Y. Math. Soc. Japan
Vol. 37, No. 1, 1985

Strong topological transitivity and C*-dynamical systems

By Ola BRATTELI, George A. ELLIOTT
and Derek W. ROBINSON

(Received Feb. 13, 1984)

0. Introduction.

Let T denote the action of a group H as homeomorphisms of a topological
space X; then (X, H, T) is said to be topologically transitive if for each pair of
non-empty open sets A, BS X there exists an h=H such that ANT(B)+ @ (see,
for example, Chapter 5). Following [10], we define the C*-dynamical sys-
tem (A, H, ) to be topologically transitive if for each pair of non-zero elements
x, vy there exists an heH such that xz,(y)=0.

The algebraic definition is particularly natural if .4 is abelian. In this case
7 determines an action ¢’ of H as homeomorphisms of the spectrum X of A such
that (zpx)w)=x(t}-w), for x4 and ws X, and (A, H, 7) is topologically transi-
tive if and only if (X, H, z’) is topologically transitive.

In the definition is given in a slightly different form. These authors
require that the product A, A, of each pair of non-zero z-invariant hereditary
C*-subalgebras A,, A, S A is non-zero. This obviously follows from our definition
but conversely if there exist non-zero x, yeJ such that xz,(y)=0 for all heH
then the product 4,4, of the z-invariant hereditary C*-subalgebras ; and i,
generated by {r,(x)*JAzn(x); heH} and {zn(y)Azn(y)*; heH} must be zero.

Although the foregoing definition of transitivity is quite natural there is a
seemingly stronger notion which appears to be more useful. The C*-dynamical
system (A, H, 7) is defined to be strongly topologically transitive if for each
finite sequence {(x;, y:); i=1, 2, ---, n} of pairs of elements x;, y;=4 for which

El X ®yz:l&0 .
in the algebraic tensor product A&, there exists an A=H such that

iZZ)l xTa(y)#0

in A

Clearly strong topological transitivity implies topological transitivity ; it suffices
to apply the strong condition to a single pair (x, y). In Section 1 we show that
the two properties are equivalent if A is abelian or finite-dimensional. We also
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show that strong topological transitivity follows from other ergodicity properties,
but we do not know if strong topological transitivity is strictly stronger than
topological transitivity.

In Section 2 we analyze the structure of the action a of a compact group G
on a strongly transitive C*-system (A4, H, ) under the assumption that a and 7
commute. More specifically, we show that {a,; g=G} consists of those auto-
morphisms 8 of 4 which commute with ¢ and which reduce to the identity on
the fixed point algebra A* of @. Then in Section 3 we examine the infinitesimal
structure of (G, a). In particular we show that if ¢ is a closed symmetric deri-
vation from the G-finite elements Az into A then ¢ generates a one-parameter
subgroup of a if, and only if, § commutes with z and & is zero on the fixed
points of . Finally in Section 4 we make some remarks about the generation
problem for dissipations. This analysis extends results recently obtained by
Kishimoto and Robinson [9], Longo and Peligrad [10], and Robinson, Stgrmer
and Takesaki [11]; see also [1], [2], [3], and for earlier results of a

similar nature.

1. Topological transitivity.

In this section we analyze some basic properties of transitivity and strong
transitivity as defined in the introduction. First we show that these properties
are invariant under the adjunction of an identity.

Let (A, H, z) be a C*-dynamical system. If .4 does not contain an identity
one can adjoin such an element 1 by a canonical procedure and then extend
(H, 7) to A=A4+4C1 by setting Tn(x+A1)=1,(x)+ 2L

LEMMA 1.1. Let (A, H, 7) be a C*-dynamical system without identity and
(A, H, #) the system obtained by adjoining an identity. The following pairs of
conditions are equivalent :

1. (1s.) (A, H, ©) is (strongly) topologically transitive;

2. (2s.) (A, H, %) is (strongly) topologically transitive.

