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Strong stability preserving (SSP) high order Runge–Kutta time discretizations
were developed for use with semi-discrete method of lines approximations of
hyperbolic partial differential equations, and have proven useful in many other
applications. These high order time discretization methods preserve the strong
stability properties of first order explicit Euler time stepping. In this paper we
analyze the SSP properties of Runge Kutta methods for the ordinary differential
equation ut=Lu where L is a linear operator. We present optimal SSP Runge–
Kutta methods as well as a bound on the optimal timestep restriction.
Furthermore, we extend the class of SSP Runge–Kutta methods for linear
operators to include the case of time dependent boundary conditions, or a time
dependent forcing term.

KEY WORDS: Strong stability preserving; Runge–Kutta methods; high order
accuracy; time discretization.

1. INTRODUCTION

1.1. The History of SSP Methods

In solving time dependent hyperbolic Partial Differential Equations (PDEs)
it is common practice to first discretize the spatial variables to obtain a
semi-discrete method of lines scheme. This is then an Ordinary Differential
Equation (ODE) system in the time variable which can be discretized by an



ODE solver. The simplest such ODE solver is the forward-Euler method
and it is used widely for analysis of the nonlinear stability properties of the
spatial discretization. The nonlinear stability properties are essential, since
hyperbolic problems typically have discontinuous solutions and a stronger
measure than linear stability is thus required. However, while forward-
Euler is ideal for analysis of the stability properties of a given spatial
discretization, it is only first order accurate. In practice, high order time
discretizations which preserve all the stability properties of forward-Euler,
are needed.
In [15, 14, 4 and 5] high order strong stability preserving (SSP) time

discretization methods for the semi-discrete method of lines approxima-
tions of PDEs were developed. These methods are derived by assuming that
the first order forward-Euler time discretization of the method of lines
ODE is strongly stable under a certain norm, when the time step Dt is
suitably restricted, and then finding higher order time discretizations that
maintain strong stability for the same norm, perhaps under a different time
step restriction.
SSP Runge Kutta methods were first considered for the solution of the

hyperbolic equation

ut+f(u)x=0 (1.1)

where the spatial derivative, f(u)x, is discretized by a TVD finite difference
or finite element approximation denoted −L(u) ([9, 12, 18, 3, 10] and
[19]). In the process of discretizing, we have a spatial mesh made up of
points denoted xj and a temporal mesh of points denoted tn. When dis-
cussing the fully discretized solution, we use the notation unj to mean the
approximation to the exact solution u(xj, tn), and the corresponding vector
un containing all the spatial information at a given time is given com-
ponentwise by un=[unj ]. The exact spatial discretization L(u) above is
irrelevant, as long as it has the property that when it is combined with the
first order forward-Euler time discretization,

un+1=un+Dt L(un) (1.2)

the Total Variation (TV) of the one-dimensional discrete solution un does
not increase in time, i.e., the following, so called Total Variation Diminish-
ing (TVD) property, holds

TV(un+1) [ TV(un), TV(un) :=C
j
|unj+1−u

n
j | (1.3)
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for a sufficiently small time step Dt dictated by the CFL condition (see
[1, 8]),

Dt [ DtFE (1.4)

Here, DtFE is the largest allowable step size that will guarantee that the
stability property above will hold for forward-Euler with the given PDE
and spatial discretization (see [14]).
The objective of the high order SSP time discretization is to maintain

the strong stability property (1.3) while achieving higher order accuracy in
time, perhaps with a modified CFL restriction (measured here with a CFL
coefficient, c)

Dt [ c DtFE (1.5)

Numerical evidence presented in [4] demonstrated that oscillations
may occur when using a linearly stable, high-order method which lacks the
strong stability property, even if the same spatial discretization is TVD
when combined with the first-order forward-Euler time-discretization. This
illustrates that it is safer to use a SSP time discretization for solving
hyperbolic problems. After all, SSP methods have the extra assurance of
provable stability and in many cases do not increase the computational
cost. In particular, SSP methods up to (and including) third order for
ODEs with nonlinear operators L, and all SSP methods for ODEs with
linear constant-coefficient operators do not require any additional stages or
function evaluations [5].
In the initial development of these methods, ([15] and [14]) the rele-

vant norm was the total variation norm: the forward-Euler time discretiza-
tion of the method of lines ODE was assumed TVD, hence these methods
were called TVD time discretizations. In fact, the essence of this class of
high order time discretizations lies in its ability to maintain the strong sta-
bility in the same norm as the first order forward-Euler version, regardless
of what this norm is, hence ‘‘strong stability preserving (SSP) time discre-
tization’’ is a more suitable term which was first adopted in [5]. Addition-
ally, since SSP methods (as we show below) are convex combinations of the
first-order Euler method, any convex function satisfied by forward-Euler
will be preserved by such high-order time discretizations. Thus, the SSP
property is useful in a wide variety of applications. SSP Runge Kutta
methods can be used whenever a method is needed which preserves any
norm or convex-function property of forward-Euler. Also, although these
methods were developed for use with nonlinear stability properties, they
are equally useful in cases where the relevant operator is linear, and where
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linear norm properties are studied. In this paper we will study the proper-
ties of SSP Runge–Kutta methods for linear constant-coefficient operators.

