therein), it seems that this is the first paper treating the existence
of strong (in PDE sense) solution for stochastic hydrodynamical systems with
Lévy noise. However, one should mention the paper [13] in which the existence
and uniqueness of a strong solution in PDE sense of a stochastic nonlinear
beam equations driven by compensated Poisson random measures was estab-
lished.

The layout of the present paper is as follows. In Sect. 2, we introduce
the abstract stochastic evolution equation that our result will be based on. At
the beginning of the section, we give the notations and standing assumptions,
and prove some preliminary results that we are using throughout. Section 3 is
devoted to the statements and the proofs of our main results. We will mainly
show that under the assumptions introduced in Sect. 2 the Eq. (1.1) admits
a unique maximal local solution, and with additional conditions on F and G
we prove that this maximal local solution turns out to be a global one. The
results are obtained by use of cut-off and fixed point methods introduced in
[10] (see also [18,19] for similar idea). In Sect. 4 we give a detailed discussion
on how our abstract results are used to solve the stochastic NS, MHD, MB,
BBC, Shell models and Leray-α models driven by multiplicative noise of jump
type. Most of the examples and notations in Sect. 4 are taken from [17]. In
appendix we prove the well-posedness of a linear stochastic evolution equations
driven by compensated Poisson random measure which is very important for
our analysis.

2. Description of an abstract stochastic evolution equation

In this paper we give the necessary notations and standing assumptions used
throughout the paper. We also prove some preliminary results that are very
important for our analysis.

2.1. Notations and preliminary results

In this section we start with some notations, then introduce the assumptions
used throughout the paper and our abstract stochastic equation.

Let (V, ‖·‖), (H, |·|) and (E, ‖·‖E) be three separable Hilbert spaces. The
scalar product in H is denoted by 〈u, v〉 for any u, v ∈ H. The same symbol
〈φ, v〉 will also be used to denoted duality pairing of φ ∈ V∗ and v ∈ V. We
will identify H with its dual H∗, and we assume that the embeddings

E ⊂ V ⊂ H ⊂ V∗ ⊂ E∗

are continuous and dense.
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We denote by L(Y1, Y2) be the space of bounded linear maps from a
Banach space Y1 into another Banach space Y2.

For T2 > T1 ≥ 0 we denote by Lp(T1, T2; B), p ∈ [1,∞), the space of all
equivalence classes of functions u defined on [T1;T2] and taking values in a
separable Banach space B such that u is measurable and

‖u(·)‖Lp(T1,T2;B) :=
(∫ T2

T1

‖u(s)‖p
Bds

) 1
p

< ∞.

The space L∞(T1, T2; B) is the set of all classes of measurable functions u :
[T1, T2] → B such that

‖u(·)‖L∞(T1,T2;B) := esssups∈[T1,T2]‖u(s)‖ < ∞.

For T2 > T1 ≥ 0 we set

XT1,T2 = L∞(T1, T2;V) ∩ L2(T1, T2;E), (2.1)

with the norm ‖u‖XT1,T2
defined by

‖u‖2XT1,T2
= esssups∈[T1,T2]‖u(s)‖2 +

∫ T2

T1

‖u(s)‖2E ds. (2.2)

For T1 = 0 and T2 = T > 0 we simply write XT := X0,T .
Let Y be a separable and complete metric space and T > 0. The space

D([0, T ];Y ) denotes the space of all right continuous functions x : [0, 1] → Y
with left limits. The space D([0, T ];Y ) equipped with the Skorohod topology
J1, which is the finest of Skorohod’s topologies, is both separable and complete.
For more information about the Skorohod space and the J1-topology we refer
to Ethier and Kurtz [23, Chapter 3, Section 5].

Let Z be a separable metric space, B(Z) its Borel σ-algebra and let ν
be a σ-finite positive measure on the measure space (Z,B(Z)). For the sake
of simplicity the Borel σ-algebra B(Z) of Z will be denoted by Z for the
remaining part of the paper. We set R+ := [0,∞) and λ the Lebesgue measure
on R. Suppose that P = (Ω,F ,F,P) is a filtered probability space, where
F = (Ft)t≥0 is a right-continuous filtration satisfying the usual condition, and
η : Ω × B(R+) × Z → N̄ is a time homogeneous Poisson random measure with
the intensity measure ν defined over the filtered probability space P. We will
denote by η̃ = η − γ the compensated Poisson random measure associated to
η where the compensator γ is given by

B(R+) × Z � (I,A) �→ γ(I,A) = ν(A)λ(I) ∈ R+.

For each Banach space B we denote by M2(0, T ;B) the space of all equivalence
classes of F-progressively measurable B-valued processes defined on [0, T ] such
that

‖u‖2M2(0,T ;B) = E

∫ T

0

‖u(s)‖2Bds < ∞.

Throughout the paper, let us denote by M2(XT ), the space of all F-progres-
sively measurable V ∩ H-valued processes whose trajectories belong to XT

almost surely, endowed with a norm
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‖u‖2M2(XT ) = E

[
sup

s∈[0,T ]

‖u(s)‖2 +
∫ T

0

‖u(s)‖2E ds

]
. (2.3)

Now, let P be the σ-field on [0,∞) × Ω generated by all real-valued left-
continuous and F-adapted processes. Let (H,B(H)) be a measurable space.
We say that an H-valued process g = (g(t))t≥0 is predictable if the mapping
[0,∞) × Ω � (t, ω) �→ g(t, ω) ∈ H is P/B(H)-measurable. Following the nota-
tion of [7], let M2

loc(R+, L2(Z, ν,H)) be the class of all predictable measurable
processes ξ : R+ × Ω → L2(Z, ν,H) satisfying the condition

E

∫ T

0

∫
Z

|ξ(r, z)|2Hν(dz) dr < ∞, ∀T > 0. (2.4)

If T > 0, the class of all predictable measurable processes ξ : R+ × Ω →
L2(Z, ν,H) satisfying the condition (2.4) just for this one T , will be denoted
by M2(0, T, L2(Z, ν,H)). Also, let M2

step(R+, L2(Z, ν,H)) be the space of all
processes ξ ∈ M2

loc(R+, L2(Z, ν,H)) such that

ξ(r) =
n∑

j=1

1(tj−1,tj ](r)ξj , 0 ≤ r,

where {0 = t0 < t1 < . . . < tn < ∞} is a partition of [0,∞), and for all j, ξj is
an Ftj−1 ⊗Z-measurable random variable. For any ξ ∈ M2

step(R+, L2(Z, ν,H))
set

Ĩ(ξ) =
n∑

j=1

∫
Z

ξj(z)η̃ (dz, (tj−1, tj ]) . (2.5)

This is basically the definition of stochastic integral of a random step process
ξ with respect to the compound random Poisson measure η̃. The extension
of this integral on M2

loc(R+, L2(Z, ν,H)) is possible thanks to the following
result which is taken from [7, Theorem C.1].

Theorem 2.1. There exists a unique bounded linear operator

I : M2
loc(R+, L2(Z, ν;H)) → L2(Ω,F ;H)

such that for ξ ∈ M2
step(R+, L2(Z, ν;H)) we have I(ξ) = Ĩ(ξ). Moreover, there

exists a constant C = C(H) such that for any ξ ∈ M2(R+, L2(Z, ν,H)),

E|I(1[0,t]ξ)|2 =: E|
∫ t

0

∫
Z

ξ(r, z)η̃(dz, dr)|2H ≤ C E

∫ t

0

∫
Z

|ξ(r, z)|2H ν(dz) dr, t ≥ 0.

(2.6)

Furthermore, for each ξ ∈ M2
loc(R+, L2(Z, ν,H)) , the process I(1[0,t]ξ), t ≥ 0,

is an H-valued càdlàg martingale. The process 1[0,t]ξ is defined by [1[0,t]ξ]
(r, z, ω) := 1[0,t](r)ξ(r, z, ω), t ≥ 0, r ∈ R+, z ∈ Z and ω ∈ Ω.

As usual we will write∫ t

0

∫
Z

ξ(r, z)η̃(dz, dr) := I(ξ)(t), t ≥ 0.

Now we introduce the following standing assumptions.
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Assumption 2.1. Let N be a self-adjoint unbounded operator on H such that
N ∈ L(E,H) ∩ L(V,V∗). Also let A be a bounded linear map from E into H.
We assume that there exist CN , CA > 0 such that

〈Au,Nu〉 ≥ CA‖u‖2E and 〈Nu, u〉 ≥ CN‖u‖2,
for any u ∈ V . The norm of N ∈ L(E,H) and N ∈ L(V,V∗) will be denoted
respectively by ‖‖‖N‖‖‖L(E,H) and ‖‖‖N‖‖‖L(V,V∗) throughout.

Let F and G be two nonlinear mappings satisfying the following sets of
conditions.

Assumption 2.2. Suppose that F : E → H is such that F (0) = 0 and there
exists p ≥ 1, α ∈ [0, 1) and C > 0 such that

|F (y) − F (x)|≤ C
[‖y − x‖‖y‖p−α‖y‖α

E + ‖y − x‖α
E‖y − x‖1−α‖x‖p

]
, (2.7)

for any x, y ∈ E.

Assumption 2.3. (i) Assume that G : V → L2q(Z, ν,V) and there exists a
constant �q > 0 such that

‖G(x) − G(y)‖2q
L2q(Z,ν,V) ≤ �q

q‖x − y‖2q, (2.8)

for any x, y ∈ V and q = 1, 2.
Note that this implies in particular that there exists a constant

�̃q > 0 such that

‖G(x)‖2q
L2q(Z,ν,V) ≤ �̃q

q(1+‖x‖2q), (2.9)

for any x ∈ V and p = 1, 2.
(ii) We also assume that G satisfies the inequality (2.7) with the norm of V

replaced by the norm of H. More precisely, there exists �p > 0 such that

‖G(x) − G(y)‖2p
L2p(Z,ν,H) ≤ �p

p|x − y|2p, (2.10)

for any x, y ∈ V and p = 1, 2.

Throughout this work we fix a positive number T . One of our objec-
tives is to prove the existence and uniqueness of maximal/local solution of the
following stochastic evolution equation

u(t) = u0 −
∫ t

0

[Au(s) + F (u(s))] ds +
∫ t

0

∫
Z

G(z,u(s−))η̃(dz, ds). (2.11)

The above identity is the shorthand of the following identity

〈u(t), v〉 = 〈u0, v〉−
∫ t

0

〈[Au(s) + F (u(s))] , v〉ds+
∫ t

0

∫
Z

〈G(u(s−)), v〉η̃(dz, ds),

(2.12)
almost surely (a.s.) for any t ∈ [0, T ] and v ∈ H.

Now, let us introduce the concept of local and maximal local solution.

Definition 2.2. (Local solution) By a local solution of (2.11) we mean a pair
(u, τ∞) such that
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(1) τ∞ is a stopping time such that τ∞ ≤ T a.s. and there exists a nondecreas-
ing sequence {τn, n ≥ 1} stopping times with τn ↑ τ∞ a.s. as n ↑ ∞,

(2) u is a progressively measurable stochastic process with càdlàg paths in V,
with probability 1 u ∈ Xt for any t ∈ [0, τ∞) and

u(t ∧ τn) = u0 −
∫ t∧τn

0

[Au(s) + F (u(s))] ds +
∫ t∧τn

0

∫
Z

G(z,u(s−))η̃(dz, ds),

(2.13)
holds for any t ∈ [0, T ] and n ≥ 1 with probability 1.

