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STRONG STABILITY OF NEUTRAL EQUATIONS WITH AN
ARBITRARY DELAY DEPENDENCY STRUCTURE∗

WIM MICHIELS† , TOMÁŠ VYHLÍDAL‡ , PAVEL ZÍTEK‡ , HENK NIJMEIJER§ , AND

DIDIER HENRION¶

Abstract. The stability theory for linear neutral equations subjected to delay perturbations is
addressed. It is assumed that the delays cannot necessarily vary independently of each other, but
depend on a possibly smaller number of independent parameters. As a main result, necessary and
sufficient conditions for strong stability are derived along with bounds on the spectrum, which take
into account the precise dependency structure of the delays. In the derivation of the stability theory,
results from realization theory and determinantal representations of multivariable polynomials play
an important role. The observations and results obtained in the paper are first illustrated and
validated with a numerical example. Next, the effects of small feedback delays on the stability of a
boundary controlled hyperbolic partial differential equation and of a control system involving state
derivative feedback are analyzed.
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Notation.
C set of complex numbers
C

−, C
+ open left half plane, open right half plane

i imaginary identity
N set of natural numbers, including zero
R set of real numbers
R

+ {r ∈ R : r ≥ 0}
R

+
0 R

+ \ {0}
ek ∈ N

m kth unit vector in N
m

�(λ),�(λ), |λ|, λ ∈ C real part, imaginary part, and modulus of λ
�r ∈ R

m, �n ∈ N
m, . . . short notation for (r1, . . . , rm), (n1, . . . , nm), . . .

rσ(A) spectral radius of operator (or matrix) A
re(A) radius of the essential spectrum of operator A
σ(A) spectrum of operator (or matrix) A
σe(A) essential spectrum of operator (or matrix) A
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sign(x), x ∈ R sign(x) =
{

1, x ≥ 0
−1, x < 0

Z set of integer numbers
α(A) spectral abscissa of operator (or matrix) A,

α(A) := sup{�(λ) : λ ∈ C and λ ∈ σ(A)}
‖�a‖, �a ∈ Rm Euclidean norm of �a, ‖�a‖ :=

√∑m
k=1 a

2
k

�a ·�b, �a,�b ∈ Rm Euclidean inner product of �a and �b, �a ·�b :=
∑m

k=1 akbk

1. Introduction. Many engineering systems can be modeled by delay differen-
tial equations of neutral type, for instance, lossless transmission lines [17] and partial
element equivalent circuits [4] in electrical engineering, and combustion systems [26]
and controlled constrained manipulators [27] in mechanical engineering. Equations of
neutral type also arise in boundary-controlled hyperbolic partial differential equations
subjected to small feedback delays [24, 6] and in implementation schemes of predictive
controllers for time-delay systems [7, 25]. In this paper we discuss stability properties
of the linear neutral equation

(1.1) ẋ(t) +
p1∑

k=1

Hkẋ(t− τk) = A0x(t) +
p2∑

k=1

Akx(t − υk),

where x(t) ∈ Rn is the state variable at time t, �τ := (τ1, . . . , τp1) ∈ (R+
0 )p1 and

�υ := (υ1, . . . , υp2) ∈ (R+
0 )p2 are time-delays, and Hk and Ak are real matrices.

An important aspect in the stability theory of neutral equations is the possible
fragility of stability, in the sense that the asymptotic stability of the null solution of
(1.1) may be sensitive to arbitrarily small perturbations of the delays �τ ; see, e.g., [12,
21, 24, 18] and the references therein. This has led to the introduction of the notion
of strong stability in [11, 13, 14], which explicitly takes into account the effect of
small delay perturbations. In [13] a necessary and sufficient condition for the strong
stability of the null solution of (1.1) is described for the special case where the delays
(τ1, . . . , τm) can vary independently of each other (see also [9]), and in [23] some related
spectral properties are discussed, though the focus lies on a stabilization procedure
for systems with an external input. Note that robustness against delay perturbations
is of primary interest in control problems, as parametric uncertainty and feedback
delays are inherent features of control systems.

In the existing literature on the stability of neutral equations, subjected to delay
perturbations, the delays, τk, 1 ≤ k ≤ p1, in (1.1) are almost exclusively assumed to be
either mutually independent or commensurate (all multiples of the same parameter);
an exception is formed by [28] where a problem with three delays depending on two
independent parameters is analyzed. In this paper we study the dependence of the
stability properties of (1.1) on the delay parameters, under the assumption that the
delays τk, 1 ≤ k ≤ p1, are linear functions of m ≥ 1 “independent” parameters
�r = (r1, . . . , rm) ∈ (R+

0 )m, as described by the following relation:

(1.2) τk = �γk · �r, k = 1, . . . , p1,

with

�γk := (γk,1, . . . , γk,m) ∈ N
m \ {�0}, k = 1, . . . , p1.

Note that the cases of mutually independent delays, respectively, commensurate de-
lays, appear in this framework as extreme cases (m = n and �γk = �ek, k = 1, . . . , p1,
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respectively, m = 1). The problem studied in [28] corresponds to the relation (τ1, τ2,
τ3) = (r1, r2, r1 + r2), which is also of the form (1.2).

There are several main reasons why it is important to develop a stability theory
where any delay dependency structure of the form (1.2) can be taken into account
explicitly. First, real systems might give rise to a model of the form (1.1) exhibiting a
delay dependency caused by physical or other interactions in the system’s dynamics.
This is explained with a lossless transmission line example in Chapter 9.6 of [11],
where it is shown that a parallel transmission line which consists of a current source,
two resistors, and a capacitor gives rise to a system of a neutral type with three delays
in the difference part, which are integer combinations of two physical parameters. In
[6, 19, 24] boundary-controlled partial differential equations are described that lead
to a closed-loop system of neutral type, where the delays in the model are particular
linear combinations of (physical) feedback delays and delays induced by propagation
phenomena. In [31, 32] the robustness against small feedback delays of linear systems
controlled with state derivative feedback is addressed, motivated by vibration control
applications. There, the closed-loop system can again be written in the form (1.1),
where the delays τk are combinations of actuator and sensor delays in input and
output channels. All these applications give rise to a (nonextreme case of a) delay
dependency of the form (1.2). Second, the precise dependency of the delays has a
major influence on the stability robustness. For instance, we shall illustrate that
the asymptotic stability of (1.1) may be destroyed by arbitrarily small perturbations
of the delays τk, 1 ≤ k ≤ p1, if these perturbations can be chosen independently
of each other, but it may be robust against small perturbations if the (perturbed)
delays are restricted by a relation like (1.2). Third, the analysis for an arbitrary delay
dependence of the form (1.2) is much more complex than the analysis of the special
cases available in the literature (e.g., fully independent delays in [23]), where the
derivation of the results heavily relies on specific properties induced by the special case.
In this discussion it is worthwhile to note that no assumptions need to be made on the
interdependency of the delays �ν, because, as we shall see, this interdependency does
not affect the stability robustness with respect to (w.r.t.) small delay perturbations,
unlike the interdependency of the delays �r.