PrROOF. 1s=2s. Identify A with its universal representation. This gives a
faithful representation of 4, and the tensor product Hilbert space gives a rep-
resentation of AR A. Assume

n
219?1'@571'7&0
£

for some %;, §;=A. Let (e,) be an approximate identity of 4. Then e,#R7e,
converges weakly to ¥®7 for all %, ¥ 4. Thus for some « sufficiently large,

(]
1%21 ga£i®j’-iea$0

in A&QA. Hence there exists h=H such that
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Qa(ig)l fifh(f’i))fn(é’a)z E} eaXitn(Fiea)#0
by Condition 1s. But this implies
lefifn(ft)?eoy

so Condition 2s is fulfilled. 2s=1s. This is evident from the embedding of
(A, H,7)in (J, H, ¥). 12. This follows from the above with n=1.

is useful because it means that one can usually assume that A
has an identity in the discussion of tramsitivity. ‘

Next note that the use of two elements in the definition of topological tran-
sitivity is not particularly significant. In fact by iteration one readily sees that
(A, H, 7) is topologically transitive if, and only if, for each sequence x,, xs, -+, X,
of non-zero elements of A there exist iy, h,, -+, hpy&H such that

Tay(X1)Thy(x2) - Ta (X)) #0.

A similar conclusion is true for strong topological transitivity.

PROPOSITION 1.2. The following conditions are equivalent :

1. The C*-dynamical system (A, H, 7) is strongly topologically transitive.

2. For each family of finite sequences {x{*, -, x{®; i=1, ---, n} of elements
of A satisfying

k2
5 1P @rP@-Qx" 0,

in the k-fold algebraic tensor product Q*A, there exist hy, hs, -+, hyEH
such that

n
iz_llfnl(ﬂ")fnz(x{-”) oo Tp (xfF)#0.

PrOOF. 1=2, We argue by induction. Assume Condition 2 is valid for
2=<k<N. Now consider x{” such that

ki
3 KPR - @aih20.

By making a linear rearrangement, if necessary, one can express the relation in
the form

2 3RV 40,

where the y{V are linearly independent and the Y; are elements of @Y !4 which
can be written as

ki3
V=2 y7 @@y,

But we can also assume that ¥,#0. Therefore by the induction hypothesis there
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exist h,, ks, -+, hy=H such that

m
;gl Thy VPV Th (V7)) o Ta (¥ () #0.
Consequently

P Eyé”@rnz(yé?)fna(y{?’ < Thy(0i7)#0,

because the y{¥ are linearly independent. Hence by Condition 1 there exists an
h,=H such that

3 300, o Tay (90
and by rearrangement this gives the conclusion
n
2 Ta (X E)Ta (2P - 7 (2§¥) 0.
i=1

Thus the induction hypothesis is valid for £#=N. 2= 1. This is evident.
Although strong topological transitivity appears to be a strictly stronger

property than topological transitivity we do not know of any example in which

this is established. In fact in many situations the two properties are equivalent.

THEOREM 1.3. Let (A, H, 7) be a C*-dynamical system with A abelian. The
following conditions are equivalent :

1. (A, H, ) is topologically transitive;

2. (4, H, 7) is strongly topologically transitive;

3. swpllxma(i=lxl-Iyl,  x yed;

Elxlsn@ @
and all k=2, where |- |, denotes the unique C*-norm on the tensor product
algebra Q*A.

PrROOF. Clearly 4=3=1 and 4=2=1. Hence it suffices to prove that 1=4,

But for this we can, by [Cemma 1.1, assume that 4 has an identity.

The proof of 1=4 is almost identical to the proof of Proposition 2.1 of [9].

First for h=(h,, hs, ==+, hp)=H* one defines a linear map T, from ®*A into

JA by

4,

7
2 Tn (x{) - Ta (2{P)

i=1

k hl,---,hkeH

‘ for all xPeh

Z n
Ta(3) 100 - @xi0)= S e (60 - 1 ().
t=1 i=1

It then follows that
a=@*A— |ally=sup [|Tsal
hemk

defines a seminorm on ®*A. But since T,a*=(Tsa)*, Traa*=(T,a)(T,a)*, and
Trab=(Ta)Tb), one readily concludes that |||, is a C*-seminorm. By the
form of topological transitivity stated immediately before Proposition 1.2, for any
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elementary tensor a=a,&% - Ra,=®* A there exists heH* such that T,a+0,
whence [lal|;#0. Hence by Lemma 2.3 of [9] the |||, are in fact C*-norms.

The next result establishes the equivalence of the two notions of transitivity
for matrix algebras.

