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STRONG STABILITY IN A G/M/1 QUEUEING SYSTEM

UDC 519.21

MUSTAPHA BENAOUICHA AND DJAMIL AISSANI

Abstract. In this paper, we study the strong stability of the stationary distribution
of the imbedded Markov chain in the G/M/1 queueing system, after perturbation of
the service law (see Aissani, 1990, and Kartashov, 1981). We show that under some
hypotheses, the characteristics of the G/G/1 queueing system can be approximated
by the corresponding characteristics of the G/M/1 system. After clarifying the ap-
proximation conditions, we obtain the stability inequalities by exactly computing the
constants.

Introduction

Many queueing models have been analyzed since the publishing of the pioneering works
by A. K. Erlang. One would be fortunate to have a closed form analytical expression
for a desired parameter, but even in such an exceptionally favorable case, evaluation of
the expression may be very difficult. For example, the well-known simple and elegant
Pollaczek–Khintchine formula requires a numerical inversion of the Laplace transform
to compute the waiting time distribution. In addition, in most cases, even the Laplace
transform or generating function are not available in closed form (that is the case, for
example, in the G/G/1 queueing systems). For this reason, there exists, when a practical
study is performed in queueing theory, a common technique for substituting the real but
complicated elements governing a queueing system by simpler ones in some sense close
to the real elements. The queueing model so constructed represents an idealization of
the real queueing one, and hence the “stability” problem arises. The stability problem in
queueing theory is concerned with the “domain” within which the ideal queueing model
may be taken as a good approximation of the real queueing system under consideration.

Elaborated upon at the start of the eighties [2, 5], the strong stability method (also
called the “method of operators”) can be used to investigate the ergodicity and stability of
the stationary and non-stationary characteristics of the imbedded Markov chains, [1, 6].
In contrast to other methods, they suppose that the perturbations of the transition kernel
are small with respect to some norms in the operator space. This stringent condition
gives better stability estimates and enables us to find precise asymptotic expansions of
the characteristics of the “perturbed” system.

The applicability of this method for studying the stability of queueing systems has
been known since 1982 [3]. Nevertheless, this applicability is not obvious, particularly
for complex queueing systems. The difficulties reside in the identification of the per-
turbed parameter, writing the transition kernel and especially in the choice of weight
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norms. Otherwise, the complexity of some systems forces us to perform some intermedi-
ate searches, which have a particular interest (see §3).

In this paper, we study the strong stability of the stationary distribution of the imbed-
ded Markov chain in the G/M/1 queueing system, after perturbation of the service law.
We show that under some hypotheses, the characteristics of the G/G/1 queueing system
can be approximated by the corresponding characteristics of the G/M/1 system. Note
that, unlike [3] where the perturbation concerns the arrival flux, we perturb here the
service duration. After clarifying the approximation conditions, we obtain the stability
inequalities with exact computation of the constants.

1. Preliminaries and notation

Consider a G/G/1 queueing system with a general service times distribution G and a
general inter-arrival times probability distribution F . The following notation is used: θn

(the arrival time of the nth demand), ωn (the departure time of the nth customer), γn

(the time interval from θn to the departure of the next customer) and Vn = V (θn − 0)
(the number of customers found in the system immediately prior to θn).

Denote by νθn
= min{m > 0, ωm ≥ θn}. Then, γn = ωνθn

− θn. Define recursively the
following sequence:

(1)

{
T0 = ωνθn

− (θn + γn) = 0,

Tk = Tk−1 + ξνθn+k, for all k > 0.

The sequence {Tk}k∈N describes the departure process after θn.
Let’s also consider a G/M/1 system with exponentially distributed service times with

parameter µ and with the same distribution of the arrival flux than the G/G/1 one. We
introduce the following corresponding notation: θ̄n, ω̄n, γ̄n, and V̄n = V̄ (θ̄n − 0) defined
as above. We also define the process {T̄n}n∈N as the sequence {Tn}.

In the sequel, when no domain of integration is indicated, an integral is extended
over R+.

Consider the σ-algebra E that represents the product E1 ⊗ E2 (E1 is the σ-algebra
generated by the countable partition of N, and E2 is the Borel σ-algebra of R+).

We introduce in the space mE of finite measures on E the special family of norms

(2) ‖m‖v =
∑
j≥0

∫
v(j, y)|mj |(dy) for all m ∈ mE ,

where v is a measurable function on N × R+, bounded below away from zero (not
necessarily finite).

