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Strong transmission and reflection of edge modes in bounded photonic graphene

Mark J. Ablowitz1, Yi-Ping Ma1,∗
1Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA

The propagation of linear and nonlinear edge modes in bounded photonic honeycomb lattices
formed by an array of rapidly varying helical waveguides is studied. These edge modes are found
to exhibit strong transmission (reflection) around sharp corners when the dispersion relation is
topologically nontrivial (trivial), and can also remain stationary. An asymptotic theory is developed
that establishes the presence (absence) of edge states on all four sides, including in particular
armchair edge states, in the topologically nontrivial (trivial) case. In the presence of topological
protection, nonlinear edge solitons can persist over very long distances.

PACS numbers: 42.70.Qs, 42.65.Tg, 05.45.Yv

There is significant interest in using optical materi-
als to realize phenomena that are difficult to observe in
traditional materials. In particular, light propagation in
photonic lattices with a honeycomb (HC) background,
referred to as photonic graphene due to its similarities to
material graphene [1], has been extensively studied both
experimentally [2, 3] and theoretically [4, 5]. In infinite,
or bulk, lattices the wave dynamics exhibit the interest-
ing feature of conical diffraction [2]. This phenomenon
has been explained by the presence of Dirac points, or
conical intersections between dispersion bands [6].
Recently it was shown that introducing edges and suit-

able waveguides in the direction of propagation, unidirec-
tional edge wave propagation occurs at optical frequen-
cies [7]. The system is described analytically by the nor-
malized lattice nonlinear Schrödinger (NLS) equation

i∂zψ = −(∇+ iA(z))2ψ + V (r)ψ − σ0 |ψ|2 ψ, (1)

where the scalar field ψ is the complex envelope of the
electric field, z is the direction of propagation and takes
on the role of time, r = (x, y) is the transverse plane, ∇ ≡
(∂x, ∂y), the potential V (r) is taken to be of HC type,
and the coefficient σ0 is the strength of the nonlinear
change in the index of refraction. The vector field A(z)
is determined by helical variation of the HC lattice in the
direction of propagation, and plays the role of a pseudo-
magnetic field. The particular choice used in [7] is, in
terms of dimensionless coordinates,

A(z) = κ(sinΩz,− cosΩz), (2)

where κ and Ω are constant. The waveguides defined by
A(z) are written into the optical lattice using a femtosec-
ond laser writing technique [8]. The associated linear
edge wave propagation was investigated experimentally
and computationally in the tight binding limit in [7]. Re-
markably, these edge waves were found to be nearly im-
mune to backscattering. This phenomenon was found
to be related to symmetry breaking perturbations which
separate the Dirac points and leave a nontrivial integer
“topological” charge on the separated dispersion bands.
In this setting, photonic graphene exhibits the hallmarks
of Floquet topological insulators [9].

Motivated by this work, the existence of traveling
edge modes was investigated analytically in [10] for gen-
eral periodic pseudo-fields A(z) and with nonlinearity,
i.e. σ0 6= 0 in the tight binding limit. Assuming that
the pseudo-field varies relatively rapidly, which is consis-
tent with the experiments in [7], an asymptotic theory
based on Floquet theory was developed which leads to a
detailed description of the wave dynamics. Importantly,
in the presence of weak nonlinearity the classical one-
dimensional NLS equation was found to govern the enve-
lope of traveling edge modes. When the NLS equation is
focusing a family of nonlinear edge solitons exist due to
the balance between dispersion and nonlinearity. When
the dispersion relation is topologically nontrivial, these
nonlinear edge solitons are immune to backscattering as
with linear traveling edge modes. The existence of these
nonlinear edge solitons vastly expands the landscape and
understanding of localized states along edges.

