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1. Introduction

We consider the distributed optimal control of the obstacle problem with control con-
straints

Minimize j(y) +
α

2
‖u‖2L2(Ω),

with respect to (y, u, ξ) ∈ H1
0 (Ω)× L2(Ω)×H−1(Ω),

such that A y = u− ξ + f,

0 ≥ y − ψ ⊥ ξ ≥ 0,

and ua ≤ u ≤ ub a.e. in Ω.

(P)

Here, the set Ω ⊂ Rn, n ≥ 1, is open and bounded. The objective consists of an
Fréchet-di�erentiable observation term j : H1

0 (Ω) → R of the state y and of an L2(Ω)-
regularization term with α > 0. The bounded linear operator A : H1

0 (Ω) → H−1(Ω) is
assumed to be coercive. The right-hand side f belongs to H−1(Ω). The control bounds
satisfy ua, ub ∈ H1(Ω). The obstacle ψ ∈ H1(Ω) satis�es ψ ≥ 0 on Γ in the sense that
min{ψ, 0} ∈ H1

0 (Ω). The complementarity condition

0 ≥ y − ψ ⊥ ξ ≥ 0

is to be understood in the dual pairing of H1
0 (Ω) and H−1(Ω), that is

y − ψ ≤ 0 a.e. in Ω, (1.1a)

〈ξ, v − y〉H−1(Ω),H1
0 (Ω) ≤ 0 for all v ∈ H1

0 (Ω) : v ≤ ψ a.e. in Ω. (1.1b)

Note that both statements ξ ≥ 0 and y − ψ ⊥ ξ are contained in (1.1b), see Propo-
sition 2.5. Since this complementarity condition is a constraint in (P), all constraint
quali�cations (CQs) of a certain strength, e.g., the CQ of Robinson-Zowe-Kurcyusz, see
Robinson [1976], Zowe and Kurcyusz [1979], are violated by (P). Hence, proving neces-
sary optimality conditions is di�cult and, as in the case of �nite-dimensional mathemat-
ical programs with complementarity constraints (MPCCs), there exists a wide variety of
stationarity concepts, see [Scheel and Scholtes, 2000, Sec. 2] for stationarity concepts in
�nite dimensions and, e.g., Mignot [1976], Mignot and Puel [1984], Barbu [1984], Hin-
termüller and Kopacka [2009], Outrata et al. [2011], Hintermüller et al. [2013], Herzog
et al. [2012, 2013], Schiela and Wachsmuth [2013] for stationarity conditions for MPCCs
in function space.

Among these conditions, the so called strong stationarity conditions are the strongest.
In �nite dimensions, strong stationarity conditions are necessary for optimality if the
MPCC satis�es the Guignard-CQ. The Guignard-CQ is in turn implied by MPCC-LICQ
(and by even weaker CQs) and hence usually satis�ed for MPCCs, see Flegel and Kanzow
[2005].

For optimal control problems involving in�nite dimensional complementarity systems,
however, strong stationarity has been proved so far only under rather restrictive condi-
tions, namely that the set of admissible controls Uad (or, strictly speaking, its tangent
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cone) has to be dense in the set of right-hand sides of the state equation (here: H−1(Ω)).
This condition excludes the case where control constraints are present (and active). For
the derivation of strong stationarity we refer to [Mignot, 1976, Thm. 5.2], see also Mignot
and Puel [1984], for the control of the obstacle problem with control in L2(Ω), [Outrata
et al., 2011, Thm. 6] for the case with controls in H−1(Ω), and to [Herzog et al., 2013,
Thm. 4.5] for an optimal-control problem arising in elasto-plasticity. Moreover, Mignot
[1976] was able to derive a strongly stationary system in the cases where the control-to-
state map is Fréchet di�erentiable, see [Mignot, 1976, p.161], or if the desired state yd
satis�es a certain condition rendering the objective convex, see [Mignot, 1976, p.166].

It has been a long-standing issue to prove or disprove the necessity of strong stationarity
also in the case of control constraints. Besides this, we remark that strong stationarity
is part of second order su�cient conditions (SSC), see [Kunisch and Wachsmuth, 2012,
Thm. 2.2]. These SSCs provide a quadratic growth condition, which is in turn essential
to prove discretization error estimates, see [Meyer and Thoma, 2013, Ass. 5.3, Thm. 5.7].

The main goal of this paper is to provide the necessity of strong stationarity under
less restrictive assumptions than previously known. We only require some moderate
regularity of the optimizer ū ∈ H1

0 (Ω) and a technical assumption (5.1) on the control
constraints. This assumption is satis�ed, e.g., if ua < 0 ≤ ub holds q.e. on Ω, see
Lemma 5.3. We refer to Section 2 for the notion of quasi-everywhere (q.e.). In particular,
we do not require regularity of the domain Ω or of any of the active sets. For the problem
under consideration, strong stationarity is de�ned in (1.3) after the introduction of some
notation.

Let us mention that the discussion of the state-constrained problem (5.8), which appears
as an auxiliary problem, is interesting in its own right. In dependence on the active
sets, there may be no interior point of the feasible set w.r.t. the topology of C(Ω̄). We
prove the existence of multipliers which belong to H−1(Ω). This space is di�erent from
the measure space M(Ω) = C0(Ω)′, which is typically expected for state-constrained
problems, see, e.g., Casas [1986]. A similar phenomenon was observed in Schiela [2009],
where the existence of an interior point, however, was assumed in a space more regular
than the state space.

Let us give a brief outline of the paper. In the remainder of the introduction, we �x
some notation and introduce the system of strong stationarity. Some basic results on
capacity theory are recalled in Section 2. In Section 3 we consider a linearization of (P),
which is used in Sections 4 and 5 to prove additional properties of a local minimizer ū
and to show that strong stationarity is a necessary condition, respectively. We present
two counterexamples in Section 6 demonstrating that strong stationarity may not hold
when the assumption ua < 0 ≤ ub is violated. In Appendix A, we give an explicit
characterization of the strictly active set Ãs, which di�ers from the usual de�nition of
As in the literature. Our de�nition of Ãs, see also Lemma 3.1, is more suited for our
analysis, since it allows for a quasi-every formulation (see Section 2 for the de�nition of
quasi-everywhere) of the cone K(ū), which occurs in the linearized state equation, see
(3.1).
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Notation

We de�ne the set of admissible controls

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. on Ω},

and the closed convex set

K := {y ∈ H1
0 (Ω) : y ≤ ψ a.e. on Ω}.

For a convex set M ⊂ Y in a normed space Y and y ∈ M we denote by TM (y) the
tangent cone of M at y, which is the closed conic hull of M − y. We use this notation
for the sets K ⊂ H1

0 (Ω) and Uad ⊂ L2(Ω).

For sets M ⊂ H1
0 (Ω) and N ⊂ H−1(Ω) we de�ne, as usual, the polar cones

M◦ := {f ∈ H−1(Ω) : 〈f, v〉H−1(Ω),H1
0 (Ω) ≤ 0 for all v ∈M},

N◦ := {v ∈ H1
0 (Ω) : 〈f, v〉H−1(Ω),H1

0 (Ω) ≤ 0 for all f ∈ N}.