The identity (2.13) is the shorthand of the following

〈u(t ∧ τn), v〉 = 〈u0, v〉 −
∫ t∧τn

0

〈[Au(s) + F (u(s))] , v〉ds

+
∫ t∧τn

0

∫
Z

〈G(u(s−)), v〉η̃(dz, ds), (2.14)

holds for any t ∈ [0, T ], and n ≥ 1 with probability 1, and for all v ∈ H.

Remark 2.3. Note that since u is càdlàg and progressively measurable, the left
limit stochastic process {u(t−); t ∈ [0, τ∞]} is continuous and adapted, hence
predictable. Therefore, all the terms, in particular the stochastic integral, in
(2.13) (also (2.14)) are well-defined.

We also define the maximal local solution to (2.11).

Definition 2.4. (Maximal local solution)
(1) Let (u, τ∞) be a local solution to (2.11). If limt↗τ∞‖u‖Xt

= ∞ on {ω, τ∞ <
T} a.s., then the local process (u, τ∞) is called a maximal local solution.

(2) A maximal local solution (u, τ∞) is said to be unique if for any other
maximal local solution (v, σ∞) we have σ∞ = τ∞ and u(t) = v(t) for any
0 ≤ t < τ∞ with probability one.

(3) If (u, τ∞) is a local solution to (2.11) and τ∞ = T with probability 1, then
the stochastic process {u(t), t ∈ [0, T )} is called a global solution.

As in [8], we let θ : R+ → [0, 1] be a C∞
0 non increasing function such

that

inf
x∈R+

θ′(x) ≥ −1, θ(x) = 1 iff x ∈ [0, 1] and θ(x) = 0 iff x ∈ [2,∞). (2.15)

and for n ≥ 1 set θn(·) = θ( ·
n ). Note that if h : R+ → R+ is a non decreasing

function, then for every x, y ∈ R,

θn(x)h(x) ≤ h(2n), |θn(x) − θn(y)| ≤ 1
n

|x − y|. (2.16)

Proposition 2.5. Let F be a nonlinear mapping satisfying Assumption 2.2. Let
us consider a map BT

n : XT → L2(0, T ;H) defined by

(BT
n u)(t) := θn(‖u‖Xt

)F (u(t)), u ∈ XT , t ∈ [0, T ].

Then BT
n is globally Lipschitz and moreover, for any u1, u2 ∈ XT ,

‖(BT
n u1)(·) − (BT

n u2)(·)‖L2(0,T ;H) ≤ C(2n)p [(2n)C + 1] T
1−α
2 ‖u1 − u2‖XT

.
(2.17)
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Proof. The proof is the same as in [8], but for the sake of completeness we
repeat it here. Note that by Assumption 2.2 (BT

n 0)(·) = 0. Assume that
u1, u2 ∈ XT . Denote, for i = 1, 2,

τi = inf{t ∈ [0, T ] : ‖ui‖Xt
≥ 2n}.

Note that by definition, if the set on the RHS above is empty, then τi = T .
Without loss of generality we may assume that τ1 ≤ τ2.

Since, for i = 1, 2, θn(‖ui‖Xt
) = 0 for t ≥ τ2, we have

‖(BT
n u1)(·) − (BT

n u2)(·)‖L2(0,T ;H)

=

[∫ T

0

|θn(‖u1‖Xt
)F (u1(t)) − θn(‖u2‖Xt

)F (u2(t))|2 dt

]1/2

=
[∫ τ2

0

|θn(‖u1‖Xt
)F (u1(t)) − θn(‖u2‖Xt

)F (u2(t))|2 dt

]1/2

=
[∫ τ2

0

| [θn(‖u1‖Xt
) − θn(‖u2‖Xt

)] F (u2(t))

+θn(‖u1‖Xt
) [F (u1(t)) − F (u2(t))] |2 dt

]1/2
.

Hence,

‖(BT
n u1)(·) − (BT

n u2)(·)‖L2(0,T ;H)

≤
[∫ τ2

0

| [θn(‖u1‖Xt
) − θn(‖u2‖Xt

)] F (u2(t))|2 dt

]1/2

+
[∫ τ2

0

|θn(‖u1‖Xt
) [F (u1(t)) − F (u2(t))] |2 dt

]1/2

=: I1 + I2.

Next, since θn is Lipschitz with Lipschitz constant n−1 we have

I21 =
∫ τ2

0

| [θn(‖u1‖Xt
) − θn(‖u2‖Xt

)] F (u2(t))|2 dt

≤ n−2C2

∫ τ2

0

[|‖u1‖Xt
− ‖u2‖Xt

|]2 |F (u2(t))|2 dt

from which along with the Minkowski inequality we deduce that

I2
1 ≤ n−2C2

∫ τ2

0
‖u1 − u2‖2

Xt
|F (u2(t))|2 dt ≤ 4n2C2

∫ τ2

0
‖u1 − u2‖2

XT
|F (u2(t))|2 dt

≤ n−2C2‖u1 − u2‖2
XT

∫ τ2

0
|F (u2(t))|2 dt.

Next, by assumptions∫ τ2

0

|F (u2(t))|2 dt ≤ C2

∫ τ2

0

‖u2(t)‖2p+2−2α‖u2(t)‖2α
E dt

≤ C2 sup
t∈[0,τ2]

‖u2(t)‖2p+2−2α

(∫ τ2

0

‖u2(t)‖2E dt

)α

τ1−α
2

≤ C2τ1−α
2 ‖u2‖2p+2

Xτ2
≤ C2τ1−α

2 (2n)2p+2.
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Therefore,

I1 ≤ C2τ
(1−α)/2
2 (2n)p‖u1 − u2‖XT

.

Also, because θn(‖u1‖Xt
) = 0 for t ≥ τ1, and τ1 ≤ τ2, we have the

following chain of equalities/inequalities

I2 =

[∫ τ2

0
|θn(‖u1‖Xt

) [F (u1(t)) − F (u2(t))] |2 dt

]1/2

=

[∫ τ1

0
|θn(‖u1‖Xt

) [F (u1(t)) − F (u2(t))] |2 dt

]1/2

because θn(‖u1‖Xt
) ≤ 1 for t ∈ [0, τ1)

≤
[∫ τ1

0
|F (u1(t)) − F (u2(t))|2 dt

]1/2

≤ C

[∫ τ1

0
‖u1(t) − u2(t)‖2‖u1(t)‖2p−2α‖u1(t)‖2α

E dt

]1/2

+ C

[∫ τ1

0
‖u1(t) − u2(t)‖2α

E ‖u1(t) − u2(t)‖2−2α‖u2(t)‖2p dt

]1/2

≤ C sup
t∈[0,τ1]

‖u1(t) − u2(t)‖1−α‖u2(t)‖p

[∫ τ1

0
‖u1(t) − u2(t)‖2α

E dt

]1/2

+ C sup
t∈[0,τ1]

‖u1(t) − u2(t)‖‖u1(t)‖p−α

[∫ τ1

0
‖u1(t)‖2α

E dt

]1/2

≤ C sup
t∈[0,T ]

‖u1(t) − u2(t)‖ sup
t∈[0,τ1]

‖u1(t)‖p−α

[∫ τ1

0
‖u1(t)‖2

E dt

]α/2

τ
(1−α)/2
1

+ C sup
t∈[0,T ]

‖u1(t) − u2(t)‖1−α sup
t∈[0,τ1]

‖u2(t)‖p

[∫ τ1

0
‖u1(t) − u2(t)‖2

E dt

]α/2

τ
(1−α)/2
1

≤ C‖u1 − u2‖XT
‖u1‖p

Xτ1
τ
(1−α)/2
1 + C‖u1 − u2‖XT

‖u2‖p
Xτ1

τ
(1−α)/2
1

because‖u1‖Xτ1
≤ 2n and ‖u2‖Xτ1

≤ ‖u2‖Xτ2
≤ 2n

≤ Cτ
(1−α)/2
1 ‖u1 − u2‖XT

[
‖u1‖p

Xτ1
+‖u2‖p

Xτ1

]
≤ C(2n)p+1τ

(1−α)/2
1 ‖u1 − u2‖XT

Summing up, we proved

‖(BT
n u1)(·) − (BT

n u2)(·)‖L2(0,T ;H)

≤
[
C2τ

(1−α)/2
2 (2n)p + C(2n)p+1τ

(1−α)/2
1

]
‖u1 − u2‖XT

= C(2n)p [2nC + 1] τ (1−α)/2
2 ‖u1 − u2‖XT

The proof is complete. �

3. Existence of maximal local and global solution of Eq. (2.11)

This section is devoted to the solvability of (2.11). We will mainly show that
under Assumptions 2.1–2.3, Eq. (2.11) admits a unique maximal local solution.
Under additional conditions on F and G we prove that this maximal local
solution turns out to be a global solution. The results are obtained by use of
cut-off and fixed point arguments.
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3.1. Global solution of a truncated equation

For simplicity we set BT
n (u)(s) = BT

n (u(s)) for any u ∈ XT and s ≥ 0. Let

un(t) +
∫ t

0

[Aun(s) + (BT
n un)(s)]ds = u0

+
∫ t

0

∫
Z

G(z,un(s−))η̃(dz, ds), t ∈ [0, T ], (3.1)

which is understood as

〈un(t), v〉 +
∫ t

0

〈Aun(s) + (BT
n un)(s), v〉ds = 〈u0, v〉

+
∫ t

0

∫
Z

〈G(z,un(s−)), v〉η̃(dz, ds), t ∈ [0, T ], (3.2)

for any v ∈ H. Here, as in the previous section we set

(BT
n un)(t) = θn(‖u‖Xt

)F (u(t)), t ∈ [0, T ]

for any u ∈ XT . For n ∈ N we also set

φ(n) = C2(2n)2p [2nC + 1]2 . (3.3)

Now, let v ∈ M2(XT ), n > 0 and let us consider the linear stochastic evolution
equation
{

dun(t) + Aun(t)dt = −(BT
n un)(t)dt +

∫
Z

G(z,v(t−))η̃(dz, dt),
un(0) = u0.

(3.4)

Thanks to Theorem A.1 for each v ∈ M2(XT ) and n ≥ 1, there exists a
unique V-valued progressively measurable process un solving (3.4). Moreover,
un ∈ D([0, T ];V) ∩ L2(0, T ;E) with probability 1.

Lemma 3.1. For each n ≥ 1 let Λn be the mapping defined by

Λn : M2(XT ) � v �→ un = Λn(v),

where un is the unique solution to (3.4). For any v ∈ M2(XT ), the stochastic
process un belongs to M2(XT ).

Proof. Let Ψ : H → R be the mapping defined by

Ψ(u) = 〈u,Nu〉,
for any u ∈ H. This mapping is Fréchet differentiable with first derivative
defined by

Ψ′(u)[h] = 〈h,Nu〉 + 〈u,Nh〉.
Since N is self-adjoint we have

Ψ′(u)[h] = 2〈h,Nu〉.
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Applying Itô’s formula (see, for instance, [44, Appendix D]) to Ψ(u) with
(3.4) we obtain

Ψ(un(t)) − Ψ(u0) + 2

∫ t

0

〈Aun(s) + (BT
n un)(s), Nun(s)〉ds

=

∫ t

0

∫
Z

[
Ψ(un(s) + G(z,v(s))) − Ψ(un(s)) − Ψ′(un(s))[G(z,v(s))]

]
ν(dz)ds

+

∫ t

0

∫
Z

[
Ψ(un(s−) + G(z,v(s−))) − Ψ(un(s−))

]
η̃(dz, ds). (3.5)

From the Cauchy-Schwarz inequality we derive that
∣∣∣∣
∫ t

0

〈(BT
n un)(s), Nun(s)〉ds

∣∣∣∣ ≤
∫ t

0

|(BT
n un)(s)||Nun(s)|ds,

≤‖‖‖N‖‖‖L(E,H)

∫ t

0

|BT
n (v(s))|‖un(s)‖Eds.