Much of the existing literature on edge modes in HC
lattices, including the above referenced work, has focused
on extended edges of either zig-zag or bearded type. Here
we consider a rectangular-type domain, which has zig-zag
edges on the left and right, and armchair edges on the
top and bottom, as illustrated in Fig. 1. In the absence of
helical waveguides, armchair edge states do not exist in
isotropic HC lattices [11]. However, with rapidly varying
helical waveguides we find traveling edge modes can exist
along the armchair edges. There are two types of arm-
chair edge states corresponding respectively to isotropic
and anisotropic HC lattices. In the presence (absence) of
these armchair edge states, linear edge modes and nonlin-
ear edge solitons are found to exhibit strong transmission
(reflection) around the sharp corners under certain con-
ditions; otherwise they may decay due to dispersion or
scattering. The ability to easily switch between trans-
mission and reflection as well as remaining stationary, by
varying the underlying parameters provides a new means
for the control of light conferred by appropriately merg-
ing topological, linear and nonlinear effects.

To employ the tight binding approximation, we sub-
stitute ψ = e−ir·A(z)φ into Eq. (1), and assume a Bloch

http://arxiv.org/abs/1506.04708v2
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FIG. 1: A 5× 5 bounded HC lattice with zig-zag edges
on the left and right, and armchair edges on the top
and bottom. The A and B sites are indexed following
Ref. [12]. The primitive lattice vectors v1 and v2 and
the intersite distances dj , j = 0, 1, 2 are also labeled.

wave envelope of the form [4]

φ ∼
∑

v

(av(z)φ1,v + bv(z)φ2,v) (3)

where φ1,v = φ1(r − v), φ2,v = φ2(r − v) are the lin-
early independent orbitals associated with the two sites
A and B where the HC potential V (r) has minima in
each fundamental cell. The lattice sites are located at
v = l1v1 + l2v2, where l1, l2 ∈ Z, and the lattice vec-
tors v1 and v2 are given by v1 =

(√
3/2, 1/2

)

, v2 =
(√

3/2, − 1/2
)

. Carrying out the requisite calculations
(see [4] for more details), we arrive at the following two
dimensional discrete system

i∂zamn + (L−(z)b)mn + σ|amn|2amn = 0, (4)

i∂zbmn + (L+(z)a)mn + σ|bmn|2bmn = 0, (5)

where σ depends on the underlying orbitals, is propor-
tional to σ0, and the linear operators L± take the form

(L−b)mn =eiθ0bmn + ρ(eiθ1bm−1,n−1 + eiθ2bm+1,n−1),

(L+a)mn =e−iθ0amn + ρ(e−iθ1am+1,n+1 + e−iθ2am−1,n+1),

where ρ is a lattice deformation parameter, and θj =
dj ·A, j = 0, 1, 2. The vector d0 is the direction vector
from the site Bmn to the site Amn, and is approximately
(1/

√
3, 0) in the tight binding limit [10]. The vectors

d1,2 = d0 −v1,2 are the direction vectors from any given
B site to the other two neighboring A sites. For later
reference we express the full 2D discrete system (4–5) in
the compact form

i∂zcmn + (Lc)mn + σ|cmn|2cmn = 0, (6)

where

c =

(

a
b

)

, L =

(

0 L−(z)
L+(z) 0

)

.

The HC lattice is formed by those sites with m+ n even
as shown in Fig. 1.

Using the pseudo-field given by Eq. (2) with period
T = 2π/Ω = 1.5 (consistent with the experiments in [7]),
our 2D discrete system (6) has two free parameters ρ
and σ; ρ = 1 and σ = 0 for a perfect HC lattice without
nonlinearity in [7]. The initial condition is taken to be
localized on the left zig-zag edge of the form

cmn(z = 0) = C(m, z = 0)eimω0cEn , (7)

where ω0 is the carrier wavenumber in m (along the
edge), and cEn is the 1D edge state that decays in n (per-
pendicular to the edge). The envelope function C, whose
evolution is determined below, is taken to be

