
Potential Anal (2009) 30:1–27
DOI 10.1007/s11118-008-9104-6

Strong Spherical Asymptotics for Rotor-Router
Aggregation and the Divisible Sandpile

Lionel Levine · Yuval Peres

Received: 22 November 2007 / Accepted: 7 October 2008 / Published online: 29 October 2008
© Springer Science + Business Media B.V. 2008

Abstract The rotor-router model is a deterministic analogue of random walk. It can
be used to define a deterministic growth model analogous to internal DLA. We
prove that the asymptotic shape of this model is a Euclidean ball, in a sense which
is stronger than our earlier work (Levine and Peres, Indiana Univ Math J 57(1):431–
450, 2008). For the shape consisting of n = ωdrd sites, where ωd is the volume of
the unit ball in R

d, we show that the inradius of the set of occupied sites is at least
r − O(log r), while the outradius is at most r + O(rα) for any α > 1 − 1/d. For a
related model, the divisible sandpile, we show that the domain of occupied sites is
a Euclidean ball with error in the radius a constant independent of the total mass.
For the classical abelian sandpile model in two dimensions, with n = πr2 particles,
we show that the inradius is at least r/

√
3, and the outradius is at most (r + o(r))/

√
2.

This improves on bounds of Le Borgne and Rossin. Similar bounds apply in higher
dimensions, improving on bounds of Fey and Redig.
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1 Introduction

Rotor-router walk is a deterministic analogue of random walk, first studied by
Priezzhev et al. [18] under the name “Eulerian walkers.” It was later independently
discovered by Jim Propp, and has also been called the “Propp machine” [3]. At each
site in the integer lattice Z

2 is a rotor pointing north, south, east or west. A particle
starts at the origin; during each time step, the rotor at the particle’s current location
is rotated clockwise by 90 degrees, and the particle takes a step in the direction
of the newly rotated rotor. In rotor-router aggregation, introduced by Jim Propp,
we start with n particles at the origin; each particle in turn performs rotor-router
walk until it reaches a site not occupied by any other particles. Let An denote the
resulting region of n occupied sites. For example, if all rotors initially point north, the
sequence will begin A1 = {(0, 0)}, A2 = {(0, 0), (1, 0)}, A3 = {(0, 0), (1, 0), (0,−1)}.
The region A1,000,000 is pictured in Fig. 1. In higher dimensions, the model can be
defined analogously by repeatedly cycling the rotors through an ordering of the 2d
cardinal directions in Z

d.
Jim Propp observed from simulations in two dimensions that the regions An are

extraordinarily close to circular, and asked why this was so [7, 13, 19]. Despite the
impressive empirical evidence for circularity, the best result known until now [14]
says only that if An is rescaled to have unit volume, the volume of the symmetric
difference of An with a ball of unit volume tends to zero as a power of n, as n ↑ ∞.
The main outline of the argument is summarized in [15]. Fey and Redig [5] also show
that An contains a diamond. In particular, these results do not rule out the possibility
of “holes” in An far from the boundary or of long tendrils extending far beyond the
boundary of the ball, provided the volume of these features is negligible compared
to n.

Fig. 1 Rotor-router aggregate
of one million particles in Z

2.
Each site is colored according
to the direction of its rotor
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Our main result is the following, which rules out the possibility of holes far from
the boundary or of long tendrils in the rotor-router shape. For r ≥ 0 let

Br = {
x ∈ Z

d : |x| < r
}
.

Theorem 1.1 Let An be the region formed by rotor-router aggregation in Z
d starting

from n particles at the origin and any initial rotor state. There exist constants c, c′
depending only on d, such that

Br−c log r ⊂ An ⊂ Br(1+c′r−1/d log r)

where r = (n/ωd)
1/d, and ωd is the volume of the unit ball in R

d.

We remark that the same result holds when the rotors evolve according to stacks
of bounded discrepancy; see the remark following Lemma 5.1.

Internal diffusion limited aggregation (“internal DLA”) is an analogous growth
model defined using random walks instead of rotor-router walks. Starting with n
particles at the origin, each particle in turn performs simple random walk until it
reaches an unoccupied site. Lawler et al. [10] showed that for internal DLA in Z

d,
the occupied region An, rescaled by a factor of n1/d, converges with probability one to
a Euclidean ball in R

d as n → ∞. Lawler [11] estimated the rate of convergence. By
way of comparison with Theorem 1.1, if In is the internal DLA region formed from
n particles started at the origin, the best known bounds [11] are (up to logarithmic
factors)

Br−r1/3 ⊂ In ⊂ Br+r1/3

for all sufficiently large n, with probability one.
We also study another model which is slightly more difficult to define, but much

easier to analyze. In the divisible sandpile, each site x ∈ Z
d starts with a quantity of

“mass” ν0(x) ∈ R≥0. A site topples by keeping up to mass 1 for itself, and distributing
the excess (if any) equally among its neighbors. Thus if x has mass m > 1, then each
of the 2d neighboring sites gains mass (m − 1)/2d when we topple x, and x is left with
mass 1; if m ≤ 1, then no mass moves when we topple x.

Note that individual topplings do not commute; however, the divisible sandpile is
“abelian” in the following sense.

Proposition 1.2 Let x1, x2, . . . ∈ Z
d be a sequence with the property that for any x ∈

Z
d there are infinitely many terms xk = x. Let

uk(x) = total mass emitted by x after toppling x1, . . . , xk;
νk(x) = amount of mass present at x after toppling x1, . . . , xk.

Then uk ↑ u and νk → ν ≤ 1. Moreover, the limits u and ν are independent of the
sequence {xk}.

The abelian property can be generalized as follows: after performing some top-
plings, we can add some additional mass and then continue toppling. The resulting
limits u and ν will be the same as in the case when all mass was initially present. For
a further generalization, see [16].
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The limiting function u in Proposition 1.2 is the odometer function for the divisible
sandpile. This function plays a central role in our analysis. The limit ν represents
the final mass distribution. Sites x ∈ Z

d with ν(x) = 1 are called fully occupied.
Proposition 1.2 is proved in Section 3, along with the following.

Theorem 1.3 For m ≥ 0 let Dm ⊂ Z
d be the domain of fully occupied sites for the

divisible sandpile formed from a pile of mass m at the origin. There exist constants c, c′
depending only on d, such that

Br−c ⊂ Dm ⊂ Br+c′ ,

where r = (m/ωd)
1/d and ωd is the volume of the unit ball in R

d.

The divisible sandpile is similar to the “oil game” studied by Van den Heuvel [22].
In the terminology of [5], it also corresponds to the h → −∞ limit of the classical
abelian sandpile (defined below), that is, the abelian sandpile started from the initial
condition in which every site has a very deep “hole.”