From the last line along with Cauchy’s inequality with ε we deduce that

E

∣∣∣∣
∫ t

0

〈(BT
n un)(s), Nun(s)〉ds

∣∣∣∣ ≤ εE

∫ t

0

‖un(s)‖2
Eds +

‖‖‖N‖‖‖2
L(E,H)

4ε
E

∫ t

0

|BT
n (v(s))|2ds.

Now invoking Eq. (2.17) from Proposition 2.5 we infer that

E

∣∣∣∣
∫ t

0

〈(BT
n un)(s), Nun(s)〉ds

∣∣∣∣ ≤ εE

∫ t

0

‖un(s)‖2
Eds+

‖‖‖N‖‖‖2
L(E,H)φ(n)

4ε
tα−1‖v‖2

M2(XT ),

(3.6)

where φ(n) is defined in (3.3).
Now, note that

Ψ(u + h) − Ψ(u) − Ψ′(u)[h] = 〈Nh, h〉.

Hence

I1 := E

∣∣∣∣
∫ t

0

∫
Z

[
Ψ(un(s) + G(z,v(s))) − Ψ(un(s)) − Ψ′(un(s))[G(z,v(s))]

]
ν(dz)ds

∣∣∣∣
≤ ‖‖‖N‖‖‖L(V,V∗)E

∫ t

0

∫
Z

‖G(z,v(s))‖2ν(dz)ds.

(3.7)

By making use of (2.9) we easily derive from the last inequality that

I1 ≤ t‖‖‖N‖‖‖L(V,V∗)�̃1

(
1 + ‖v‖2M2(XT )

)
. (3.8)

Notice also that

Ψ(u + h) − Ψ(u) = 2〈Nu, h〉 + 〈Nh, h〉,



1672 H. Bessaih, E. Hausenblas and P. A. Razafimandimby NoDEA

thus

I2 :=E sup
s∈[0,t]

∣∣∣∣
∫ s

0

∫
Z

[
Ψ(un(r−) + G(z,v(r−)) − Ψ(un(r−))

]
η̃(dz, dr)

∣∣∣∣
≤ E sup

s∈[0,t]

∣∣∣∣
∫ s

0

∫
Z

〈Nun(s−), G(z,v(s−))〉η̃(dz, ds)
∣∣∣∣

+ E sup
s∈[0,t]

∣∣∣∣
∫ s

0

∫
Z

〈NG(z,v(s−)), G(z,v(s−))〉η̃(dz, ds)
∣∣∣∣

≤ I2,1 + I2,2.

Owing to the BDG inequality (see, for instance, [45, Theorem 48]) we infer
that

I2,1 :=E sup
s∈[0,t]

∣∣∣∣
∫ s

0

∫
Z

〈Nun(r−), G(z,v(r−))〉η̃(dz, dr)
∣∣∣∣

≤ CE

[∫ t

0

∫
Z

〈NG(z,v(s)),un(s)〉2ds

] 1
2

,

≤ C‖‖‖N‖‖‖L(V,V∗)E

[
sup

s∈[0,t]

‖un(s)‖
(∫ t

0

∫
Z

‖G(z,v(s))‖2ν(dz)ds

) 1
2
]

(by the Young inequality with δ > 0 arbitrary)

≤ δE

[
sup

s∈[0,t]

‖un(s)‖2
]

+
C2‖‖‖N‖‖‖2L(V,V∗)

4δ
E

∫ t

0

∫
Z

‖G(z,v(s))‖2ν(dz)ds

(by the inequality (2.9))

I2,1 ≤ δE

[
sup

s∈[0,t]

‖un(s)‖2
]

+
C2‖‖‖N‖‖‖2L(V,V∗)�̃1t

4δ
(1 + ‖v‖2M2(XT )). (3.9)

Using again the BDG inequality yields

I2,2 := E sup
s∈[0,t]

∣∣∣∣
∫ s

0

∫
Z

〈NG(z,v(s−)), G(z,v(s−))〉η̃(dz, ds)
∣∣∣∣

≤ CE

[∫ t

0

∫
Z

[〈NG(z,v(s)), G(z,v(s)〉]2ν(dz)ds

] 1
2

≤ C‖‖‖N‖‖‖L(V,V∗)‖‖‖E
[∫ t

0

∫
Z

‖G(z,v(s))‖4ν(dz)ds

] 1
2

(by the inequality (2.9))

≤ C‖‖‖N‖‖‖L(V,V∗)�̃2t(1 + E sup
s∈[0,t]

‖v(s)‖2),

I2,2 ≤ C‖‖‖N‖‖‖L(V,V∗)�̃2t(1 + ‖v‖2M2(XT )). (3.10)
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Now it follows from Eqs. (3.5), (3.6), (3.8), (3.9) and (3.10) that

E sup
s∈[0,t]

Ψ(un(s)) − Ψ(u0) + 2E
∫ t

0

〈Aun(s), Nun(s)〉ds

≤ 2C(‖‖‖N‖‖‖, δ, ε, n, t)(1 + ‖v‖2M2(XT ))

+ εE

∫ t

0

‖un(s)‖2Eds + δE

[
sup

s∈[0,t]

‖un(s)‖2
]
,

where

‖‖‖N‖‖‖ := max
(‖‖‖N‖‖‖L(E,H),‖‖‖N‖‖‖L(V,V∗)

)
,

C(‖‖‖N‖‖‖, ε, δ, n, t) :=
(‖‖‖N‖‖‖φ(n)tα−1

4ε
+ t

[
C2‖‖‖N‖‖‖�̃1

4δ
+ �̃1 + C�̃2

])
‖‖‖N‖‖‖.

Since 〈u,Nu〉 ≥ CN‖u‖2 and 〈Au,Nu〉 ≥ CA‖u‖2E, it follows that

(CN − δ)E
[

sup
s∈[0,t]

‖un(s)‖2
]

+ (2CA − ε)E

×
∫ t

0

‖un(s)‖2Eds ≤ C(‖‖‖N‖‖‖, ε, δ, n, t)(1 + ‖v‖2M2(XT )) + Ψ(u0).

Choosing ε = CA and δ = CN/2, we derive from the last inequality that

E

[
sup

s∈[0,t]

‖un(s)‖2
]

+ E

∫ t

0

‖un(s)‖2Eds ≤ Ψ(u0)
min(CN/2, CA)

+
C(‖‖‖N‖‖‖, CA, CN , n, t)

min(CN/2, CA)
(1 + ‖v‖2M2(XT )).

With this last inequality we easily conclude the proof of the claim. �
Lemma 3.2. Let Λn be the mapping defined in Lemma 3.1 and

‖‖‖N‖‖‖ := max
(‖‖‖N‖‖‖L(E,H),‖‖‖N‖‖‖L(V,V∗)

)
.

Then, there exists a constant κ > 0 depending only on ‖‖‖N‖‖‖, n and the con-
stants in Assumptions 2.1–2.3 such that

‖Λn(v1) − Λn(v2)‖2M2(XT ) ≤ κ
[
Tα−1 ∨ T

] ‖v1 − v2‖2M2(XT ),

for any v1,v2 ∈ M2(XT ).

Proof. Let vi, i = 1, 2, be two elements of M2(XT ). To each vi one can
associate a unique element ui ∈ M2(XT ) which is a solution to Eq. (3.4) with
the stochastic perturbation

(BT
n vi)(t)dt +

∫
Z

G(z,vi(t−))η̃(dz, dt),

and initial condition u0. In this proof we suppress the dependence on n of the
solution to (3.4). The difference u = u1 − u2 solves the linear equation{

du(t) + Au(t)dt = [(BT
n v1)(t) − (BT

n v2)(t)]dt +
∫
Z [G(z,v1(t−)) − G(z,v2(t−))]η̃(dz, dt),

u(0) = 0.

(3.11)
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To simplify our notation we also set v = v1 − v2.
As before we apply Itô’s formula (see, for instance, [44, Appendix D]) to

Ψ(u) = 〈Nu, u〉 with (3.11). We then obtain

Ψ(u(t)) + 2
∫ t

0

〈Au(s), Nu(s)〉ds ≤ 2
∫ t

0

|(BT
n v1)(s) − (BT

n v2)(s)||Nu(s)|ds

+
∫ t

0

∫
Z

f(z, s,v1,v2)ν(dz)ds +
∫ t

0

∫
Z

g(z, s,v1,v2)η̃(dz, ds), (3.12)

with

g(z, s,v1,v2) := 〈N [G(z,v1(s−)) − G(z,v2(s−))], G(z,v1(s−)) − G(z,v2(s−))〉
+2〈[G(z,v1(s−)) − G(z,v2(s−))], Nu(s−)〉,

and

f(z, s,v1,v2) := 〈N [G(z,v1(s)) − G(z,v2(s))], G(z,v1(s)) − G(z,v2(s))〉.
Arguing as in the proofs of Eqs. (3.6), (3.8), (3.9) and (3.10), respectively, we
obtain the following inequalities

E

∫ t

0

|(BT
n v1)(s) − (BT

n v2)(s)||Nu(s)|ds ≤ ‖‖‖N‖‖‖2φ(n)
4ε

tα−1‖v‖2M2(XT )

+ εE

∫ t

0

‖u(s)‖2Eds,

E sup
s∈[0,t]

∣∣∣∣
∫ t

0

∫
Z

g(z, s,v1,v2)η̃(dz, ds)
∣∣∣∣ ≤
[
C2‖‖‖N‖‖‖2�1

4δ
+ ‖‖‖N‖‖‖�2

]
t‖v‖2M2(XT )

+ δE

[
sup

s∈[0,t]

‖u(s)‖2
]
,

E

∫ t

0

∫
Z

f(z, s,v1,v2)ν(dz)ds ≤ ‖‖‖N‖‖‖�1t‖v‖2M2(XT ),

where ε, δ are arbitrary positive numbers. By setting T ∗ = T ∨ Tα−1 and

κ̃ :=
(

‖‖‖N‖‖‖
[
φ(n)
4ε

+
C2�1
4δ

]
+ �1 + C�2

)
‖‖‖N‖‖‖,

it follows from these inequalities and Eq. (3.12) that

(CN − δ)E
[

sup
s∈[0,t]

‖u(s)‖2
]

+ (2CA − ε)E
∫ t

0

‖u(s)‖2Eds ≤ κ̃T ∗‖v‖2M2(XT ),

where we have used the fact that 〈u,Nu〉 ≥ CN‖u‖2 and 〈Au,Nu〉 ≥ CA‖u‖2E.
By choosing δ = CN/2 and ε = CA we get from the last estimate that

E

[
sup

s∈[0,t]

‖u(s)‖2
]

+ E

∫ t

0

‖u(s)‖2Eds ≤ κT ∗‖v‖2M2(XT ),

where κ := κ̃/min(CN/2, CA). The last estimate means that

‖Λn(v1) − Λn(v2)‖2M2(XT ) ≤ κT ∗‖v1 − v2‖2M2(XT ).