1.2. SSP Runge–Kutta Methods

In [15], a general m stage Runge–Kutta method for

ut=L(u) (1.6)

is written in the form:

u (0)=un,

u (i)=C
i−1

k=0
(ai, ku (k)+Dt bi, kL(u(k))), ai, k \ 0, i=1,..., m (1.7)

un+1=u (m)

This way of writing the method has become standard for SSP purposes
(e.g., [14, 15, 4, 5]), and was shown ([15]) to be equivalent to the classical
Runge–Kutta methods as written in [2]. The restriction on the coefficients
ai, k allows the SSP property to be achieved ([14]). Clearly, if all the coef-
ficients bi, k are nonnegative (bi, k \ 0), and the consistency requirement

C
i−1

k=0
ai, k=1

is satisfied for any i, it follows that the intermediate stages in (1.7), u (i),
amount to convex combinations of forward-Euler steps, with Dt replaced
by bi, kai, k Dt. We thus conclude

Lemma 1.1 [15]. If the forward-Euler method (1.2) is strongly
stable under the CFL restriction (1.4), ||un+Dt L(un)|| [ ||un||, then the Runge–
Kutta method (1.7) with bi, k \ 0, and bi, k=0 whenever ai, k=0, is SSP,
||un+1|| [ ||un||, provided the following CFL restriction (1.5) is fulfilled,

Dt [ c DtFE, c=min
i, k

ai, k

bi, k
-bi, k ] 0 (1.8)

If some of the bi, k’s are negative, we need to introduce an associated
operator L̃ corresponding to stepping backward in time. The requirement
for L̃ is that it approximates the same spatial derivative(s) as L, but that
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the strong stability property holds ||un+1|| [ ||un||, (either with respect to the
TV or another relevant norm), for the first order Euler scheme, solved
backward in time, i.e.,

un+1=un−Dt L̃(un) (1.9)

This can be achieved, for hyperbolic conservation laws, by solving the time-
negative version of (1.1),

ut=f(u)x (1.10)

Numerically, the only difference is the change of upwind direction. Clearly,
L̃ can be computed with the same cost as that of computing L. We then
have the following lemma.

Lemma 1.2 [15]. If the forward-Euler method combined with the
spatial discretization L in (1.2) is strongly stable under the CFL restriction
(1.4), ||un+Dt L(un)|| [ ||un||, and if Euler’s method solved backward in time
in combination with the spatial discretization L̃ in (1.9) is also strongly
stable under the CFL restriction (1.4), ||un−Dt L̃(un)|| [ ||un||, then the Runge–
Kutta method (1.7) is SSP, i.e., ||un+1|| [ ||un||, under the CFL restriction
(1.5),

Dt [ c DtFE, c=min
i, k

ai, k

|bi, k |
, -bi, k ] 0 (1.11)

provided bi, k=0 whenever ai, k=0, and bi, kL is replaced by bi, kL̃ when-
ever bi, k is negative.

Notice that, if for the same k, both L(u (k)) and L̃(u (k)) must be
computed, the cost as well as storage requirement for this k is doubled. For
this reason, we would like to avoid negative bi, k as much as possible. In
[4] it was shown any four-stage fourth-order Runge–Kutta method for a
nonlinear ODE will have at least one negative coefficient. In [17] it was
shown that any Runge–Kutta method of fifth order or above for a non-
linear ODE will have at least one negative coefficient. Thus, we realize that
for Runge–Kutta methods for nonlinear ODEs, negative coefficients would
have to be considered. This is not, however, the case for Runge–Kutta
methods for linear ODEs. In the linear constant coefficient case, we may
have all nonnegative coefficients [5], and we proceed by discussing this
case.
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2. LINEAR CONSTANT COEFFICIENT SSP RUNGE–KUTTA
METHODS OF ARBITRARY ORDER

Although SSP methods were developed for use with nonlinear stability
properties, they are equally useful in cases where the relevant operator is
linear, and where linear norm properties are studied. For example, SSP
methods are useful where weighted L2 higher order discretizations of spec-
tral schemes are discussed ([7, 5, 11]). In [5] we found optimal N stage,
Nth order SSP Runge–Kutta methods of arbitrary order of accuracy for
linear ODEs suitable for solving PDEs with linear spatial discretizations.
Such methods have optimal CFL number c=1. Raising the CFL number
at the expense of adding another stage is an idea that was tried in [14]. In
parallel to this work, S. Ruuth and R. Spiteri have studied this approach
for nonlinear methods [16] and linear methods [17]. In this section, we
consider linear SSP Runge–Kutta methods which have more stages than
necessary for their order. This additional freedom allows for a higher CFL
number. We present a bound on the optimal CFL number associated with
an m stage, Nth order method. We then present some methods which are
optimal in terms of the CFL restriction.