While the general aim of the paper is to develop a stability theory for neutral
equations with dependent delays subjected to delay perturbations, the emphasis is on
the derivation of explicit strong stability criteria and on related spectral properties.
As we shall see, only in specific situations, where severe restrictions are put on the
dependency structure, can the criteria available in the literature for independent de-
lays be directly generalized, though the derivation is more complicated. To obtain a
general solution and, in this way, complete the theory, some type of intermediate lift-
ing step may be necessary, where a delay difference equation with dependent delays is
transformed into an equation with independent delays with the same spectral proper-
ties. The main step will boil down to the representation of a multivariable polynomial
as the determinant of a pencil. Such a representation will follow from arguments of
realization theory, more precisely, from the construction of lower fractional represen-
tations (LFRs). See, for instance, [33] and the manual of the LFR toolbox [20] for an
introduction.

Finally, we note that the strong stability criteria developed in this paper are also
important in the context of stabilization and control of neutral systems. If the null
solution of the associated difference equation is strongly stable, then the unstable
manifold is finite-dimensional and remains so in the presence of delay perturbations.
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This opens the possibilities of using controllers which act only on that manifold (see,
e.g., [29]) or which are based on shifting or assigning a finite number of eigenvalues
as [24]. On the contrary, if the difference equation is not strongly stable, then the
closed-loop system lacks robustness against small delay perturbations. This may
happen even if the application of the control law involves a noncompact perturbation
of the solution operator and, thus, directly affects the difference equation; see [13] for
an illustration.

The structure of the paper is as follows: in section 2 some basic notions and results
on neutral equations are recalled, in support of the subsequent sections. In section 3
the spectral properties of the neutral equation (1.1)–(1.2) and of the associated delay
difference equation are addressed, with the emphasis on stability properties and the
sensitivity of stability w.r.t. delay perturbations. The main results are presented in
section 4, where computational expressions are presented that lead to explicit strong
stability conditions. Section 5 is devoted to applications and illustrations. Section 6
contains the conclusions.

2. Preliminaries. The initial condition for the neutral system (1.1)–(1.2) is a
function segment ϕ ∈ C([−τ̄ , 0],Rn), where τ̄ = maxk∈{1,...,p1} τk and C([−τ̄ , 0], Rn)
is the Banach space of continuous functions mapping the interval [−τ̄ , 0] into Rn and
equipped with the supremum-norm. The fact that the map D : C([−τ̄ , 0],Rn) → Rn,
defined by

D(ϕ) = ϕ(0) +
p1∑

k=1

Hkϕ(−τk),

is atomic at zero guarantees existence and uniqueness of solutions of (1.1). Let x(ϕ) :
t ∈ [−τ̄ , ∞) → x(ϕ)(t) ∈ Rn be the unique forward solution with initial condition
ϕ ∈ C([−τ̄ , 0],Rn), i.e., x(ϕ)(θ) = ϕ(θ) for all θ ∈ [−τ̄ , 0]. Then the state at time
t is given by the function segment xt(ϕ) ∈ C([−τ̄ , 0], Rn) defined as xt(ϕ)(θ) =
x(ϕ)(t + θ), θ ∈ [−τ̄ , 0]. Denote by T (t;�r, �υ) the solution operator, mapping initial
data onto the state at time t, i.e.,

(2.1) (T (t; �r, �υ)ϕ)(θ) = xt(ϕ)(θ) = x(ϕ)(t + θ), θ ∈ [−τ̄ , 0].

This is a strongly continuous semigroup. The associated delay difference equation of
(1.1) is given by

(2.2) z(t) +
p1∑

k=1

Hkz(t− �γk · �r) = 0.

For any initial condition ϕ ∈ CD([−τ̄ , 0],Rn), where

CD([−τ̄ , 0],Rn) = {ϕ ∈ C([−τ̄ , 0],Rn) : D(ϕ) = 0} ,

a solution z(ϕ)(t) of (2.2) is uniquely defined and satisfies zt(φ) ∈ CD([−τ̄ , 0],Rn) for
all t ≥ 0. Let TD(t; �r) be the corresponding solution operator.

The asymptotic behavior of the solutions and, thus, the stability of the null solu-
tion of the neutral equation (1.1) is determined by the spectral radius rσ(T (t; �r, �υ)),
satisfying

rσ(T (1; �r, �υ)) = εcN(�r,�υ),

cN (�r, �υ) = sup {�(λ) : det (ΔN (λ; �r, �υ)) = 0} ,(2.3)
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where the characteristic matrix ΔN is given by

(2.4) ΔN (λ; �r, �υ) =

(
λΔD(λ; �r) −A0 −

p2∑
k=1

Ake
−λυk

)

and

ΔD(λ; �r) =

(
I +

p1∑
k=1

Hke
−λ�γk·�r

)
.

For instance, the null solution is exponentially stable if and only if rσ(T (1; �r, �υ)) < 1
or equivalently cN (�r, �υ) < 0 [13, 12] (see [11] for an overview of stability definitions
and their relation to spectral properties). In a similar way, the stability of the delay
difference equation (2.2) is determined by the spectral radius

(2.5) rσ(TD(1; �r)) = ecD(�r),

where

(2.6) cD(�r) =
{ −∞, det(ΔD(λ; �r)) 	= 0 ∀λ ∈ C,

sup {�(λ) : det (ΔD(λ; �r)) = 0} , otherwise.

An important property in the stability analysis of neutral equations is the relation

(2.7) re(T (1; �r, �υ)) = rσ(TD(1; �r));

see, e.g., [11, 10]. From this follows the well-known result that a necessary condi-
tion for the exponential stability of the null solution of (1.1)–(1.2) is given by the
exponential stability of the null solution of the delay difference equation (2.2).

In the remainder of the paper we will call the solutions of det(ΔN (λ; �r, �υ)) = 0 the
characteristic roots of the neutral system (1.1). Analogously we will call the solutions
of det(ΔD(λ; �r)) = 0 the characteristic roots of the delay difference equation (2.2).

3. Spectral properties. We discuss some spectral properties of the neutral
equation (1.1) which are important for the rest of the paper. In section 3.1–3.2 we
make the implicit assumption that

∃λ ∈ C : detΔD(λ; �r) 	≡ 1.

The degenerate case where this condition is not met will be treated separately in
section 3.3.

3.1. Difference equation. It is well known that the spectral radius (2.5), al-
though continuous in the system matrices Hk, is not continuous in the delays �r (see,
e.g., [11, 13, 16, 23]), which carries over to (2.6). As a consequence, we are from
a practical point of view led to the smallest upper bound on the real parts of the
characteristic roots, which is “insensitive” to small delay changes.