Using this notation, the complementarity condition (1.1b) is equivalent to

ξ ∈ TK(y)◦. (1.2)

In Section 5 we work with a closed subspace V ⊂ H1
0 (Ω). For subsets M ⊂ V and

N ⊂ V ′ we de�ne the polars w.r.t. the V -V ′ duality. We make also use of the polar cone
of TUad(ū) w.r.t. the L2(Ω)-inner product which is denoted by

NUad(ū) =
{
v ∈ L2(Ω) :

∫
Ω
u v dx ≤ 0 for all u ∈ TUad(ū)

}
.

Finally, for ξ ∈ H−1(Ω), we de�ne the annihilator

ξ⊥ := {v ∈ H1
0 (Ω) : 〈ξ, v〉H−1(Ω),H1

0 (Ω) = 0}.

Strong stationarity

Using standard arguments, the existence of minimizers (ȳ, ū, ξ̄) of (P) can be shown
under additional assumptions (in particular, j has to be bounded from below and weakly
lower semicontinuous; and ua ≤ ub), see, e.g., [Mignot and Puel, 1984, Thm. 2.1].

Throughout the paper, we denote by (ȳ, ū, ξ̄) a local minimum of (P). We de�ne (up to
sets of zero capacity, see De�nition 2.1 for the notion of capacity) the active sets w.r.t.
the control constraints

Aa := {x ∈ Ω : ū(x) = ua(x)},
Ab := {x ∈ Ω : ū(x) = ub(x)},
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as well as the active set w.r.t. the constraint y − ψ ≤ 0 in the obstacle problem

A := {x ∈ Ω : 0 = ȳ(x)− ψ(x)}.

By modifying A (or, equivalently, ȳ) on a set of zero capacity if necessary, we may assume
that A is a Borel set, see Lemma 2.2. Note that the active sets Aa, Ab, A are quasi-closed,
see De�nition 2.1 for the notion of quasi-closeness.

We say that a feasible point (ȳ, ū, ξ̄) of (P) is strongly stationary, if there exist multipliers
(p, µ, ν) ∈ H1

0 (Ω)×H−1(Ω)× L2(Ω), such that the system of strong stationarity

A?p+ j′(ȳ) + µ = 0 in H−1(Ω), (1.3a)

α ū− p+ ν = 0 in L2(Ω), (1.3b)

−p ∈ TK(ȳ) ∩ ξ̄⊥, (1.3c)

µ ∈ (TK(ȳ) ∩ ξ̄⊥)◦, (1.3d)

ν ∈ NUad(ū) (1.3e)

is satis�ed. Here, A? : H1
0 (Ω) → H−1(Ω) is the adjoint operator of A. Note that (1.3)

is a generalization of the necessary conditions in the case without control constraints
[Mignot, 1976, Thm. 4.3], [Mignot and Puel, 1984, Thm. 2.2], which can be obtained by
setting Uad = L2(Ω) and hence ν = 0 in (1.3).

Using the representation (3.4) of the set TK(ȳ) ∩ ξ̄⊥, we can rewrite (1.3c) and (1.3d)
equivalently as

p ≥ 0 q.e. on B̃ and p = 0 q.e. on Ãs, (1.3c')

〈µ, v〉H−1,H1
0
≥ 0 for all v ∈ H1

0 (Ω) : v ≥ 0 q.e. on B̃ and v = 0 q.e. on Ãs. (1.3d')

The strongly active set Ãs and the biactive set B̃ = A\ Ãs are de�ned in Lemma 3.1, see
also Appendix A. We remark that (1.3c') and (1.3d') are falsely stated in many papers
as

p ≥ 0 a.e. on A \As and p = 0 a.e. on As, (1.3c�)

〈µ, v〉H−1,H1
0
≥ 0 for all v ∈ H1

0 (Ω) : v ≥ 0 a.e. on B and v = 0 a.e. on As, (1.3d�)

where As := {x ∈ Ω : ξ̄(x) > 0} for ξ̄ ∈ L2(Ω) and B := A \ As. The �rst condition is
weaker than (1.3c'), but the second one is stronger than (1.3d'). Moreover, it is easy to
construct an example with Uad = L2(Ω), where A is a set of measure zero, but non-zero
capacity. Then, (1.3d') is satis�ed by a solution, whereas (1.3d�) may not hold.

We do not denote the strictly (biactive) set by As (B) in order to remind the reader that
our de�nition of it di�ers from the usual de�nition in the literature.
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2. Basics about capacity theory

In this section, we will recall some basic results in capacity theory. First, we give the
de�nitions, see, e.g., [Attouch et al., 2006, Sec. 5.8.2], [Bonnans and Shapiro, 2000,
Def. 6.47], and [Delfour and Zolésio, 2001, Sec. 8.6.1].

De�nition 2.1. The capacity of a set A ⊂ Ω (w.r.t. H1
0 (Ω)) is de�ned as

cap(A) := inf
{
‖∇v‖2L2(Ω)n : v ∈ H1

0 (Ω), v ≥ 1 a.e. in a neighbourhood of A
}
. (2.1)

A function v : Ω→ R is called quasi-continuous if for all ε > 0, there exists an open set
Gε ⊂ Ω, such that cap(Gε) < ε and v is continuous on Ω \Gε.
A set O ⊂ Ω is called quasi-open if for all ε > 0, there exists an open set Gε ⊂ Ω, such
that cap(Gε) < ε and O ∪Gε is open.
Finally, D ⊂ Ω is called quasi-closed if Ω \D is quasi-open.

A set of zero capacity has measure zero, but the converse does not hold.

It is known, see [Delfour and Zolésio, 2001, Thm. 6.1], that every v ∈ H1(Ω) possesses a
quasi-continuous representative. This representative is uniquely determined up to sets of
zero capacity. When we speak about a function v ∈ H1(Ω), we always mean the quasi-
continuous representative. For every quasi-continuous function v, the set {x ∈ Ω : v(x) ≤
0} is quasi-closed, whereas {x ∈ Ω : v(x) > 0} is quasi-open. Every sequence which
converges in H1

0 (Ω) possesses a pointwise quasi-everywhere convergent subsequence, see
[Bonnans and Shapiro, 2000, Lem. 6.52].

The next lemma shows that quasi-open (and, similarly, quasi-closed) sets are �almost�
Borel sets. This result is classical, but it is not contained in any of the above references.
Hence, for the convenience of the reader, we state its proof.

Lemma 2.2. Let O ⊂ Ω be quasi-open. Then there exists a set M ⊂ Ω, cap(M) = 0,
such that O ∪M is a Borel set.

Proof. By de�nition, for all ε > 0, there exists an open set Gε ⊂ Ω, such that cap(Gε) ≤ ε
and O ∪Gε is open. Then, we have O ⊂

⋂
i∈N(O ∪G1/i) and

cap
([⋂

i∈N
O ∪G1/i

]
\O
)
≤ cap

([⋂
i∈N

G1/i

])
= 0,

by the monotonicity of the capacity, see [Bonnans and Shapiro, 2000, Lem. 6.48]. Hence,
O di�ers from the Borel set

⋂
i∈N(O ∪G1/i) only by a set M ⊂ Ω with cap(M) = 0.