C(m, z = 0) = A sech(ν(m−m0)), (8)

where A is the amplitude, ν is the spectral width , 0 <
ν ≪ 1, and m0 = 0 unless otherwise stated. The 2D
evolution can be visualized using space-time plots of the
amplitude |b(z)| along the four edges, as shown in Fig. 2.
The effective mass of the mode for any z is the square
of the L2-norm in an interval of width 4/ν around the
center of mass evaluated at the edge.
First we consider the linear case (σ = 0), and choose

the initial condition to have ω0 = π/2, ν = 0.2, and
A = 1 consistent with [7]. In this case we find that two
contrasting types of linear wave dynamics can exist in
the bounded HC lattice depending on the choice of ρ. As
shown in Fig. 2(a), for ρ = 1 > 1/2, the edge mode is al-
most perfectly transmitted around the sharp corners and
thus loops around the HC lattice. The effective mass re-
maining after four (eight) loops, or z = 1550 (z = 3100),
is 96% (94%). As shown in Fig. 2(b), for ρ = 0.4 < 1/2,
the edge mode is very strongly reflected at the sharp
corners and thus bounces back and forth along the left
edge. The effective mass remaining after two (four) re-
flections, or z = 1250 (z = 2500), is 96% (89%). See
[13] and [14] for animations of Fig. 2(a) and Fig. 2(b).
For either choice of ρ, choosing ω0 6= π/2 causes the edge
mode to disperse more and thus destroys coherence. Nu-
merical results not shown here indicate that the overall
wave dynamics are insensitive to the detailed shapes of
the corners, though the edge mode lingers longer at the
corners containing degree-1 vertices (e.g. the upper and
lower left corners in Fig. 1).
To describe a zig-zag (armchair) edge mode we take a

discrete Fourier transform in m (n) on Eq. (6), i.e. letting
cmn = cne

imωm (cmn = cme
inωn). Following [7, 10], we

assume that the pseudo-field A or equivalently the linear
operator L varies rapidly, namely L = L(ζ), where ζ =
ǫ−1z, |ǫ| ≪ 1, and thus has period T̃ = ǫ−1T . Then
we can employ a multiple-scales ansatz c = c(z, ζ), and
expand c in powers of ǫ as c = c(0) + ǫc(1) + · · · , where
c denotes the vector cmn, cn or cm depending on the
context. At O(ǫ−1), ∂ζc

(0) = 0 which leads to c(0) =
c(0)(z). At O(1), to remove secularities, we get

i∂zc
(0) + L̄c(0) + σ|c(0)|2c(0) = 0, (9)
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FIG. 2: Transmission and reflection of linear edge
modes (σ = 0) in a 65× 65 bounded HC lattice, shown
as space-time plots of |b(z)| at the edges. Here ‘zz’
represents zig-zag and ‘ac’ represents armchair; the
horizontal axis begins with the left zig-zag edge with

increasing m. The pseudo-field is given by Eq. (2) with
κ = 1.4 and period T = 1.5, and the deformation
parameter ρ is (a) ρ = 1; (b) ρ = 0.4. The initial
condition (7-8) has ω0 = π/2, ν = 0.2, and A = 1.

See [13] and [14] for animations of panels (a) and (b).

where L̄ is given by the Magnus-type expansion [15]

L̄ = L̄(0) + ǫL̄(1) + ǫ2L̄(2) +O(ǫ3), (10)

with L̄(0) = T̃−1
∫ T̃

0
L(ζ)dζ,

L̄(1) =
i

2T̃

∫ T̃

0

∫ ζ

0

(L(ζ)L(ζ′)− L(ζ′)L(ζ))dζ′dζ

and L̄(2) can be written in terms of a triple integral not
explicitly shown. The discrete system (9) conserves both
the mass N and energy H given by

N = 〈c(0), c(0)〉, (11)

H = −〈c(0), L̄c(0)〉 − 〈c(0), σ|c(0)|2c(0)〉/2, (12)

where the inner product is defined as 〈f ,g〉 ≡ ∑

j f
∗
j gj .