This norm induces a corresponding norm in the space fE of bounded measurable
functions on N × R+, namely,

(3) ‖f‖v = sup
k≥0

sup
x≥0

[v(k, x)]−1|f(k, x)| for all f ∈ fE

as well as a norm in the space of linear operators, namely,

(4) ‖P‖v = sup
k≥0

sup
x≥0

[v(k, x)]−1
∑
j≥0

∫
v(j, y)|Pkj(x, dy)|.

We associate to each transition kernel P the linear mapping P : fE → fE acting on
f ∈ fE as follows:

(5) (Pf)(k, x) =
∑
j≥0

∫
Pkj(x, dy)f(j, y).
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For m ∈ mE and f ∈ fE the symbol mf denotes the integral

(6) mf =
∑
j≥0

∫
mj(dx)f(j, x)

and f ◦ m denotes the transition kernel having the form

(7) (f ◦ m)ij(x, A) = f(i, x)mj(A).

Fundamental results. We shall use in the sequel (§2 and §4), the following results
(see [2] and [5]).

Theorem 1.1. The Markov chain X having a transition kernel P , such that

‖P‖v < +∞,

is strongly v-stable if the following conditions are satisfied.
a) There exist a nonnegative measure α ∈ mE (‖α‖v < +∞) and a nonnegative

measurable function h ∈ fE such that πh > 0, α� = 1, αh > 0.
b) The kernel T = P − h ◦ α is nonnegative.
c) There exists ρ < 1 such that Tv(k, x) ≤ ρv(k, x) for all (k, x) ∈ N × R+.

Here � ∈ fE is the function identically equal to 1.

Theorem 1.2 ([5]). Let X be a Markov chain having a transition kernel P and an
invariant probability measure π. Suppose that X is strongly stable and that the conditions
of Theorem 1.1 hold. Then, for a stochastic kernel Q with an invariant measure ν such
that ‖Q − P‖v is sufficiently small, the following equality is true:

ν = π[I − ∆R0(I − Π)]−1 = π +
∑
i≥1

π[∆R0(I − Π)]i,

where ∆ = Q−P , R0 = (I −T )−1, Π = π ◦� and I is the identity operator on mE . The
operator T and the function � are defined above.

Corollary 1.1. Given the conditions of Theorem 1.2 and for ‖∆‖v < C−1(1 − ρ), we
have the following estimation:

(8) ‖ν − π‖v ≤ ‖∆‖v‖π‖vC(1 − ρ − C‖∆‖v)−1,

where C = 1 + ‖�‖v‖π‖v.

2. Strong stability in the G/M/1 queueing system

We first write the transition kernels of the considered Markov chains. Then we apply
Theorem 1.1 to establish the strong stability conditions in the G/M/1 queueing system.

Lemma 2.1. The sequence Xn = (Vn, γn) forms a homogeneous Markov chain with state
space N× R+ and transition operator Q = ‖Qij‖i,j≥0, defined by

Qij(x, dy) = P
(
Vn+1 = j, γn+1 ∈ dy

/
Vn = i, γn = x

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi−j(x, dy), for 1 ≤ j ≤ i, i ≥ 1,∑
k≥i qk(x, dy), for j = 0, i ≥ 0,

p(x, dy), for j = i + 1, i ≥ 0,

0, for j > i + 1, i ≥ 0,

where

(9)

{
qk(x, dy) =

∫ ∞
x

P(Tk ≤ u − x < Tk+1, Tk+1 − (u − x) ∈ dy) dF (u),
p(x, dy) =

∫ x

0
P(x − u ∈ dy) dF (u).
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Lemma 2.2. The sequence X̄n = (V̄n, γ̄n) forms a homogeneous Markov chain with
state space N×R+ and transition operator Q̄ = ‖Q̄ij‖i,j≥0, having the same form as Q
(Lemma 2.1), where

(10) q̄k(x) =
∫ ∞

x

e−µ(u−x) [µ(u − x)]k

k!
dF (u).