2.1. Useful Properties of the Linear SSP Runge–Kutta Method

In [5] we constructed a class of optimal (in the sense of CFL number)
SSP Runge–Kutta methods of any order for the ODE (1.6) where L is
linear and time invariant. With a linear L being realized as finite dimen-
sional matrix we denote L(u)=Lu.
The method (1.7) may be rewritten as

u (i)=11+C
i−1

k=0
Ai, k(Dt L)k+12 u (0), i=1,..., m (2.1)

where

A1, 0=b1, 0, Ai, 0=C
i−1

k=1
ai, kAk, 0+C

i−1

k=0
bi, k

Ai, k= C
i−1

j=k+1
ai, jAj, k+C

i−1

j=k
bi, jAj, k−1, k=1,..., i−1

A method of this type will be SSP for a sufficiently small time step Dt,
if all the coefficients ai, k and bi, k are nonnegative. The CFL number
(c in (1.8)) associated with this method can be written as c=1

m where
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m=maxi, k
bi, k
ai, k
. To facilitate the analysis of the optimal CFL number, we

introduce mi, k=
bi, k
ai, k
. We can make this definition, since the SSP conditions

above require that bi, k=0 whenever ai, k=0. The following lemmas
determine a bound on the relative size of each Ai, k, which depends on m.
These lemmas will later be used to get a bound on the optimal CFL
number.

Lemma 2.1. For any method written in the form (2.1) above,

AM, 0 [Mm

for any 1 [M [ m, where m=maxi, k
bi, k
ai, k
.

Proof. Consider that

A1, 0=b1, 0=
b1, 0

a1, 0
=m1, 0 [ m

Now proceed by induction: Assume Aj, 0 [ jm -j=1,..., M−1 then

AM, 0= C
M−1

j=1
aM, jAj, 0+ C

M−1

j=0
bM, j

[ (M−1) m C
M−1

j=1
aM, j+m C

M−1

j=0
aM, j

[Mm i

Lemma 2.2. For any method written in the form (2.1) above,

AM, 1 [
M−1
2
mAM, 0

for any 1 [M [ m, where m=maxi, k
bi, k
ai, k
.

Proof.

A2, 1=b2, 1A1, 0=
1
2 (b2, 1A1, 0+b2, 1b1, 0)

=1
2 (m2, 1a2, 1A1, 0+b2, 1m1, 0)

[ 1
2 (m2, 1a2, 1A1, 0+b2, 1m1, 0+mb2, 0)

[ 1
2 m(a2, 1A1, 0+b2, 1+b2, 0)

=1
2 mA2, 0
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Proceed by induction: assume

Aj1 [
j−1
2
mAj, 0 for 2 [ j [M−1

then

AM, 1= C
M−1

j=2
aM, jAj, 1+ C

M−1

j=1
bM, jAj, 0

[ C
M−1

j=2
aM, j
j−1
2
mAj, 0+ C

M−1

j=1
mM, jaM, jAj, 0

[
M−2
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1
mM, jaM, jAj, 0

where the zero term aM, j
j−1
2 mAj, 0 for j=1 was added in the first summation.

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1mM, j−
1
2
m2 aM, jAj, 0

[
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1mM, j−
1
2
mM, j 2 aM, jAj, 0

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+ C

M−1

j=1

1
2
mM, jaM, jAj, 0

[
M−1
2
m C
M−1

j=1
aM, jAj, 0+

1
2
(M−1) m C

M−1

j=1
mM, jaM, j

=
M−1
2
m C
M−1

j=1
aM, jAj, 0+

1
2
(M−1) m C

M−1

j=1
bM, j

[
M−1
2
m 1 C

M−1

j=1
aM, jAj, 0+ C

M−1

j=0
bM, j 2 where we added

the nonnegative quantity M−12 mbM, 0 to the second summation

=
M−1
2
mAM, 0 i

Lemma 2.3. For any method written in the form (2.1) above,

AM, k [
M−k
k+1

mAM, k−1
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for any 1 [M [ m, where m=maxi, k
bi, k
ai, k
.