Definition 3.1. For �r ∈ (R+
0 )m, let C̄D(�r) ∈ R be defined as

C̄D(�r) = lim
ε→0+

cε(�r),

where

cε(�r) = sup {cD(�r + δ�r) : δ�r ∈ R
m and ‖δ�r‖ ≤ ε} .

Clearly we have C̄D(�r) ≥ cD(�r), and the inequality can be strict, as shown in [23]
and illustrated later on. We have the following results.
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Proposition 3.2. The following assertions hold:
1. the function

�r ∈ (R+
0 )m → C̄D(�r)

is continuous;
2. for every �r ∈ (R+

0 )m, we have1

(3.1)

C̄D(�r) = max

{
c ∈ R : det

(
I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0

for some �θ ∈ [0, 2π]m
}

;

3. C̄D(�r) = cD(�r) for rationally independent2 �r;
4. for all �r1, �r2 ∈ (R+

0 )m, we have

(3.2) sign
(
C̄D(�r1)

)
= sign

(
C̄D(�r2)

)
.

Proof. Assertions 1 and 3 are direct corollaries of Lemma 2.5 and Theorem 2.2
of [3]. Combining assertion 3 with Theorem 3.1 of [3] yields assertion 2. The proof
of assertion 4 is by contradiction. If (3.2) is not satisfied, then by assertion 1 there
exists a vector �s ∈ (R+

0 )m for which C̄D(�s) = 0. This implies by (3.1) that C̄D(�r) ≥ 0
for all �r ∈ (R+

0 )m and we arrive at a contradiction.
The property (3.2) leads us to the following definition.
Definition 3.3. Let Ξ := sign

(
C̄D(�r)

)
, �r ∈ (R+

0 )m.
A consequence of the noncontinuity of cD w.r.t. �r is that arbitrarily small per-

turbations on the delays may destroy stability of the delay difference equation. This
phenomenon, which was illustrated in [24], has lead to the introduction of the concept
of strong stability in [13]: we say that the null solution of (2.2) is strongly exponentially
stable if it is exponentially stable and remains so when subjected to small variations
in the delays �r. We state this more precisely in the following definition.

Definition 3.4. The null solution of the delay difference equation (2.2) is
strongly exponentially stable if there exists a number r̂ > 0 such that the null so-
lution of

z(t) +
p1∑

k=1

Hkz(t− �γk · (�r + δ�r)) = 0

is exponentially stable for all δ�r ∈ (R+)m satisfying ‖δ�r‖ < r̂ and rk + δrk > 0, 1 ≤
k ≤ m.

The following condition follows from Proposition 3.2.
Proposition 3.5. The null solution of (2.2) is strongly exponentially stable if

and only if Ξ < 0.
Proof. By definition the null solution of (2.2) is strongly exponentially stable if

and only if C̄D(�r) < 0, which is equivalent to Ξ < 0.
Remark 3.6. The condition of Proposition 3.5 does not depend on the particular

value of �r ∈ (R+
0 )m, that is, strong exponential stability for one value of �r implies

strong exponential stability for all values of �r.

1The maximum in (3.1) is well defined because �θ belongs to a compact set.
2The m components of �r = (r1, . . . , rm) are rationally independent if and only if the conditions∑m

k=1 nkrk = 0 and nk ∈ Z imply nk = 0 for all k = 1, . . . , m. For instance, two delays r1 and r2

are rationally independent if their ratio is an irrational number.
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3.2. Neutral equation. Following from (2.7), not only the delay difference
equation (2.2) but also the neutral equation (1.1)–(1.2) have characteristic roots with
real part arbitrarily close to C̄D(�r) for certain (arbitrarily small) perturbations on �r.

From the fact that the operator T (1; �r, �υ), defined in (2.1), has only a point
spectrum in the set

{λ ∈ C : |λ| > re(T (1; �r, �υ)) = rσ(TD(1; �r))}

(see [13]), it follows that all the characteristic roots of (1.1) in the half plane{
λ ∈ C : �(λ) ≥ C̄D(�r) + ε

}
,

where ε > 0, lie in a compact set and that the number of these roots (multiplicity
taken into account) is finite. Bounds on these roots can be obtained from the following
lemma, whose proof can be found in Appendix A.

Lemma 3.7. If ΔN (λ; �r, �υ) = 0 and �(λ) > C̄D(�r), then

|λ| ≤ max
�θ∈[0, 2π]m

∥∥∥∥∥∥
(
I +

p1∑
k=1

Hke
−�(λ)(�γk·�r)e−i�γk·�θ

)−1
∥∥∥∥∥∥(

‖A0‖ +
p1∑

i=1

‖Ak‖e−�(λ)υk

)
.

By combining the above results we arrive at the following result.
Proposition 3.8. The function

(�r, �υ) ∈ (R+
0 )m × (R+)p2 → max(C̄D(�r), cN (�r, �υ))

is continuous.
We refer to Appendix B for a detailed proof.
Proposition 3.8 is an important result, given that the function (�r, �υ) ∈ (R+

0 )m ×
(R+)p2 → cN (�r, �υ) is not continuous, with discontinuities occurring at delay values
where cN (�r, �υ) < C̄D(�r). Such situations do occur and will be illustrated in the first
example of section 5.

Furthermore, if we define strong exponential stability for the neutral equation
(1.1)–(1.2) analogously as for the associated delay difference equation, then we have
the following definition.

Definition 3.9. The null solution of the neutral equation (1.1)–(1.2) is strongly
exponentially stable if there exists a number r̂ > 0 such that the null solution of

ẋ(t) +
p1∑

k=1

Hkẋ(t− �γk · (�r + δ�r)) = A0 +
p2∑

k=1

Akx(t− (υk + δυk))

is exponentially stable for all δ�r ∈ (R.+)m and δ�υ ∈ (R+)p2 satisfying ‖δ�r‖ <
r̂, ‖δ�υ‖ < r̂ and rk + δrk > 0, νl + δνl > 0, 1 ≤ k ≤ m, 1 ≤ l ≤ p2.

Then we get the following result.
Proposition 3.10. The null solution of the neutral equation (1.1) is strongly

exponentially stable if and only if cD(�r, �ν) < 0 and Ξ < 0.
Remark 3.11. Proposition 3.10 implies that the interdependency of the delays �υ,

if any, does not affect the strong stability of the neutral equation (3.10), unlike the
interdependence of the delays �τ .
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3.3. Degenerate case. If detΔD(λ; �r) ≡ 1, which occurs, for instance, if all
matrices Hk are lower triangular and have zero diagonal, then the zeros of detΔN

(λ; �r, �υ) are equal to the zeros of

(3.3) Q(λ; �r, �υ) := det

(
λI − adj(ΔD(λ; �r))

(
A0 +

p2∑
k=1

Ake
−λυk

))
.