Remark 2.1. The assumption τ̄µ > 1, where τ̄ is a mean time between arrivals in the
G/M/1 queueing system, implies the existence of a stationary distribution π̄ for the
imbedded Markov chain X̄n in the G/M/1 system. This distribution has the following
form:

(11) π̄({k}, A) = π̄k(A) = pkE(A) for all {k} ⊂ N and A ⊂ R+,

where pk = limn→∞ P(V̄n = k) is given by the following relation:

(12) pk = (1 − σ)σk, k = 0, 1, 2, . . . ,

σ is the unique solution of the equation

(13) σ = F ∗(µ − µσ) =
∫ ∞

0

e−(µ−µσ)x dF (x),

and F ∗ is the Laplace transform of the probability density function of the demands’
inter-arrival times. We can show that 0 < σ < 1 [7]. Otherwise, note that

(14)
lim

t→∞
P(X(t) = k) =

1
τ̄µ

pk−1, k = 1, 2, . . . ,

lim
t→∞

P(X(t) = 0) = 1 − 1
τ̄µ

,

where X(t) represents the size of the G/M/1 system at time t.

Formulas (12) and (14) permit us to compute the stationary distribution of the queue
length in a G/M/1 system. Unfortunately, for the G/G/1 system, these exact formulas
are not known. So, if we suppose that the G/G/1 system is close to the G/M/1 system,
then we can use formulas (12) and (14) to approximate the G/G/1 system characteristics
with prior estimation of the corresponding approximation error.

Suppose that the service law of the G/G/1 system is close to the exponential one with
parameter µ. This proximity is characterized by the distance of variation,

(15) W ∗ = W ∗(G, E) =
∫

eδt|G − E|(dt), where δ > 0.

Let us also consider the following deviation:

(16) W0 = W0(G, E) =
∫

|G − E|(dt).

We apply Theorem 1.1 to the imbedded Markov chain X̄n (defined in Lemma 2.2).
Consider the test function

(17)
v : N × R+ → R+,

(k, x) 
→ v(k, x) = βkeδx,

where 1 < β < 1/σ and 0 < δ = µ − µ/β < µ (σ is given by relation (13)).
Let α be a measure defined as follows: for {j} × dy ∈ E , we have

(18) α({j} × dy) = αj(dy) =

{
E(dy), for j = 0,

0, for j �= 0,
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and the measurable function

(19)
h : N× R+ → R,

(i, x) 
→ hi(x) = h(i, x) =
∑
k≥i

q̄k(x),

where q̄k(x) is defined by relation (10).

Lemma 2.3. Let X̄n be the Markov chain defined in Lemma 2.2. Then the operator
T = ‖Tij(x, dy)‖i,j≥0 is nonnegative.

Proof. In fact, it is easily seen that

Tij(x, dy) =

{
0, for j = 0,

Q̄ij(x, dy), for j > 0;

hence the result. �

Lemma 2.4. For all x > 0, for all β > 1, and for δ = µ − µ/β > 0 the inequality

(20)
∫ x

0

dF (u)
∫ x

0

eδyP(x − u ∈ dy) ≤
∫ x

0

eδ(u−x) dF (u)

holds.

Proof. It is sufficient to notice that∫ x

0

dF (u)
∫ x

0

eδyP(x − u ∈ dy) =
∫ x

0

dF (u)
∫ x

0

eδyP(y < x − u ≤ y + dy)

≤
∫ x

0

eδ(x−u) dF (u). �

Lemma 2.5. Suppose that in the G/M/1 system the following geometric ergodicity con-
dition

(21) µτ̄ > 1

holds. Then for all β ∈ R such that 1 < β < 1/σ, the inequality

(22) βF ∗
(

µ − µ

β

)
< 1

is true, where σ and F ∗ have been defined in relation (13).

Proof. Let us consider the function

(23)
ψ : [1, 1/σ] → R+,

β 
→ βF ∗
(

µ − µ

β

)
.

From the convexity of ψ and from relation (13), we have the result. �

Lemma 2.6. For a function v such that v(k, x) = βkeδx, with 1 < β < 1/σ and
δ = µ(1 − 1/β) > 0, the inequality

(24) (Tv)(k, x) ≤ ρv(k, x)

holds, where ρ = βF ∗(µ − µ/β) < 1.
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Proof. From relation (5) and Lemmas 2.1, 2.2, and 2.3, we have

(Tv)(k, x) =
∑
j≥0

∫
Tkj(x, dy)v(j, y) =

∑
j>0

∫
Q̄kj(x, dy)v(j, y)

≤ βk+1

[∫ ∞

x

e−µ(u−x)e(µ/β)(u−x) dF (u) +
∫ x

0

eδ(x−u) dF (u)
]

≤ βkeδxβ

∫ ∞

0

e−δu dF (u),

and from Lemma 2.5, we obtain the result. �

Lemma 2.7. Let Q̄ be the transition kernel of the imbedded Markov chain X̄n in the
G/M/1 system. Then ‖Q̄‖v < ∞.