We say that v ≥ 0 holds quasi-everywhere (q.e.) on O ⊂ Ω if

cap
(
{v < 0} ∩O

)
= 0.

6



Strong stationarity under control constraints Wachsmuth

The next lemma is essential for converting a.e.-statements into q.e.-statements. It is a
slight generalization of [Bonnans and Shapiro, 2000, Lem. 6.49].

Lemma 2.3. Let O ⊂ Ω be a quasi-open subset and v : Ω → R a quasi-continuous
function. Then, v ≥ 0 a.e. on O implies v ≥ 0 q.e. on O.

Proof. Let ε > 0 be given. Since O is quasi-open and v is quasi-continuous, there exist
open sets Gε, Hε such that v is continuous on Ω \Gε, O ∪Hε is open, and cap(Gε) ≤ ε,
cap(Hε) ≤ ε.
We set Uε = Gε ∪Hε. Using the continuity of v on Ω \ Uε, the set {v < 0} ∪ Uε is open.
Hence, the set ({v < 0} ∪ Uε) ∩ (O ∪ Uε) = ({v < 0} ∩O) ∪ Uε is open.
Let a function g ∈ H1

0 (Ω) with g ≥ 1 a.e. on Uε be given. Then, g ≥ 1 a.e. on ({v <
0} ∩O)∪Uε, since {v < 0} ∩O has measure zero. By the de�nition of the capacity, this
implies (note that both involved sets are open and hence neighborhoods of themselves)

cap
(
({v < 0} ∩O) ∪ Uε

)
≤ cap(Uε).

Using the monotonicity and subadditivity of the capacity, see [Bonnans and Shapiro,
2000, Lem. 6.48], we obtain

cap({v < 0} ∩O) ≤ cap
(
({v < 0} ∩O) ∪ Uε

)
≤ cap(Uε) ≤ 2 ε.

Since ε > 0 was arbitrary, we have

cap({v < 0} ∩O) = 0.

By applying this lemma to O = Ω, we �nd that v ≥ 0 a.e. (on Ω) is equivalent to v ≥ 0
q.e. (on Ω).

Finally, we recall some results on the relation between non-negative functionals inH−1(Ω)
and capacity theory, see [Bonnans and Shapiro, 2000, pp. 564�565].

Lemma 2.4. Let ξ ∈ H−1(Ω) be a non-negative functional (i.e. ξ takes non-negative
values on non-negative functions). Then, ξ can be identi�ed with a regular Borel measure
on Ω which is, in addition, �nite on compact sets. Moreover, for every Borel set D ⊂ Ω,
cap(D) = 0 implies ξ(D) = 0.

Finally, the quasi-continuous representative of every v ∈ H1
0 (Ω) is ξ-integrable and we

have

〈v, ξ〉H1
0 (Ω),H−1(Ω) =

∫
Ω
v dξ. (2.2)

Note that, in particular, v ≥ 0 q.e. implies v ≥ 0 ξ-a.e. for all non-negative ξ ∈ H−1(Ω).
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Now, we are able to give an expression for the normal cone of K at a point y ∈ K, see
also [Bonnans and Shapiro, 2000, Thm. 6.57] for the same result in the case ψ = 0.

Proposition 2.5. For y ∈ K we have

TK(y) = {v ∈ H1
0 (Ω) : v ≤ 0 q.e. on y = ψ},

TK(y)◦ = {ξ ∈ H−1(Ω) : ξ is non-negative and y − ψ = 0 ξ-a.e. on Ω.}

In particular, we have ξ({x ∈ Ω : y(x) < ψ(x)}) = 0 for ξ ∈ TK(y)◦.

Proof. The �rst identity is given in [Mignot, 1976, Lem. 3.2].

Let us prove the second identity.

�⊂�: Let ξ ∈ TK(y)◦ be given. We start by proving that ξ is non-negative. For w ∈ H1
0 (Ω)

with w ≥ 0 a.e. in Ω, we have vw := y − w ≤ ψ a.e. in Ω. This implies vw ∈ K and,
hence,

〈ξ, w〉H−1(Ω),H1
0 (Ω) = 〈ξ, y − vw〉H−1(Ω),H1

0 (Ω) ≥ 0 for all w ∈ H1
0 (Ω) : w ≥ 0 a.e. in Ω.

(2.3)

By y ∈ K, we have y−ψ ≤ 0 a.e. in Ω and Lemma 2.3 implies y−ψ ≤ 0 q.e. in Ω. After
modi�cation of y on a set of capacity zero, the sets {y = ψ}, {y < ψ} and {y > ψ} are
Borel sets, see Lemma 2.2. Now, Lemma 2.4 implies y − ψ ≤ 0 ξ-a.e. in Ω.

Now, let a smooth cut-o� function χ ∈ C∞0 (Ω) with 1 ≥ χ ≥ 0 and χ = 1 on some
compact C ⊂ Ω be given. By de�ning w := χψ + (1 − χ) y ≤ ψ we obtain w ∈ H1

0 (Ω)
and, in particular, w ∈ K. This yields

0 ≥ 〈ξ, w − y〉 =

∫
Ω
χψ + (1− χ) y − y dξ =

∫
Ω
χ (ψ − y) dξ.

Since χ ≥ 0 everywhere and ψ − y ≥ 0 ξ-a.e., we infer χ (y − ψ) = 0 ξ-a.e., and in
particular, y − ψ = 0 ξ-a.e. on C. Since Ω can be written as a countable union of
compact sets and since ξ is countable additive, we have y − ψ = 0 ξ-a.e. on Ω. Finally,

ξ({y < ψ}) ≤ ξ({y 6= ψ}) = 0.

�⊃�: Let ξ be non-negative with y − ψ = 0 ξ-a.e. on Ω, hence ξ({y 6= ψ}) = 0.

For arbitrary v ∈ TK(y) we obtain

〈v, ξ〉H1
0 (Ω),H−1(Ω) =

∫
Ω
v dξ =

∫
{y=ψ}

v dξ +

∫
{y 6=ψ}

v dξ ≤ 0

since ξ({y 6= ψ}) = 0 and v ≤ 0 q.e. on {y = ψ} implies v ≤ 0 ξ-a.e. on {y = ψ}.
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3. Linearization of the problem

We denote by S : H−1(Ω) → H1
0 (Ω), u 7→ y the solution operator of the variational

inequality (VI)

Find y ∈ K, such that 〈A y − u− f, v − y〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v ∈ K.

The unique solvability of this VI follows from [Kinderlehrer and Stampacchia, 1980,
Thm. II.2.1]. It is known, that for given (y, u), there exists ξ ∈ H−1(Ω) such that
(y, u, ξ) is feasible for (P) if and only if y = S(u) and u ∈ Uad.