Proof. Using Lemma 2.2 as the base case, we show that if

Ap, l [
p−l
l+1

mAp, l−1 for 1 [ p [M−1 and 1 [ l [ p−1

then for any k <M−1,

AM, k= C
M−1

j=k+1
aM, jAj, k+ C

M−1

j=k
bM, jAj, k−1

[ C
M−1

j=k+1
aM, j

j−k
k+1

mAj, k−1+ C
M−1

j=k
bM, jAj, k−1

= C
M−1

j=k
aM, j

j−k
k+1

mAj, k−1+ C
M−1

j=k
bM, jAj, k−1

where the zero term is added to the first summation

[
M−1−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k
bM, jAj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1bM, j−
1
k+1

maM, j 2 Aj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1mM, j−
1
k+1

m2 aM, jAj, k−1

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

1mM, j−
1
k+1

mM, j 2 aM, jAj, k−1

because mM, j [ m

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

11− 1
k+1
2 bM, jAj, k−1

=
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

k
k+1

bM, jAj, k−1

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k

k
k+1

bM, j
j−k+1
k

mAj, k−2

[
M−k
k+1

m C
M−1

j=k
aM, jAj, k−1+

k
k+1

M−k
k
m C
M−1

j=k−1
bM, jAj, k−2

by adding the nonnegative term bM, k−1Ak−1, k−2 to the second summation
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=
M−k
k+1

m 1 C
M−1

j=k
aM, jAj, k−1+ C

M−1

j=k−1
bM, jAj, k−2 2

=
M−k
k+1

mAM, k−1

Finally, for the case k=M−1,

AM,M−1=bM,M−1AM−1, M−2

=mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2−

1
M
maM,M−1AM−1, M−2

+mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+1mM,M−1−

1
M
m2 aM,M−1AM−1, M−2

[
1
M
maM,M−1AM−1, M−2+1mM,M−1−

1
M
mM,M−1 2 aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+

M−1
M

mM,M−1aM,M−1AM−1, M−2

=
1
M
maM,M−1AM−1, M−2+

M−1
M

bM,M−1AM−1, M−2

[
1
M
maM,M−1AM−1, M−2+

M−1
M

bM,M−1
M−1−M+2
M−1

mAM−1, M−3

=
1
M
maM,M−1AM−1, M−2+

1
M
mbM,M−1AM−1, M−3

[
1
M
maM,M−1AM−1, M−2+

1
M
mbM,M−1AM−1, M−3

+
1
M
mbM,M−2AM−2, M−3

=
1
M
mAM,M−2 i
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2.2. Upper Bound for the Optimal CFL Number of a m Stage Nth
Order Method

The lemmas in the preceeding section suggest a bound on the optimal
size of the CFL number c, which depends on the number of stages m and
the order N of the method.

Proposition 2.1. Consider the family of m-stage, Nth order SSP
Runge–Kutta methods (1.7) with nonnegative coefficients ai, k and bi, k. The
CFL number c in (1.5) will be, at most, c=m−N+1.

Proof. From the lemmas above, we see that for anyM \ 1

AM, k [
M−k
k+1

mAM, k−1 for 1 [ k <M

and

AM, 0 [Mm

For an m-stage method to be Nth order, we must have [5]

Am, n=
1

(n+1)!
for n=0, 1,..., N−1 (2.2)

so we have

1
N!
=Am, N−1 [

m−N+1
N

mAm, N−2=
m+1−N
N

m
1

(N−1)!

Consequently,

1
m+1−N

[ m

The CFL number c would be, at most, c=m+1−N. i

This, however, is only a bound, and does not mean that such a CFL
number can actually be obtained. As we will show, there are many cases in
which this optimal CFL number is indeed attainable.
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2.3. Some Optimal SSP Runge–Kutta Methods

In this section we construct some m-stage Nth order SSP methods
with optimal CFL. We start with a first order, m stage method with CFL
c=m:

Proposition 2.2. The m stage method given by

u (0)=un

u (i)=11+Dt
m
L2 u (i−1), i=1,..., m (2.3)

un+1=u (m)

is first order accurate, with CFL number c=m.