Equation (3.3) can also be interpreted as the characteristic function of a linear time-
delay system of retarded type, of which the spectral properties carry over (see, e.g.,
[11, 8, 22] for spectral properties of retarded-type systems).

4. Main results, computational expressions for determining strong sta-
bility. The aim of this section is to derive computationally tractable characterizations
of the quantities C̄D(�r) and Ξ, which, by Propositions 3.5 and 3.10, directly result in
strong stability conditions. First, we consider special cases where particular conditions
are put on the interdependence of the delays. In this way expressions are obtained
which directly extend the expressions for the case of independent delays presented
in [23], but the derivation is more involved. Next, we show how an arbitrary delay
dependency of the form (1.2) can be dealt with. The main results will be presented
in Theorems 4.3 and 4.7.

4.1. Results for special dependencies in the delays. We start by stating a
technical lemma.

Lemma 4.1. Assume that there is a vector �β ∈ (R0)m such that

(4.1) �γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, . . . , p1}.

Let �r ∈ (R+
0 )m and c ∈ R. If the function

�θ ∈ [0, 2π]m → α

(
−

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)

has a global maximum, α0, for �θ = �θ0, then

α0 ∈ σ

(
−

p1∑
k=1

Hke
−c�γk·�re−iγk·�θ0

)
.

Proof. Let λ(�θ0) be an active eigenvalue of
(
−
∑p1

k=1Hke
−c�γk·�re−iγk·�θ0

)
, that is,

�(λ) = α

(
−

p1∑
k=1

Hke
−c�γk·�re−iγk·�θ0

)
.

Because the spectral abscissa of a matrix which smoothly depends on parameters is
a continuously differentiable function of these parameters in the neighborhood of a
global maximum (see [5]), the eigenvalue λ(�θ0) is either simple or semisimple. Hence,
it defines a continuously differentiable function

(4.2) �θ ∈ B(�θ0) → λ(�θ),

where B(�θ0) is some open set of Rm containing �θ0. Let the continuously differ-
entiable functions �θ → w∗

0(�θ) and �θ → v0(�θ) correspond to (normalized) left and
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right eigenvectors: (
λ(�θ)I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
v0(�θ) = 0,(4.3)

w∗
0(�θ)

(
λ(�θ)I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0, �θ ∈ B(�θ0).(4.4)

Because the spectral abscissa has a maximum at �θ0, we have

∂�λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

= 0, j = 1, . . . ,m.

Note that

∂�λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

= � ∂λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

,

where ∂λ(�θ)
∂θj

∣∣
�θ=�θ0

can be computed by differentiating (4.3) at �θ0, premultiplying the

result with w∗
0(�θ0) and using (4.4). In this way we arrive at

(4.5)

∂�(λ(�θ))
∂θj

∣∣∣∣∣
�θ=�θ0

= �
w∗

0(�θ0)
(∑p1

k=1 γk,jiHke
−c�γk·�re−i�γk·�θ0

)
v0(�θ0)

w∗
0(�θ0)v0(�θ0)

= 0, j = 1, . . . ,m.

Let �β ∈ (R0)m be such that condition (4.1) holds. From (4.5) it follows that

0 =
m∑

j=1

βj �

⎛
⎝w∗

0

(∑p1
k=1 γk,jiHke

−c�γk·�re−i�γk·�θ0

)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝ m∑

j=1

βj

w∗
0

(∑p1
k=1 γk,jiHke

−c�γk·�re−i�γk·�θ0

)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝w∗

0

(∑p1
k=1(�γk · �β) iHke

−c�γk·�re−i�γk·�θ0

)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝w∗

0

(∑p1
k=1(�γ1 · �β) iHke

−c�γk·�re−i�γk·�θ0

)
v0

w∗
0v0

⎞
⎠

= (�γ1 · �β) �

⎛
⎝iw∗

0

(∑p1
k=1Hke

−c�γ·�re−i�γk·�θ0

)
v0

w∗
0v0

⎞
⎠

= (�γ1 · �β) �
(
i
w∗

0λ(�θ0)v0
w∗

0v0

)

= −(�γ1 · �β) �(λ(�θ0)).
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We conclude that �(λ(�θ0)) = 0 and �(λ(�θ0)) = α0.
The next result states that under condition (4.1), the quantity C̄D(�r) can be

computed from the zeros of a scalar function.
Proposition 4.2. If detΔD(λ; �r) 	≡ 0 and there is a vector �β ∈ (R0)m such

that

�γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, . . . , p1},

then for every �r ∈ (R+
0 )m, C̄D(�r) is the largest zero of the function

c ∈ R → f(c; �r) − 1,

where

(4.6) f(c; �r) = max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
.

Proof. From

(4.7)

C̄D(�r) = max

{
c ∈ R : det

(
I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0

for some �θ ∈ [0, 2π]m
}

(see Proposition 3.2), it follows that there exists at least one value of c such that
f(c; �r) ≥ 1. As limc→+∞ f(c; �r) = 0, the following number is well defined:

ĉ(�r) := max{c : f(c; �r) = 1}.

It is clear that f(c; �r) ≤ 1 if c ≥ ĉ(�r). By (4.7) this implies that

(4.8) ĉ(�r) ≥ C̄D(�r).

Next, from Lemma 4.1 and the fact that f(ĉ(�r); �r) = 1 it follows that there exists
a �θ0(�r) ∈ [0, 2π]p1 such that

1 ∈ σ

(
−

p1∑
k=1

Hke
−ĉ(�r)�γk·�re−i�γk·�θ0(�r)

)
.

By (4.7) one concludes that

(4.9) C̄D(�r) ≥ ĉ(�r).

From (4.8) and (4.9) we get C̄D(�r) = ĉ(�r), which is equivalent to the assertion of the
proposition.

By further imposing that the vector �β, appearing in Proposition 4.2, has positive
components only—among others—an explicit expression for Ξ, and thus an explicit
strong stability condition, is obtained.

Theorem 4.3. Define

(4.10) δ0 := max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−i�γk·�θ

)
.

If detΔD(λ; �r) 	≡ 0 and there is a vector �β ∈ (R+
0 )m such that

�γk · �β = �γl · �β ∀k, l ∈ {1, . . . , p1},
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then the assertion of Proposition 4.2, can be strengthened as follows:
1. for all �r ∈ (R+

0 )m, C̄D(�r) is the unique zero of the strictly decreasing function
c ∈ R → f(c; �τ ) − 1, with f given by (4.6);

2. we have

Ξ = sign log(δ0);

3. if δ0 > 1, then there exists a vector �r0 ∈ (R+
0 )m for which C̄D(�r0) > 0.

Proof. We first prove the second and third statements. According to its definition
we evaluate Ξ as

(4.11) Ξ = sign
(
C̄D(�β)

)
.