Proof. From relations (5) and (4), the proof can be easily established by Lemmas 2.3
and 2.6. �

All the conditions of Theorem 1.1 are satisfied; hence we can state the following result.

Theorem 2.1. Suppose that in the G/M/1 system, the geometric ergodicity condi-
tion (21) holds. Then for all β ∈ R+ such that 1 < β < σ−1 the Markov chain X̄n

is strongly v-stable for a function v(k, x) = βkeδx, where 0 < δ = µ − µ/β < µ and
ρ = βF ∗(µ − µ/β) < 1.

3. Quantitative estimation of the deviation norm of the transition

operator in the G/M/1 system

Introduce the following notation:

ψk(x, A) = P
(
Tk < x ≤ Tk+1, Tk+1 − x ∈ A

)
,(25)

ψ̄k(x, A) = P
(
T̄k < x ≤ T̄k+1, T̄k+1 − x ∈ A

)
(26)

and

(27) ∆k(x, A) = ψk(x, A) − ψ̄k(x, A).

Note that the functions introduced in relations (9) and (10) can be written

(28)

{
qk(x, dy) =

∫ ∞
x

ψk(u − x, dy) dF (u),
q̄k(x, dy) =

∫ ∞
x

ψ̄k(u − x, dy) dF (u).

For a nonnegative and bounded measurable function f taking values in R+ and for a
measure m on E2 (σ-algebra of Borel sets of R+), we shall denote by f �m the convolution
product of f and m. We shall use the same notation for the convolution product of two
measures on E .

Lemma 3.1. Consider in the G/G/1 queueing system the sequence of random variables
{ξn}n≥1, where ξn represents the service duration of the nth customer. Then the following
equality

ψk(x, A) =
∫ x

0

ψk−1(x − s, A) dG(s) = ψk−1 � G(x, A)

holds for all k ∈ N∗, for all x ∈ R∗, and for all A ⊂ R+.

Proof. The result can be easily obtained by using relation (1) and the convolution product
properties. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STRONG STABILITY IN A G/M/1 QUEUEING SYSTEM 31

Lemma 3.2. Let Q and Q̄ be the transition kernels of the imbedded Markov chains in
the G/G/1 and G/M/1 systems, respectively. Then for all j ∈ N∗, for all x > 0, and
for all A ⊂ R+ we have that

∆j(x, A) =
j−1∑
i=0

ψ0 � G�i � (G − E) � E�(j−i−1)(x, A) + ∆0 � E�j(x, A).

Proof. It is sufficient to note that

∆j(x, A) =
∑

i≤j−1

ψi � (G − E) � E�(j−i−1)(x, A) + ∆0 � E�j(x, A).

The result is easily deduced by using Lemma 3.1. �

Introduce now the measure

K(ds) =
∑
j≥0

E�j(ds).

Lemma 3.3. Let Q̄ be the transition kernel of the imbedded Markov chain in the G/M/1
system. Then

K(ds) = δ0(ds) + µ ds,

where δ0(ds) = E�0(ds) (Dirac’s measure in 0).

Proof. It is sufficient to remark that E�j(ds) is the probability density function of a sum
of j independent and identically exponentially distributed random variables with the
same parameter µ. Then, it is the Erlang probability density function with parameters µ
and j. �

Let us make the following notation:

A2 = sup
x≥0

{
e−δx

∑
j≥0

∫
eδy

∣∣∣∣
∫ ∞

x

dF (u)∆0 � E�j(u − x, dy)
∣∣∣∣
}

,

where δ is given in Lemma 2.4.

Lemma 3.4. Let Q̄ and Q be the transition operators of the imbedded Markov chains in
the G/M/1 and G/G/1 system, respectively. Let τ̄ be the mean inter-arrival time. Then
the inequality

A2 ≤ W ∗(1 + µτ̄)
holds, where W ∗ is given by relation (15).

Proof. Taking into account that

∆0 � E�j(x, A) =
∫ x

0

∆0(x − s, A)E�j(ds),

we easily show that

A2 ≤ sup
x≥0

{
e−δx

∫
|G − E|(dt)

∫ ∞

x

dF (u)
∑
j≥0

∫ u−x

0

E�j(ds)
∫

eδy�{t+x+s−u∈dy}

}
,

and from Lemma 3.3 we obtain the result. �

Introduce the following measure:

R(ds) =
∑
j≥0

G�j(ds).
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Lemma 3.5. Let Q and Q̄ be the transition kernels of the imbedded Markov chains
in the G/G/1 and G/M/1 systems (respectively). Suppose that the common probability
distribution function F of the demands’ inter-arrival times satisfies the Cramér condition

(29) there exists a > 0 such that
∫

eat dF (t) = N < +∞

and

(30) W0 =
∫

|G − E|(dt) <
a

a + µ
< 1.