This completes the proof of our lemma. �
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Let n be a fixed positive integer. It follows from Lemma 3.1 that Λn
T,u0

:=
Λn maps M2(XT ) into itself. From the proof of Lemma 3.2 we deduce that
Λn

T,u0
is globally Lipschitz. Moreover it is a strict contraction for small T .

Therefore we can find a time δn > 0 such that for any initial condition u0

the map Λn
δn,u0

is 1
2 -contraction. Hence it admits a unique fixed point un,δn

∈
M2(Xδn

) which solves on the small interval [0, δn] the nonlinear stochastic
evolution equation

u(t)+
∫ t

0

[Au(s)+(BT
n u)(s)]ds = u0+

∫ t

0

∫
Z

G(z,u(s−))η̃(dz, ds), t ∈ [0, δn).

(3.13)

Lemma 3.3. Let un,δn
be a solution of (3.13). Then P-almost surely un,δn

:
[0, δn] → V is càdlàg .

Proof. For the sake of simplicity we just write δ := δn. Since the solution un,δ

to the truncated Eq. (3.1) belongs to M2(Xδ), from Proposition 2.5 and the
fact that A ∈ L(E,H) we infer that Aun,δ(·) + BT

n (un,δ(·)) is an element of
M2(0, δ;H). From Theorem 2.1 we derive that the process

∫ ·
0

∫
Z

G(z,un,δ(−s))
η̃(dz, s) belongs to L2(Ω,D([0, δ];V)) and define an F-martingale. Since P-a.s

un,δ(t)+
∫ t

0

[Aun,δ(s)+ (BT
n un,δ)(s)]ds = u0 +

∫ t

0

∫
Z

G(z,un,δ(s−))η̃(dz, ds),

t ∈ (0, δ], it follows from the above remarks and [30, Theorem 2] that P-a.s.
un,δ ∈ D([0, δ];V). �

Now, we are able to formulate the result about the global existence of
solution to the truncated Eq. (3.1).

Theorem 3.4. Let Assumptions 2.1–2.3 hold. Then, for each n ≥ 1 the trun-
cated Eq. (3.1) admits a unique global solution un ∈ M2(XT ) for any T ∈
(0,∞). Moreover, un ∈ D([0, δ];V) with probability one.

Proof. Let n be a positive integer and δn > 0 such that Λn
δn,u0

is a 1
2 -

contraction. To keep the notation simple we just write δ := δn. For k ∈ N

let (tk)k∈N be a sequence of times defined by tk = kδ. By the 1
2 -contraction

property of Λn
δ,u0

we can find a càdlàg process u[n,1] ∈ M2(Xδ) such that
u[n,1] = Λn

δ,u0
(u[n,1]). Since u[n,1] ∈ M2(Xδ) it follows from Lemma 3.3 that

u[n,1] is Ft-measurable and u[n,1](t) ∈ L2(Ω,P;V) for any t ∈ [0, δ]. Thus
replacing u0 with u[n,1](δ) = u[n,1](δ−) and using the same argument as
above we can find a càdlàg process u[n,2] ∈ M2(Xt1,t2) such that u[n,2] =
Λn

δ,u[n,1](δ)
(u[n,2]). By induction we can construct a sequence of càdlàg processes

u[n,k] ⊂ M2(Xtk−1,tk
) such that u[n,k] = Λδ,u[n,k−1](u[n,k]). Now let un be the

process defined by un(t) = u[n,1](t), t ∈ [0, δ), and for k = [T
δ ] + 1 and

0 ≤ t < δ, let un(t + kδ) = u[n,k](t). By construction un ∈ M2(XT ) and
un = Λn

T,u0
(un), consequently un is a global solution to the truncated Eq.

(3.1). The fact that un ∈ D([0, δ];V) with probability one follows from Lemma
3.3 and the construction of un.
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Now let (v, τ) be a another local solution of Eq. (3.1), we shall show that
un(t) = v(t), for all t ∈ [0, τ) almost surely. For this purpose let t1 = τ ∧ δ
and tk = τ ∧ (kδ) where k and δ are as above; note that as k → �T

δ � we have
tk ↑ τ almost surely. With the same contraction principle used above we infer
that 1[0,τ∧δ)un(.) = 1[0,τ∧δ)v(.) and 1[0,tk)u

n(.) = 1[0,tk)v(.) almost surely. By
letting k → ∞ we infer that un(t) = v(t), for all t ∈ [0, τ) almost surely. �

3.2. Existence and uniqueness of maximal/global solution to Eq. (2.11)
In this subsection we will use what we have learnt from the solvability of the
truncated Eq. (3.1) to construct a unique maximal local and global solution
to the original problem (2.11).

We start with the existence and uniqueness of a maximal local solution.

Theorem 3.5. If all the assumptions of Theorem 3.4 hold, then there exists a
unique pair (u, τ∞) which is a maximal local solution to (2.11).

Proof. We have seen that for each n ∈ N Eq. (3.1) has an unique global strong
solution un. Let us construct a sequence of stopping times {τn, n ∈ N} as
follows

τn = inf{t ≥ 0, ‖un‖Xt
≥ n} ∧ T, n ∈ N.

Now let k > n and τn,k = inf{t ≥ 0, ‖uk‖Xt
≥ n} ∧ T . Since τn,k ≤ τk a.s.,

(uk, τn,k) is a local solution to Eq. (3.1) and (un, τn) is also a local solution
to Eq. (3.1). Hence by the uniqueness we proved in Theorem 3.4 we infer that
un(t) = uk(t) a.s for all t ∈ [0, τn ∧ τn,k] which implies that

un(t) = uk(t) a.s. for t ∈ [0, τn]. (3.14)

This also proves that τn < τk a.s. for all n < k, and the sequence {τn, n ∈ N}
has a limit τ∞ := limn↑∞ τn a.s..

Now let {u(t), 0 ≤ t < τ∞} be the stochastic process defined by

u(t) = un(t), t ∈ [τn−1, τn], n ≥ 1, (3.15)

where τ0 = 0. Since by definition θn(‖un(s)‖Xs
) = 1 for any s ∈ [0, t ∧ τn], it

follows that BT
n (un(s)) = F (un(s)) for any s ∈ [0, t ∧ τn). By (3.14) we have

u(t ∧ τn) = un(t ∧ τn], thus we can derive that P-a.s.

u(t ∧ τn) =u0 −
∫ t∧τn

0

[
Aun(s) + (BT

n un)(s)
]
ds +

∫ t∧τn

0

∫
Z

G(z,un(s−))η̃(dz, ds),

=u0 −
∫ t∧τn

0

[Au(s) + F (u(s))] ds +

∫ t∧τn

0

∫
Z

G(z,u(s−))η̃(dz, ds),

for any t ∈ [0, T ]. This proves that (u, τn) is a local solution to (2.11). If
{τ∞(ω) < T}, then

lim
t↑τ∞

‖u‖Xt
≥ lim

n↑∞
‖u‖Xτn

,

≥ lim
n↑∞

‖un‖Xτn
= ∞,

because ‖un‖Xτn
≥ n. Therefore (u, τ∞) is a maximal local solution to Eq.

(2.11).
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We will prove that this maximal solution is unique. For this let (v, σ∞)
be another maximal local solution and {σn, n ≥ 0} a sequence of stopping
times converging to σ∞ defined by

σn = inf{t ≥ 0, ‖v‖Xt
≥ n} ∧ σ∞ ∧ T.

Arguing as above we can prove that u(t) = v(t) for all t ∈ [0, τn ∧ σn] a.s.
which, upon letting n ↑ ∞, implies that

u(t) = v(t) for all t ∈ [0, τ∞ ∧ σ∞] a.s..

From this last identity we can conclude that τ∞ = σ∞ almost surely. Indeed
if the last conclusion were not true then we either have

lim
t↑σ∞

‖1{σ∞>τ∞}v‖Xt
= lim

n↑∞
‖1{σ∞>τ∞}v‖Xσn

= lim
n↑∞

‖1{σ∞>τ∞}u‖Xτn
= ∞, (3.16)

or

lim
t↑τ∞

‖1{σ∞<τ∞}u‖Xt
= lim

n↑
‖1{σ∞<τ∞}u‖Xτn

= lim
n↑

‖1{σ∞<τ∞}v‖Xσn
= ∞. (3.17)

The identity (3.16) (resp. Eq. (3.17)) contradicts the fact that v (resp. u)
does not explode before time σ∞ (resp. τ∞). Therefore one must have τ∞ =
σ∞ almost surely, which yields the uniqueness of the maximal local solution
(u, τ∞). �

Proposition 3.6. In addition to the assumptions of Theorem 3.5 we assume
that E|u0|4 < ∞ and there exists C̃A > 0 such that 〈Au, u〉 ≥ C̃A‖u‖2 for any
u ∈ E. We also suppose that F

〈F (u), u〉 = 0, (3.18)

for all u ∈ E. Let u ∈ E be the stochastic process we constructed in Theorem
3.5. Let (τn)n≥1 be a sequence of stopping times defined by

τn = inf{t ≥ 0 : ‖u‖2Xt
≥ n2} ∧ T.

Then for r = 1, 2, for any t ≥ 0 there exists a constant C̃ > 0 such that the
local solution (u, τn) to (2.11) satisfies

E sup
s∈[0,t∧τn]

|u(s)|2r+E

∫ t∧τn

0

|u(s)|2r−2‖u(s)‖2ds ≤ C̃, (3.19)

and

E

[∫ t∧τn

0

‖u(s)‖2ds

]2
≤ C̃, (3.20)

for any n ≥ 1.
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Proof. Note that (u, τ∞), where τ∞ = limn↑∞ τn a.s., is the unique maximal
solution to (2.11). Throughout let n be a fixed positive integer. To shorten
notation we define tn = t ∧ τn for any t ∈ [0, T ]. Let Ψ(u) := |u|2, u ∈ H, and

g(s, z) := 〈G(z,u(s)), G(z,u(s))〉,
f(s, z) := g(s, z) + 2〈G(z,u(s)),u(s)〉.

Now, for t ≥ 0 let y(t) := 〈u(t),u(t)〉 and Ψ′(u(t))[h] = 2〈u(t), h〉 for any h ∈
H. The estimate (3.19) can be proved by using the Itô’ formula to [Ψ(u(tn))]r,
r = 1, 2, with tn = t ∧ τn for every t ∈ [0, T ].

First, for r = 1 we should notice that by Itô’s formula and the assumption
about F in Proposition 3.6 we have

y(tn) +
∫ tn

0

Ψ′(u(s))[Au(s)]ds = y(0) +
∫ tn

0

∫
Z

g(s, z)ν(dz)ds

+
∫ tn

0

∫
Z

f(s−, z)η̃(dz, ds). (3.21)

The same calculations with N = Id as in proof of Lemma 3.2 yields

E sup
s∈[0,tn)

Ψ(u(s)) + 2E
∫ tn

0

〈Au(s),u(s)〉ds ≤ EΨ(u0) + �̄1E

∫ tn

0

|u(s)|2ds

+�̄1T + E sup
s∈[0,tn)

∣∣∣∣
∫ s

0

∫
Z

f(s−, z)η̃(dz, ds)
∣∣∣∣,

(3.22)

for any t ∈ [0, T ] and n ≥ 1. Arguing as in the proofs of Eqs. (3.9) and (3.10)
we obtain the following inequality

E sup
s∈[0,tn]

∣∣∣∣
∫ s

0

∫
Z

f(s−, z)η̃(dz, ds)
∣∣∣∣ ≤
[
C2�̄1
4ε

+ �̄2

]
E

∫ tn

0

|u(s)|2ds

+ εE

[
sup

s∈[0,tn]

|u(s)|2
]
,

which along with (3.22) implies that

E sup
s∈[0,tn)

Ψ(u(s)) + 2E
∫ tn

0

〈Au(s),u(s)〉ds ≤ EΨ(u0) + εE

[
sup

s∈[0,tn]

|u(s)|2
]

+
[
�̄1

[
C2�̄1
4ε

+ 1
]

+ �̄2

]
E

∫ tn

0

|u(s)|2ds.