THEOREM 1.4. Let (A, H, 7) be a C*-dynamical system with A finite-dimen-
sional. The following conditions are equivalent:

1.  is ergodic, i.e. A"=C1 where A® denotes the fixed point algebra of t;

2. (A, H, 7) is topologically transitive;

3. (A, H, 7) is strongly topologically transitive.

Proor. 2=1. If Condition 1 is false there must exist two non-zero orthog-
onal projections x, yeA°. Hence x7,(y)=xy=0 for all heH, and Condition 2
is false. 1=3. Assume x; y;=. are such that

_‘éx@yiiO
but

ié Xi'u'h(yi)=0

for all A= H. By linear rearrangement, if necessary, one may assume the x;
are linearly independent and y,=#0. But it follows from Condition 1 that

Sdh (¥ y¥)=0(y:yH1

where @ is the unique normalized r-invariant trace on 4, and the integral is
over the compact closure of H in AutA. Therefore

0={an( B xmatyon)= £ xirert).

Since y,#0 one has w(y;y¥)>0 and one concludes that the x; are linearly de-
pendent, which is a contradiction. Thus Condition 3 must be valid. 3=2.
This is evident.

REMARK. For finite-dimensional 4 there are no analogues of Properties 3
and 4 of for topological transitivity. In fact if A=»M, (the algebra
of 2X2 matrices) and 7 is an ergodic action of a finite group then there exist
projections p, ¢ such that

sup Ipral@l <1.

The above arguments establish two criteria for strong topological transitivity,
both of which require the existence of a certain kind of ergodic state.

THEOREM 1.5. Let (4, H, 7) be a C*-dynamical system for which there exists
a t-ergodic separating state w, i.e. @ Is t-invariant and the cyclic covariant rep-
resentation (K., To, Us, Qo) associated with w satisfies
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1. 2, is the unique U,(H) invariant vector in 9o,
2. m, is faithful and 82, is separating for mw,(A)".

It follows that (A, H, t) is strongly topologically transitive.
PROOF. Again assume that

éﬂ@yﬁko
but
Elxﬂ'h(%):o
for all heH, where the x; are linearly independent and y,;#0. Therefore
Elrrw(xi)rrw(rn(yiyi‘))=0

for all A=H. Now it follows from the theory of z-invariant states (see, for
example, [5] Chapter IV, and in particular Theorem 4.3.23) that

3 mulxdw(3:yH)=0.

But since {2, is separating for z,(A4)” and =, is faithful one concludes that
glxiw(yxyi")=0

and w(y,y¥)>0. Thus the x; are linearly dependent, which is a contradiction.

COROLLARY 1.6. Let (A, H, ) be a C*-dynamical system with H compact.
The following conditions are equivalent:

1. © is ergodic;

2. t is topologically transitive;

3. 7 is strongly topologically transitive.

ProOF. 3=2=1 is evident. 1=3. Since ¢ is ergodic there is a unique
z-invariant state o over A given by

w(x)leHdh alx).

But  is a trace by and hence £, is separating for z,(A)”. Thus Condi-
tion 3 follows from [l'heorem 1.9 '

THEOREM 1.7. Let (A, H, ) be a C*-dynamical system. Assume there exists
a t-ergodic state ® such that the corresponding represeniation (K, T £24) 28
faithful. Moreover assume that (A, H, t) is asymptotically abelian in the sense

inf 2 lzu(Crals), y:)dill=0

for all finite sequences of elements x;, ;€A and vectors ¢, H,. It follows that
(A, H, 7) is strongly topologically transitive and furthermore
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sup [xea(nI=lxl 1ok, % yet.

PROOF. Again assume

3

. x:y:#0,

.
[l

with the x; linearly independent and y,+#0, but

;Elxzrn(yi)zo
for all heH. Then

3 mulen@xiealyiytz)=0

for all heH and ze. 4. Therefore by taking a limit over a suitable net of
convex combinations over / one concludes that

é‘i T(x)o(zy; y¥z*)=0.

This again follows from the general theory of r-invariant states as described in
Section 4.3 of [5] together with our choice of the asymptotic abelianness condi-
tion. Now since =z, is faithful, z can be chosen such that w(zy,y¥z*)>0. Hence
the x; must be linearly dependent, which is a contradiction. Consequently
(A, H, ) is strongly topologically transitive.