Since the obstacle ψ ∈ H1(Ω) has a quasi-continuous representative, we can apply
[Mignot, 1976, Thm. 3.2] to infer the polyhedricity ofK. Hence, [Mignot, 1976, Thm. 2.1]
yields the directional di�erentiability of S. Using the Lipschitz continuity of S, we �nd
that S is even Hadamard-di�erentiable by [Shapiro, 1990, Prop. 3.5], see also [Bonnans
and Shapiro, 2000, Thm. 6.58] for a similar argument in the case ψ = 0. The derivative
S′(ū;h) in the direction h ∈ H−1(Ω) is the solution of the VI

Find yh ∈ K(ū), such that 〈A yh − h, v − yh〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v ∈ K(ū), (3.1)

where

K(ū) := TK(ȳ) ∩ ξ̄⊥ =
{
yh ∈ H1

0 (Ω) : yh ≤ 0 q.e. in A and 〈yh, ξ̄〉H1
0 ,H

−1 = 0
}
, (3.2)

see [Mignot, 1976, Lem. 3.2]. The VI (3.1) is equivalent to the complementarity system

A yh − h+ ξh = 0, (3.3a)

yh ∈ K(ū), (3.3b)

ξh ∈ K(ū)◦, (3.3c)

〈ξh, yh〉H−1(Ω),H1
0 (Ω) = 0. (3.3d)

The following lemma provides a useful characterization of the closed convex cone K(ū)
in terms of q.e.-(in)equalities.

Lemma 3.1. Let ū ∈ H−1(Ω) be given and denote ȳ = S(ū), ξ̄ = ū − A ȳ + f . Then,
there exists a set Ãs, such that Ãs ⊂ A and

K(ū) =
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. in A and v = 0 q.e. in Ãs
}

=
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. in B̃ and v = 0 q.e. in Ãs
}
,

(3.4)

where B̃ := A\Ãs is the biactive set. In particular, we could choose Ãs to be quasi-closed.
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Proof. Since ξ̄ is a non-negative functional on H1
0 (Ω), we identify it with a regular Borel

measure, see Lemma 2.4. Now, let v ∈ H1
0 (Ω) be given, satisfying v ≤ 0 q.e. on A.

Lemma 2.4 implies v ≤ 0 ξ̄-a.e. on A. Using (2.2), we have

〈v, ξ̄〉H1
0 (Ω),H−1(Ω) =

∫
Ω
v dξ̄ =

∫
A
v dξ̄,

since ξ̄(Ω \A) = 0, see Proposition 2.5. By using v ≤ 0 ξ̄-a.e. on A,

〈v, ξ̄〉H1
0 (Ω),H−1(Ω) =

∫
A
v dξ̄ = 0

is equivalent to v = 0 ξ̄-a.e. on A. Since ξ̄(Ω \A) = 0, this is in turn equivalent to v = 0
ξ̄-a.e. on Ω.

The above reasoning shows

K(ū) =
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. in A and v = 0 ξ̄-a.e.
}
, (3.5)

compare (3.2). Finally, [Stollmann, 1993, Thm. 1] implies the existence of a quasi-closed
set Ãs, such that{

v ∈ H1
0 (Ω) : v = 0 ξ̄-a.e.

}
=
{
v ∈ H1

0 (Ω) : v = 0 q.e. in Ãs
}
.

It remains to show Ãs ⊂ A. Since ȳ − ψ = 0 ξ̄-a.e., we have ȳ − ψ = 0 q.e. on Ãs, hence
cap(Ãs \A) = 0. Replacing Ãs by Ãs ∩A yields the claim.

Note that we give a more explicit characterization of the strictly active set Ãs in Ap-
pendix A, see in particular Lemma A.5. Moreover, we do not denote the strictly active
set by As in order to remind the reader that our de�nition of it di�ers from the usual
de�nition in the literature.

We consider the reduced formulation of (P)

Minimize j(S(u)) +
α

2
‖u‖2L2(Ω)

and u ∈ Uad.
(Pred)

Due to the continuity of S, (ȳ, ū, ξ̄) is a local solution of (P) if and only if ū is a local
solution of (Pred). The local optimality of ū for (Pred) and the Hadamard-di�erentiability
of S imply that h = 0 is a global solution of the �linearized� problem

Minimize j′(S(ū))S′(ū;h) + α (ū, h)L2(Ω)

such that h ∈ TUad(ū),
(Plin

red
)

where TUad(ū) ⊂ L2(Ω) is the tangent cone of Uad.

In the sequel, we will consider di�erent restrictions of this linearized problem in order to
prove properties of the minimizer ū, see Section 4, and to prove the strong stationarity
of ū in Section 5.

10
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4. Properties of local solutions

We are going to prove properties of a local minimizer ū by evaluating optimality condi-
tions of a certain restriction of (Plin

red
). From now on, we assume the additional regularity

ū ∈ H1
0 (Ω). This property can be shown by penalization arguments, see, e.g., Mignot and

Puel [1984], Schiela and Wachsmuth [2013], or by limiting variational calculus, see [Hin-
termüller et al., 2013, Rem. 1]. In order to keep the presentation simple, we just assume
this regularity, keeping in mind that it can be achieved under rather mild assumptions
on the data, in particular one uses ua, ub ∈ H1

0 (Ω).

We interpret L2(Ω) as an subspace of H−1(Ω) via the canonical embedding E : L2(Ω)→
H−1(Ω), h 7→ (v 7→

∫
Ω h v dx). Up to now we did not mention this embedding in favor

of a clearer presentation. In order to get sharper optimality conditions for (Plin

red
) we are

going to enlarge the feasible set. The closeness of the constraint set in H−1(Ω) in (4.1)
will be crucial for rewriting (4.5) into (4.6).

Lemma 4.1. The functional h = 0 ∈ H−1(Ω) is a global minimizer of

Minimize j′(S(ū))S′(ū;h) + α 〈ū, h〉H1
0 (Ω,H−1(Ω))

such that h ∈ ETUad(ū)
H−1(Ω)

.
(4.1)

Proof. By using the canonical embedding E : L2(Ω)→ H−1(Ω) in (Plin

red
), we obtain that

h = 0 ∈ H−1(Ω) is a global solution of

Minimize j′(S(ū))S′(ū;h) + α 〈ū, h〉H1
0 (Ω,H−1(Ω))

such that h ∈ ETUad(ū).
(4.2)

We proceed by contradiction and assume that 0 is not a global solution of (4.1). This

yields the existence of h ∈ ETUad(ū)
H−1(Ω)

with

j′(S(ū))S′(ū;h) + α 〈ū, h〉H1
0 (Ω,H−1(Ω)) < 0.

Since ETUad(ū) is dense in ETUad(ū)
H−1(Ω)

and since the objective in (4.1) is continuous
w.r.t. h ∈ H−1(Ω), this gives the existence of h̃ ∈ ETUad(ū) with

j′(S(ū))S′(ū; h̃) + α 〈ū, h̃〉H1
0 (Ω,H−1(Ω)) < 0.

This, however, is a contradiction to the fact that h = 0 is a global minimizer of (4.2).