Using Assumption (2.1), choosing ε = 1/2 and invoking the Gronwall lemma
yield

E sup
s∈[0,tn)

|u(s)|2 + E

∫ tn

0

‖u(s)‖2ds ≤ EΨ(u0)
min(12 , 2C̃A)

[e�T + 1], (3.23)

where

� =
min(12 , 2C̃A)

[
�̄1

[
C2�̄1
21

+ 1
]

+ �̄2

]
.



Vol. 22 (2015) Strong solution to stochastic hydrodynamical systems. . . 1679

This completes the proof of the theorem for r = 1.
By applying Itô’s formula to [y(t)]2 =: z(t) we obtain

E sup
r∈[0,tn)

[
z(r) + 2

∫ r

0

y(s)Ψ′(u(s))[Au(s)]ds − 2
∫ r

0

∫
Z

y(s)g(s, z)ν(dz)ds

]

= E sup
r∈[0,tn)

[
z(0) +

∫ r

0

∫
Z

[f(s, z)]2ν(dz)ds

]

+ E sup
r∈[0,tn)

[∫ r

0

∫
Z

(
[f(s−, z)]2 + 2y(s−)f(s−, z)

)
η̃(dz, ds)

]
. (3.24)

By performing elementary calculation and using part (ii) of Assumption 2.3
one can show that

E

∫ tn

0

∫
Z

[f(s, z)]2ν(dz)ds ≤ 2E
∫ tn

0

∫
Z

[〈G(z,u(s)), G(z,u(s))〉]2ν(dz)ds

+ 2E
∫ tn

0

∫
Z

[〈u(s), G(z,u(s))〉]2ν(dz)ds,

≤ 2[�̄1 + �̄22]
(

T + E

∫ tn

0

|u(s)|4ds

)
. (3.25)

Similarly,

2E
∫ tn

0

∫
Z

y(s)g(s, z)ν(dz)ds ≤ �̄1

(
T + E

∫ tn

0

|u(s)|4ds

)
(3.26)

Since [f(s, z)]2 > 0, by using [46, Theorem 3.10, Eq. (3.10)] we derive that

E sup
r∈[0,tn)

∣∣∣∣
∫ r

0

∫
Z

[f(s−, z)]2η̃(dz, ds)
∣∣∣∣ ≤ E

∫ tn

0

∫
Z

[f(s, z)]2ν(dz)ds

and by arguing as above we infer that

E

∫ tn

0

∫
Z

[f(s−, z)]2η̃(dz, ds) ≤ 22[�̄1 + �̄22]
(

T + E

∫ tn

0

|u(s)|4ds

)
. (3.27)

By using the BDG inequality and Cauchy inequality with epsilon we obtain

E sup
r∈[0,tn)

∣∣∣∣
∫ r

0

∫
Z

2y(s−)f(s−, z)η̃(dz, ds)

∣∣∣∣∣ ≤ 4KE

[∫ tn

0

∫
Z

[y(s)]2|f(s, z)|2
)
ν(dz)ds

] 1
2

,

≤ 16K2

4ε
E

∫ tn

0

∫
Z

|f(s, z)|2
)
ν(dz)ds

+ εE sup
s∈[0,tn)

|u(s)|4. (3.28)

And arguing as in (3.27) we derive that

E sup
r∈[0,tn)

∣∣∣∣
∫ r

0

∫
Z

2y(s−)f(s−, z)η̃(dz, ds)

∣∣∣∣∣− εE sup
s∈[0,tn)

|u(s)|4

≤ 32K2(1 + �̄1 + �̄22)
4ε

(
T + E

∫ tn

0

|u(s)|4ds

)
. (3.29)
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Plugging (3.25), (3.26), (3.27) and (3.29) in (3.24), using Assumption 2.1
and choosing ε = 1/2 yield the existence of positive constants L̃, �̄ such that

E sup
s∈[0,tn)

|u(s)|4 +

∫ tn

0

|u(s)|2‖u(s)‖2ds ≤ L̃T + L̃E

∫ tn

0

|u(s)|4ds + 	̄E[Ψ(u0)]
2.

Thanks to the Gronwall lemma we infer that

E sup
s∈[0,tn)

|u(s)|4 +
∫ tn

0

|u(s)|2‖u(s)‖2ds ≤
(
L̃T + �̄E[Ψ(u0]2

) [
eL̃T + 1

]
.

(3.30)
The above inequality completes the proof of (3.19) for r = 2, and hence the
first part of our theorem.

To prove the second part we will use (3.21). In fact, from (3.21) we derive
that

E

[∫ tn

0

Ψ′(u(s))[Au(s)]ds

]2
≤ CE[y(0)]2 + CE

[∫ tn

0

∫
Z

g(s, z)ν(dz)ds

]2

+ CE

[∫ tn

0

∫
Z

f(s−, z)η̃(dz, ds)
]2

. (3.31)

Note that the stochastic integral in the last term of the RHS of the above
estimate is real-valued, so from Itô’s isometry we infer that

E

[∫ tn

0

∫
Z

f(s−, z)η̃(dz, ds)
]2

= E

∫ tn

0

∫
Z

[f(s, z)]2ν(dz)ds,

from which altogether with (3.27) and (3.19) we derive that for any t ≥ 0 there
exists a constant C̃ > 0 such that

E

[∫ tn

0

∫
Z

f(s−, z)η̃(dz, ds)
]2

≤ C̃ (3.32)

for any n ≥ 1. By imitating the proof of (3.25) we infer that there exists C > 0
such that

E

[∫ tn

0

∫
Z

g(s, z)ν(dz)ds

]2
≤ C

(
t + E

∫ tn

0

|u(s)|4ds

)
, (3.33)

from which and (3.19) we deduce that for any t ≥ 0 there exists C̃ > 0 such
that

E

[∫ tn

0

∫
Z

g(s, z)ν(dz)ds

]2
≤ C̃, (3.34)

for any n ≥ 1. Taking (3.32) and (3.34) into (3.31) implies that

E

[∫ tn

0

Ψ′(u(s))[Au(s)]ds

]2
≤ CE[y(0)]2 + 2C̃. (3.35)

Thanks to this last estimate and the fact that 〈Au,u〉 ≥ C̃A‖u‖2 we easily
derive that for any t ≥ 0 there exists C̃ > 0 such that for any n ≥ 1

E

[∫ tn

0

‖u(s)‖2ds

]
≤ C̃.
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This completes the proof of (3.20), and hence the whole Proposition. �

Now we turn our attention to the existence and uniqueness of global
solution.

Theorem 3.7. Assume that F satisfies the assumptions of Proposition 3.6 with
p = 1 and α ∈ [0, 1

2 ]. Moreover, we suppose that there exists c̃ > 0 such that

|F (u)−F (v)| ≤ c̃

[
|u|1−α‖u‖α‖u− v‖1−α‖u− v‖α

E + |u− v|1−α‖u− v‖α‖v‖1−α‖v‖α
E

]

(3.36)

for any u, v ∈ E. Then Problem (2.11) has a unique global solution.

Proof. Let u be the stochastic process we constructed in Theorem 3.5 and

‖‖‖N‖‖‖ := max
(‖‖‖N‖‖‖L(E,H),‖‖‖N‖‖‖L(V,V∗)

)
.

Let (τn)n≥1 be a sequence of stopping times defined by

τn = inf

{
t ∈ [0, T ] : sup

s∈[0,t]

‖u(s)‖2+
∫ t

0

‖u(s)‖2Eds ≥ n2

}
.

Note that (u, τ∞), where τ∞ = limn↑∞ τn a.s., is the unique maximal solution
to (2.11). To deal with the structure of the nonlinearity F (see Eq. (3.36)) we
introduce another sequence of stopping times (σm)m≥1 defined by

σm = inf
{

t ∈ [0, T ] :
∫ t

0

|u(s)|2‖u(s)‖ 2α
1−α ds ≥ m

}
, for any m ≥ 1.

To shorten notation we define tm,n = t ∧ (σm ∧ τn) for any t ∈ [0, T ],
n ≥ 1 and m ≥ 1. Let

f(s, z) := 〈NG(z,u(s)), G(z,u(s))〉
+ 2〈G(z,u(s)), Nu(s)〉,

and
g(s, z) := 〈NG(z,u(s)), G(z,u(s))〉.

Applying Itô’s formula to Ψ(u) = 〈u,Nu〉 we obtain

Ψ(u(tm,n)) = Ψ(u0) − 2
∫ tm,n

0

[〈Au(s) + F (u(s)), Nu(s)〉] ds

+
∫ tm,n

0

∫
Z

g(s, z)ν(dz)ds +
∫ tm,n

0

∫
Z

f(s−, z)η̃(dz, ds),

for any t ∈ [0, T ]. For any δ > 0 and p, q ≥ 1 with p−1 + q−1 = 1 let C(δ, p, q)
be the constant from the Young inequality

ab ≤ C(δ, p, q)ap + δbq.

From Eq. (3.36) and the above Young inequality with p = 2
1+α , q = 2

1−α , and
δ = CA we obtain

|2〈F (u(s)), Nu(s)〉| ≤ C(CA, p, q)[2c̃‖‖‖N‖‖‖]q|u(s)|2‖u(s)‖ 2α
1−α + CA‖u(s)‖2E.
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By making use of the definition of σm we get that

2|
∫ tm,n

0

〈F (u(s)), Nu(s)〉ds| ≤ C(CA, p, q)[2c̃‖‖‖N‖‖‖]qmT + CA

∫ tm,n

0

‖u(s)‖2E.

(3.37)
From the assumption on G we derive that∫ tm,n

0

∫
Z

g(s, z)ν(dz)ds ≤ ‖‖‖N‖‖‖�̃1T + ‖‖‖N‖‖‖�̃1

∫ tm,n

0

‖u(s)‖2ds. (3.38)

By taking the mathematical expectation to both sides of this estimate and by
using Assumption 2.1 altogther with Eqs. (3.37), (3.38) we infer that

E[‖u(tm,n)‖2] + E

∫ tm,n

0

‖u(s)‖2Eds ≤ L̃−1‖‖‖N‖‖‖�̃1E

∫ tm,n

0

‖u(s)‖2ds

+ L̃−1[EΨ(u0) + ‖‖‖N‖‖‖�̃1T + CmAT ],

where L̃ = min(CN , CA) and CmA := C(CA, p, q)[2c̃‖‖‖N‖‖‖]qm. From the Gron-
wall’s lemma we infer that

E[‖u(tm,n)‖2] + E

∫ tm,n

0

‖u(s)‖2Eds ≤ L̃−1[EΨ(u0) + ‖‖‖N‖‖‖�̃1T

+CmAT ]eL̃−1‖‖‖N‖‖‖�̃1tm,n [1 + ‖‖‖N‖‖‖�̃1T ]. (3.39)

Next, note that

P(τn < t) = P({τn < t} ∩ (Ωm ∪ Ωc
m)),

= P({τn < t} ∩ Ωm) + P({τn < t} ∩ Ωc
m),

where Ωm = {σm ≥ T}, m ≥ 1. Now, by arguing as in [12, pp. 123] we have

P (τn < t) ≤ 1

n2
E

(
1{τn<t}∩Ωm

[
‖u(tm,n)‖2+

∫ tm,n

0

‖u(s)‖2
Eds

])
+ P[Ωc

m],

≤ 1

n2
E

[
‖u(tm,n)‖2+

∫ tm,n

0

‖u(s)‖2
Eds

]
+

1

m
E

∫ tm,n

0

|u(s)|2‖u(s)‖ 2α
1−α ds.