In the classical abelian sandpile model [1], each site in Z
d has an integer number

of grains of sand; if a site has at least 2d grains, it topples, sending one grain to each
neighbor. If n grains of sand are started at the origin in Z

d, write Sn for the set of
sites that are visited during the toppling process; in particular, although a site may be
empty in the final state, we include it in Sn if it was occupied at any time during the
evolution to the final state.

Until now the best known constraints on the shape of Sn in two dimensions were
due to Le Borgne and Rossin [12], who proved that

{
x ∈ Z

2 | x1 + x2 ≤ √
n/12 − 1

} ⊂ Sn ⊂ {
x ∈ Z

2 | x1, x2 ≤ √
n/2

}
.

Fey and Redig [5] proved analogous bounds in higher dimensions, and extended
these bounds to arbitrary values of the height parameter h. This parameter is
discussed in Section 4.

The methods used to prove the near-perfect circularity of the divisible sandpile
shape in Theorem 1.3 can be used to give constraints on the shape of the classical
abelian sandpile, improving on the bounds of [5] and [12].

Theorem 1.4 Let Sn be the set of sites that are visited by the classical abelian sandpile
model in Z

d, starting from n particles at the origin. Write n = ωdrd. Then for any ε > 0
we have

Bc1r−c2 ⊂ Sn ⊂ Bc′
1r+c′

2

where

c1 = (2d − 1)−1/d, c′
1 = (d − ε)−1/d.

The constant c2 depends only on d, while c′
2 depends only on d and ε.

Note that Theorem 1.4 does not settle the question of the asymptotic shape of
Sn, and indeed it is not clear from simulations whether the asymptotic shape in
two dimensions is a disc or perhaps a polygon (Fig. 2). To our knowledge even the
existence of an asymptotic shape is not known (Fig. 3).
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Fig. 2 Classical abelian
sandpile aggregate of one
million particles in Z

2. Colors
represent the number of grains
at each site

The rest of the paper is organized as follows. In Section 2, we derive the basic
Green’s function estimates that are used in the proofs of Theorems 1.1, 1.3 and 1.4.
In Section 3 we prove Proposition 1.2 and Theorem 1.3 for the divisible sandpile. In

Fig. 3 Known bounds on the
shape of the classical abelian
sandpile in Z

2. The inner
diamond and outer square are
due to Le Borgne and Rossin
[12]; the inner and outer circles
are those in Theorem 1.4
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Section 4 we adapt the methods of the previous section to prove Theorem 1.4 for the
classical abelian sandpile model. Section 5 is devoted to the proof of Theorem 1.1.

2 Basic Estimate

Write (Xk)k≥0 for simple random walk in Z
d, and for d ≥ 3 denote by

g(x) = Eo#{k|Xk = x}
the expected number of visits to x by simple random walk started at the origin. This
is the discrete harmonic Green’s function in Z

d; it satisfies �g(x) = 0 for x �= o, and
�g(o) = −1, where � is the discrete Laplacian

�g(x) = 1

2d

∑

y∼x

g(y) − g(x).

The sum is over the 2d lattice neighbors y of x. In dimension d = 2, simple random
walk is recurrent, so the expectation defining g(x) is infinite. Here we define the
potential kernel

g(x) = lim
n→∞ gn(x) − gn(o) (1)

where

gn(x) = Eo#{k ≤ n|Xk = x}.
The limit defining g(x) in Eq. 1 is finite [9, 20], and g(x) has Laplacian �g(x) = 0
for x �= o, and �g(o) = −1. Note that Eq. 1 is the negative of the usual definition
of the potential kernel; we have chosen this sign convention so that g has the same
Laplacian in dimension two as in higher dimensions.

Fix a real number m > 0 and consider the function on Z
d

γ̃d(x) = |x|2 + mg(x). (2)

Let r be such that m = ωdrd, and let

γd(x) = γ̃d(x) − γ̃d(
r�e1) (3)

where e1 is the first standard basis vector in Z
d. The function γd plays a central role

in our analysis. To see where it comes from, recall the divisible sandpile odometer
function of Proposition 1.2

u(x) = total mass emitted from x.

Let Dm ⊂ Z
d be the domain of fully occupied sites for the divisible sandpile formed

from a pile of mass m at the origin. For x ∈ Dm, since each neighbor y of x emits an
equal amount of mass to each of its 2d neighbors, we have

�u(x) = 1

2d

∑

y∼x

u(y) − u(x)

= mass received by x − mass emitted by x

= 1 − mδox.



Strong spherical asymptotics for rotor-router aggregation. . . 7

Moreover, u = 0 on ∂ Dm. By construction, the function γd obeys the same Laplacian
condition: �γd = 1 − mδo; and as we will see shortly, γd ≈ 0 on ∂ Br. Since we expect
the domain Dm to be close to the ball Br, we should expect that u ≈ γd. In fact, we
will first show that u is close to γd, and then use this to conclude that Dm is close
to Br.

We will use the following estimates for the Green’s function [6, 21]; see also [9,
Theorems 1.5.4 and 1.6.2].

g(x) =
{− 2

π
log |x| + κ + O

(|x|−2
)
, d = 2

ad|x|2−d + O
(|x|−d

)
, d ≥ 3.

(4)

Here ad = 2
(d−2)ωd

, where ωd is the volume of the unit ball in R
d, and κ is a constant

whose value we will not need to know. For x ∈ Z
d we use |x| to denote the Euclidean

norm of x. Here and throughout the paper, constants in error terms denoted O(·)
depend only on d.

We will need an estimate for γd near the boundary of the ball Br. We first consider
dimension d = 2. From Eq. 4 we have

γ̃2(x) = φ(x) − κm + O
(
m|x|−2

)
, (5)

where

φ(x) = |x|2 − 2m
π

log |x|.

In the Taylor expansion of φ about |x| = r

φ(x) = φ(r) − φ′(r)(r − |x|) + 1

2
φ′′(t) (r − |x|)2 (6)

the linear term vanishes, leaving

γ2(x) =
(

1 + m
π t2

)
(r − |x|)2 + O

(
m|x|−2) (7)

for some t between |x| and r.
In dimensions d ≥ 3, from Eq. 4 we have

γ̃d(x) = |x|2 + adm|x|2−d + O
(
m|x|−d) .

Setting φ(x) = |x|2 + adm|x|2−d, the linear term in the Taylor expansion Eq. 6 of φ

about |x| = r again vanishes, yielding

γd(x) = (
1 + (d − 1)(r/t)d) (r − |x|)2 + O

(
m|x|−d)

for t between |x| and r. Together with Eq. 7, this yields the following estimates in all
dimensions d ≥ 2.

Lemma 2.1 Let γd be given by Eq. 3. For all x ∈ Z
d we have

γd(x) ≥ (r − |x|)2 + O
(

rd

|x|d
)

. (8)
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Lemma 2.2 Let γd be given by Eq. 3. Then uniformly in r,

γd(x) = O(1), x ∈ Br+1 − Br−1.

The following lemma is useful for x near the origin, where the error term in Eq. 8
blows up.