From Proposition 4.2 C̄D(�β) is the largest zero of the function

c ∈ R → e−c�γ1·�β max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−i�γk·�θ

)
,

thus

(4.12) C̄D(�β) =
1

�γ1 · �β
log(δ0).

The second and third assertions of the proposition follow from (4.11) and (4.12).
The proof of the first assumption is analogous to the proof of Theorem 6 of [23]

and relies on the second assertion, combined with an approximation and continuation
argument.

Remark 4.4. If p1 = m and τk = rk, 1 ≤ k ≤ m, then Proposition 4.3 reduces to
Theorem 6 and Proposition 1 of [23] and δ0 is an equivalent quantity with γ0 of [13].

4.2. Results for general case: Lifting procedure. Recall that the charac-
teristic function of (2.2) is given by

(4.13) ΔD(λ; �r) = det

(
I +

p1∑
k=1

Hke
−λ �γk·�r

)
.

By formally setting

xi = e−λ ri , i = 1, . . . ,m,

the function (4.13) can be interpreted as a multivariable polynomial

(4.14) p(x1, . . . , xm) := det

(
I +

p1∑
k=1

Hk

(
Πm

l=1x
γk,l

l

))
,

with some constraints on the variables.
Using results from realization theory, one can show that the polynomial (4.14)

can be “lifted” and expressed as the determinant of a (linear) pencil. To do so, we
write the polynomial matrix

I +
p1∑

k=1

Hk

(
Πm

l=1x
γk,l

l

)
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γ1,1 times

γp1,1 times

...
... w

· · ·

· · ·

x1

x1x1

x1

...

γp1,m times

γ1,m times

· · ·

· · ·

xm

xm

xm

xm

· · ·

· · ·

+

z ...

+

+

H1

Hp1

Fig. 4.1. Block diagram of the relation (4.15).

as a so-called lower linear fractional representation (see [33]). Let “input” w ∈ Rn

and “output” z ∈ Rn be such that

(4.15) z =

(
I +

p1∑
k=1

Hk

(
Πm

l=1x
γk,l

l

))
w.

This relation can be represented by the block diagram shown in Figure 4.1. By
“pulling out” the square blocks, corresponding to the variables, and collecting them
in a diagonal matrix, it follows that (4.15) is equivalent to

(4.16)
[
z

y

]
= M

[
w

u

]
, u = Δ(x1, . . . , xm) y,

where

(4.17) M =
[
M11 M12

M21 M22

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

s1 blocks︷ ︸︸ ︷
0 · · · 0 H1 · · ·

sp1 blocks︷ ︸︸ ︷
0 · · · 0 Hp1

I 0 · · · 0

0 I
...

...
. . .

0 I 0
...

. . .

I 0 · · · 0

0 I
...

...
. . .

0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
(4.18)

Δ(x1, . . . , xm) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1Inγ1,1

. . .

xmInγ1,m

. . .

x1Inγp1,1

. . .

xmInγp1,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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with sk =
∑m

l=1 γk,l, 1 ≤ k ≤ p1, and Iu, u ∈ N, denoting the u-by-u unity matrix.
From (4.16) we obtain

z = Fl(M,Δ(x1, . . . , xm)) y
:=
(
I +M12Δ(x1, . . . , xm)(I −M22Δ(x1, . . . , xm))−1M21

)
y.

It follows that

p(x1, . . . , xm) = det
(
I +M12Δ(x1, . . . , xm)(I −M22Δ(x1, . . . , xm))−1M21

)
= det

(
I + (I −M22Δ(x1, . . . , xm))−1M21M12Δ(x1, . . . , xm)

)
= det (I + (M21M12 −M22)Δ(x1, . . . , xm))

= det
(
I +

∑m
k=1 H̃kxk

)
,

where

(4.19) H̃k = (M21M12 −M22)Δ(�ek), k = 1, . . . ,m,

and �ek is the kth unit vector in R
m. In this way, we arrive at the following result.

Proposition 4.5. There always exist real square matrices H̃1, . . . , H̃m of equal
dimensions such that

(4.20) p(x1, . . . , xm) = det

(
I +

m∑
k=1

H̃kxk

)
,

or, equivalently,

(4.21) det ΔD(λ; �r) = det

(
I +

m∑
k=1

H̃ke
−λrk

)
.

A solution is given by (4.19), where M and Δ are defined in (4.17) and (4.18).
Remark 4.6. The lifting of (4.14) to an expression of the form (4.20) is not

unique. Furthermore, the presented solution (4.17)–(4.19) does not necessarily cor-
respond to a solution where the matrices H̃k have minimal dimensions. In fact, a
minimal realization can be obtained from a block diagram representation of (4.15)
(possibly different from the one shown in Figure 4.1), where the number of square
blocks (thus, the dimension of Δ(x1, . . . , xm)) is minimal. As we shall illustrate with
two examples, the construction of such minimal realization strongly depends on the
specific properties of the polynomial under consideration and is hard to automate.
Notice here that finding an algorithm for the automatic construction of a minimal
realization is still an open problem in realization theory. Note also that the lifting
procedure presented above is systematic and generally applicable. For more results
on linear fractional representations (LFRs) of multivariable polynomials we refer to
the specialized literature; see, e.g., Chapter 10 in [33] for representations coming from
state-space realizations in control theory, and Chapter 14 in [15] for many references
and extensions to symmetric representations and polynomials with noncommutative
variables. See also [20] for an excellent user-friendly publicly available MATLAB tool-
box which contains—among other things—routines to compute LFRs and numerical
heuristics to reduce the order of LFRs.

We now return to the original problem. From the expression (4.21) it follows
that ΔD(λ; �r) can be interpreted as the characteristic function of the “lifted”
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difference equation

χ(t) +
m∑

k=1

H̃kχ(t− rk) = 0.

As this equation satisfies the condition assumed in the propositions of section 4.1, the
following result directly follows.

Theorem 4.7. For the delay difference equation (2.2) we have

Ξ = sign log(δ0),

where

δ0 := max
�θ∈[0, 2π]m

α

(
m∑

k=1

−H̃ke
−iθk

)

and the matrices H̃k are such that (4.21) in Proposition 4.5 holds.
Furthermore, for all �r ∈ (R+

0 )m, C̄D(�r) is the unique zero of the strictly decreas-
ing function

c ∈ R → f(c; �r) = max
�θ∈[0, 2π]m

α

(
m∑

k=1

−H̃ke
−crke−iθk

)
.

With two examples we illustrate the lifting procedure for the computation of
the matrices H̃k, 1 ≤ k ≤ m, because this is the main step in the application of
Theorem 4.7.

Example 4.8. If p1 = 3, m = 2, and

�γ1 = (1, 0), �γ2 = (0, 1), �γ3 = (1, 1),

then the delay difference equation (2.2) becomes

(4.22) z(t) +H1z(t− r1) +H2z(t− r2) +H3z(t− (r1 + r2)) = 0.