The last statement of the theorem follows by an argument given in [9].
One has

w((azn(B)*(xealy)*(xealyNarabl)=sup il xzaly)i*e((azn(b)*(aza(b))) -

It then follows from the conditions of asymptotic abelianness and ergodicity of
@ that
o(a*x*xa)w(b*y* yb)Ssup lxza(¥)*w(a* a)w(b*b) .

Since r, is faithful it follows that
lxi*lyl*=sup lxea(p)i* =121 y1®

which gives the desired conclusion,

The property of strong topological transitivity can also be expressed in terms
of norms on tensor products, e.g., the system (A4, H, 7) is strongly topologically
transitive if, and only if,

ki3
H E x'(:l)®x£2)® ®xék)

= sup

7
= s B e e x) e o (18]

=1

defines a norm on ®*A for all £=2. This rephrasing follows directly from the
original definition for =2 and from [Proposition 1.2 for higher .. Unfortunately
these norms are not necessarily C*-norms, although this is the case if A4 is
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abelian by [Theorem 1.3. For example all C*-norms on AQ satisfy the cross-
norm property

lx@yll=[lxl-Iyl.

But the norm | -i|, has this property if, and only if,
(*) sup [[xza(W)il=lxll-i»l.
h&eH

We have, however, already given an example where property (x) fails (see the
remark after [Theorem 1.4). Thus () is a necessary condition for the |-]|; to
be C*-norms. It is also sufficient to guarantee the more general cross-norm
property

[a@bll evi=Ial.lbl

for a= 4, and b=, This follows by the argument used in the proof of Prop-
osition 2.1 of [9]. It would be of interest to obtain necessary and sufficient
conditions on (A, H, z) for the |||, to be C*-norms. It would also be of interest
to compare the ||-|» and the similar norms defined for norm asymptotically abelian
systems in [9]. These latter norms are defined as above except the supremum
is replaced by a limit supremum, and Proposition 2.1 of [9] establishes conditions
under which the C*-norm property is valid.

2. Topoloegical transitivity and compact actions.

Next we consider a strongly topologically transitive C*-system (A4, H, ) and
also an action @ of a compact group G on JA. We assume a commutes with 7
and our aim is to analyze the structure of (G, a).

THEOREM 2.1. Let (A, H, ©) be a strongly topologically transitive C*-dynam-
ical system and a a (faithful) continuous action of a compact group G as =-auto-
morphisms of A such that [a, t]=0. If B is a x-automorphism of A such that
[B, ]1=0 and B(x)=x for all x=J*, the fixed point algebra of a, then Bf=a,
for some g<=G.

REMARK. This theorem is a direct generalization of Theorem 1.1 of [11].
If 4 is a von Neumann algebra, the theorem remains true if strong topological

transitivity is replaced by ergodicity ([12]; see also [1], [2], [3].

If G is abelian, one may also replace strong topological transitivity by
topological transitivity ([107], [Theorem 3 1).

ProOF. Let iy denote the set of G-finite elements in 4, i.e. the linear
span of the spectral subspaces

e @)={|dg Trwaso; xe)
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corresponding to the irreducible representations U of G. Alternatively, Az is
characterized as the set of x4 such that the linear span of {a,(x); g=G} is
finite-dimensional. We note that iz is a dense *-subalgebra of 4 and if VE A4
is a finite-dimensional a-invariant subspace then V< 4z

Next for each h=H let T, denote the linear map from A& into A defined by

Tn( 271] xi®yi)= i x:Talyi)
1=1 i=1
It follows immediately from [e, 7]=0 that

Tla,Ray)=a, T,

for all g=G, and similarly since [, 7]=0,

Tw(B8)=8Th .

Now let V be a finite-dimensional a-invariant subspace of A and introduce the
finite-dimensional subspace W=V 3(V). It follows from strong topological tran-
sitivity that there is a finite subset Hy of H such that the map

D T WRIW—> D A
nEH

hEHW
is injective.
OBSERVATION 1. If x, yEAr and @, S A* then

[ de B (=] _de FaTmplacsy).