Denote
g(u) =

∫ u

0

e−asR(ds).

Then the inequality

(31) g(u) <
1

1 − C0
, where C0 = W0 +

µ

a + µ
,

holds for all u ∈ R+.

Proof. We can show by induction that

M�k(ds) = e−asG�k(ds) for all k > 0,

where
M(ds) = e−as G(ds).

Taking into account

g(u) =
∑
j≥0

∫ u

0

M�j(ds),

we conclude that ∫
g(ds) =

∑
j≥0

∫
M�j(ds).

Using the Laplace transform properties and condition (30), we obtain the result. �
Lemma 3.6. Under the conditions of Lemma 3.5, the inequality∫

dF (u)
∫ u

0

R(ds) ≤ N

1 − C0

holds, where N =
∫

eat dF (t) < ∞.

Proof. The result can be easily deduced from Lemma 3.5. �
Lemma 3.7. Assuming that the conditions of Lemma 3.5 are fulfilled, we have∫

dF (u)
∫ u

0

K � R(ds) ≤ N + µM

1 − C0
,

where
M =

∫
ueau dF (u) < +∞.

Proof. Using Lemmas 3.3 and 3.6, we can show that∫
dF (u)

∫ u

0

K � R(ds) ≤ N

1 − C0
+ µ

∫
u dF (u)

∫ u

0

R(ds)

and from Lemma 3.5 we obtain the following inequality:∫
udF (u)

∫ u

0

R(ds) ≤ M

1 − C0
.

From condition (29), we obtain the desired result. �
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Put

A1 = sup
x≥0

{
e−δx

∫ ∞

x

dF (u)
∫ u−x

0

|G − E| � R � K(dt)
∫

eδyψ0(u − x − t, dy)

}
.

Lemma 3.8. Under the conditions of Lemma 3.5 and supposing that

G∗ = G∗(−δ) =
∫

eδs dG(s) < +∞,

we have that the inequality

A1 ≤ G∗W0
N + µM

1 − C0

holds.

Proof. From Lemma 3.4, we obtain∫
eδyψ0(u − x − t, dy) ≤

∫
eδs G(ds).

Substituting in the expression of A1, we obtain the result. �

From the previous lemmas, we can state the following result, which gives us the
quantitative estimation of the transition operators’ deviation norm in the G/M/1 system
after perturbation of the service duration.

Theorem 3.1. Let Q and Q̄ be the transition kernels of the imbedded Markov chains in
the G/G/1 and G/M/1 systems, respectively. Suppose that for each β, 1 < β < 1/σ, the
following conditions hold:

(1) G∗ =
∫

eδtG(dt) < +∞;
(2) there exists a > 0 such that∫

eau dF (u) = N < +∞;

(3) W0 =
∫
|G − E|(dt) < a/(a + µ);

(4) the geometric ergodicity condition (21) holds.

Then the following inequality holds:

‖Q − Q̄‖v ≤ W ∗(1 + µτ̄) + W0G
∗N + µM

1 − C0
,

where C0 = W0 + µ/(a + µ) < 1 and

M =
∫

ueau dF (u) < +∞.

Proof. From relation (4) we have

‖Q − Q̄‖v = sup
k≥0

sup
x≥0

{
e−δxβ−k

∑
j≥0

∫
βjeδy|Qkj(x, dy) − Q̄kj(x, dy)|

}
.

Make the following notation:

Sk(x) =
∑
j≥0

∫
βjeδy|Qkj(x, dy) − Q̄kj(x, dy)|.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 MUSTAPHA BENAOUICHA AND DJAMIL AISSANI

Case one: k = 0. Using Lemmas 2.1 and 2.2, we obtain

S0(x) ≤
∑
j≥0

∫
eδy

∣∣∣∣
∫ ∞

x

∆j(u − x, dy) dF (u)
∣∣∣∣ ;

therefore,

(32) sup
x≥0

{
e−δxS0(x)

}
≤ sup

x≥0

{
e−δx

∑
j≥0

∫
eδy

∣∣∣∣
∫ ∞

x

∆j(u − x, dy) dF (u)
∣∣∣∣
}

.