This case is not directly covered in section 4.1 since there does not exist a vector
�β ∈ (R+

0 )M such that

�γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, 2, 3}.

The characteristic equation of (4.22) is given by

det
(
I +H1e

−λr1 +H2e
−λr2 +H3e

−λ(r1+r2)
)

= 0.

An application of Proposition 4.5 leads to the equivalent expression

det

⎛
⎜⎜⎜⎝I +

⎡
⎢⎢⎢⎣
H1 0 0 0
H1 0 0 0
H1 0 0 0
0 0 −I 0

⎤
⎥⎥⎥⎦ e−λr1 +

⎡
⎢⎢⎢⎣

0 H2 0 H3

0 H2 0 H3

0 H2 0 H3

0 0 0 0

⎤
⎥⎥⎥⎦ e−λr2

⎞
⎟⎟⎟⎠ = 0.

In Figure 4.2 (top) we show a block diagram of the relation

(4.23) z = (I +H1x1 +H2x2 +H3x1x2) w,
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+

+ x1

H2

w

H1

x2

x1

H2

H3

H1

+

+
x2+

+

+

z w

+

+

+

z
H3 x1

Fig. 4.2. Block diagram representation of (4.23) (above) and (4.25) (below), using a minimum
number of square blocks.

where we have minimized the number of square blocks (corresponding to a variable),
that is, we have minimized the dimension of Δ(x1, x2). It leads to the minimal order3

lifting, given by

(4.24) det

⎛
⎜⎜⎜⎜⎝I +

[
H1 0

H2H1 −H3 0

]
︸ ︷︷ ︸

H̃1

e−λr1 +
[

0 I

0 H2

]
︸ ︷︷ ︸

H̃2

e−λr2

⎞
⎟⎟⎟⎟⎠ = 0.

Example 4.9. If p1 = 3, m = 2, and

�γ1 = (1, 0), �γ2 = (0, 1), �γ3 = (2, 1),

then the characteristic equation of (2.2) becomes

det
(
I +H1e

−λr1 +H2e
−λr2 +H3e

−λ(2r1+r2)
)

= 0.

The systematic lifting procedure proposed in Proposition 4.7 leads us to the equivalent
expression

det

⎛
⎜⎜⎜⎜⎜⎝I +

⎡
⎢⎢⎢⎢⎢⎣
H1 0 0 0 0
H1 0 0 0 0
H1 0 0 0 0
0 0 −I 0 0
0 0 0 −I 0

⎤
⎥⎥⎥⎥⎥⎦ e

−λr1 +

⎡
⎢⎢⎢⎢⎢⎣

0 H2 0 0 H3

0 H2 0 0 H3

0 H2 0 0 H3

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ e

−λr2

⎞
⎟⎟⎟⎟⎟⎠ = 0.

3without assumptions on the matrices Hk . A further reduction may be possible when the matrices
Hk are specified or information about their structure is present.
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A minimal order lifting follows from the block diagram representation of

(4.25) z = (I +H1x1 +H2x2 +H3x1x2) w,

shown in Figure 4.2 (bottom), and it is given by

(4.26) det

⎛
⎜⎜⎜⎜⎜⎜⎝I +

⎡
⎢⎣ H1 0 0

−I 0 0
H2H1 −H3 0

⎤
⎥⎦

︸ ︷︷ ︸
H̃1

e−λr1 +

⎡
⎢⎣ 0 0 I

0 0 0
0 0 H2

⎤
⎥⎦

︸ ︷︷ ︸
H̃2

e−λr2

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0.

Finally, we illustrate that the lifting step is necessary if the assumption on the
interdependency of the delays of Proposition 4.3 is not satisfied.

Example 4.10. When applying Theorem 4.7 to the delay difference equation

z(t) +
20
101

z(t− r1) −
40
101

z(t− r2) −
80
101

z(t− (r1 + r2)) = 0,

for which the lifting (4.24) can be used, we get δ0 = 0.9945 < 1, thus Ξ < 0, and
we can conclude strong stability. On the other hand, formula (4.10) would result in
δ0 = 1.0066 > 1. This demonstrates that lifting may be necessary if the assumption
of Proposition 4.3 is not satisfied, and that the assertions of Proposition 4.3 are not
condensed formulations of the assertions of Theorem 4.7.

5. Illustrations and applications.

5.1. Numerical example. We apply the theoretical results derived above to
the system

(5.1)
d

dt

(
x(t) +

3∑
k=1

Hkx(t− τk)

)
= A0x(t) +A1x(t− ν1),

where the system matrices are given by

(5.2)
H1 =

[ 1
2 0

− 1
8

1
2

]
, H2 =

[ − 1
8 1

− 1
4

1
4

]
, H3 =

[ − 1
8 − 1

4

0 1
8

]
,

A0 =
[

0 − 11
40

11
80 0

]
, A1 =

[ − 1
64 − 1

8

− 1
8 − 1

32

]

and the dependency of the delays is described by

(5.3) τ1 = r1, τ2 = r2, τ3 = 2r1 + r2,

with r1 and r2 independent.
In Figure 5.1 we show the rightmost characteristic roots of (5.1)–(5.3) for (r1, r2) =

(1, 2) and ν1 = 1, computed with the quasi-polynomial mapping–based rootfinder
(QPMR) [30]. Note that the exponentially transformed characteristic roots corre-
spond to the eigenvalues of the operator T (1; (r1, r2), υ1). We have

cN((1, 2), 1) = −0.025 and cD((1, 2)) = −0.191.
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Fig. 5.1. Rightmost characteristic roots of the system (5.1)–(5.3) with (r1, r2) = (1, 2) and
ν1 = 1. Dots—characteristic roots of the neutral system; crosses—characteristic roots of the asso-
ciated difference equation.

Let us remark that the latter quantity can be calculated from the zeros of a polyno-
mial, because

ΔD(λ; (1, 2)) = det(I +H1χ+H2χ
2 +H3χ

4),

provided χ = e−λ. Thus, if the characteristic roots of the delay difference equation
with the commensurate delays are exponentially transformed, they are mapped to a
finite number of points. Due to the relation

σe(T (t; (r1, r2), ν1)) = σ(TD(t; (r1, r2))),

the transformed roots of the neutral system accumulate to these points. This can be
seen in the right frame of Figure 5.1.

In order to show the effect of small delay perturbations, we depict in Figure 5.2
the characteristic roots of (5.1)–(5.3) for (r1, r2) = (1, 2+π/100) and ν1 = 1. We also
indicate the quantity

C̄D((1, 2), ν1) = −0.066,

which can be computed by applying Theorem 4.7, starting from the representation
(4.26). The fact that C̄D((1, 2)) > cD((1, 2)) illustrates the noncontinuity of the
function �r → cD(�r). Notice from Figures 5.1–5.2 that in any right half plane {λ ∈ C :
�(λ) > C̄D +ε}, ε > 0, the neutral equation has only a finite number of characteristic
roots.