Lemma 2.3 Let γd be given by Eq. 3. Then for sufficiently large r, we have

γd(x) >
r2

4
, ∀x ∈ Br/3.

Proof Since γd(x) − |x|2 is superharmonic, it attains its minimum in Br/3 at a point z
on the boundary. Thus for any x ∈ Br/3

γd(x) − |x|2 ≥ γd(z) − |z|2,
hence by Lemma 2.1

γd(x) ≥ (2r/3)2 − (r/3)2 + O(1) >
r2

4
. ��

Lemmas 2.1 and 2.3 together imply the following.

Lemma 2.4 Let γd be given by Eq. 3. There is a constant a depending only on d, such
that γd ≥ −a everywhere.

3 Divisible Sandpile

Let μ0 be a nonnegative function on Z
d with finite support. We start with mass μ0(y)

at each site y. The operation of toppling a vertex x yields the mass distribution

Txμ0 = μ0 + α(x)�δx

where α(x) = max(μ0(x) − 1, 0) and � is the discrete Laplacian on Z
d. Thus if

μ0(x) ≤ 1 then Txμ0 = μ0 and no mass topples; if μ0(x) > 1 then the mass in excess
of 1 is distributed equally among the neighbors of x.

Let x1, x2, . . . ∈ Z
d be a sequence with the property that for any x ∈ Z

d there are
infinitely many terms xk = x. Let

μk(y) = Txk . . . Tx1μ0(y).

be the amount of mass present at y after toppling the sites x1, . . . , xk in succession.
The total mass emitted from y during this process is

uk(y) :=
∑

j≤k:x j=y

μ j−1(y) − μ j(y) =
∑

j≤k:x j=y

α j(y) (9)

where α j(y) = max(μ j(y) − 1, 0).
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Lemma 3.1 As k ↑ ∞ the functions uk and μk tend to limits uk ↑ u and μk → μ.
Moreover, these limits satisfy

μ = μ0 + �u ≤ 1.

Proof Write M = ∑
x μ0(x) for the total starting mass, and let B ⊂ Z

d be a ball
centered at the origin containing all points within L1-distance M of the support of
μ0. Note that if μk(x) > 0 and μ0(x) = 0, then x must have received its mass from
a neighbor, so μk(y) ≥ 1 for some y ∼ x. Since

∑
x μk(x) = M, it follows that μk is

supported on B. Let R be the radius of B, and consider the quadratic weight

Qk =
∑

x∈Zd

μk(x)|x|2 ≤ MR2.

Since μk(xk) − μk−1(xk) = −αk(xk) and for y ∼ xk we have μk(y) − μk−1(y) =
1

2dαk(xk), we obtain

Qk − Qk−1 = αk(xk)

⎛

⎝ 1

2d

∑

y∼xk

|y|2 − |xk|2
⎞

⎠ = αk(xk).

Summing over k we obtain from Eq. 9

Qk = Q0 +
∑

x∈Zd

uk(x).

Fixing x, the sequence uk(x) is thus increasing and bounded above, hence convergent.
Given neighboring vertices x ∼ y, since y emits an equal amount of mass to each

of its 2d neighbors, it emits mass uk(y)/2d to x up to time k. Thus x receives a total
mass of 1

2d

∑
y∼x uk(y) from its neighbors up to time k. Comparing the amount of

mass present at x before and after toppling, we obtain

μk(x) = μ0(x) + �uk(x).

Since uk ↑ u we infer that μk → μ := μ0 + �u. Note that if xk = x, then μk(x) ≤ 1.
Since for each x ∈ Z

d this holds for infinitely many values of k, the limit satisfies
μ ≤ 1. ��

A function s on Z
d is superharmonic if �s ≤ 0. Given a function γ on Z

d the least
superharmonic majorant of γ is the function

s(x) = inf{ f (x) | f is superharmonic and f ≥ γ }.
The study of the least superharmonic majorant is a classical topic in analysis and
PDE; see, for example, [8]. Note that if f is superharmonic and f ≥ γ then

f (x) ≥ 1

2d

∑

y∼x

f (y) ≥ 1

2d

∑

y∼x

s(y).

Taking the infimum on the left side we obtain that s is superharmonic.
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Lemma 3.2 The limit u in Lemma 3.1 is given by u = s + γ , where

γ (x) = |x|2 +
∑

y∈Zd

g(x − y)μ0(y)

and s is the least superharmonic majorant of −γ .

Proof By Lemma 3.1 we have

�u = μ − μ0 ≤ 1 − μ0.

Since �γ = 1 − μ0, the difference u − γ is superharmonic. As u is nonnegative, it fol-
lows that u − γ ≥ s. For the reverse inequality, note that s + γ − u is superharmonic
on the domain D = {x | μ(x) = 1} of fully occupied sites and is nonnegative outside
D, hence nonnegative inside D as well. ��

As a corollary of Lemmas 3.1 and 3.2, we obtain the abelian property of the
divisible sandpile, Proposition 1.2, which was stated in the introduction.

We now turn to the case of a point source mass m started at the origin: μ0 = mδo.
More general starting distributions are treated in [16], where we identify the scaling
limit of the divisible sandpile model and show that it coincides with that of internal
DLA and of the rotor-router model. In the case of a point source of mass m, the
natural question is to identify the shape of the resulting domain Dm of fully occupied
sites, i.e. sites x for which μ(x) = 1. According to Theorem 3.3, Dm is extremely close
to a ball of volume m; in fact, the error in the radius is a constant independent of m.
As before, for r ≥ 0 we write

Br = {
x ∈ Z

d : |x| < r
}

for the lattice ball of radius r centered at the origin.

Theorem 3.3 For m ≥ 0 let Dm ⊂ Z
d be the domain of fully occupied sites for the

divisible sandpile formed from a pile of size m at the origin. There exist constants c, c′
depending only on d, such that

Br−c ⊂ Dm ⊂ Br+c′ ,

where r = (m/ωd)
1/d and ωd is the volume of the unit ball in R

d.

The idea of the proof is to use Lemma 3.2 along with the basic estimates on γ ,
Lemmas 2.1 and 2.2, to obtain estimates on the odometer function

u(x) = total mass emitted from x.

We will need the following simple observation.

Lemma 3.4 For every point x ∈ Dm − {o} there is a path x = x0 ∼ x1 ∼ . . . ∼ xk = o
in Dm with u(xi+1) ≥ u(xi) + 1.
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Proof If xi ∈ Dm − {o}, let xi+1 be a neighbor of xi maximizing u(xi+1). Then xi+1 ∈
Dm and

u(xi+1) ≥ 1

2d

∑

y∼xi

u(y)

= u(xi) + �u(xi)

= u(xi) + 1,

where in the last step we have used the fact that xi ∈ Dm. ��

Proof of Theorem 3.3 We first treat the inner estimate. Let γd be given by Eq. 3. By
Lemma 3.2 the function u − γd is superharmonic, so its minimum in the ball Br is
attained on the boundary. Since u ≥ 0, we have by Lemma 2.2

u(x) − γd(x) ≥ −C, x ∈ ∂ Br

for a constant C depending only on d. Hence by Lemma 2.1,

u(x) ≥ (r − |x|)2 − C′rd/|x|d, x ∈ Br. (10)

for a constant C′ depending only on d. It follows that there is a constant c, depending
only on d, such that u(x) > 0 whenever r/3 ≤ |x| < r − c. Thus Br−c − Br/3 ⊂ Dm.
For x ∈ Br/3, by Lemma 2.3 we have u(x) ≥ r2/4 − C > 0, hence Br/3 ⊂ Dm.