Using the equivalent reformulation (3.3) of the linearized VI (3.1), the problem (4.1) can

11
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be written as

Minimize j′(S(ū)) yh + α 〈ū, h〉H1
0 (Ω),H−1(Ω)

with respect to (yh, h, ξh) ∈ H1
0 (Ω)×H1

0 (Ω)×H−1(Ω),

such that A yh − h+ ξh = 0,

yh ∈ K(ū),

ξh ∈ K(ū)◦,

〈yh, ξh〉H1
0 (Ω),H−1(Ω) = 0,

h ∈ ETUad(ū)
H−1(Ω)

.

(4.3)

Since h = 0 is a global minimizer of (4.1), (yh, h, ξh) = (0, 0, 0) is a global minimizer of
(4.3). Note that (4.3) still contains a complementarity constraint (as long as K(ū) is not
a subspace). By restricting yh to zero, we obtain that (h, ξh) = (0, 0) is a global solution
of the auxiliary problem

Minimize α 〈ū, h〉H1
0 (Ω),H−1(Ω)

with respect to (h, ξh) ∈ H−1(Ω)×H−1(Ω),

such that − h+ ξh = 0,

ξh ∈ K(ū)◦,

h ∈ ETUad(ū)
H−1(Ω)

.

(4.4)

Making use of the constraint h = ξh, h = 0 is a global solution of

Minimize α 〈ū, h〉H1
0 (Ω),H−1(Ω)

such that h ∈ K(ū)◦ ∩ ETUad(ū)
H−1(Ω)

.
(4.5)

The optimality condition reads (note that this requires no constraint quali�cation)

α ū ∈ −
[
K(ū)◦ ∩ ETUad(ū)

H−1(Ω)
]◦
,

where the polar cones are to be evaluated w.r.t. the H−1(Ω)-H1
0 (Ω) duality. By using

(K1 ∩K2)◦ = K◦1 +K◦2 for closed, convex cones K1,K2 in a re�exive Banach space, see,
e.g., [Bonnans and Shapiro, 2000, (2.32)], we obtain[

K(ū)◦ ∩ ETUad(ū)
H−1(Ω)

]◦
= K(ū) +

(
ETUad(ū)

H−1(Ω)
)◦H1

0 (Ω)

.

Since A◦ = (A )◦ holds for all sets A, we get

α ū ∈ −
[
K(ū)◦ ∩ ETUad(ū)

H−1(Ω)
]◦

= −K(ū) + (ETUad(ū))◦
H1

0 (Ω)
. (4.6)

It remains to evaluate the right-hand side.
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Lemma 4.2. The polar cone of ETUad(ū) w.r.t. the H−1(Ω)-H1
0 (Ω) duality is given by

(ETUad(ū))◦ =
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. on Aa, v ≥ 0 q.e. on Ab, and

v = 0 q.e. on Ω \ (Aa ∪Ab)
}
.

Proof. A simple calculation shows

(ETUad(ū))◦ =
{
v ∈ H1

0 (Ω) : 〈v, h〉H1
0 (Ω),H−1(Ω) ≤ 0 for all h ∈ ETUad(ū)

}
=
{
v ∈ H1

0 (Ω) :

∫
Ω
v u dx ≤ 0 for all u ∈ TUad(ū)

}
= {v ∈ H1

0 (Ω) : v ≤ 0 a.e. on Aa, v ≥ 0 a.e. on Ab, and

v = 0 a.e. on Ω \ (Aa ∪Ab)}.

Now, the inclusion �⊃� of the assertion follows easily, since v ≤ 0 q.e. on Aa implies
v ≤ 0 a.e. on Aa, and analogous arguments for the other conditions.

Let v ∈ (ETUad(ū))◦ be given. By the above calculation, we have v ≥ 0 a.e. on Ω \ Aa.
The set Ω \ Aa = {x ∈ Ω : ū(x) < ua(x)} is quasi-open. Using Lemma 2.3, we �nd that
v ≥ 0 a.e. on Ω \ Aa implies v ≥ 0 q.e. on Ω \ Aa and, in particular, v ≥ 0 q.e. on Ab.
Similarly, we obtain v ≤ 0 q.e. on Ω \ Ab ⊃ Aa and v = 0 q.e. on Ω \ (Aa ∪ Ab). This
shows the claim.

Now, we obtain the announced properties of the local minimizer ū. We recall the de�ni-
tion of the biactive set B̃ = A \ Ãs from Lemma 3.1.

Lemma 4.3. If ū belongs to H1
0 (Ω), we have the sign conditions

ū = 0 q.e. on Ãs ∩ [Ω \ (Aa ∪Ab)],
ū ≤ 0 q.e. on Ãs ∩Ab,
ū ≥ 0 q.e. on (Ãs ∩Aa) ∪ [B̃ ∩ (Ω \Ab)].

In particular, ub ≥ 0 q.e. on A and ua ≤ 0 q.e. on Ãs imply ū ≥ 0 q.e. on B̃ and ū = 0
q.e. on Ãs.

Proof. By using (4.6), there are sequences {v(i)
1 } ⊂ −K(ū) and {v(i)

2 } ⊂ −(ETUad(ū))◦,
such that

ū = lim
i→∞

(
v

(i)
1 + v

(i)
2

)
in H1

0 (Ω).

After passing to a subsequence, we have the pointwise convergence

ū = lim
i→∞

(
v

(i)
1 + v

(i)
2

)
q.e. in Ω, (4.7)

13
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see [Bonnans and Shapiro, 2000, Lem. 6.52]. By using Lemma 3.1 we know

v
(i)
1 ∈ −K(ū) =

{
v ∈ H1

0 (Ω) : v ≥ 0 q.e. in B̃ and v = 0 q.e. in Ãs
}

and by Lemma 4.2 we have

−v(i)
2 = −(ETUad(ū))◦ =

{
v ∈ H1

0 (Ω) : v ≥ 0 q.e. on Aa, v ≤ 0 q.e. on Ab, and

v = 0 q.e. on Ω \ (Aa ∪Ab)
}
.

That is, we have the following q.e. sign conditions:

on Ãs ∩ [Ω \ (Aa ∪Ab)] : v
(i)
1 = 0 and v

(i)
2 = 0,

on Ãs ∩Ab : v
(i)
1 = 0 and v

(i)
2 ≤ 0,

on Ãs ∩Aa : v
(i)
1 = 0 and v

(i)
2 ≥ 0,

on B̃ ∩ (Ω \Ab) : v
(i)
1 ≥ 0 and v

(i)
2 ≥ 0.

Together with (4.7), this gives the desired sign conditions of ū.

5. Strong stationarity

We use the results of the previous section together with the KKT-conditions of a re-
striction of (Plin

red
) in order to prove necessity of the strong stationarity system (1.3). In

addition to ū ∈ H1
0 (Ω), we assume

ub ≥ 0 q.e. in B̃, (5.1a)

cap
(
Aa ∩ B̃

)
= 0, (5.1b)

ū = 0 q.e. on Ãs. (5.1c)

We refer to Lemma 5.3 for a simple condition which implies that this assumption is
satis�ed.