Proof. Since for each nonzero ai, k we have ai, k=1 and bi, k=
1
m , and

bi, k=0 whenever ai, k=0, we have bi, k=
1
m ai, k and the CFL number c=m

is clear. To check that the order, we notice that

un+1=11+Dt 1
m
L2

m

un

=11+Dt L+Dt2 m−1
2m

L2+·· ·+
1
mm
DtmLm2 un

since m−12m ] 1
2 for any m, we have

un+1=(1+Dt L+O(Dt2)) un

a first order method. i

We note that although this method has a significantly higher CFL
than the standard first order method (which is, of course, the forward-
Euler method), it has a correspondingly higher computational cost.
Although the stepsize can be increased by a factor of m, the computational
cost is also increased by the same factor. We need to look not only at the
CFL number, but also at the number of steps needed. To reflect this, we
define the effective CFL number ceff=src where sr is the ratio of the
number of steps needed for the standard method to the number of steps
needed for the current method. Thus, for the method (2.2) the effective
CFL is, in fact, ceff=1. However, this method is useful as a stepping-stone
for higher order methods.
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For any desired integer optimal CFL number c, a first order (N=1)
method of this CFL number is then given (as in Proposition 2.2 above) by
the m-stage method:

u (0)=un

u (i)=(1+Dt mL) u (i−1), i=1,..., m (2.4)

un+1=u (m)

where m=c and m=1
c . The next proposition shows how we can recursively

build higher order methods. Starting with this method as a building block,
we add one stage and increase the order to two, without changing the CFL
number. Following the procedure detailed below, we can then build m
stage, N=m+1−c order methods with the optimal CFL number c chosen
above. However, there in no guarantee that these methods will prove to be
SSP.

Proposition 2.3. For any given CFL number c=1
m , where m is chosen

so that c is a positive integer, the class of m stage, N=(m+1−c) order
schemes of the form

u (0)=un

u (i)=u (i−1)+m Dt Lu (i−1), i=1,..., m−1

u (m)=C
m−2

k=0
am, ku (k)+am, m−1(u (m−1)+m Dt Lu (m−1)),

un+1=u (m)

(2.5)

is given recursively by the coefficients:

am, k=
1
km
am−1, k−1, k=1,..., m−2

am, m−1=
1
mm
am−1, m−2, am, 0=1− C

m−1

k=1
am, k

(2.6)

where the initial method is that given by the c-stage, first order method
(2.4) above.

Proof. In (2.5), for each 1 [ i [ m−1

u (i)=u (i−1)+m Dt Lu (i−1)

=(1+m Dt L) i u (0)
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We rewrite the method (2.5) above as

u (n+1)=C
m−2

k=0
am, k(1+m Dt L)k u (0)+am, m−1(1+m Dt L)(1+m Dt L)m−1 u (0)

=1 C
m−2

k=0
am, k C

k

j=0

k!
j! (k−j)!

m j Dt j L j+am, m−1 C
m

j=0

m!
j! (m−j)!

m j Dt j L j2 u (0)

=1 C
m

j=0
am, j+1 C

m−2

j=1
am, j

j!
(j−1)!

+am, m−1
m!

(m−1)!
2 m Dt L

+1 C
m−2

j=2
am, j

j!
2! (j−2)!

+am, m−1
m!

2! (m−2)!
2 m2 Dt2 L2

+1 C
m−2

j=3
am, j

j!
3! (j−3)!

+am, m−1
m!

3! (m−3)!
2 m3 Dt3 L3+·· ·

+1 C
m−2

j=m−2
am, m−2

j!
(j−m+2)! (m−2)!

+am, m−1
m!

(m−2)! 2!
2 mm−2 Dtm−2 Lm−2

+am, m−1
m!

(m−1)!
mm−1 Dtm−1 Lm−1+am, m−1mm Dtm Lm2 u (0)

For this method to be Nth order, we must match this with the desired
expansion

u (n+1)=11+Dt L+1
2
Dt2 L2+

1
3!
Dt3 L3+·· ·+

1
N!
DtN LN+O(DtN+1)2 u (0)

Clearly, for the m-stage method of the type (1.3) to be Nth order, the coef-
ficients ai, k must satisfy the order conditions:

(m)k 1 C
m−2

j=k

j!
(j−k)!

am, j+
(m)!
(m−k)!

am, m−1 2=1

for k=0,..., N. Correspondingly, the coefficients of a (m+1)-stage, (N+1)
order method must satisfy

(m)k 1 C
m−1

j=k

j!
(j−k)!

am+1, j+
(m+1)!
(m+1−k)!

am+1, m 2=1

for k=0,..., N+1.
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Assume that we have a m stage N order method of the type (2.5).
Using the recursive definition we obtain the coefficients of a (m+1) stage
method of the same type. The definition of am+1, 0 guarantees the correct
k=0 order condition for the (m+1) stage method. We proceed to show
that the kth order condition for the m stage method together with the
definition of the coefficients implies the k+1 order condition for the m+1
stage method:

1=(m)k 1 C
m−2

j=k

j!
(j−k)!

am, j+
(m)!
(m−k)!

am, m−1 2

=(m)k 1 C
m−2

j=k

j!
(j−k)!

(j+1) mam+1, j+1+
(m)!
(m−k)!

(m+1) mam+1, m 2

=(m)k+1 1 C
m−1

j=k+1

j!
(j−(k+1))!

am+1, j+
(m+1)!