For the outer estimate, note that u − γd is harmonic on Dm. By Lemma 2.4 we
have γd ≥ −a everywhere, where a depends only on d. Since u vanishes on ∂ Dm it
follows that u − γd ≤ a on Dm. Now for any x ∈ Dm with r − 1 < |x| ≤ r, we have by
Lemma 2.2

u(x) ≤ γd(x) + a ≤ c′

for a constant c′ depending only on d. Lemma 3.4 now implies that Dm ⊂ Br+c′+1. ��

4 Classical Sandpile

We consider a generalization of the classical abelian sandpile, proposed by Fey and
Redig [5]. Each site in Z

d begins with a “hole” of depth H. Thus, each site absorbs the
first H grains it receives, and thereafter functions normally, toppling once for each
additional 2d grains it receives. If H is negative, we can interpret this as saying that
every site starts with h = −H grains of sand already present. Aggregation is only
well-defined in the regime h ≤ 2d − 2, since for h = 2d − 1 the addition of a single
grain already causes every site in Z

d to topple infinitely often.
Let Sn,H be the set of sites that are visited if n particles start at the origin in Z

d.
Fey and Redig [5, Theorem 4.7] prove that

lim
H→∞

lim sup
n→∞

H
n

#
(
Sn,H � BH−1/dr

) = 0,

where n = ωdrd, and � denotes symmetric difference. The following theorem
strengthens this result.
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Theorem 4.1 Fix an integer H ≥ 2 − 2d. Let Sn = Sn,H be the set of sites that are
visited by the classical abelian sandpile model in Z

d, starting from n particles at the
origin, if every lattice site begins with a hole of depth H. Write n = ωdrd. Then

Bc1r−c2 ⊂ Sn,H

where

c1 = (2d − 1 + H)−1/d

and c2 is a constant depending only on d. Moreover if H ≥ 1 − d, then for any ε > 0
we have

Sn,H ⊂ Bc′
1r+c′

2

where

c′
1 = (d − ε + H)−1/d

and c′
2 is independent of n but may depend on d, H and ε.

Note that the ratio c1/c′
1 ↑ 1 as H ↑ ∞. Thus, the classical abelian sandpile run

from an initial state in which each lattice site starts with a deep hole yields a shape
very close to a ball. Intuitively, one can think of the classical sandpile with deep
holes as approximating the divisible sandpile, whose limiting shape is a ball by
Theorem 3.3. Following this intuition, we can adapt the proof of Theorem 3.3 to
prove Theorem 4.1; just one additional averaging trick is needed, which we explain
below.

Consider the odometer function for the abelian sandpile

u(x) = total number of grains emitted from x.

Let Tn = {x|u(x) > 0} be the set of sites which topple at least once. Then

Tn ⊂ Sn ⊂ Tn ∪ ∂Tn.

In the final state, each site which has toppled retains between 0 and 2d − 1 grains, in
addition to the H that it absorbed. Hence

H ≤ �u(x) + nδox ≤ 2d − 1 + H, x ∈ Tn. (11)

We can improve the lower bound by averaging over a small box. For x ∈ Z
d let

Qk(x) = {
y ∈ Z

d : ||x − y||∞ ≤ k
}

be the box of side length 2k + 1 centered at x, and let

u(k)(x) = (2k + 1)−d
∑

y∈Qk(x)

u(y).

Write

T(k)
n = {x | Qk(x) ⊂ Tn}.

Le Borgne and Rossin [12] observe that if T is a set of sites all of which topple, the
number of grains remaining in T is at least the number of edges internal to T: indeed,
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for each internal edge, the endpoint that topples last sends the other a grain which
never moves again. Since the box Qk(x) has 2dk(2k + 1)d−1 internal edges, we have

�u(k)(x) ≥ 2k
2k + 1

d + H − n
(2k + 1)d

1Qk(o)(x), x ∈ T(k)
n . (12)

The following lemma is analogous to Lemma 3.4.

Lemma 4.2 For every point x ∈ Tn adjacent to ∂Tn there is a path x = x0 ∼ x1 ∼ . . . ∼
xm = o in Tn with u(xi+1) ≥ u(xi) + 1.

Proof By Eq. 11 we have

1

2d

∑

y∼xi

u(y) ≥ u(xi).

Since u(xi−1)<u(xi), some term u(y) in the sum above must exceed u(xi). Let xi+1 = y.
��

Proof of Theorem 4.1 Let

ξ̃d(x) = (2d − 1 + H)|x|2 + ng(x),

and let

ξd(x) = ξ̃d(x) − ξ̃d(
c1r�e1).

Taking m = n/(2d − 1 + H) in Lemma 2.2, we have

u(x) − ξd(x) ≥ −ξd(x) ≥ −C(2d − 1 + H), x ∈ ∂ Bc1r (13)

for a constant C depending only on d. By Eq. 11, u − ξd is superharmonic, so u − ξd ≥
−C(2d − 1 + H) in all of Bc1r. Hence by Lemma 2.1 we have for x ∈ Bc1r

u(x) ≥ (2d − 1 + H)
(
(c1r − |x|)2 − C′(c1r)d/|x|d) , (14)

where C′ depends only on d. It follows that u is positive on Bc1r−c2 − Bc1r/3 for a
suitable constant c2 depending only on d. For x ∈ Bc1r/3, by Lemma 2.3 we have
u(x) > (2d − 1 + H)(c2

1r2/4 − C) > 0. Thus Bc1r−c2 ⊂ Tn ⊂ Sn.
For the outer estimate, let

ψ̂d(x) = (d − ε + H)|x|2 + ng(x).

Choose k large enough so that 2k
2k+1 d ≥ d − ε, and define

ψ̃d(x) = (2k + 1)−d
∑

y∈Qk(x)

ψ̂d(y).

Finally, let

ψd(x) = ψ̃d(x) − ψ̃d
(
c′

1r�e1
)
.