We start by restating (Plin

red
) in a subspace of H1

0 (Ω). Therefore, we recall the character-
ization

K(ū) =
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. in B̃ and v = 0 q.e. in Ãs
}

from Lemma 3.1. We de�ne

V = {v ∈ H1
0 (Ω) : v = 0 q.e. in Ãs}. (5.2)

Note that the subspace V is closed, since sequences converging in H1
0 (Ω) contain a

pointwise quasi-everywhere convergent subsequence, see [Bonnans and Shapiro, 2000,
Lem. 6.52]. Since K(ū) is a subset of the closed subspace V , we can restate the VI
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(3.1) characterizing the derivative S′(ū;h) in the space V . To this end, we introduce the
canonical injection

I : V → H1
0 (Ω), v 7→ v. (5.3)

The action of its adjoint I? : H−1(Ω)→ V ′ is the restriction of the domain of a functional
from H1

0 (Ω) to V . Further, we introduce the bounded, linear operator

AV = I?A I : V → V ′,

which inherits the ellipticity from A, and the closed convex cone

KV (ū) =
{
v ∈ V : v ≤ 0 q.e. in B̃

}
.

Note that K(ū) = I KV (ū). Let us recall the VI (3.1) characterizing the derivative
S′(ū;h) of S in direction h ∈ H−1

Find yh ∈ K(ū), such that 〈A yh − h, v − yh〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v ∈ K(ū).

We de�ne S′V (ū;h) for h ∈ V ′ as the unique solution of

Find yh ∈ KV (ū), such that 〈AV yh − h, v − yh〉V ′,V ≥ 0 for all v ∈ KV (ū), (5.4)

see [Kinderlehrer and Stampacchia, 1980, Thm. II.2.1] for the unique solvability. An
immediate consequence is

S′(ū;h) = I S′V (ū; I?h)

for all h ∈ H−1(Ω). Using this equivalence and ū ∈ V by (5.1c), we obtain from (Plin

red
)

that h = 0 ∈ V ′ is a global solution of

Minimize j′(S(ū)) I S′V (ū;h) + α 〈ū, h〉V,V ′
such that h ∈ I?ETUad(ū).

(5.5)

Arguing similarly as in Lemma 4.1, we obtain that h = 0 ∈ V ′ is a global solution of

Minimize j′(S(ū)) I S′V (ū;h) + α 〈ū, h〉V,V ′

such that h ∈ I?ETUad(ū)
V ′
.

(5.6)

Similar to (3.3), we can rewrite the VI (5.4) as a complementarity system and obtain
that (yh, h, ξh) = (0, 0, 0) is a global solution of

Minimize j′(S(ū)) I yh + α 〈ū, h〉V,V ′
such that AV yh − h+ ξh = 0,

yh ∈ KV (ū),

ξh ∈ KV (ū)◦,

〈yh, ξh〉V,V ′ = 0,

h ∈ I?ETUad(ū)
V ′
.

(5.7)
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We restrict the slack variable ξh to 0. This enables us to drop the complementarity
condition. We obtain that (h, yh) = (0, 0) is a global solution of the auxiliary problem

Minimize j′(S(ū)) I yh + α 〈ū, h〉V,V ′
such that AV yh − h = 0,

yh ∈ KV (ū),

h ∈ I?ETUad(ū)
V ′
.

(5.8)

Due to this restriction of ξh, the optimality system (5.10) of the problem (5.8) will not
contain any information of p on B̃. However, this information can be recovered by the
gradient equation (5.10b) and the signs of ū from Lemma 4.3. Note that this relies
heavily on the fact that the control lives on the same domain as the constraint y ≤ ψ.

Lemma 5.1. The polar cone of I?ETUad(ū) ⊂ V ′ is given by

(I?ETUad(ū))◦ =
{
v ∈ V : v ≤ 0 q.e. on Aa, v ≥ 0 q.e. on Ab, and

v = 0 q.e. on Ω \ (Aa ∪Ab)
}
.

(5.9)

Proof. A simple calculation, see also [Aubin and Frankowska, 2009, Lem. 2.4.3], shows

(I?ETUad(ū))◦ = I−1(ETUad(ū))◦,

where the right-hand side denotes the preimage of (ETUad(ū))◦ w.r.t. the injection I :
V → H1

0 (Ω). Now, Lemma 4.2 yields the claim.

We show that the CQ of Robinson-Zowe-Kurcyusz is satis�ed at the solution (yh, h) =
(0, 0) of (5.8). Let an arbitrary µ ∈ V ′ be given. We have to show the existence of

yh ∈ KV (ū), h ∈ I?ETUad(ū)
V ′
, such that AV yh−h = µ. We set yh = S′V (ū, µ) ∈ KV (ū).

Then, there exists h ∈ −KV (ū)◦ such that

A yh − h = µ

and 〈yh, h〉V,V ′ = 0 (we do not use this condition) are satis�ed. Note that we have

(I?ETUad(ū))◦ ⊂ {v ∈ V : v ≤ 0 q.e. on Aa, v ≥ 0 q.e. on Ω \Aa}
⊂ {v ∈ V : v ≥ 0 q.e. on B̃} = −KV (ū)

by (5.1b) and the de�nition of KV (ū). Hence, h ∈ −KV (ū)◦ ⊂ (I?ETUad(ū))◦◦ =

I?ETUad(ū)
V ′
. This shows that the CQ of Robinson-Zowe-Kurcyusz is satis�ed by the

problem (5.8).
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Hence, there exists multipliers (p, µ̃, ν) ∈ V × V ′ × V satisfying the optimality system

A?V p+ I? j′(S(ū)) + µ̃ = 0 in V ′, (5.10a)

α ū− p+ ν = 0 in V, (5.10b)

µ̃ ∈ {y ∈ V : y ≤ 0 q.e. in B̃}◦, (5.10c)

ν ∈
(
I?ETUad(ū)

V ′)◦
= (I?ETUad(ū))◦. (5.10d)

Now we show that the system (1.3) is satis�ed, where µ ∈ H−1(Ω) is de�ned by

µ = −A?p− j′(S(ū)).

Due to this de�nition of µ, (1.3a) holds. The gradient equation (1.3b) follows from
(5.10b), since ū, p, and ν are zero on Ãs.

By de�nition of p, we have p = 0 q.e. on Ãs. By the gradient equation (5.10b), we obtain

p = α ū+ ν ≥ α ū ≥ 0 q.e. on B̃.

The �rst inequality follows from (5.1b) and (5.9), whereas the second one follows from
(5.1a) and Lemma 4.3. Hence, (1.3c') is satis�ed.

In order to show the sign condition (1.3d') on µ, let v ∈ H1
0 (Ω), v ≤ 0 q.e. on B̃ and

v = 0 q.e. on Ãs be given. Using v ∈ V , we obtain from the de�nition of µ and (5.10c)

〈µ, v〉H−1(Ω),H1
0 (Ω) = 〈−A?p− j′(S(ū)), v〉H−1(Ω),H1

0 (Ω)

= 〈−A?V p− I? j′(S(ū)), v〉V ′,V = 〈µ̃, v〉V ′,V ≤ 0.

This is the desired sign condition on µ.