PrOOF. After replacing x by x* and ¢ by ¢* it suffices to show

[ de 9Bastang(pay={ dg plastenpiais)

Since x, yeJp, the linear a-invariant space V generated by {a,(x); g=G} and
{ay(y); g=G} is finite-dimensional. Set W=V 4 (V). The injection

@ Th,: T/V®W—> @ A

hEH Y,

REHy
transports the linear functional ¢&¢ on WEW onto a linear functional £ on the
subspace

(h SQ;WT,L)(W@)W); D

CHyr

It then follows from the Hahn-Banach theorem that £ has a continuous extension
to . @ A which we also denote by £. But & has a linear decomposition
SHy
§= @D &n.
hEH
Therefore
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[ o8 9BastngBason= de@@g)basDpas(s)
:SGdghEEHWEh(Th(‘Bag(x)(@ﬁag(y)))

=SGdg 3 EulBag(xra(y))

1y

=hEHWEn(ﬁ(SGdg ag(xrn(y))) ,

=, 5 &(| dg a,eman))

hEHy

"_—Sadg ¢(C¥g(x»¢(ag(y>)

where the penultimate step uses the fact that 8 leaves the fixed points A% of «a
pointwise invariant, and the ultimate step follows from reversal of the previous
steps.

Next let Co{G)SC(G) denote the G-finite elements for the action of G as
right (or, equivalently, left) translations on C(G). Thus Cx(G) is the set of
continuous functions over G whose orbit under right translations spans a finite-
dimensional subspace of C(G). Again Cp(G) is a dense *-subalgebra of C(G).

OBSERVATION 2. Every f=Cw(G) has the form

fg)= 2 plas(x0)
where x,€Ap and ¢, A*.
ProOF. Let @ be the subspace of Cz(G) of functions of the form
fg)= i2=31¢i(ag(xz‘)) .
In the proof of Observation 1 we established an identity of the form

gb(ag(x))sb(ag(y)):hgwfh(ag(xrh(y)))

for all x, yedr and ¢, p=A*. The &, 4* and Hy is a finite subset of H
depending on the finite-dimensional subspace V spanned by the orbits a,(x), and
a,(y), of x, and y. Since x, yedr and r commutes with « it follows that
xtp(y)EAp. Therefore this identity establishes that £ is an algebra. Also

Plag(x))=¢*(az(x*))

s0 9 is a *x-algebra. As « is a faithful representation of G it follows that the
functions in & separate points of G, and hence & is dense in C(G) by the Stone-
Welerstrass theorem. Since Jz is closed under regularization by matrix elements
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of the irreducible representations of G it follows that © has the same property
(with respect to the right regular representation). Then it easily follows from
the orthogonality relations that 9=Cz(G)=the linear span of the matrix elements
of the irreducible representations of G.

OBSERVATION 3. There exists an isometric linear isomorphism B : Co(G)—Cr(G)
with the properties

L B(E paste)= B pulpas(xd),  xicdr, g,

2. B(f.f)=B(f)B(fs), f1, [2€CHG),
3. B(f/)=B({, FeCHG),
4. Blref)=rgB()), fECHEB),

where r denotes vight translations.

Proor. It follows from Observations 1 and 2 that there exists a unitary
operator B on L*G) with the action given by Property 1. Thus B is well
defined as a linear operator from Cg(G) into C(G) by Observation 2. But since
di(Bag(x))=(B*¢:)(ag(x4)), Observation 2 implies that B is in fact an operator
from Cg(G) into Cx{G). Now if m(f) denotes the operator of multiplication by
feCp(G) on L¥G) then

(B*F, m(f)B*G)=(F, m(Bf)G)
for all F, G=L¥G). Since B is unitary on L*G) it then follows that
[ le=llm( O =ImBOI=IBfl-,
i.e. B is an isometry from Cp(G) into C¢(G). By considering 5! instead of S
we see that B maps Cp(G) onto Cg(G).
The multiplicative property of B follows from the calculation
Bilagb)plas)=B(, 3 &lastxer())
= 2 EnlBag(xma(y))
GHW
=(Ba (x)Ng(Ba(y))
=B((a(x))B(dla(y))
and B commutes with the involution because
B((a(x))=B(J*(a (x*)))
= (Bag(x™))
=(fay(x))=DBgla,(x)).

Finally B commutes with right translations because
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Bru(dla(x)N)=Blaglan(x)))
=¢(Bag(ay(x)))
=rp(P(Ba (x))=r,(B{dlax))).

The proof of [Theorem 211 is now straightforward.