((m+1)−(k+1))!
am+1, m 2

The k=0,..., N order conditions for the m stage method imply the
k=1,..., N+1 order conditions for the (m+1) stage method, and the k=0
order condition is true by definition. Thus, the order conditions for
k=0,..., N+1 are satisfied and the (m+1) stage method will be of order
(N+1). i

A scheme obtained in this way is SSP with CFL c=1
m as long as the

coefficients ai, k are nonnegative. However, not all the methods generated in
this way are SSP—most of them will have negative ai, k. Nevertheless, this
method is useful for generating the following methods:

Method 1. The following are second order (N=2) SSP methods
with m stages and an optimal CFL number c=m−1:

u (0)=un

u (i)=11+ Dt
m−1

L2 u (i−1), i=1,..., m−1

um=
1
m
u (0)+

m−1
m
11+ Dt

m−1
L2 u (m−1)

un+1=u (m)

(2.7)

The CFL number of this method is clear by inspection. A quick verification
of the order of this scheme follows:
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un+1=
1
m
u (0)+

m−1
m
11+ Dt

m−1
L2

m

u (0)

=1 1
m
+
m−1
m
11+m Dt

m−1
L+
m(m−1)
2

Dt2

(m−1)2
L2+O(Dt3)22 u (0)

=1 1
m
+
m−1
m
+Dt L+

1
2
Dt2 L2+O(Dt3)2 u (0)

=11+Dt L+1
2
Dt2 L2+O(Dt3)2 u (0)

In fact, these methods are also nonlinearly second order [16]. Each such
method uses m stages to attain the order usually obtained by a 2-stage
method, but has CFL number m−1, thus the effective CFL number here is
increased to ceff=

2(m−1)
m .

Method 2. Using the method in proposition (2.3) we generate
methods of any order N with m=N+1 stages, which are SSP with CFL
coefficient c=2. Table I includes the coefficients of these methods. The
effective CFL for these methods is also ceff=

2N
N+1=

2(m−1)
m .

3. LINEAR CONSTANT COEFFICIENT OPERATORS WITH TIME
DEPENDENT FORCING TERMS

As we have seen [5], SSP Runge Kutta methods suitable for a linear,
constant coefficient ODE are easier to generate and have a higher CFL

Table I. Coefficients am, j of the m-Stage N=(m−1) Order SSP Methods of the Form (2.5),
Which Have CFL Number c=2

stages m am, 0 am, 1 am, 2 am, 3 am, 4 am, 5 am, 6 am, 7 am, 8 am, 9

2 0 1
3 1

3 0 2
3

4 0 2
3 0 1

3

5 1
5 0 2

3 0 2
15

6 1
9

2
5 0 4

9 0 2
45

7 1
7

2
9

2
5 0 2

9 0 4
315

8 2
15

2
7

2
9

4
15 0 4

45 0 1
315

9 11
81

4
15

2
7

4
27

2
15 0 4

135 0 2
2835

10 71
525

22
81

4
15

4
21

2
27

4
75 0 8

945 0 2
14175
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than SSP Runge Kutta methods for a nonlinear ODE. We wish to extend
these nice results to the case of a constant linear operator with a time
dependent forcing term. This is a case which also arises in linear PDEs with
time dependent boundary conditions, and can be written as:

ut=Lu+f(t) (3.1)

where u=[ui] is a vector, L=[Li, j] is a constant matrix and f(t)=
[fi(t)] is a vector of functions of t. This ODE is a linear time dependent
ODE and as such, the Runge–Kutta methods derived above for a linear
time-invariant ODE will not have the correct order. The problem is that
the class of RK methods for linear, time dependent ODEs is not equivalent
to those for linear time invariant ODEs [20]. However, if the functions
f(t) can be written in a suitable way, then we can convert the equation
(3.1) to a linear constant-coefficient ODE.
The order conditions for a RK method are derived, without loss of

generality [2], for autonomous system yŒ(x)=g(y(x)). The reason for the
‘‘no loss of generality’’ is that any system of the form

uŒ(x)=h(x, u(x))

can be converted to an autonomous system by setting

y(x)=R x
u(x)
S

and then

yŒ(x)=g(y(x))=g R x
u(x)
S=R 1

h(x, u)
S

In many cases, we can convert equation (3.1) to a linear, constant
coefficient ODE using a similar transformation. We first write (or approx-
imate, if necessary) f(t) as

fi(t)=C
n

j=0
a ijqj(t)=Aq(t)

where A=[Ai, j]=[a
i
j] is a constant matrix and q(t)=[qj(t)] are a set of

functions which have the property that qŒ(t)=Dq(t), where D is a constant
matrix. Once the approximation to f(t) is obtained, the ODE (3.1) can be
converted into the linear, constant coefficient ODE

yt=My(t) (3.2)
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where

y(t)=Rq(t)
u(t)
S

and

M=RD 0

A L
S

Thus, an equation of the form (3.1) can be approximated (or given exactly)
by an linear constant coefficient ODE, and the SSP Runge–Kutta methods
derived in Sec. 2.3 can be applied to this case.