Case two: k �= 0. From Lemmas 2.1 and 2.2, we obtain

Sk(x) ≤ βk
∑
j≥0

∫
eδy|(qj(x, dy) − q̄j(x, dy))|;

therefore,

(33) sup
x≥0

{
e−δxβ−kSk(x)

}
≤ sup

x≥0

{
e−δx

∑
j≥0

∫
eδy

∣∣∣∣
∫ ∞

x

∆j(u − x, dy) dF (u)
∣∣∣∣
}

.

From equations (32) and (33) we conclude that

‖Q − Q̄‖v ≤ sup
x≥0

{
e−δx

∑
j≥0

∫
eδy

∣∣∣∣
∫ ∞

x

∆j(u − x, dy) dF (u)
∣∣∣∣
}

.

Using Lemma 3.2, we obtain

‖Q − Q̄‖v ≤ A2 + A1,

and using Lemmas 3.4 and 3.8, we easily obtain the result. �

4. Stability inequality in a G/M/1 queueing system

Consider the imbedded Markov chains Xn and X̄n in the G/G/1 and G/M/1 queueing
systems, respectively. Their transition kernels Q and Q̄ are given by Lemmas 2.1 and 2.2.
Let π and π̄ be their stationary probabilities. Note that π̄ is given by the relation (11).
As was shown in Theorem 2.1, X̄n is strongly v-stable. Now, we apply Corollary 1.1.

Estimation of ‖π̄‖v. From the relation (2) we have

‖π̄‖v =
∑
j≥0

βj

∫
eδy|π̄j |(dy)

and conclude

(34) ‖π̄‖v =
β(1 − σ)
1 − βσ

.

Estimation of ‖�‖v. From the equation (3) we have

(35) ‖�‖v = sup
x≥0

sup
k≥0

β−ke−δx = 1

because of β > 1 and δ > 0. Then C = 1 + ‖π̄‖v = 1 + β(1 − σ)/(1 − βσ). Therefore

(36) C = 1 + ‖π̄‖v =
1 + β(1 − 2σ)

1 − βσ
.

The results of Corollary 1.1 are obtained under the condition ‖∆‖v < C−1(1 − ρ). We
impose the following condition:

(37) ‖∆‖v <
1 − ρ

2C
<

1 − ρ

C
.
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This inequality is satisfied when the following condition is fulfilled:

(38) W ∗ <
1 − ρ

2C(1 + µτ̄ + C1)
and W0 <

a

a + µ
,

where

(39) C1 =
N + µM

1 − C0
G∗.

In fact, from Theorem 3.1 we have

‖∆‖v < (1 + µτ̄)W ∗ + W0C1 < [(1 + µτ̄ ) + C1]W ∗

<
1 − ρ

2C(1 + µτ̄ + C1)
(1 + µτ̄ + C1)

<
1 − ρ

2C
.

Theorem 4.1. Let Xn and X̄n be the imbedded Markov chains in the G/G/1 and G/M/1
systems, respectively (they are given by Lemmas 2.1 and 2.2). Let π and π̄ be their
stationary probabilities. If

W ∗ = W ∗(G, E) <
1 − ρ

2C(1 + µτ̄ + C1)

and if

W0 <
a

a + µ
,

then the inequality

‖π − π̄‖v ≤ 2[(1 + µτ̄ )W ∗ + C1W0]
C(C − 1)

1 − ρ

holds.

Proof. From Corollary 1.1 and Theorem 3.1, we obtain

‖π − π̄‖v ≤ [(1 + µτ̄)W ∗ + C1W0]C‖π̄‖v(1 − ρ − C‖∆‖v)−1.

Using the relation (36) we have ‖π̄‖v = C − 1 and from the condition (37) we obtain

(1 − ρ − C‖∆‖v)−1 <
2

1 − ρ
.

Therefore

‖π − π̄‖v ≤ 2[(1 + µτ̄)W ∗ + C1W0]
C(C − 1)

1 − ρ
. �

5. Conclusion

To “measure” the performances of the strong stability method in a G/M/1 queueing
system, after disrupting the service duration, we can apply a general approach based on
discrete-event simulation [4]. In fact, we note that practically, for a low margin (W ∗)
between the service laws of the G/G/1 and G/M/1 queueing systems, it is possible to
approximate the G/G/1 system’s characteristics by the corresponding ones of the G/M/1
system. In addition, this approximation is very precise when the distance of variation W ∗

is near to zero (recall that 0 < W0 < W ∗).
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