The operator B as defined is an isometry from Cp(G) onto Cz(G). But as
Cy(G) is norm dense in C(G) one can extend B by continuity to an isometry
from C(G) onto C(G). The properties established in Observation 3 then extend
by continuity. Hence B is a x-automorphism of C(() which commutes with right
translations. Now let » be the homeomorphism of the spectrum G of C(G) cor-
responding to B. If b(e)=g then

b(h)=bleh)=ble)h=gh
for all heG, i.e. B is left translation by g='. Thus
P(Ban(x))=B(plar(x) =dlaan(x))
forall xedy, ¢ ¥, and heG. Consequently
Blx)=a(x)

for all x&Ap which implies f=ay,.
The above procedure of constructing Cr(G) from elements of A gives infor-
mation about the spectral subspaces of (4, G, a).

COROLLARY 2.2. Let (A, H, 7} be a strongly topologically transitive C*-dynam-
ical system and a a (faithful) continuous action of a compact group G as *-auto-
morphisms of A such that [, ©]1=0. Further let U(G) denote the set of irredu-
cible representations of G and for each U & U(G) define the spectral subspace A*(U) by

J“(U):{Sdg TrUga(x); x eJ} .
It follows that

1. AU+ {0}, Uev(G),
2. If Uy, U,eU(G) and V €U{(G) occurs in the decomposition of U, QU then

(AU A UNNAV)# {0}

We conclude this section with two examples which demonstrate the difficulty
in characterizing the automorphisms «,. In both examples one has a =x-auto-
morphism S which leaves invariant each finite-dimensional a-invariant subspace
of A but ‘Béa’g.

ExaMPLE 2.3 (Longo and Peligrad [10]). Let S; be the permutation group
on 3 elements; S; has order 6 and is generated by two elements 7, s with the
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relations r°=e¢, s?=e, rs=sr% The dual S, consists of 3 representations 7y, 7s,
7s with dim y,=dim 7,=1, and dim y,=2, where

nn=1, =1
7:(r)=1, Ta(s)=-—1

cos2x/3 sin2z/3 —10
rs(r)= , o 7s(s)= ) .
—sin 2x/3 cos2x/3 0 1

Let A=M, be the algebra of 2X2 matrices and define a,=Ad(yr:(g)). Then «a
is ergodic, and hence strongly topologically transitive by The
representation &« of G has the decomposition

a=7,57:D7s

into irreducibles and there is a unitary operator VedJ such that a (V)=r.(g)V.
The operator V is determined up to a phase factor by the requirement that V
is in the y,-subspace of 4. Let S=Ad(V). It follows that [, a]=0. Moreover
as each of the representations 7, 7., 7s occurs with multiplicity one it follows
that the only a-invariant subspaces of A are the subspaces corresponding to
these three representations, and all linear combinations of these subspaces.
Therefore J leaves all these a-invariant subspaces invariant, but nevertheless

ﬂﬁéaa-

ExAMPLE 2.4, Let A=C(S,) denote the continuous functions over the two
sphere S, and a the canonical action of the group G=S0(3) of rotations on A.
The system (4, G, a) is topologically transitive, and hence strongly topologically
transitive by Let 8 be the x-automorphism of C(S;) corresponding
to reflection about the origin. Then S¢as Nevertheless [3, a]=0 and a cal-
culation with spherical harmonics shows that all the irreducible representations
of SO(3) occur in the decomposition of a with multiplicity one and hence j
leaves all the finite-dimensional a-invariant subspaces invariant,

3. The infinitesimal structure of (G, a).

The next result gives an infinitesimal characterization of the one-parameter
subgroups of the group action (G, a) considered in [Theorem 2.1. It is similar
to of [11]. It is possible to give a proof roughly following the
lines of the proof of [Theorem 2.1 of [11], but we give a shorter proof based
upon the relation between Ay and Cp(G) established in the previous section.

THEOREM 3.1. Let (A, H, ) be a strongly topologically transitive C*-dynam-
ical system and a a (faithful) conlinuous action of a compact group G as *-auto-
morphisms of A such that [a, t]=0. Further let ¢ be a symmetric derivation of
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A with domain D(8)=UJAr, the G-finite elements of A. The following conditions
are equivalent:
1. 8 is closable and its closure & generates a one-parameter subgroup of ag.
2. a. 0(x)=0, x4,
b. drn(x)=7,0(x), x&dp hesH.