By Eq. 12, u(k)−ψd is subharmonic on T(k)
n . Taking m=n/(d−ε+H) in Lemma 2.4,

there is a constant a depending only on d, such that ψd ≥ −a(d + H) everywhere.
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Since u(k) ≤ (2d + H)(d+1)k on ∂T(k)
n it follows that u(k) − ψd ≤ a(d + H) + (2d +

H)(d+1)k on T(k)
n . Now for any x ∈ Sn with c′

1r − 1 < |x| ≤ c′
1r we have by Lemma 2.2

u(k)(x) ≤ ψd(x) + a(d + H) + (2d + H)(d+1)k ≤ c̃2

for a constant c̃2 depending only on d, H and ε. Then u(x) ≤ c′
2 := (2k + 1)dc̃2.

Lemma 4.2 now implies that Tn ⊂ Bc′
1r+c′

2
, and hence

Sn ⊂ Tn ∪ ∂Tn ⊂ Bc′
1r+c′

2+1. ��

We remark that the crude bound of (2d + H)(d+1)k used in the proof of the outer
estimate can be improved to a bound of order k2 H, and the final factor of (2k + 1)d

can be replaced by a constant factor independent of k and H, using the fact that
a nonnegative function on Z

d with bounded Laplacian cannot grow faster than
quadratically; see [16, sec. 2].

5 Rotor-Router Model

Given a function f on Z
d, for a directed edge (x, y) write

∇ f (x, y) = f (y) − f (x).

Given a function s on directed edges in Z
d, write

div s(x) = 1

2d

∑

y∼x

s(x, y).

The discrete Laplacian of f is then given by

� f (x) = div ∇ f = 1

2d

∑

y∼x

f (y) − f (x).

5.1 Inner Estimate

Fixing n ≥ 1, consider the odometer function for rotor-router aggregation

u(x) = total number exits from x by the first n particles.

We learned the idea of using the odometer function to study the rotor-router shape
from Matt Cook [2].

Lemma 5.1 For a directed edge (x, y) in Z
d, denote by κ(x, y) the net number of

crossings from x to y performed by the first n particles in rotor-router aggregation.
Then

∇u(x, y) = −2dκ(x, y) + R(x, y) (15)

for some edge function R which satisfies

|R(x, y)| ≤ 4d − 2

for all edges (x, y).
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Remark In the more general setting of rotor stacks of bounded discrepancy, the
4d − 2 will be replaced by a different constant here.

Proof Writing N(x, y) for the number of particles routed from x to y, we have

u(x) − 2d + 1

2d
≤ N(x, y) ≤ u(x) + 2d − 1

2d

hence

|∇u(x, y) + 2dκ(x, y)| = |u(y) − u(x) + 2dN(x, y) − 2dN(y, x)|
≤ 4d − 2. ��

In what follows, C0, C1, . . . denote constants depending only on d.

Lemma 5.2 Let � ⊂ Z
d − {o} with 2 ≤ #� < ∞. Then

∑

y∈�

|y|1−d ≤ C0 Diam(�).

Proof For each positive integer k, let

Sk = {
y ∈ Z

d : k ≤ |y| < k + 1
}
.

Then
∑

y∈Sk

|y|1−d ≤ k1−d#Sk ≤ C′
0

for a constant C′
0 depending only on d. Since � can intersect at most Diam(�) + 1 ≤

2 Diam(�) distinct sets Sk, taking C0 = 2C′
0 the proof is complete. ��

Lemma 5.3 Let G = GBr be the Green’s function for simple random walk in Z
d

stopped on exiting Br. For any ρ ≥ 1 and x ∈ Br,

∑

y∈Br|x−y|≤ρ

∑

z∼y

|G(x, y) − G(x, z)| ≤ C1ρ. (16)

Proof Let (Xt)t≥0 denote simple random walk in Z
d, and let T be the first exit time

from Br. For fixed y, the function

A(x) = g(x − y) − Exg(XT − y) (17)

has Laplacian �A(x) = −δxy in Br and vanishes on ∂ Br, hence A(x) = G(x, y).
Let x, y ∈ Br and z ∼ y. From Eq. 4 we have

|g(x − y) − g(x − z)| ≤ C2

|x − y|d−1
, y, z �= x.
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Using the triangle inequality together with Eq. 17, we obtain

|G(x, y) − G(x, z)| ≤ |g(x − y) − g(x − z)| + Ex|g(XT − y) − g(XT − z)|

≤ C2

|x − y|d−1
+

∑

w∈∂ Br

Hx(w)
C2

|w − y|d−1
,

where Hx(w) = Px(XT = w).
Write D = {y ∈ Br : |x − y| ≤}. Then

∑

y∈D
y�=x

∑

z∼y
z�=x

|G(x, y) − G(x, z)| ≤ C3ρ + C2

∑

w∈∂ Br

Hx(w)
∑

y∈D

|w − y|1−d. (18)

Taking � = w − D in Lemma 5.2, the inner sum on the right is at most C0Diam(D) ≤
2C0ρ, so the right side of Eq. 18 is bounded above by C1ρ for a suitable C1.

Finally, the terms in which y or z coincides with x make a negligible contribution
to the sum in Eq. 16, since for y ∼ x ∈ Z

d

|G(x, x) − G(x, y)| ≤ |g(o) − g(x − y)| + Ex|g(XT − x) − g(XT − y)| ≤ C4. ��

Lemma 5.4 Let H1, H2 be linear half-spaces in Z
d, not necessarily parallel to the

coordinate axes. Let Ti be the first hitting time of Hi. If x /∈ H1 ∪ H2, then

Px(T1 > T2) ≤ 5

2

h1 + 1

h2

(
1 + 1

2h2

)2

where hi is the distance from x to Hi.

Proof If one of H1, H2 contains the other, the result is vacuous. Otherwise, let H̃i

be the half-space shifted parallel to Hc
i by distance 2h2 in the direction of x (Fig. 4),

and let T̃i be the first hitting time of Hi ∪ H̃i. Let (Xt)t≥0 denote simple random walk
in Z

d, and write Mt for the (signed) distance from Xt to the hyperplane defining the

Fig. 4 Diagram for the Proof
of Lemma 5.4 H

H H

H

h
h

1

1

2

2

1

2
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boundary of H1, with M0 = h1. Then Mt is a martingale with bounded increments.
Since ExT̃1 < ∞, we obtain from optional stopping

h1 = Ex MT̃1
≥ 2h2 Px

(
XT̃1

∈ H̃1
) − Px

(
XT̃1

∈ H1
)
,

hence

Px
(
XT̃1

∈ H̃1
) ≤ h1 + 1

2h2
. (19)

Likewise, dM2
t − t is a martingale with bounded increments, giving

Ex T̃1 ≤ d Ex M2
T̃1

≤ d(2h2 + 1)2
Px

(
XT̃1

∈ H̃1
)

≤ d(h1 + 1)(2h2 + 1)

(
1 + 1

2h2

)
. (20)

Let T = min(T̃1, T̃2). Denoting by Dt the distance from Xt to the hyperplane
defining the boundary of H2, the quantity

Nt = d
2

(
D2

t + (2h2 − Dt)
2
) − t

is a martingale. Writing p = Px(T = T̃2) we have

dh2
2 = EN0 = ENT ≥ p

d
2
(2h2)

2 + (1 − p)dh2
2 − ExT

≥ (1 + p)dh2
2 − ExT

hence by Eq. 20

p ≤ ExT

dh2
2

≤ 2
h1 + 1

h2

(
1 + 1

2h2

)2

.