Because C̄D((1, 2)) < 0, which implies Ξ < 0, and cD((1, 2), 1) < 0, the null
solution of (5.1)–(5.3) is strongly exponentially stable.

If one is only interested in checking strong stability of the delay difference equa-
tion, then according to Theorem 4.7 it is sufficient to check whether δ0 < 1, where

(5.4) δ0 = max
�θ∈[0, 2π]2

α
(
−H̃1e

−iθ1 − H̃2e
−iθ2

)
,
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Fig. 5.2. Rightmost characteristic roots of the system (5.1)–(5.3) with (r1, r2) = (1, 2 + π
100

)
and ν1 = 1.

with H̃1, H̃2 defined in (4.26). From (5.4) we get

δ0 = max
θ∈[0,2π]

α(−H̃1 − H̃2e
−iθ) = 0.901.

In Figure 5.3 we show contour lines of the spectral abscissa function

(5.5) (θ1, θ2) → α(−H̃1e
−iθ1 − H̃2e

−iθ2),

as well as curves corresponding to the values of θ1 and θ2 for which a rightmost
eigenvalue of

(5.6) −H̃1e
−iθ1 − H̃2e

−iθ2

is real. As can be seen from the figure, the matrix (5.6) has a real rightmost eigenvalue
if (θ1, θ2) is a global maximizer of (5.5). This is in accordance with the statement of
Lemma 4.1.

Finally, let us illustrate that the effect of delay perturbations strongly depends
on the interdependence of the delays. If, instead of the relation (5.3), we assume that
the delays τk, 1 ≤ k ≤ 3, in (5.1) can vary independently of each other independent,
that is,

τk = rk, k = 1, . . . , 3,

then we get

C̄D((1, 2, 4)) = 0.055,

which shows that strong stability is lost. Note for comparison that with the previously
considered dependency structure (5.3) the nominal values �r = (1, 2) also corresponded
to �τ = (1, 2, 4).
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Fig. 5.3. Contour lines of the function (5.5). The global maxima are indicated with “◦”. The
dark curves correspond to values of θ1 and θ2 for which the rightmost eigenvalue of (5.6) is real.

5.2. Boundary-controlled partial differential equation. The following
model from [19] (see also [6, 24] for a simplified version) describes movement of a
string fixed at one side and controlled by changing the direction of the external force
at the other side:

wtt(x, t) − wxx(x, t) + 2awt(x, t) + a2w(x, t) = 0, t ≥ 0, x ∈ [0, 1],(5.7)

w(0, t) = 0, wx(1, t) = −kwt(1, t− h).(5.8)

The variable w(x, t) describes the movement at position x at time t. The parameter
h ≥ 0 represents a small delay in the velocity feedback, k ≥ 0 is the controller gain,
and a ≥ 0 represents a damping constant.

When substituting a solution of the form w(x, t) = eλtz(x) in (5.7)–(5.8) the
following characteristic equation is obtained:

(5.9) 1 + e−2ae−λ2 + ke−λh − ke−2ae−λ(2+h) = 0.

Note that this equation can be interpreted as the characteristic equation of a delay
difference equation of the form (2.2), exhibiting three delays (τ1, τ2, τ3) = (2, h, 2 + h)
that depend on two independent delays (r1, r2) = (2, h).

If h = 0, the characteristic roots are

λ = −1
2

log
∣∣∣∣1 + k

1 − k

∣∣∣∣− a+ i
(
πl +

π

4
(1 + sign(k − 1))

)
, l ∈ Z.

As for all k 	= 1,

(5.10) c(k) := −1
2

log
∣∣∣∣1 + k

1 − k

∣∣∣∣− a < 0,

the system with h = 0 is stable for all k 	= 1. As k approaches 1, the real parts of the
characteristic roots move off to −∞, which indicates superstability at k = 1 (meaning
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that perturbations disappear in a finite time). This is indeed the case and can be
explained as follows: the general solution of (5.7) can be written as a combination
of two traveling waves: a solution φ(x − t)e−at moving to the right and a solution
ψ(x + t)e−at moving to the left. If k = 1, then φ(x − t)e−at satisfies the second
boundary condition, and thus the reflection coefficient at x = 1 is zero; at x = 0
the wave φ(x + t) is reflected completely. Consequently all perturbations of the zero
solution disappear in a finite time (at most 2 time units).

Next, we look at the effect of a small feedback delay h in the application of the
boundary control. If the delays (r1, r2) = (2, h) are rationally independent, which
occurs if h is an irrational number, then we have cD(�r) = C̄D(�r) (Proposition 3.2),
and the stability condition is given by Ξ < 0 (which also guarantees stability for all
h > 0). To compute Ξ, we apply Theorem 4.7, based on the lifting (4.24). This yields

δ0 = max(θ1,θ2)∈[0, 2π]2 α

(
−
[
e−2a 0
2ke−2a 0

]
e−iθ1 −

[
0 1
0 k

]
e−iθ2

)

= maxθ∈[0, 2π] rσ

([
e−2a 0
2ke−2a 0

]
+
[

0 1
0 k

]
e−iθ

)

= max
{
|λ| : 1 − k(λ+ e−2a)

λ2 − e−2aλ
eiθ = 0, θ ∈ [0, 2π], λ ∈ C

}

= max
{
|λ| :

∣∣∣∣k(λ+ e−2a)
λ2 − e−2aλ

∣∣∣∣ = 1, λ ∈ C

}

= max

⎧⎨
⎩|λ| :

k
(
1 + e−2a

|λ|
)

|λ− e−2a| = 1, λ ∈ C

⎫⎬
⎭

=
1
2

(
e−2a + k +

√
(e−2a + k)2 + 4ke−2a

)
.

It follows that

Ξ = sign log(δ0) < 0 ⇔ k < tanh(a),

where < can be replaced with >,=. We conclude with the following:
1. If k < tanh(a), then the system (5.7)–(5.8) is exponentially stable for all
h ≥ 0.

2. If k > tanh(a), then the system (5.7)–(5.8) is exponentially unstable for all
irrational values of h. Consequently, there exist arbitrarily small values of
h that destroy the exponential stability of the system without delay in the
boundary control.

5.3. Delay robustness of state derivative feedback control. In [1, 2] the
problem of stabilization and control of the linear system

(5.11) ẋ(t) = Ax(t) +Bu(t),

where x(t) ∈ Rn is the vector of state variables, u ∈ Rnu(t) is the vector of inputs,
and A, B are constant coefficient matrices of compatible dimension, has been solved
by the state derivative feedback controller

(5.12) u(t) = −Kdẋ(t).