Thanks to Eq. (3.39)

P (τn < t) ≤ 1
n2

L̃−1[EΨ(u0) + ‖‖‖N‖‖‖�̃1T + CmAT ]eL̃−1‖‖‖N‖‖‖�̃1T

+
1
m
E

∫ tm,n

0

|u(s)|2‖u(s)‖ 2α
1−α ds,

from which we derive that

lim
n↗∞

P (τn < t) ≤ 1
m

{
E

[
sup

s∈[0,tm,n]

|u(s)|4
]

+

(
E

[∫ tm,n

0

‖u(s)‖2ds

]2) 2α
1−α}

.

Since α ∈ [0, 1
2 ] it follows from Proposition 3.6 (see (3.19)–(3.20)) that the

solution u satisfies

E[ sup
s∈[0,tm,n]

‖u(s)‖4] +
(
E

[∫ tm,n

0

‖u(s)‖2ds

]2) 2α
1−α

≤ C̃.
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Hence, combining this latter equation with the former one yields that

lim
n→∞P (τn < t) = 0,

from which we derive that P (τ∞ < T ) = 0 for any T > 0. This implies that u
is a global solution. �

Remark 3.8. All of our results in this section remain true if we replace F (u) by
B(u)+R(u) with R ∈ L(H,H) and B satisfying the assumptions of Theorems
3.5 and 3.7.

4. Examples

The examples, notations and references used in this section are taken from
[17].

4.1. Notations

Let n ∈ {2, 3} and assume that O ⊂ R
n is a Poincaré’s domain (its definition

is given below) with boundary ∂O of class C∞. For any p ∈ [1,∞) and k ∈ N,
L

p(O) and W
k,p(O) are the well-known Lebesgue and Sobolev spaces, respec-

tively, of Rn-valued functions. The corresponding spaces of scalar functions we
will denote by standard letter, e.g. W k,p(O).

A domain O ⊂ R
d is called a Poincaré’s domains if following Poincaré’s

inequality holds

|u| ≤ c|∇u|, for all u ∈ H1(O). (4.1)

For p = 2 we denote W
k,2(O) = H

k and its norm are denoted by ‖u‖k.
By H

1
0 we mean the space of functions in H

1 that vanish on the boundary on
O; H1

0 is a Hilbert space when endowed with the scalar product induced by
that of H1. The usual scalar product on L

2 is denoted by 〈u, v〉 for u, v ∈ L
2.

Its associated norm is |u|, u ∈ L
2. We also introduce the following spaces

V1 = {u ∈ [C∞
c (O,Rn)] such that ∇ · u = 0}

V1 = closure of V in H
1
0(O)

H1 = closure of V in L
2(O).

We also consider the Hilbert spaces H2 = H1 and V2 = H
1 ∩ H2.

Let (e1, e2) be the standard basis in R
2 and x = (x1, x2) an element of

R
2. When O = (0, l) × (0, 1) is a rectangular domain in the vertical plane we

consider the following spaces

H3 =
{
u ∈ L

2, divu = 0, u2|x2=0 = u2|x2=1 = 0, u1|x1=0 = u1|x1=l

}
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and H4 = L2(O). We also denote

V3 =
{
u ∈ H3 ∩ H

1, u|x2=0 = u|x2=1 = 0, u is l-periodic in x1
}

,

V4 =
{
θ ∈ H1(O), θ|x2=0 = θ|x2=1 = 0, θ is l-periodic in x1

}
,

H5 =H3,

V5 =H5 ∩ H
1.

Let Πi : L
2 → Hi be the projection from L

2 onto Hi, i = 1, 2, 3, 4, 5. We
denote by Ai the Stokes operator defined by{

D(Ai) = {u ∈ Hi, Δu ∈ Hi},

Aiu = −ΠiΔu, u ∈ D(Ai),
(4.2)

i = 1, . . . , 5. In all cases the Ai-s are self-adjoint, positive linear operators on
Hi. Finally we set Ei = D(Ai), i ∈ {1, 2, 3, 4, 5}. Note that Ei ⊂ H

2 ∩ Vi,
i = 1, 2, 3, 5 and E4 ⊂ H2 ∩ V4.

We endow the spaces Hi, i ∈ {1, 2, 3, 4, 5}, with the scalar product and
norm of L2. We equip the space Vi, i ∈ {1, 2, 3, 4, 5}, with the scalar product

〈A 1
2
i u,A

1
2
i v〉 which is equivalent to the H1(O)-scalar product on Vi. The spaces

Ei, i ∈ {1, 2, 3, 4, 5} are equipped with the norm |Aiu| which is equivalent to
the H

2-norm on Ei.

Remark 4.1. In the case of an general unbounded domain we equip the space
Vi, i ∈ {1, 2, 3, 4, 5}, with the scalar product 〈(Id +Ai)

1
2u, (Id +Ai)

1
2v〉. The

spaces Ei, i ∈ {1, 2, 3, 4, 5} are equipped with the norm |(Id +Ai)u| which is
equivalent to the H

2-norm on Ei.
Next we define two trilinear forms b1(·, ·, ·) and b2(·, ·, ·) by setting

b1(u,v,w) =

n∑
i,j=1

∫
O

ui(x)
∂

∂xi
vj(x)wj(x)dx, for any (u,v,w) ∈ L

4 × W
1,4 × L

2,

(4.3)

b2(u, θ2, θ3) =

n∑
i=1

∫
O

ui(x)
∂

∂xi
θ2(x)θ3(x)dx, for any (u, θ2, θ3) ∈ L

4 × W 1,4 × L2.

(4.4)

Recall that for α = n
4 , the following estimate, valid for all u ∈ H

1 (or u ∈ H1),
is a special case of Gagliardo–Nirenberg’s inequalities:

‖u‖L4 ≤ |u|1−α|∇u|α. (4.5)

The inequality (4.5) can be written in the spirit of the continuous embedding

H
1 ⊂ L

4. (4.6)
Using Cauchy-Schwarz inequality, (4.5) and (4.6) in (4.3), (4.4) we derive that
for any (u,v,w) ∈ H

1 × H
2 × L

2

|b1(u,v,w)| ≤ c‖u‖H1 |∇v|1−α |D2v|α |w| for any (u,v,w) ∈ H
1 × H

2 × L
2,

(4.7)

|b2(u, θ2, θ3)| ≤ c‖u‖H1 |∇θ2|1−α |D2θ2|α |θ3| for any (u, θ2, θ3) ∈ H
1 × H2 × L2.

(4.8)
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From Eq. (4.7) (resp., Eq. (4.8)) we infer that there exists a bilinear map
B1(·, ·) (resp., B2(·, ·)) defined on Vi ×Ei and taking values in Hi, for appro-
priate values of i. Moreover, there exist c > 0 such that

|B1(u,v)|≤ c‖u‖H1‖ ‖v‖1−α
H1 ‖v‖α

H2 , for any (u,v) ∈ Vi × Ei, (4.9)

|B2(u, θ2)|≤ c‖u‖H1‖ ‖θ2‖1−α
H1 ‖θ2‖α

H2 , for any (u,v) ∈ Vi × Ei, (4.10)

for appropriate values of i. Note that using Cauchy–Schwarz inequality, (4.5)
and (4.6) in (4.3), (4.4) we also derive that

|B1(u,v)|≤ c|u|1−α‖u‖α
H1‖ ‖v‖1−α

H1 ‖v‖α
H2 , for any (u,v) ∈ Vi × Ei,

(4.11)

|B2(u, θ2)|≤ c|u|1−α‖u‖α
H1 ‖θ2‖1−α

H1 ‖θ2‖α
H2 , for any (u,v) ∈ Vi × Ei,

(4.12)

for appropriate values of i.

4.2. Stochastic hydrodynamical systems

In this subsection we use exactly the same notations as used in [17].

4.2.1. Stochastic Navier–Stokes equations. Let O be a bounded, open and
simply connected domain of Rn, n = 2, 3. The boundary ∂O of O is assumed
to be smooth. Let (Z,Z, ν) be a measure space where the ν is a σ-finite, positive
measure and η̃ be a compensated Poisson random measure having intensity
measure ν defined on filtered complete probability space P = (Ω,F ,F,P),
where the filtration F = (Ft)t≥0 satisfies the usual conditions. We consider the
Navier–Stokes equation with the Dirichlet (no-slip) boundary conditions:

du + [−κΔu + u∇u + ∇p] dt

=
∫

Z

G̃(t,u(t−), z)η̃(dz, dt), divu = 0 in D, u = 0 on ∂O,

(4.13)

where u = (u1(x, t), u2(x, t)) is the velocity of a fluid, p(x, t) is the pres-
sure, κ the kinematic viscosity. Here

∫
Z

G̃(t, u(t), z)η̃(dz, dt) represents a state-
dependent random external forcing of jump type.

Let H = H1, V = V1 and E = E1 where the hilbert spaces Hi, Vi

and Ei are defined as in Eq. (4.2) of Sect. 4.1. The norms of H, V and E are
denoted by |·|, ‖·‖, ‖·‖E, respectively.

Let A = A1 and B = B1 be the linear and bilinear maps defined in
Sect. 4.1. We also set N = A. Note that in this case N is self-adjoint and
N ∈ L(E,H) ∩ L(V,V∗).

We suppose that G̃ satisfies the following sets of conditions.

Assumption 4.1. We assume that G̃ maps V into L2p(Z, ν,V) and there exists
a constant �p > 0 such that

‖G̃(x) − G̃(y)‖2p
L2p(Z,ν,V) ≤ �p

p‖x − y‖2p, (4.14)

for any x, y ∈ V and p = 1, 2.
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Note that this implies in particular that there exists a constant �̃p > 0
such that

‖G̃(x)‖2p
L2p(Z,ν,H) ≤ �̃p

p(1+‖x‖2p), (4.15)
for any x ∈ V and p = 1, 2 .

By setting R ≡ 0 and projecting on the space of divergence free vector
fields the system (4.13) can be rewritten in the following abstract form

du + [Au + B(u,u) + R(u)]dt =
∫

Z

G̃(t,u(t−), z)η̃(dz, dt),
(4.16)

u(0) = ξ,

Theorem 4.2. The stochastic Navier–Stokes problem (4.16) admits a local max-
imal strong solution which is global if n = 2.

Remark 4.3. This theorem remains true in the case O being a general un-
bounded domain. For the proof it is sufficient to take A = A1+Id, R(u) := −u
and argue as in the case of bounded domain.