Finally by Eq. 19

P(T1 > T2) ≤ p + P
(
XT̃1

∈ H̃1
) ≤ 5

2

h1 + 1

h2

(
1 + 1

2h2

)2

. ��

Lemma 5.5 Let x ∈ Br and let ρ = r + 1 − |x|. Let

S∗
k = {

y ∈ Br : 2kρ < |x − y| ≤ 2k+1ρ
}
. (21)

Let τk be the first hitting time of S∗
k , and T the first exit time from Br. Then

Px(τk < T) ≤ C22−k.

Proof Let H be the outer half-space tangent to Br at the point z ∈ ∂ Br closest to x.
Let Q be the cube of side length 2kρ/

√
d centered at x (Fig. 5). Then Q is disjoint

from S∗
k , hence

Px(τk < T) ≤ Px(T∂ Q < T) ≤ Px(T∂ Q < TH)
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Fig. 5 Diagram for the proof
of Lemma 5.5

2

H
B

o

where T∂ Q and TH are the first hitting times of ∂ Q and H. Let H1, . . . , H2d be the
outer half-spaces defining the faces of Q, so that Q = Hc

1 ∩ . . . ∩ Hc
2d. By Lemma 5.4

we have

Px(T∂ Q < TH) ≤
2d∑

i=1

Px(THi < TH)

≤ 5

2

2d∑

i=1

dist(x, H) + 1

dist(x, Hi)

(
1 + 1

2 dist(x, Hi)

)2

.

Since dist(x, H) = |x − z| ≤ ρ and dist(x, Hi) = 2k−1ρ/
√

d, and ρ ≥ 1, taking C2 =
20 d3/2(1 + √

d)2 completes the proof. ��

Lemma 5.6 Let G = GBr be the Green’s function for random walk stopped on exiting
Br. Let x ∈ Br and let ρ = r + 1 − |x|. Then

∑

y∈Br

∑

z∼y

|G(x, y) − G(x, z)| ≤ C3ρ log
r
ρ

.

Proof Let S∗
k be given by Eq. 21, and let

W = {
w ∈ ∂

(
S∗

k ∪ ∂S∗
k

) : |w − x| < 2kρ
}

be the portion of the boundary of the enlarged spherical shell S∗
k ∪ ∂S∗

k lying closer to
x. Let τW be the first hitting time of W, and T the first exit time from Br. For w ∈ W
let

Hx(w) = Px(XτW∧T = w).
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For any y ∈ S∗
k and z ∼ y, simple random walk started at x must hit W before hitting

either y or z, hence

|G(x, y) − G(x, z)| ≤
∑

w∈W

Hx(w)|G(w, y) − G(w, z)|.

For any y ∈ S∗
k and any w ∈ W we have

|y − w| ≤ |y − x| + |w − x| ≤ 3 · 2kρ.

Lemma 5.3 yields
∑

y∈S∗
k

∑

z∼y

|G(x, y) − G(x, z)| ≤ 3C12kρ
∑

w∈W

Hx(w).

By Lemma 5.5 we have
∑

w∈W Hx(w) ≤ C22−k, so the above sum is at most 3C1C2ρ.
Since the union of shells S∗

0 ,S∗
1 , . . . ,S∗

�log2(r/ρ)� covers all of Br except for those points

y within distance ρ of x, and
∑

|y−x|≤ρ

∑
z∼y |G(x, y) − G(x, z)| ≤ C1ρ by Lemma 5.3,

the result follows. ��

Proof of Theorem 1.1, Inner Estimate Let κ and R be defined as in Lemma 5.1. Since
the net number of particles to enter a site x �= o is at most one, we have 2d div κ(x) ≥
−1. Likewise 2d div κ(o) = n − 1. Taking the divergence in Eq. 15, we obtain

�u(x) ≤ 1 + div R(x), x �= o; (22)

�u(o) = 1 − n + div R(o). (23)

Let T be the first exit time from Br, and define

f (x) = Exu(XT) − ExT + n Ex #{ j < T|X j = 0}.
Then � f (x) = 1 for x ∈ Br − {o} and � f (o) = 1 − n. Moreover f ≥ 0 on ∂ Br. It
follows from Lemma 2.2 with m=n that f ≥γ −C4 on Br for a suitable constant C4.

We have

u(x) − Exu(XT) =
∑

k≥0

Ex

(
u(Xk∧T) − u(X(k+1)∧T)

)
.

Each summand on the right side is zero on the event {T ≤ k}, hence

Ex

(
u(Xk∧T) − u(X(k+1)∧T) | Fk∧T

)
= −�u(Xk)1{T>k}.

Taking expectations and using Eqs. 22 and 23, we obtain

u(x) − Exu(XT) ≥
∑

k≥0

Ex
[
1{T>k}

(
n1{Xk=o} − 1 − div R(Xk)

)]

= n Ex #{k < T|Xk = o} − ExT −
∑

k≥0

Ex
[
1{T>k}div R(Xk)

]
,

hence

u(x) − f (x) ≥ − 1

2d

∑

k≥0

Ex

⎡

⎣1{T>k}
∑

z∼Xk

R(Xk, z)

⎤

⎦ . (24)
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Since random walk exits Br with probability at least 1
2d every time it reaches a site

adjacent to the boundary ∂ Br, the expected time spent adjacent to the boundary
before time T is at most 2d. Since |R| ≤ 4d, the terms in Eq. 24 with z ∈ ∂ Br

contribute at most 16d3 to the sum. Thus

u(x) − f (x) ≥ − 1

2d

∑

k≥0

Ex

⎡

⎢
⎣

∑

y,z∈Br
y∼z

1{T>k}∩{Xk=y} R(y, z)

⎤

⎥
⎦ − 8d2.

For y ∈ Br we have {Xk = y} ∩ {T > k} = {Xk∧T = y}, hence

u(x) − f (x) ≥ − 1

2d

∑

k≥0

∑

y,z∈Br
y∼z

Px(Xk∧T = y)R(y, z) − 8d2. (25)

Write pk(y) = Px(Xk∧T = y). Note that since ∇u and κ are antisymmetric, R is
antisymmetric. Thus

∑

y,z∈Br
y∼z

pk(y)R(y, z) = −
∑

y,z∈Br
y∼z

pk(z)R(y, z)

=
∑

y,z∈Br
y∼z

pk(y) − pk(z)

2
R(y, z).

Summing over k and using the fact that |R| ≤ 4d, we conclude from Eq. 25 that

u(x) ≥ f (x) −
∑

y,z∈Br
y∼z

|G(x, y) − G(x, z)| − 8d2,

where G = GBr is the Green’s function for simple random walk stopped on exiting
Br. By Lemma 5.6 we obtain

u(x) ≥ f (x) − C3(r + 1 − |x|) log
r

r + 1 − |x| − 8d2.