Assuming that the spectral envelope is centered at ω0

with width ν, 0 < ν ≪ 1, the edge mode may be ex-
pressed in terms of a scalar envelope function C(z;ω) as

c(0) = C(z;ω)cE (13)

where cE is the 1D edge state given by

L̄(ω)cE = −α(ω)cE , (14)

normalized such that ‖cE‖22 =
∑

j

∣

∣cEj
∣

∣

2
= 1. The func-

tion α(ω) is the dispersion relation. The solvability con-
dition on Eq. (9) leads to

i∂zC − α(ω)C + σ̃(ω)|C|2C = 0, (15)

where σ̃(ω) ≡ σαnl(ω) with αnl(ω) = ‖cE‖44 =
∑

j

∣

∣cEj
∣

∣

4
.

When the nonlinearity σ 6= 0 and second order dis-
persion α′′(ω0) 6= 0, maximal balance between dispersion
and nonlinearity leads to

i∂zC −
(

α0 + α′

0ω̃ +
1

2
α′′

0 ω̃
2

)

C + σ̃0|C|2C = 0, (16)

where ω̃ ≡ ω − ω0, α
(j)
0 ≡ α(j)(ω0), j = 0, 1, 2, and

σ̃0 ≡ σ̃(ω0). The group velocity of the envelope is α′
0. We

remark that the special stationary case can occur when
α′
0 = 0; in general if the pseudo-field A is independent of
z, then the time-independent linear operator L can admit
the so-called “zero-energy” edge states with α(ω) = 0
identically [11]. Replacing ω̃ by −i∂χ where χ repre-
sents the m (n) direction for the zig-zag (armchair) edge,
Eq. (16) becomes the 1D classical second-order focusing
(defocusing) NLS equation when α′′

0σ > 0 (α′′
0σ < 0). In

the focusing case, Eq. (16) admits a two-parameter fam-
ily of solitons [16]; the two parameters may be chosen as
ω0 and ν. A 2D edge soliton is then obtained from the
initial conditions (7–8) with

A = ν
√

α′′
0/σ̃0. (17)

Thus robust edge solitons exist for a finite interval of ω0;
at each ω0, the choice of ν fixes the amplitude A.
The zig-zag (armchair) dispersion relation can be nu-

merically computed on a 1D domain with suitable bound-
ary conditions on both ends and compared with analytic
predictions based on Eq. (14). Figure 3 shows the dis-
persion relations computed using the same parameters as
in Fig. 2 and plotted on the periodic interval ω ∈ [0, π).
The Floquet eigenvalues corresponding to the eigenfunc-
tions with at least 90% of the mass concentrated on the
left (right) half domain are highlighted in red (green).
The Z2 topological index I is defined as the number of
intersections modulo 2 between either the red or green
curve and the horizontal axis [10]. Interestingly, in some
cases there exist edge states near the outer boundaries
of the bulk spectrum at large |α|, but since they are not
related to the wave dynamics at small |α|, they will not
be discussed further here.
As established in [10] for the zig-zag edge, to leading

order the 1D edge states cE satisfy

L̄(0)cE = 0. (18)

For those edge states localized on the left (right), the
mass is concentrated in the b (a) sites. The decay expo-
nents in n are O(1), with amplitudes O(1) on the edge.
The dispersion relation α(ω) is O(ǫ) and is given by

α(ω) = ǫ〈cE , L̄(1)cE〉/〈cE , cE〉; (19)

thus the group velocity of the envelope is O(ǫ). The
zig-zag dispersion relation computed using the same pa-
rameters as in Fig. 2(a) (Fig. 2(b)) is shown in Fig. 3(a)
(Fig. 3(c)). This dispersion relation is topologically non-
trivial (I = 1) for ρ = 1 > 1/2 and topologically trivial
(I = 0) for ρ = 0.4 < 1/2. In the former case, the
left zig-zag dispersion relation terminates at two points
denoted respectively by (ωm−, α−) near the upper bulk
and (ωm+,−α+) near the lower bulk, while the right zig-
zag dispersion relation has the opposite sign. These four
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FIG. 3: Dispersion relations on the (a,c) zig-zag and
(b,d) armchair edges. Values of A and ρ in panels (a,b)
and (c,d) agree respectively with Fig. 2(a) and Fig. 2(b).

points, known as the massive Dirac points, result from
splitting the massless Dirac points in L̄(0).