Proof. The existence and uniqueness of a maximal local solution will follow
from Theorem 3.5 if we are able to prove that F (u) = B(u,u) satisfies (2.7).
But from (4.9) we deduce that there exists C > 0 such that for

|B(y) − B(x)|≤ C
[
‖y − x‖‖y‖1− n

4 ‖y‖n
4
E + ‖y − x‖n

4
E‖y − x‖1− n

4 ‖x‖
]
,

for any x, y ∈ E. This means that B satisfies (2.7) with p = 1 and α = n
4 .

Since α = 3
4 /∈ [0, 1

2 ] for n = 3, the solution is only maximal. For n = 2 we
have α = 1

2 and 〈B(u,u),u〉 = 0. So thanks to Remark 3.8, we only need to
check that (3.36) is verified by B. But this will follow from (4.11). �
4.2.2. Magnetohydrodynamic equations. Let O ⊂ R

n, n = 2, 3 be a simply
connected, possibly unbounded domain. As above we assume that O has a
smooth boundary ∂O. Let (Zi,Zi, νi), i = 1, 2 be two measure spaces where the
measures νi are σ-finite and positive. We consider two mutually independent
compensated Poisson random measures η̃i with intensity measure νi defined
on a complete filtered probability space P = (Ω,F ,F,P). We consider the
magneto-hydrodynamic (MHD) equations

du + [−Δu + u∇u]dt = [−∇
(

p +
1
2
|b|2
)

+ b∇b]dt

+
∫

Z1

f̃(t, u(t−), b(t−), z1)η̃1(dz1, dt), (4.17)

db+ [−ν2Δb+u∇b]dt = [b∇u]dt+
∫

Z2

g̃(t, u(t−), b(−t), z2)η̃2(dz2, dt), (4.18)

div u = 0, div b = 0 (4.19)
where u = (u(1)(x, t), u(2)(x, t), u(3)(x, t)) and b=(b(1)(x, t), b(2)(x, t), b(3)(x, t))
denote velocity and magnetic fields, p(x, t) is a scalar pressure. We consider
the following boundary conditions

u = 0, b · n = 0, curl b × n = 0 on ∂O (4.20)
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The terms
∫

Z1
f̃(t, u(t), b(t), z1)η̃1(dz1, dt) and

∫
Z2

g̃(t, u(t), b(t), z2)η̃2(dz2, dt),
represent random external volume forces and the curl of random external cur-
rent applied to the fluid. We refer to [22,36,49] for the mathematical theory
for the MHD equations.

Let H = H1 ×H2, V = V1 ×V2 and E = E1 ×E2. We define a bilinear
map B(·, ·) on V × E by

〈B(z1, z2), z3〉 = 〈B1(u1, u2), u3〉 − 〈B1(b1, b2), u3〉
+ 〈B1(u1, b2), b3〉 − 〈B1(b1, u2), b3〉,

for z1 = (u1, b1) ∈ V, z2 = (u2, b2) ∈ E and z3 = (u3, b3) ∈ H. We also set

Az =
(

Id +A1 0
0 Id +A2

)(
u
b

)

for z = (u, b) ∈ E.
We set u := (u, b) and
∫

Z

G̃(t,u(t−), z)η̃(dz, dt) :=

(∫
Z1

f̃(t,u(t−), z1)η̃1(dz1, dt)∫
Z2

g̃(t,u(t−)), z2)η̃2(dz2, dt)

)
.

We assume that f̃ , g̃ are chosen in such a way that G̃ maps V into L2p(Z, ν,V)
and satisfies Assumption 4.1.

By setting R ≡ − Id and projecting on H we can see that (4.17), (4.18)
can be rewritten in the form (4.16). Now, by choosing N = A we can show
by arguing as in Theorem 4.2 that the stochastic Magnetohydrodynamic equa-
tions (4.17), (4.18) has a local maximal solution which is global if the dimension
n = 2.

4.2.3. Magnetic Bénard problem. Let O = (0, l) × (0, 1) be a rectangular do-
main in the vertical plane, (e1, e2) the standard basis in R

2. Let (Zi,Zi, νi),
i = 1, 2, 3 be three measure spaces where the measures νi are σ-finite and pos-
itive. We consider three mutually independent compensated Poisson random
measures η̃i with intensity measure νi defined on a complete filtered probability
space P = (Ω,F ,F,P).

We consider the equations

du + [u∇u − κ1Δu + ∇
(
p +

s

2
|b|2
)

− sb∇b]dt = θe2dt

+

∫
Z1

f̃(t, u(t−), θ(t−), b(t−), z1)η̃1(dz1, dt),

div u = 0,

dθ + [u∇θ − u(2) − κΔθ]dt =

∫
Z2

g̃(t, u(t−), θ(t−), b(t−), z2)η̃2(dz2, dt),

db + [−κ2Δb + u∇b − b∇u]dt =

∫
Z3

h̃(t, u(t−), θ(t−), b(t−), z3)η̃2(dz3, dt),

div b = 0,

with boundary conditions

u = 0, θ = 0, b(2) = 0, ∂2b
(1) = 0 on x(2) = 0 and x(2) = 1,

u, p, θ, b, ux(1) , θx(1) , bx(1) are periodic in x(1) with period l.
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This is the Boussinesq model coupled with magnetic field (see [28]) with sto-
chastic perturbations. Throughout we assume that κ1 = κ2 = s = 1. Let
H = H3 × H4 × H5, V = V3 × V4 × V5 and E = E3 × E4 × E5.

We define a bilinear map B(·, ·) on V × E by

〈B(z1, z2), z3〉 = 〈B1(u1, u2), u3〉 − 〈B1(b1, b2), u3〉
+ 〈B1(u1, b2), b3〉 − 〈B1(b1, u2), b3〉 + 〈B2(u1, θ2, ), θ3〉,

for z1 = (u1, θ1, b1) ∈ V, z2 = (u2, θ2, b2) ∈ E and z3 = (u3, θ3, b3) ∈ H. Using
the notations in (4.2), we set

Az =

⎛
⎝A3 0 0

0 A4 0
0 0 A5

⎞
⎠
⎛
⎝u

θ
b

⎞
⎠

for z = (u, θ, b) ∈ E.

We also set R(u, θ, b) = −(θe2 , u(2), 0) and N = A. Note that in this
case R ∈ L(H,H) and N ∈ L(E,H) ∩ L(V,V∗).

We set u := (u, θ, b) and

∫
Z

G̃(t,u(t−), z)η̃(dz, dt) :=

⎛
⎝
∫

Z
f̃(t,u(t−), z1)η̃1(dz1, dt)∫

Z
g̃(t,u(t−), z2)η̃2(dz2, dt)∫

Z
h̃(t,u(t−), z3)η̃3(dz3, dt).

⎞
⎠

We assume that f̃ , g̃, h̃ are chosen such that G̃ verifies Assumption 4.1. With
these notations we can put the stochastic Magnetic Bénard problem into the
abstract stochastic evolution Eq. (4.16).

Theorem 4.4. The stochastic Magnetic Bénard problem (4.16) admits a unique
global strong solution.

Proof. The maximal local solution will follow from Theorem 3.5 if we are able
to prove that F (u) = B(u,u) + R(u) satisfies (2.7). Since R is a bounded
linear map, it follows from Remark 3.8 that it is sufficient to check (2.7) for
B. But from (4.9) and (4.10) we deduce that there exists C > 0 such that for

|B(y) − B(x)|≤ C
[
‖y − x‖‖y‖1− n

4 ‖y‖n
4
E + ‖y − x‖n

4
E‖y − x‖1− n

4 ‖x‖
]
,

for any x, y ∈ E. This means that B satisfies (2.7) with p = 1 and α = n
4 .

Since n = 2 we have α = 1
2 and 〈B(u,u),u〉 = 0. So thanks to Remark 3.8,

we only need to check that (3.36) is verified by B. But this will follow from
(4.11) and (4.12). �

4.2.4. Boussinesq model for the Bénard convection. Let O be a (possibly) do-
main of Rn, n = 2, 3, {ei, . . . , en} a standard basis in R

n and x=(x(1), . . . , x(n))
an element of R

n. We assume that O has a smooth boundary ∂O. Let
(Zi,Zi, νi), i = 1, 2 be two measure spaces where the measures νi are σ-finite
and positive. We consider two mutually independent compensated Poisson
random measures η̃i with intensity measure νi defined on a complete filtered
probability space P = (Ω,F ,F,P).
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Let us consider the Bénard convection problem (see e.g. [27] and the
references therein) given by the following system

du + [u∇u − Δu + ∇p]dt = θendt +

∫
Z1

f̃(t, u(t−), b(t−), z1)η̃1(dz1, dt), div u = 0,

(4.21)

dθ + [u∇θ − u(n) − Δθ]dt =

∫
Z2

g̃(t, u(t−), θ(t−), z2)η̃2(dz2, dt), (4.22)

with boundary conditions

u = 0 & θ = 0 on ∂O.

Here p(x, t) is the pressure field,
∫

Z1
f̃(t, u(t), b(t), z1)η̃1(dz1, dt),

∫
Z2

g̃(t, u(t),
b(t), z2)η̃2(dz2, dt) represent two random external forces, u = (u(1)(x, t), . . . ,
u(n)(x, t)) is the velocity field and θ = θ(x, t) is the temperature field.

We set H = H3 × H4, V = V3 × V4, E = E3 × E4. Following the
notations given in (4.2) we define

Az =
(

A3 0
0 A4

)(
u
θ

)

for z = (u, θ) ∈ E. We define a bilinear map B(·, ·) on V × E by

〈B(z1, z2), z3〉 = 〈B1(u1, u2), u3〉 + 〈B2(u1, θ2, ), θ3〉,
for z1 = (u1, θ1) ∈ V, z2 = (u2, θ2) ∈ E and z3 = (u3, θ3) ∈ H. We also put
R(u, θ, b) = −(θe2 , u(n)) and N = A.

As before we set u := (u, θ) and
∫

Z

G̃(t,u(t−), z)η̃(dz, dt) :=

(∫
Z1

f̃(t, u(t−), b(t−), z1)η̃1(dz1, dt)∫
Z2

g̃(t, u(t−), b(t−), z2)η̃2(dz2, dt)

)
.

We assume that f̃ , g̃ are chosen in such a way that G̃ maps V into L2p(Z, ν,V)
and satisfies Assumption 4.1.

By Arguing as in the case of Navier–Stokes equations, Magnetic Bénard
problem and MHD equations we can show that if the random external force
satisfies Assumption 4.1, then the Boussinesq model for the Bénard convection
admits a unique maximal strong solution which is global is n = 2.

4.3. Shell models of turbulence

Here, we use again the same notations as used in [17]. Let H be a set of all
sequences u = (u1, u2, . . .) of complex numbers such that

∑
n |un|2 < ∞. We

consider H as a real Hilbert space endowed with the inner product (·, ·) and
the norm | · | of the form

(u, v) = Re
∞∑

n=1

unv∗
n, |u|2 =

∞∑
n=1

|un|2,

where v∗
n denotes the complex conjugate of vn. In this space H we consider the

evolution equation (4.16) with R = 0 and with linear operator A and bilinear
mapping B defined by the formulas
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(Au)n = νk2
nuu, n = 1, 2, . . . , D(A) =

{
u ∈ H :

∞∑
n=1

k4
n|un|2 < ∞

}
,

where ν > 0, kn = k0μ
n with k0 > 0 and μ > 1, and

[B(u, v)]n = −i

× (akn+1u
∗
n+1v

∗
n+2 + bknu∗

n−1v
∗
n+1 − akn−1u

∗
n−1v

∗
n−2 − bkn−1u

∗
n−2v

∗
n−1)

for n = 1, 2, . . ., where a and b are real numbers (here above we also assume
that u−1 = u0 = v−1 = v0 = 0). This choice of A and B corresponds to the
so-called GOY-model (see, e.g., [42]). If we take

[B(u, v)]n = −i

× (akn+1u∗
n+1vn+2 + bknu∗

n−1vn+1 + akn−1un−1vn−2 + bkn−1un−2vn−1
)
,

then we obtain the Sabra shell model introduced in [37].
One can easily show (see [1] for the GOY model and [16] for the Sabra

model) that the trilinear form

〈B(u, v), w〉 ≡ Re
∞∑

n=1

[B(u, v)]n w∗
n

satisfies the inequality

|〈B(u, v), w〉| ≤ C|u||A1/2v||w|, ∀u,w ∈ H, ∀v ∈ D(A1/2).