Using the fact that f ≥ γ − C4, we obtain from Lemma 2.1

u(x) ≥ (r − |x|)2 − C3(r + 1 − |x|) log
r

r + 1 − |x| + O
(

rd

|x|d
)

.

The right side is positive provided r/3≤|x|<r−C5 log r. For x ∈ Br/3, by Lemma 2.3
we have u(x) > r2/4 − C3r log 3

2 > 0, hence Br−C5 log r ⊂ An. ��

5.2 Outer Estimate

The following result is due to Holroyd and Propp (unpublished); we include a proof
for the sake of completeness. Notice that the bound in Eq. 26 does not depend on
the number of particles.

Proposition 5.7 Let � be a finite connected graph, and let Y ⊂ Z be subsets of the
vertex set of �. Let s be a nonnegative integer-valued function on the vertices of �. Let
Hw(s, Y) be the expected number of particles stopping in Y if s(x) particles start at each
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vertex x and perform independent simple random walks stopped on first hitting Z . Let
Hr(s, Y) be the number of particles stopping in Y if s(x) particles start at each vertex x
and perform rotor-router walks stopped on first hitting Z . Let H(x) = Hw(1x, Y).
Then

|Hr(s, Y) − Hw(s, Y)| ≤
∑

u/∈Z

∑

v∼u

|H(u) − H(v)| (26)

independent of s and the initial positions of the rotors.

Proof For each vertex u /∈ Z , arbitrarily choose a neighbor η(u). Order the neigh-
bors η(u) = v1, v2, . . . , vd of u so that the rotor at u points to vi+1 immediately
after pointing to vi (indices mod d). We assign weight w(u, η(u)) = 0 to a rotor
pointing from u to η(u), and weight w(u, vi) = H(u) − H(vi) + w(u, vi−1) to a rotor
pointing from u to vi. These assignments are consistent since H is a harmonic
function:

∑
i(H(u) − H(vi)) = 0. We also assign weight H(u) to a particle located

at u. The sum of rotor and particle weights in any configuration is invariant under
the operation of routing a particle and rotating the corresponding rotor. Initially, the
sum of all particle weights is Hw(s, Y). After all particles have stopped, the sum of
the particle weights is Hr(s, Y). Their difference is thus at most the change in rotor
weights, which is bounded above by the sum in Eq. 26. ��

For ρ ∈ Z let

Sρ = {x ∈ Z
d : ρ ≤ |x| < ρ + 1}. (27)

Then

Bρ = {x ∈ Z
d : |x| < ρ} = S0 ∪ . . . ∪ Sρ−1.

Note that for simple random walk started in Bρ , the first exit time of Bρ and first
hitting time of Sρ coincide. Our next result is a modification of Lemma 5(b) of [10].

Lemma 5.8 Fix ρ ≥ 1 and y ∈ Sρ . For x ∈ Bρ let H(x) = Px(XT = y), where T is the
first hitting time of Sρ . Then

H(x) ≤ J
|x − y|d−1

(28)

for a constant J depending only on d.

Proof We induct on the distance |x − y|, assuming the result holds for all x′ with |x′ −
y| ≤ 1

2 |x − y|; the base case can be made trivial by choosing J sufficiently large. By
Lemma 5(b) of [10], we can choose J large enough so that the result holds provided
|y| − |x| ≥ 2−d−3|x − y|. Otherwise, let H1 be the outer half-space tangent to Sρ at
the point of Sρ closest to x, and let H2 be the inner half-space tangent to the ball S̃ of
radius 1

2 |x − y| about y, at the point of S̃ closest to x (Fig. 6). By Lemma 5.4 applied
to these half-spaces, the probability that random walk started at x reaches S̃ before
hitting Sρ is at most 21−d. Writing T̃ for the first hitting time of S̃ ∪ Sρ , we have

H(x) ≤
∑

x′∈S̃

Px
(
XT̃ = x′) H

(
x′) ≤ 21−d J ·

( |x − y|
2

)1−d

where we have used the inductive hypothesis to bound H(x′). ��
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Fig. 6 Diagram for the proof
of Lemma 5.8

H

H1

2

The lazy random walk in Z
d stays in place with probability 1

2 , and moves to each
of the 2d neighbors with probability 1

4d . We will need the following standard result,
which can be derived e.g. from the estimates in [17], section II.12; we include a proof
for the sake of completeness.

Lemma 5.9 Given u ∼ v ∈ Z
d, lazy random walks started at u and v can be coupled

with probability 1 − C/R before either reaches distance R from u, where C depends
only on d.

Proof Let i be the coordinate such that ui �= vi. To define a step of the coupling,
choose one of the d coordinates uniformly at random. If the chosen coordinate is
different from i, let the two walks take the same lazy step so that they still agree in
this coordinate. If the chosen coordinate is i, let one walk take a step while the other
stays in place. With probability 1

2 the walks will then be coupled. Otherwise, they
are located at points u′, v′ with |u′ − v′| = 2. Moreover, P

(|u − u′| ≥ R
2
√

d

)
< C′

R for a

constant C′ depending only on d. From now on, whenever coordinate i is chosen, let
the two walks take lazy steps in opposite directions.

Let

H1 =
{

x
∣∣∣ xi = u′

i + v′
i

2

}

be the hyperplane bisecting the segment [u′, v′]. Since the steps of one walk are
reflections in H1 of the steps of the other, the walks couple when they hit H1. Let
Q be the cube of side length R/

√
d + 2 centered at u, and let H2 be a hyperplane
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defining one of the faces of Q. By Lemma 5.4 with h1 = 1 and h2 = R/4
√

d, the
probability that one of the walks exits Q before the walks couple is at most

2d · 5
2

h1+1
h2

(
1 + 1

2h2

)2 ≤ 40 d3/2
(
1 + 2

√
d
)2

/R. ��

Lemma 5.10 With H defined as in Lemma 5.8, we have
∑

u∈Bρ

∑

v∼u

|H(u) − H(v)| ≤ J′ log ρ

for a constant J′ depending only on d.

Proof Given u ∈ Bρ and v ∼ u, by Lemma 5.9, lazy random walks started at u and
v can be coupled with probability 1 − 2C/|u − y| before either reaches distance |u −
y|/2 from u. If the walks reach this distance without coupling, by Lemma 5.8 each
has still has probability at most J/|u − y|d−1 of exiting Bρ at y. By the strong Markov
property it follows that

|H(u) − H(v)| ≤ 2CJ
|u − y|d .