For the armchair edge, L̄(0) describes isotropic
graphene when A is invariant under 2π/3 rotations,
and anisotropic graphene otherwise. Thus the circular
pseudo-field given by Eq. (2) leads to isotropic graphene.
Anisotropic graphene may be exemplified using the ellip-
tic pseudo-fields invariant under π rotations introduced
in [10]. In this case the edge modes behave similarly to
those in the zig-zag case.

In the isotropic armchair case, L̄(0) does not admit
edge states [11]. However, as shown in Fig. 3(b) and
Fig. 3(d) computed using the same parameters as in
Fig. 2(a) and Fig. 2(b), armchair edge states exist near
the inner boundaries of the bulk spectrum. The topo-
logical index of the armchair dispersion relation is found
to be the same as the zig-zag case, namely I = 1 for
ρ > 1/2 and I = 0 for ρ < 1/2. The existence of these
edge states in L̄ can be explained by expanding L̄ to
O(ǫ2) in Eq. (14). For these armchair edge states, the
mass is equally distributed in the a and b sites. The de-
cay exponents in m are O(ǫ), with amplitudes O(ǫ1/2)
on the edge. The dispersion relation α(ω) is O(1), and
so the group velocity of the envelope is also O(1). The
detailed calculations will be presented in a separate pa-
per. Here we note that in the I = 1 case as shown in
Fig. 3(b), the armchair dispersion relation does not ter-
minate at the massive Dirac points, which are located at
(0,±α−) and (0,±α+) and thus are degenerate in ωn.

The linear and nonlinear dynamics of edge waves can
be understood in terms of the dispersion relations and the
conservation of massN and energyH defined in Eqs. (11–

12). Consider a J-soliton configuration where each soli-
ton is given by Eq. (7) with envelope function Cj , carrier
wavenumber ωj and carrier frequency αj , j = 1, · · · , J .
Then to leading order, the mass and energy evaluate to

N =

J
∑

j=1

‖Cj‖22, H = −
J
∑

j=1

αj‖Cj‖22, (20)

where ‖ · ‖2 denotes the L2-norm.
In the linear case, the amplitude |C| and frequency α

of each individual wavenumber ω is conserved. Let Iα
denote the interval in α spanned by the left zig-zag dis-
persion relation. When ρ > 1/2, both the zig-zag and the
armchair dispersion relations are topologically nontrivial
as shown in Figs. 3(a–b). In this case, corresponding to
any α ∈ Iα there is a single value of ω and thus a single
unidirectional edge mode on each of the four edges. The
strong transmission of linear edge modes in Fig. 2(a) is
then explained by a global counterclockwise mode formed
by ‘gluing’ together these four edge modes through the
four corners. When ρ < 1/2, both the zig-zag and the
armchair dispersion relations are topologically trivial as
shown in Figs. 3(c–d). In this case, corresponding to
any α ∈ Iα there are two values of ω and thus a pair
of counter-propagating edge modes on either of the two
zig-zag edges. The strong reflection of linear edge modes
in Fig. 2(b) is then explained by the pair of edge modes
on the left zig-zag edge transforming into each other via
scattering at the upper and lower left corners. In short,
the transmission channel is available and the reflection
channel is unavailable when the dispersion relation is
topologically nontrivial, and vice versa. We remark that
for other parameter choices, the transmission and reflec-
tion channels may be simultaneously available, as well
as the scattering channel into the bulk. These possibili-
ties results in weaker transmission/reflection, and so are
outside the scope of this paper.
Next we consider a nonlinear case: σ = 0.02 6= 0, with