Hence taking H = H, (V, ‖·‖) = (D(A
1
2 ), |A 1

2 · |) and (E, ‖·‖E) := (D(A), |A·|)
we infer that the nonlinear term for the shell models satisfies Assumption 2.2
with α = 0 and p = 1. By Arguing as before we can show that if the random
external force satisfies Assumption 4.1, then stochastic shell models admits a
unique global strong solution.

Let us consider the following dyadic model (see, e.g., [33] and the refer-
ences therein)

∂tun + νλ2αnun − λnu2
n−1 + λn+1unun+1 = fn, n = 1, 2, . . . , (4.23)

where ν, α > 0, λ > 1, u0 = 0. By setting [B(u, v)]n = −λnun−1vn−1 +
λn+1 un vn+1 and (Au)n = ν λ2αn un, it is not difficult to show that the system
(4.23) falls also in the framework of the shell models of turbulence provided
that α ≥ 1/2.

4.4. 3D Leray α-model for Navier–Stokes equations

As in the previous subsections, we use the same notations as used in [17].
In a bounded 3D domain O we consider the following equations:

∂tu − Δu + v∇u + ∇p = f, (4.24)

(1 − αΔ)v = u, divu = 0, div v = 0 in O, (4.25)

v = u = 0 on ∂O. (4.26)

where u = (u(1), u(2), u(3)) and v = (v(1), v(2), v(3)) are unknown fields, p(x, t)
is the pressure. We refer to [14,15] and references for results related to (4.24)–
(4.26).
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Let H = H1, V = V1 and E = E1 be the Hilbert spaces defined in Sect.
4.1. Set A = A1, Gα = (Id + αA)−1 and define a bilinear mapping B(·, ·) on
V × E by setting

B(u, v) = B1(Gαu, v),

for any u ∈ V and v ∈ E.
Arguing as in [17, Subsubsection 2.1.5] we can show that there exists

C > 0 such that
|B(u, v)| ≤ C‖u‖L3‖∇v‖L3 , (4.27)

for any u ∈ L
3 and v ∈ W

1,3. Recall that in three dimensional case we have
the following Gagliardo–Nirenberg inequality

‖u‖L3 ≤ c|u| 1
2 ‖u‖ 1

2
H1 , u ∈ H

1. (4.28)

Now using this inequality and the continuous embedding H
1 ⊂ L

3

we infer from (4.27) that

|B(u, v)| ≤ C‖u‖V‖v‖ 1
2
V‖v‖E, (4.29)

|B(u, v)| ≤ C|u| 1
2
H‖u‖ 1

2
V‖v‖ 1

2
V‖v‖E, (4.30)

for any u ∈ V, v ∈ E.
Now we set R ≡ 0 and N = A. Thanks to (4.29)–(4.30) we see that the

nonlinear term for the 3D Leray α-model for Navier–Stokes equations satisfies
the assumptions of Theorem 3.7 with α = 1

2 and p = 1. Therefore we can
argue as in the case of 2D stochastic Navier–Stokes equations and show that
the stochastic 3D Leray α-model for Navier–Stokes equations admits a global
solution if the random external force satisfies Assumption 4.1.
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Appendix A. Existence of solution to the linear SPDE (3.4)

Throughout this appendix we assume that the separable Hilbert spaces E,V,
and H are defined as before.

Let (Z,B(Z)) be a separable metric space and let ν be a σ-finite positive
measure on it. For the sake of simplicity we write Z := B(Z). Let η : Ω ×
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B(R+) × Z → N̄ is a time homogeneous Poisson random measure with the
intensity measure ν. We will denote by η̃ = η − γ the compensated Poisson
random measure associated to η where the compensator γ is given by

B(R+) × Z � (A, I) �→ γ(A, I) = ν(A)λ(I) ∈ R+.

Let φ ∈ M2(0, T ;H) and ψ ∈ M2(0, T ;L4(Z, ν;V)). We will show in the next
theorem that the following linear SPDEs ( which is (3.4)) has a unique solution{

du(t) + [Au(t) + φ(t)]dt =
∫

Z
ψ(t, z)η̃(dz, dt), t ∈ [0, T ],

u(0) = u0.
(A.1)

Theorem A.1. Let A, N be as in Assumption 2.1, φ ∈ M2(0, T ;H), ψ ∈
M2(0, T ;L2(Z, ν;V)). Let u0 be a V-valued F0-measurable random variable
satisfying E|u0|2 < ∞. Then there exists a unique progressively measurable
process u such that u ∈ L2(0, T ;E)∩D(0, T ;V) with probability 1, and almost
surely

〈u(t), w〉 +
∫ t

0

〈Au(s) + φ(s), w〉ds = 〈u0, w〉 +
∫ t

0

∫
Z

〈ψ(s, z), w〉η̃(dz, ds),

(A.2)
for all t ∈ [0, T ] and w ∈ H.

Proof. We will use the Picard method as presented in [43, Chapter 3, Section
1]. Throughout this proof we set

‖‖‖N‖‖‖ := max
(‖‖‖N‖‖‖L(E,H),‖‖‖N‖‖‖L(V,V∗)

)
.

For positive integer n we define a sequence {u[n](t), t ∈ [0, T ]} of stochastic
processes as follows{
u[1](t) = u0,

u[n+1](t) = u0 − ∫ t
0 [Au[n](s) + φ(s)]ds +

∫ t
0

∫
Z

ψ(s, z)η̃(dz, ds), t ∈ [0, T ], n ≥ 2.

Thanks to our assumption and [30, Theorem 2] the strochastic processe

u[2](t) = u0 −
∫ t

0

[Au[1](s) + φ(s)]ds +
∫ t

0

∫
Z

ψ(s, z)η̃(dz, ds)

is a well-defined V-valued adapted and càdlàg process. By iterating this defi-
nition we see that for each n ≥ 2 u[n] is also a well-defined V-valued adapted
and càdlàg process.

Now we will show that the sequence u[n] is converging in appropri-
ate topology to the solution u of (A.1). In fact we will show that u[n] ∈
L2(Ω;L∞(0, T ;V)) is a Cauchy sequence. For this aim define
Φn(t) = E sups∈[0,t]‖u[n+1](s) − u[n](s)‖2 for all n ≥ 1. We have

u[n+1](t) − u[n](t) = −
∫ t

0

A(u[n](s) − u[n−1])ds,

for any t ∈ [0, T ] and n ≥ 2. Multiplying this equation by N(u[n+1] − u[n]),
using Assumption 2.1 and the Cauchy inequality with arbitrary ε > 0 we infer
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that

(CN − ε) sup
s∈[0,t]

‖u[n+1](s)−u[n](s)‖2 ≤ ‖‖‖N‖‖‖2‖‖‖A‖‖‖2
4ε

∫ t

0

‖u[n](s)−u[n−1](s)‖2ds.

Choosing ε = CN/2 taking the mathematical expectation to both side of the
last estimate implies

Φn(t) ≤ ‖‖‖N‖‖‖2‖‖‖A‖‖‖2
2C2

N

∫ t

0

Φn−1(s)ds. (A.3)

As in [43] we iterate (A.3) and obtain

Φn(t) ≤
(‖‖‖N‖‖‖2‖‖‖A‖‖‖2

2C2
N

)n 1
n!

Φ1(t),

from which we deduce that (u[n];n ≥ 1) forms a Cauchy sequence in L2(Ω;L∞

(0, T ;V)). Therefore, there exists u ∈ L2(Ω;L∞(0, T ;V)) such that

u[n] → u strongly in L2(Ω;L∞(0, T ;V)). (A.4)

Now, we prove that u[n] is bounded in L2(Ω;L2(0, T ;E)). For this purpose we
apply Itô formula to Ψ(u) = 〈u,Nu〉 and use Assumption 2.1 to infer that

CN‖u[n](t ∧ τ)‖2 + 2CA

∫ t∧τ

0
‖u[n](s)‖2

Eds ≤
∫ T

0

[
|φ(s)|2 +

∫
Z

〈Nψ(s, z), ψ(s, z)〉ν(dz)

]
ds

+

∫ t∧τ

0

∫
Z

[
〈ψ(s, z), Nu[n](s−)〉 + 〈ψ(s, z), Nψ(s, z)〉

]
η̃(dz, ds)

+Ψ(u0) + ‖‖‖N‖‖‖2

∫ T

0
|u[n](s)|2ds. (A.5)

where τ is an arbitrary stopping time localizing the local martingale∫ t

0

∫
Z

[
〈ψ(s, z), Nu[n](s−)〉 + 〈ψ(s, z), Nψ(s, z)〉

]
η̃(dz, ds).

We easily derive from (A.5) that

CN‖u[n](t ∧ τ)‖2 + 2CA

∫ t∧τ

0
‖u[n](s)‖2

Eds ≤
∫ T

0

[
|φ(s)|2 + ‖‖‖N‖‖‖2

∫
Z

‖ψ(s, z)‖2ν(dz)

]
ds

+

∫ t∧τ

0

∫
Z

[
〈ψ(s, z), Nu[n](s−)〉 + 〈ψ(s, z), Nψ(s, z)〉

]
η̃(dz, ds)

+Ψ(u0) + ‖‖‖N‖‖‖2

∫ T

0
‖u[n](s)‖2ds.

Since, by the first part of our proof,
∫ T

0
E‖u[n](s)‖2ds is bounded and τ is ar-

bitrary, by taking mathematical expectation to both sides of the last inequality
we derive that there exists C > 0 such that

E

∫ T

0

‖u[n](s)‖2Eds ≤ C.

This implies that one can find a subsequence of u[n], which will be denoted
with the same fashion, such that

u[n] → u weakly in L2(Ω;L2(0, T ;E)). (A.6)
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Since, by assumption, A ∈ L(E,H) it follows from (A.6) that

Au[n] → Au weakly in L2(Ω;L2(0, T ;H)). (A.7)

Owing to the convergences (A.4) and (A.7) we easily derive that, with prob-
ability 1, u satisfies (A.2) for all t ∈ [0, T ] and w ∈ H. This means that
(A.1) holds for all t ∈ [0, T ] and all w ∈ H with probability 1. Since u is the
limit in L2(Ω;L∞(0, T ;V)) of a sequence of adapted processes, we infer that
u is adapted. Thanks to our assumption and [30, Theorem 2] the process u is
càdlàg . Because u is adapted and càdlàg it admits a progressively measurable
version which is still denoted with the same symbol. The proof of our theorem
is complete. �
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processes. Stoch. Process. Appl. 116, 611–642 (2006)
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