REMARKS. 1. The drawback of this result as opposed to the comparable
results of [9] and is that in Condition 2 we must explicitly assume that
is zero on the fixed point algebra 4% In and this was a consequence
of D(0)=Ap, simplicity of A, and asymptotic abelianness of (A4, H, 7). Also this
holds if .4 is abelian.

2. If G is abelian, the techniques of show that the assumption of strong
topological transitivity may be replaced by topological transitivity.

Proor. 122 is evident. 2=1. If x, yedr and ¢, ¢=A* then using the
notation of Section 2 with W=V +4(V) where V is the a-invariant span of x
and y, one calculates that

g tp(aste) plotaoM+ g 0(as ) glar )
LR CROLNCN DR EREVACHEN

=3 &([de dautrmom)
=0,

The last step follows because 6 is zero on % This establishes that one can
define a linear operator D :Cp{G)—C(G) by

D( £ gulas(x)=i B puldlalx)

and D is symmetric on L% ). (Use Observation 2 of Section 3.) But further
calculations analogous to those in the proof of Observation 3 of Section 2 then
establish that

D{f1f)=D{f )+ F1D(f2), f1, f:€CR(G),
D(7)=D(f), FeCuG),
D(rgf)=r(D(f)), F€CrG).

Since D commutes with right translations it leaves the corresponding finite-
dimensional spectral subspaces of C(G) invariant. Hence D is essentially self-
adjoint since it is the direct sum of bounded symmetric operators. Consequently
the closure D of D generates a strongly continuous one-parameter group B of
x-gutomorphisms of C(G) (see, for example, the discussion in Example 3.2.67 of
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[6]). Moreover B must commute with right translations. Therefore Bis a
one-parameter subgroup of left translations by the argument used in the proof
of [Theorem 2/ 1.

Let [ denote left translations on C(G); then there is a one-parameter subgroup
t—h, of & such that

Bila(x)=ln,Pla(x))=glar,a(x))

for xedr and g=A*. But if § denotes the generator of the one-parameter
group of x-automorphisms f—a3; one finds

B(3(a () =De(ag(x))=(6(er g (x)))

by differentiation. Thus 6=6 on A Finally since Ay is invariant under a,,
for all ¢ it follows that Ay is a core for §; see Chapter 3 of [5]. Hence § is
closable and §=4§. (Compare [6], where the group G is only assumed to be
locally compact, but the derivation D is assumed to be closed.)

REMARK. The generation property in [Theorem 2.1 of was established
by first proving that ¢ leaves invariant each finite-dimensional a-invariant sub-
space. This can be deduced directly from strong topological transitivity as
follows.

Let x,, x5 --, x, be 2 basis of linearly independent elements of the a-
invariant subspace . Then the action « is given on % by a matrix,

ag(xz):»jé‘_,lUﬁ(g)xj,

and by linear rearrangement, using the orthogonality relations in the group, one
can suppose that (U;;) is in fact unitary. Then since «# commutes with z one
calculates that

ag(1§ xi"rh(xi)): El x¥Talxy) .
Thus

0=3( £ x¥en(x))= B 6(x*ea(x)-xtald(x)

for all h=H. But strong topological transitivity then implies that

3

0@ o XED3(x)=0.

%

Consequently
E 5(x1:)a),-(xi~"):~i§1 rw,(0(xF)) e M
for any state w; over A or, by linear algebra,

5(x2)Det cuj(xl—)ejﬁ .
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But since the x, are linearly independent the w; can be chosen such that the
determinant is non-zero and hence d(x;)E M.

4. Dissipations.

We conclude with some remarks on the generation problem for dissipations.
Consider the assumptions of [Theorem 3.1 but with 6 a symmetric dissipa-
tion, i.e.
O(x*x) Zx*0(x)+0(x)*x

for all x=Jp. It is then natural to ask whether the conditions d(A%)= {0} and
[0, ]=0 imply that & is closable and its closure § generates a strongly positive
semigroup f.

If 4 is simple with identity, = is norm asymptotically abelian, and G is
abelian, then this question is answered in the affirmative by [Theorem 3.1 of
and in fact B is completely positive. On the other hand the example in Section
3 of [4] with A=M, G=H=Z,XZ, t=a, and d=H shows that even if §
generates a positive semigroup strong topological transitivity of (4, H, ) does
not necessarily imply that the semigroup is completely positive.