Since V ⊂ L2(Ω), we have (the following inequalities are to be understood in the a.e.-
sense)

ν ∈ (I?ETUad(ū))◦

=
{
v ∈ V : v ≤ 0 on Aa, v ≥ 0 on Ab, and v = 0 on Ω \ (Aa ∪Ab)

}
⊂
{
v ∈ L2(Ω) : v ≤ 0 on Aa, v ≥ 0 on Ab, and v = 0 on Ω \ (Aa ∪Ab)

}
= NUad(ū),

which is the sign condition (1.3e) on ν.

Altogether, we have proven the following theorem.

Theorem 5.2. Let (ȳ, ū, ξ̄) ∈ H1
0 (Ω)×H1

0 (Ω)×H−1(Ω) be a local solution of (P), such
that (5.1) holds. Then, there exist multipliers (p, µ, ν) ∈ H1

0 (Ω)×H−1(Ω)×H1
0 (Ω), such

that the strong stationarity conditions (1.3) are satis�ed.
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Note that the uniqueness of multipliers does not simply follow from (1.3) (as in the case
without control constraints).

The arguments leading to Theorem 5.2 remain valid in the cases ua = −∞ or ub = +∞,
with the obvious modi�cations.

As announced, we remark that assumption (5.1) is implied by a simple assumption on
the control bounds, which can be checked a-priori.

Lemma 5.3. If the bounds ua, ub ∈ H1(Ω) ful�ll

ua < 0 ≤ ub q.e. in Ω, (5.11)

then (5.1) is satis�ed.

Note that we do not need to assume that ua is uniformly negative in (5.11).

Proof. It is clear that (5.1a) holds. Lemma 4.3 implies ū = 0 q.e. on Ãs, i.e. (5.1c), and
ū ≥ 0 q.e. on A. Hence, we have ū = 0 > ua q.e. on A. This shows (5.1b).

Finally, we give a remark on the condition (5.1c). By inspecting the calculation leading
to Theorem 5.2, we �nd that this assumption could be replaced by the following weaker
one: assume that

ũ =

{
0 on Ãs

ū on Ω \ Ãs
belongs to H1

0 (Ω). (5.12)

Moreover, we could drop the assumption ū = 0 on Ãs if we could discuss an auxiliary
problem similar to (5.8) directly in H−1(Ω) × H1

0 (Ω). However, we were not able to
provide a CQ for such an auxiliary problem.

6. Counterexamples

In this section we present two counterexamples, which show that strong stationarity may
not hold if ua < 0 or ub ≥ 0 are violated. Note that we do not have a counterexample if
ū = 0 on Ãs is violated. In both examples, the domain is Ω = (0, 1) and A = −∆, i.e.,
A y = −y′′.
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6.1. The lower bound is zero and active

This counterexample, which was constructed by the author, can already be found in
Schiela and Wachsmuth [2013]. We consider

Minimize
1

2
‖y + 1‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

such that A y = u− ξ,
0 ≥ y ⊥ ξ ≥ 0,

and u ≥ 0.

For all feasible u, the solution of the complementarity system is (y, ξ) = (0, u). Hence,
the unique global solution of this problem is (ȳ, ū, ξ̄) = (0, 0, 0). Using A = Aa = Ω and
Ãs = ∅, the system of strong stationarity (1.3) reads

A p+ 1 + µ = 0 in H−1(Ω),

−p+ ν = 0 a.e. in Ω,

p ≥ 0 q.e. in Ω,

〈µ, v〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v ∈ H1

0 (Ω), v ≥ 0 q.e. in Ω,

ν ≤ 0 a.e. in Ω.

This directly implies p = ν = 0 and µ = −1, which is a contradiction.

6.2. The upper bound is negative

We consider

Minimize
1

2
‖y + 1‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

such that A y = u− ξ + 1,

0 ≥ y ⊥ ξ ≥ 0,

and u ≤ −1.

Since u−ξ+1 ≤ 0 for all admissible controls u and all multipliers ξ ≥ 0, 0 ≥ y is satis�ed
trivially by the maximum principle. Since ξ is unique, ξ = 0 follows for all admissible u.
Hence, the problem is equivalent to the control constrained problem

Minimize
1

2
‖y + 1‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

such that A y = u+ 1,

and u ≤ −1.

In the case α ≥ 1/8, (ȳ, ū) = (0,−1) is the unique global solution (this can be proven
by checking the �rst order necessary and su�cient conditions) and hence the solution of
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the original problem. Then, we have A = Ab = Ω and Ãs = ∅. However, there are no
multipliers p, µ, ν, such that the strong stationarity system (1.3)

A p+ 1 + µ = 0 in H−1(Ω),

α ū− p+ ν = 0 a.e. in Ω,

p ≥ 0 q.e. in Ω,

〈µ, v〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v ∈ H1

0 (Ω), v ≥ 0 q.e. in Ω,

ν ≥ 0 a.e. in Ω

is satis�ed, since if p satis�es the �rst equation with some µ ≥ 0, we have p < 0 by the
maximum principle.

A. Discussion of the strictly active set

The aim of this section is to show that the strictly active set Ãs de�ned in Lemma 3.1
can chosen to be the �ne support (to be de�ned, see Lemma A.4) of ξ̄, in contrast to the
implicit de�nition in the proof of Lemma 3.1.

In order to use some results from the literature, we have to de�ne a capacity for arbitrary
sets A ⊂ Rn by

capRn(A) = inf
{
‖(v,∇v)‖2L2(Rn)n+1 : v ∈ H1(Rn), v ≥ 1 a.e. in a neighbourhood of A

}
,

compare [Heinonen et al., 1993, Sec. 2.35]. Note that there are two di�erences to Def-
inition 2.1: H1

0 (Ω) is replaced by H1(Rn) and we use a di�erent norm. Following the
proof of [Attouch et al., 2006, Prop.5.8.3 (a)], we �nd that this de�nition is equivalent
to [Adams and Hedberg, 1996, Def. 2.2.1�2.2.4].

For sets A ⊂ Ω, capRn(A) can be estimated from above by cap(A):

Lemma A.1. There exists a constant C > 0, such that

capRn(A) ≤ C cap(A) (A.1)

holds for all A ⊂ Ω.

Proof. Let a function v ∈ H1
0 (Ω) satisfying v ≥ 1 in a neighbourhood of A be given.

Then, v ∈ H1(Rn) and

‖(v,∇v)‖2L2(Rn)n+1 ≤ C ‖∇v‖2L2(Ω)n

for some C > 0 by Poincaré's inequality. Taking the in�mum over all such v, we obtain

inf
{
‖(v,∇v)‖2L2(Rn)n+1 : v ∈ H1

0 (Ω), v ≥ 1 a.e. in a neighbourhood of A
}
≤ C cap(A).

This implies the claim.
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Note that the reverse estimate to (A.1) does not hold in the general case, in particular
we have cap(Ω) = ∞, but capRn(Ω) < ∞. However, we have the following important
lemma.