initial conditions ω0 = 5π/8, ν = 0.2, and A given by
Eq. (17). In this case the 1D NLS equation (16) is focus-
ing and so admits edge solitons on the zig-zag edges. In
order that the zig-zag dispersion relation spans a wider
interval in ωm and thus has greater curvature α′′, we
choose smaller ρ in the topologically nontrivial case fol-
lowing [10]. As shown in Fig. 4(a) for ρ = 0.6 > 1/2,
the edge soliton is almost perfectly transmitted around
the sharp corners. The effective mass remaining after
two (four) loops, or z = 2000 (z = 4000), is 93% (93%).
As shown in Fig. 4(b) for ρ = 0.4 < 1/2, the edge soli-
ton is strongly reflected, but noticeably not as well as
in the linear case, at the sharp corners. The effective
mass remaining after two (four) reflections, or z = 1650
(z = 3300), is 72% (71%).
In a simple scattering process where an incoming edge

soliton is scattered by one or more corners into an out-
going edge soliton, the conservation of the carrier fre-
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FIG. 4: Transmission and reflection of nonlinear edge
solitons (σ = 0.02) in a 65× 65 bounded HC lattice,

shown as space-time plots of |b(z)| at the edges. Values
of A and ρ in panels (a,c) and (b,d) agree respectively
with Fig. 2(a) and Fig. 2(b), except that ρ = 0.6 in

panels (a,c). The initial condition (7–8) has A given by
Eq. (17), ν = 0.2 and (a,b) ω0 = 5π/8. Panels (c,d)
have two envelopes with (m0, ω0): (c) (−16, 2π/3) &

(16, 7π/12); (d) (−16, 3π/4) & (16, 5π/8).

quency α determines the carrier wavenumber ω as in the
linear case, and the conservation of the envelope mass
‖C‖22, which amounts to the conservation of να′′

0/σ̃0 us-
ing Eqs. (8) and (17), determines the spectral width ν.
In the transmission case (ρ > 1/2), since an incoming
zig-zag edge soliton is scattered by an even number of
corners into an outgoing zig-zag edge soliton almost per-
fectly, the conservation laws imply that the zig-zag edge
soliton also maintains its shape almost perfectly. In the
reflection case (ρ < 1/2), the zig-zag edge soliton does
not maintain its shape as well due to multi-scattering at
the corners and backscattering along the edge.

Finally we consider soliton interactions in the nonlinear
case, with the initial condition chosen to contain two zig-
zag edge solitons with different carrier wavenumbers ω0

and thus different group velocities. In the transmission
(reflection) case, as shown in Fig. 4(c) (Fig. 4(d)), the
two edge solitons are transmitted (reflected) almost inde-
pendently. The collision between these two edge solitons
exhibits a phase shift, reminiscent of soliton collisions in
the classical 1D NLS equation.

In this paper, strong transmission and reflection of
linear and nonlinear edge modes is demonstrated in
bounded photonic graphene formed by rapidly varying
periodic waveguides. The transmission (reflection) phe-
nomenon depends on the presence (absence) of topolog-

ical protection on the zig-zag and armchair edges. For
isotropic graphene the armchair edge states have slowly
decaying profiles. These unconventional edge states pro-
vide an alternative means to localize and transport light
on armchair edges without additional modifications [17].
Simple scattering of edge modes by sharp corners is ex-
plained via conservation of mass and energy. In the
presence of nonlinearity, the existence of nonlinear edge
solitons greatly broadens the landscape of coherent edge
modes. The synergy between topology and nonlinearity
makes bounded photonic graphene an ideal candidate for
robust routing of electromagnetic energy, which is a topic
of considerable recent interest [18].
This research was partially supported by the U.S. Air

Force Office of Scientific Research, under grant FA9550-
12-1-0207 and by the NSF under grants CHE 1125935
and DMS-1310200.
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