Remark. We stress that we are talking about preserving the stability
properties of forward-Euler as applied to the equation yt=My. It is pos-
sible (indeed, expected) that forward-Euler applied to ut=Lu may satisfy
properties not satisfied when applied to ut=Lu+f(t). It is also possible
that some properties satisfied by forward-Euler when applied to the exact
equation ut=Lu+f(t) may not be satisfied once f(t) is approximated.

Remark. To approximate the functions f(t) we can use the polyno-
mials qj(t)=t j. In this case, the differentiation matrix D is given by

D=R
0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 3 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · n 0

S
A better approximation can be obtained using the Chebyshev polynomials.
For these polynomials the relationship between the polynomial and its
derivative is given by T −n(x)=;n

j=0 bjTj(x) where (see [6]),

bj=˛
n for j=0, if n is odd

2n for j > 0, if j+n is odd
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In other words, the derivative matrix D takes the form:

D=R
0 0 0 0 0 0 0 0 · · · 0 0

1 0 0 0 0 0 0 0 · · · 0 0

0 4 0 0 0 0 0 0 · · · 0 0

3 0 6 0 0 0 0 0 · · · 0 0

0 8 0 8 0 0 0 0 · · · 0 0

5 0 10 0 10 0 0 0 · · · 0 0

0 12 0 12 0 12 0 0 · · · 0 0

7 0 14 0 14 0 14 0 · · · 0 0

· · · · · · · · · · · · ·

n 0 2n 0 2n 0 2n 0 · · · 2n 0

S if n is odd
or

D=R
0 0 0 0 0 0 0 0 · · · 0 0

1 0 0 0 0 0 0 0 · · · 0 0

0 4 0 0 0 0 0 0 · · · 0 0

3 0 6 0 0 0 0 0 · · · 0 0

0 8 0 8 0 0 0 0 · · · 0 0

5 0 10 0 10 0 0 0 · · · 0 0

0 12 0 12 0 12 0 0 · · · 0 0

7 0 14 0 14 0 14 0 · · · 0 0

· · · · · · · · · · · · ·

0 2n 0 2n 0 2n 0 2n · · · 2n 0

S if n is even
4. NUMERICAL RESULTS

We approximate the solution to the equation

ut=uxx+4t3 0 [ x [ p (4.1)

with initial condition

u(x, 0)=sin(x)
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and boundary conditions

u(0, t)=u(p, t)=t4

This equation has the exact solution

u(x, t)=t4+e−t sin(x)

We employ the second order centered difference spatial discretization

uxx %
uj+1−2uj+uj−1

Dx2

which gives us the linear operator

L=
1
Dx2
R
−2 1 0 0 0 0 0 0 0 0

1 −2 1 0 0 0 0 0 0 0

0 1 −2 1 0 0 0 0 0 0

0 0 1 −2 1 0 0 0 0 0

· · · · · · · · · ·

0 0 0 0 0 0 0 1 −2 1

0 0 0 0 0 0 0 0 1 −2

S
in

ut=Lu+4t3 (4.2)

To incorporate the time-dependent boundary conditions as well as the time
dependent forcing term, we define

y=R
1

t

t2

t3

t4

u

S
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and the ODE becomes

yt=R
0 0 0 0 0 0 0 0 0 · · · 0 0
1 0 0 0 0 0 0 0 0 · · · 0 0
0 2 0 0 0 0 0 0 0 · · · 0 0
0 0 3 0 0 0 0 0 0 · · · 0 0
0 0 0 4 0 0 0 0 0 · · · 0 0

0 0 0 4 1
Dx2

−2
Dx2

1
Dx2

0 0 · · · 0 0

0 0 0 4 0 1
Dx2

−2
Dx2

1
Dx2

0 · · · 0 0

0 0 0 4 0 0 1
Dx2

−2
Dx2

1
Dx2

· · · 0 0

· · · · · · · · · · · ·

0 0 0 4 0 0 · · · 0 0 1
Dx2

−2
Dx2

1
Dx2

0 0 0 4 1
Dx2

0 · · · 0 0 0 1
Dx2

−2
Dx2

S y
In all these numerical experiments we use Dx= 1

101 . The following time
discretizations were used:

1. The first order forward-Euler discretization:

yn+1=(1+Dt L) yn

2. The 6-stage (m=6), 5th order (N=5) method with CFL number
c=2, given in Table I:

u (0)=un

u (i)=11+Dt
2
L2 u (i−1), i=1,..., 5

u (6)=
1
9
u (0)+

2
5
u (1)+

4
9
u (3)+

2
45
11+Dt

2
L2 u (5)

un+1=u (6)

The high order Runge–Kutta method was compared to the forward-Euler
method. As predicted, the maximal time-step Dt allowed was doubled for
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method (2) compared to the forward-Euler method. In Figs. 1 and 2 we see
the effects of instability in the forward-Euler method when the time-step Dt
is too high. This method is stable when Dt [ 1

2 Dx
2=Dt1, however once Dt

is increased to Dt=0.51Dx2, the method becomes unstable in 400 iterations
(Fig. 1). If we increase Dt to Dt=3

4 Dx
2, the method becomes unstable in 20

iterations, and when Dt=Dx2, the instability has destroyed the solution
completely by 15 iterations (Fig. 2). The 6-stage, 5th order method is stable
as long as Dt [ Dx2. Figure 3 shows that for Dt=Dx2, the method is stable
even at final time t=0.010195, however, when the time step is raised to
Dt=1.15Dx2, the wiggles characteristic of instability are apparent at time
t=0.010146, or 90 iterations. As expected, the time step allowed doubled.

k=0.51

k=0.50

Y x 10-3

x-y
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 1. Forward-Euler applied to the test problem. In each case, Dt=k Dx2, where Dx= 1
101 .

When k [ 0.5 the method is stable. The numerical solution is shown for k=0.5 after 408 time
steps and for k=0.51 after 400 time steps (final time=0.020047).
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k=.75

k=1.0

numerical solution

x

-1.00

-0.80

-0.60

-0.40

-0.20

-0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 2. Forward-Euler applied to the test problem. Once again, Dt=k Dx2, where Dx= 1
101 .

The method becomes unstable after very few time steps. Results shown are for k=0.75 after
20 time steps and for k=1.0 after 15 time steps. The instability apparent in the k=0.75 case
is worsened in the k=1.0 case. We notice that the extent of instability in this example, for a
fixed final time, depends not on the number of time steps, but mainly on the size of Dt.

An interesting point which arised from the technique used in Sec. 3 is
that the time accuracy of the method is now important from the point of
view of the first few elements in the new vector y. Since the time dependent
boundary conditions or forcing is now not given explicitly, but by its dif-
ferential equation qt=Dq, the time-stepping method must also solve this
ODE. If the time stepping method is not of a high enough order, the
boundary conditions or forcing may not be resolved properly. In Fig. 4
we see the effect of numerically solving the ODE above on the term t4.
A method of fourth order or above will solve this exactly. We see that the
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k=1.15

k=1.0

numerical solution x 10-3

x
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

950.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 3. The 5th order, 6 stage SSP Runge–Kutta method with CFL number c=2 is applied
to the test problem. Once again, Dt=k Dx2, where Dx= 1

101 . The CFL of the SSP method
guarantees that this method will be stable with double the maximal allowed step-size for the
forward-Euler method. These results illustrate that the method is stable for Dt [ Dx2, and
becomes unstable shortly after. The two curves shown are the numerical solutions for k=1.00
after 104 time steps (final time=0.010195) and for k=1.15 after 90 time steps (final
time=0.010146). The instability is apparent in the k=1.15 case.

fifth order method (2) solves it exactly, but a first order method (1) does
not.

5. CONCLUDING REMARKS

While the development of SSP Runge–Kutta methods was primarily
geared toward nonlinear operators, the wide applicability of these methods

106 Gottlieb and Gottlieb



exact

first order

fifth order

 numerical solution x 10-12

-3x x 10

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

0.00 0.50 1.00 1.50 2.00 2.50

Fig. 4. The technique of Sec. 3 involves rewriting the forcing term 4t3 and the boundary
conditions t4 as the differential equation that governs them. This figure shows how t4 is
approximated by the fifth order method and the first order forward-Euler. As expected, the
fifth order method captures the curve exactly while the first order method does not.

have motivated us to consider SSP methods for linear, time invariant
operators. In [5] we presented a class of linear SSP Runge Kutta methods
with m stages and of order m, which had optimal CFL number c=1. Here
we present a class of first order m stage methods with CFL c=m, a class of
second order m stage methods with CFL c=m−1 and a class of m−1
order, m stage methods with CFL c=2. We show that these methods are
optimal, and that the optimal CFL for a Nth order m stage method is, at
most, c=m−N+1. Although these results are not,in general, extendable
to ODEs with time-dependent linear operators, we extend it to a special
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case of this class, which proves useful for linear PDEs with time dependent
forcing or boundary conditions.
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