The use of state derivative control law is motivated by its easy implementation in
applications where accelerometers are used for measuring the system motion, e.g.,
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applications in vibration control, where the state variables typically correspond to
positions and velocities. In [1, 2], it is shown that if the system (5.11) is controllable,
and det(A) 	= 0, then all the characteristic roots of the closed-loop system can be
assigned at arbitrary positions in C \ {0}. However, results described in [31] indicate
that stability of the state derivative feedback control may not be robust against small
feedback delays. This issue is investigated in what follows.

If we assume that there is a delay τuk
on the kth component of input u, 1 ≤ k ≤ nu,

and a delay τxl
in the measurement of the lth component of ẋ, 1 ≤ l ≤ n, then the

closed-loop system (5.11)–(5.12) becomes

(5.13) ẋ(t) +
nu∑

k=1

BEk

n∑
l=1

KdFlẋ(t− τuk
− τxl

) = Ax(t),

where Ek = [ek
i,j ] ∈ Rnu×nu and Fl = [f l

i,j ] ∈ Rn×n satisfy

ek
i,j =

{
1, i = j = k,

0, otherwise,
f l

i,j =
{

1, i = j = l,

0, otherwise

for k = 1, . . . , nu and l = 1, . . . , n. Equation (5.13) is of the general form (1.1),
provided that we set

(5.14)
p1 = nun, p2 = 0, m = nu + n,

(τ1, . . . , τp1) = (τu1 + τx1 , . . . , τu1 + τxn , . . . , τunu
+ τx1 , τunu

+ τxn),
(r1, . . . , rm) = (τu1 , . . . , τunu

, τx1 , . . . , τxn),

and we define vectors �γk, 1 ≤ k ≤ p1, and matrices A0, Hk, 1 ≤ k ≤ p1, accordingly.
We have the following result.

Proposition 5.1. Assume the system (5.11) is stabilized with the control law
(5.12).

If the feedback gain Kd is such that

γ0(Kd):=max

{
α

(
−

nu∑
k=1

BEk

n∑
l=1

KdFle
i(μk+νl)

)
: �μ ∈ [0, 2π]nu , �ν ∈ [0, 2π]n

}
< 1,

then the exponential stability of the closed-loop system is robust against small feedback
delays.

If γ0(Kd) ≥ 1, then the exponential stability of the closed-loop stability is not
robust against small delay perturbations.

Proof. The interdependence between the delays of the neutral system (5.13)
satisfies the condition of Proposition 4.3. Furthermore, for this system the quantity
δ0, defined in Proposition 4.3, reduces to γ0(Kd). Consequently, if γ0(Kd) < 1, then
Ξ < 0. By the bounds on the characteristic roots given in Lemma 3.7, the continuity
of the individual characteristic roots w.r.t. the delay parameters and the exponential
stability of the delay-free system, we conclude that cD(�r, �υ) < 0 for sufficiently small
values of �r and �υ. Robustness of stability follows. If γ0(Kd) > 1, then the null
solution of (5.13) is not strongly exponentially stable, which implies that infinitesimal
perturbations on the (arbitrarily small) delays destroy exponential stability.

6. Conclusions. The stability theory for neutral equations and delay difference
equation subjected to delay perturbations has been developed for the case where
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the delays have an arbitrary dependency structure, with the emphasis on spectral
properties and computational expressions for C̄D and Ξ that, among others, lead to
explicit strong stability conditions.

Instrumental to this, it has been shown that a general delay difference equation
with dependent delays can always be transformed, without changing the characteristic
equation, into a delay difference equation with possibly larger dimension but with
independent delays, such that the stability theory for systems with independent delays
can be applied to complete the theory. An essential step of the constructive procedure
consists of representing a multivariate polynomial as the determinant of a pencil. In
this sense it is remarkable how the realization theory, commonly used in robust control
and optimization, has proven its usefulness to the problems considered in the paper,
which are of a different nature. In addition special cases have been addressed for which
the lifting step, which may increase the computational complexity, can be omitted.

More specifically the main results are presented in Theorem 4.3, holding for a
special dependency of the delays, and Theorem 4.7, holding for the general case. The-
orem 4.7 depends on a lifting of the characteristic function for which Proposition 4.5
guarantees the existence and provides a constructive solution.

The results derived in the paper have been applied to various problems, including
the study of the effects of unmodeled delays on the stability of a boundary-controlled
hyperbolic partial differential equation and of a control scheme involving state deriva-
tive feedback, being of importance in vibration control applications. These examples
illustrate the importance of taking into account small delays or delay perturbations,
as well as the dependency structure of the delays.

Appendix A. Proof of Lemma 3.7. Because ΔD(λ; �r) is invertible, we can
write the characteristic equation in the form

det

(
λI − ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

))
= 0.

This equation can be interpreted as

λ ∈ σ

(
ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

))
,

which implies

|λ| ≤
∥∥∥∥∥ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

)∥∥∥∥∥ .
By further working out the estimate, we arrive at the assertion.

Appendix B. Proof of Proposition 3.8. We prove continuity at (�r, �υ) =
(�r0, �υ0), where we consider two cases.

Case 1. C̄D(�r0) ≥ cN (�r0, �υ0).
The proof is by contradiction. By item (1) of Proposition 3.2 a violation of the

continuity property would imply the existence of sequences
{
�r()

}
≥1

,
{
�υ()

}
≥1

and
the existence of a number ε > 0 such that

lim
→∞�r() = �r0, lim

→∞ �υ() = �υ0
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and

cN (�r(), �υ()) ≥ C̄D(�r0) + ε ∀� ≥ 1.

As a consequence, there exists a sequence of complex numbers {λ()}≥1 satisfying

ΔN (λ(); �r(), �υ()) = 0, �(λ()) > C̄D(�r0) + ε/2 ∀� ≥ 1.

By Lemma 3.7, there is a compact subset of C which contains all elements of the
sequence {λ()}≥1. Consequently, this sequence has at least one accumulation point
λ̂. From Rouché’s theorem it follows that

ΔN (λ̂; �r0, �υ0) = 0.

Because �(λ̂) > C̄D(�r0), we arrive at cN (�r0, �υ0) > C̄D(�r0) and have a contradiction.
Case 2. C̄D(�r0) < cN (�r0, �υ0).
Let ε > 0 be such that C̄D(�r0)+ε < cN (�r0, �υ0) and ΔN (C̄D(�r0)+ε+jω; �r0, �υ0) 	= 0

for all ω ≥ 0. From Lemma 3.7 one concludes that the number of zeros of ΔN in the
right half plane

H := {λ ∈ C : �(λ) > C̄D(�r0) + ε}

is finite and invariant for ‖�r − �r0‖ < δ and ‖υ − υ0‖ < δ, with δ sufficiently small.
The assertion is a consequence of the continuity of the zeros of ΔN in the half place
H w.r.t. the delay parameters �r, �υ and the continuity of C̄D w.r.t. �r.
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