Summing in spherical shells about y, we obtain

∑

u∈Bρ

∑

v∼u

|H(u) − H(v)| ≤
ρ∑

t=1

dωdtd−1 2CJ
td

≤ J′ log ρ. ��

We remark that Lemma 5.10 could also be inferred from Lemma 5.8 using [9,
Thm. 1.7.1] in a ball of radius |u − y|/2 about u.

To prove the outer estimate of Theorem 1.1, we will make use of the abelian
property of rotor-router aggregation. Fix a finite set � ⊂ Z

d containing the origin.
Starting with n particles at the origin, at each time step, choose a site x ∈ � with
more than one particle, rotate the rotor at x, and move one particle from x to the
neighbor the rotor points to. After a finite number of such choices, each site in �

will have at most one particle, and all particles that exited � will be on the boundary
∂�. The abelian property says that the final configuration of particles and the final
configuration of rotors do not depend on the choices. For a proof, see [4, Prop. 4.1].

In our application, we will fix ρ ≥ r and stop each particle in rotor-router aggre-
gation either when it reaches an unoccupied site or when it reaches the spherical
shell Sρ . Let Nρ be the number of particles that reach Sρ during this process. Note
that at some sites in Sρ , more than one particle may have stopped. If we let each of
these extra particles in turn continue performing rotor-router walk, stopping either
when it reaches an unoccupied site or when it hits the larger shell Sρ+h, then by the
abelian property, the number of particles that reach Sρ+h will be Nρ+h. We will show
that when h is order r1−1/d, a constant fraction of the particles that reach Sρ find
unoccupied sites before reaching Sρ+h.

Proof of Theorem 1.1, Outer Estimate Fix integers ρ ≥ r and h ≥ 1. In the setting of
Proposition 5.7, let � be the lattice ball Bρ+h+1, and let Z = Sρ+h. Fix y ∈ Sρ+h and
let Y = {y}. For x ∈ Sρ , let s(x) be the number of particles stopped at x if each particle
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in rotor-router aggregation is stopped either when it reaches an unoccupied site or
when it reaches Sρ . Write

H(x) = Px(XT = y)

where T is the first hitting time of Sρ+h. By Lemma 5.8 we have

Hw(s, y) =
∑

x∈Sρ

s(x)H(x) ≤ JNρ

hd−1
(29)

where

Nρ =
∑

x∈Sρ

s(x)

is the number of particles that ever visit the shell Sρ .
By Lemma 5.10 the sum in Eq. 26 is at most J′ log h, hence from Proposition 5.7

and Eq. 29 we have

Hr(s, y) ≤ JNρ

hd−1
+ J′ log h. (30)

Let ρ(0) = r, and define ρ(i) inductively by

ρ(i + 1) = min
{
ρ(i) + N2/(2d−1)

ρ(i) , min{ρ > ρ(i)|Nρ ≤ Nρ(i)/2}
}

. (31)

Fixing h < ρ(i + 1) − ρ(i), we have

hd−1 log h ≤ N
2d−2
2d−1

ρ(i) log Nρ(i) ≤ Nρ(i);
so Eq. 30 with ρ = ρ(i) simplifies to

Hr(s, y) ≤ CNρ(i)

hd−1
(32)

where C = J + J′.
Since all particles that visit Sρ(i)+h during rotor-router aggregation must pass

through Sρ(i), we have by the abelian property

Nρ(i)+h ≤
∑

y∈Sρ(i)+h

Hr(s, y). (33)

Let Mk = #(An ∩ Sk). There are at most Mρ(i)+h nonzero terms in the sum on the
right side of Eq. 33, and each term is bounded above by Eq. 32, hence

Mρ(i)+h ≥ Nρ(i)+h
hd−1

CNρ(i)
≥ hd−1

2C

where the second inequality follows from Nρ(i)+h ≥ Nρ(i)/2. Summing over h, we
obtain

ρ(i+1)−1∑

ρ=ρ(i)+1

Mρ ≥ 1

2dC
(ρ(i + 1) − ρ(i) − 1)d. (34)
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The left side is at most Nρ(i), hence

ρ(i + 1) − ρ(i) ≤ (
2dCNρ(i)

)1/d ≤ N2/(2d−1)

ρ(i)

provided Nρ(i) ≥ C′ := (2dC)2d−1. Thus the minimum in Eq. 31 is not attained by its
first argument. It follows that Nρ(i+1) ≤ Nρ(i)/2, hence Nρ(a log r) < C′ for a sufficiently
large constant a.

By the inner estimate, since the ball Br−c log r is entirely occupied, we have
∑

ρ≥r

Mρ ≤ ωdrd − ωd(r − c log r)d

≤ cdωdrd−1 log r.

Write xi = ρ(i + 1) − ρ(i) − 1; by Eq. 34 we have

a log r∑

i=0

xd
i ≤ cdωdrd−1 log r,

By Jensen’s inequality, subject to this constraint,
∑

xi is maximized when all xi are
equal, in which case xi ≤ C′′r1−1/d and

ρ(a log r) = r +
∑

xi ≤ r + C′′r1−1/d log r. (35)

Since Nρ(a log r) < C′ we have Nρ(a log r)+C′ = 0; that is, no particles reach the shell
Sρ(a log r)+C′ . Taking c′ = C′ + C′′, we obtain from Eq. 35

An ⊂ Br(1+c′r−1/d log r). ��

Fig. 7 Image of the rotor-
router aggregate of one million
particles under the map
z �→ 1/z2. The colors
represent the rotor directions.
The white disc in the center is
the image of the complement
of the occupied region
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6 Concluding Remarks

A number of intriguing questions remain unanswered. Although we have shown that
the asymptotic shape of the rotor-router model is a ball, the near perfect circularity
found in Fig. 1 remains a mystery. In particular, we do not know whether an analogue
of Theorem 1.3 holds for the rotor-router model, with constant error in the radius as
the number of particles grows.

Equally mysterious are the patterns in the rotor directions evident in Fig. 1. The
rotor directions can be viewed as values of the odometer function mod 2d, but our
control of the odometer is not fine enough to provide useful information about
the patterns. If the rescaled occupied region

√
π/n An is viewed as a subset of the

complex plane, it appears that the monochromatic regions visible in Fig. 1, in which
all rotors point in the same direction, occur near points of the form (1 + 2z)−1/2,
where z = a + bi is a Gaussian integer (i.e. a, b ∈ Z). We do not even have a heuristic
explanation for this phenomenon. Figure 7 shows the image of A1,000,000 under the
map z �→ 1/z2; the monochromatic patches in the transformed region occur at lattice
points.

László Lovász (personal communication) has asked whether the occupied region
An is simply connected, i.e. whether its complement is connected. While Theorem 1.1
shows that An cannot have any holes far from the boundary, we cannot answer his
question at present.

A final question is whether our methods could be adapted to internal DLA to
show that if n = ωdrd, then with high probability Br−c log r ⊂ In, where In is the
internal DLA cluster of n particles. The current best bound is due to Lawler [11],
who proves that with high probability Br−r1/3(log r)2 ⊂ In.
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