If one tries to tackle this problem with the techniques of the present paper

then it is not clear that the dissipation ¢ lifts to an operator D on Cr{G), as in
the proof of [Theorem 3.1, i.e. by the definition

Digla,(x))=¢B(ag(x)), xEAp, SA*

If, however, G is abelian and = is only assumed to be topologically transitive
then it follows from the techniques used in the proof of [Theorem 3.1 in [10],
combined with techniques of [3], that there exists a function ¢:G+—C such that

(x)=¢(r)x

for all x=A%(y), the a-spectral subspace of A corresponding to the character
Teé. Using this, it is easy to see that I? is well defined, and in fact is given by

D(r(g) =9 (g)

for y&G. But D is not generally a dissipation, or, equivalently, ¢ is not gener-
ally negative definite. This is clear from the example on A=M, mentioned
above, In this example D is a dissipation if J is a complete dissipation, and
then 0 is generally a generator of a completely positive semigroup (see, for
example, [3], [4D.

There is one important special case where D is a dissipation, the case that
both A4 and G are abelian,
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PROPOSITION 4.1. Let (A, H, ) be a topologically iransitive C*-dynamical
system where A is abelian, and let a be a faithful continuous action of a compact
abelian group G as =-automorphisms of A such that [a, t1==0. Further, let J be
a symmetric operator on A with domain D (8)=Ap, the G-finite elements of A.
Assume that

i. 0 7s a dissipation, i.e.

olx*x)<é(x )Y x4 x*d(x)
for all xedp,
il. 0(x)=0 for all x4,
iii. 0ra(x)=1,0(x) for all xeAp, heH.
It follows that 6 is closable and its closure 6 generates a one-parameter Semigroup
t=0—exp{—id} of completely positive coniractions. Furthermore, there exists a
convolution semigroup t=0— p, of probability measures on G such that

e‘”é(x)zggdy;(g)ag(x)

for all x=A.

PROOF. The proof combines the tensor product characterization of topologi-
cal transitivity on abelian C*-algebras in with ideas from the proof
of in [9], but the present case is simpler.

First note that by Lemma 1.1 we may assume 4 has an identity. Next we
have already remarked that topological transitivity of z implies the existence of
a function ¢: G—C such that

o(x)=g(r)x

for all xe4%(y), reG. Next for x;=4%yy) and heH, i=1,2, -, b, set
x=217s,(xs); then

Sxt)r+aral0) -0 n)= 3 M (5o (2)20
where e
Mi=¢Gr )+ oG )—d7—7:).

Now, if y{? are elements in 4 such that

To( Z 7@y - @yi¥)

I

PENCTUENCTDRRENCID

0

v

for all heH*, then it follows from the isometric nature of the morphism

EB Th: <®ku4—‘“> @ A
hEHE

hEHk
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(ITheorem 1.3) that
2 IPQ3PQ - P20
i=1

in (®*A)", the C*-algebra completion of the algebraic tensor product ®*A.
Applying this to the inequality for M,; above, we deduce that

k
(*) > M XEX;=20

J=

1, J=1

in (®*A)", where X,=1R1R - Q2 --- Q1 with the x; occurring in the /’th
position.

As A is abelian there exist pure states @; on A with |@:;{(x;)| =|x;l]. Hence,
taking x;#0, replacing x; by A;x;/w;(x;) in (%), where 2;=C, and applying the
product state o, - Qw, we find

%, J7=1

3 Mi7:3,20.

Thus the function ¢ is negative definite on G. The rest of the proof is exactly
as in the last part of the proof of Theorem 5.1 in [3].
Finally we note that if (A, H, ¢) satisfies the strong condition

itégllxrh(y)ﬂ:IIXH-I!yil, x, yEA

of transitivity, and if (G, @) is the action of a compact abelian group which
commutes with 7, and if ¢ is a symmetric dissipation satisfying 6(.1*)={0} and
[8, z]=0, then one can deduce that the associated function ¢:G—C satisfies

() VISG+wI VIO +V I8 |.

This follows by examining the inequalities

w(x*0(x)+o(x)*x—d(x*x)) =0

for states w and elements x=Ax,+7,(x,) where A=C, x,=4%7), and x,=A*(y).

It is an interesting question whether (%) is sufficient to ensure that exp {—#3}
is contractive as a map from Jiz to Jr since this would ensure that it extends
to a positive semigroup.
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