Lemma A.2 ([Heinonen et al., 1993, Lem. 2.9, Cor. 2.39]). For a set A ⊂ Ω, we have

cap(A) = 0 ⇐⇒ capRn(A) = 0. (A.2)

Finally, we need the concept of the so-called �ne topology in Rn, which is closely related
to the notion of capacities. The �ne topology is de�ned as the coarsest topology such
that all sub-harmonic functions are continuous. We refer to [Adams and Hedberg, 1996,
Def. 6.4.1] or [Heinonen et al., 1993, Chap. 12] for more details. For our purposes it is
enough to know that the �ne topology possesses the following properties.

• The �ne topology is �ner than the usual topology on Rn.
• Every capRn-quasi-open set O (de�ned similarly to De�nition 2.1) is equivalent to
a �nely open set Õ, in the sense that capRn

(
(O \ Õ) ∪ (Õ \O)

)
= 0, and every

�nely open set is capRn-quasi-open, see [Adams and Hedberg, 1996, Prop. 6.4.12,
6.4.13].

• The �ne topology has the quasi-Lindelöf property, i.e., for every family {Aα} of
�nely open sets, there exists a countable subfamily {Aαi}i∈N, such that

capRn

(⋃
α

Aα \
⋃
i∈N

Aαi

)
= 0,

see [Adams and Hedberg, 1996, Rem. 6.5.11].

The induced topology on Ω is also called the �ne topology. Since Ω is open, it is �nely
open. Therefore, a set A ⊂ Ω is �nely open in Rn if and only if it is �nely open in Ω.

Now, we are going to de�ne the support w.r.t. the �ne topology of a non-negative ξ ∈
H−1(Ω), which is identi�ed with a Borel measure by Lemma 2.4. To this end, we have to
extend the Borel measure ξ to �nely open sets. This requires the de�nition of a σ-algebra
which contains the �nely open sets.

Let us remark that every �nely open set O ⊂ Ω is a Borel set up to a set of zero capacity,
compare also Lemma 2.2: since O is capRn-quasi-open, there exists, for any ε > 0, an
open set Gε such that capRn(Gε) ≤ ε and O∪Gε is open. Since Ω is open, we can assume
that Gε ⊂ Ω. Then, we have O ⊂

⋂
i∈N(O ∪G1/i) and

capRn

([⋂
i∈N

O ∪G1/i

]
\O
)
≤ capRn

([⋂
i∈N

G1/i

])
= 0.

Hence, O di�ers from the Borel set
⋂
i∈N(O∪G1/i) by a set M ⊂ Ω with capRn(M) = 0.

By (A.2) we have cap(M) = 0.

This motivates the following de�nition.

21



Strong stationarity under control constraints Wachsmuth

De�nition A.3. We de�ne the set

C = {G ∪H ⊂ Ω : G is a Borel set and cap(H) = 0}.

Then, C is a σ-algebra and it contains the �nely open sets and all Borel sets.

Proof. We have to prove that C is a σ-algebra. It is easy to see that C is closed under
countable unions, since the countable union of sets of zero capacity still has zero capacity.
In order to show that C is closed under countable intersections, we remark that⋂

i∈N
Gi ⊂

⋂
i∈N

(Gi ∪Hi) ⊂
(⋂
i∈N

Gi

)
∪
(⋃
i∈N

Hi

)
.

Hence, for {Gi ∪Hi} ⊂ C, the intersection di�ers from the Borel set
⋂
i∈NGi only by a

set of zero capacity.

In the following, we simply say �G∪H ∈ C�, instead of �G ⊂ Ω is a Borel set and H ⊂ Ω
has zero capacity�.

Now, let ξ ∈ H−1(Ω) be a non-negative functional, which is identi�ed with a Borel
measure, see Lemma 2.4. Since ξ(A) = 0 for Borel sets A with cap(A) = 0, we can
extend ξ to C in a well-de�ned way by letting

ξ(G ∪H) = ξ(G) for all G ∪H ∈ C. (A.3)

It is easy to show that ξ is additive on C. Moreover, for all {Gi ∪Hi} ⊂ C we have

ξ
(⋃
i∈N

(Gi ∪Hi)
)

= ξ
(⋃
i∈N

Gi ∪
⋃
i∈N

Hi

)
= ξ
(⋃
i∈N

Gi

)
≤
∑
i∈N

ξ(Gi) =
∑
i∈N

ξ(Gi ∪Hi).

Hence, ξ is countably subadditive on C.
Now, we are in the position to de�ne the �ne support of ξ.

Lemma A.4. Let ξ ∈ H−1(Ω) be a non-negative functional. There exists a largest �nely
open set M ⊂ Ω with ξ(M) = 0. Its complement Ω \M is called the �ne support of ξ
and is denoted by f-supp(ξ).

Proof. Let {Aα} be the family of �nely open sets in Ω, whose ξ-measure is zero. Let
{Aαi}i∈N be a subfamily given by the quasi-Lindelöf property. We de�ne

M =
⋃
α

Aα, M̃ =
⋃
i∈N

Aαi , O = M \ M̃.

By the de�nition of {Aαi}, we have capRn(O) = 0 and O ⊂ Ω. Hence, cap(O) = 0 by
Lemma A.2. By de�nition (A.3) of ξ, this gives ξ(O) = 0. Using that ξ is countably
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additive, we have

ξ(M) = ξ(M̃ ∪O) = ξ(M̃) ≤
∑
i∈N

ξ(Aαi) = 0.

This shows that M is the desired �nely open set.

With these tools at hand, we can prove a re�nement of Lemma 3.1.

Lemma A.5. Let ξ ∈ H−1(Ω) be a non-negative functional. Then, we have

{v ∈ H1
0 (Ω) : v = 0 ξ-a.e.} = {v ∈ H1

0 (Ω) : v = 0 q.e. on f-supp(ξ)}.

In particular, we have

K(ū) = TK(ȳ) ∩ ξ̄⊥ =
{
v ∈ H1

0 (Ω) : v ≤ 0 q.e. in A and v = 0 q.e. in Ãs
}
,

where Ãs = f-supp(ξ̄).

Proof. We only have to prove the �rst identity. The second one follows together with
(3.5).

�⊂�: Let v ∈ H1
0 (Ω), v = 0 ξ-a.e. be given. The set O = {x ∈ Ω : v 6= 0} is quasi-open,

hence, capRn-quasi-open by (A.1). Therefore, there exists a �nely open set F which
di�ers by O only with capacity zero. Thus, ξ(O) = ξ(F ) and ξ(O) = 0 by assumption.
Hence, F ⊂ Ω \ f-supp(ξ) and consequently, cap(O ∩ f-supp(ξ)) = 0.

�⊃�: Let v ∈ H1
0 (Ω), v = 0 q.e. on f-supp(ξ) be given. We de�ne the set O = {x ∈ Ω : v 6=

0}. By assumption we have cap(O ∩ f-supp(ξ)) = 0. This implies ξ(O ∩ f-supp(ξ)) = 0
and hence ξ(O) = 0 by ξ(Ω \ f-supp(ξ)) = 0.

Note that the support of ξ (de�ned similarly by using the usual topology of Rn on Ω),
is larger than the �ne support of ξ (since every open set is �nely open). Hence, we may
not replace the �ne support by the support of ξ in Lemma A.5.
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