
 Open access Book Chapter DOI:10.1007/978-3-319-67471-1_7

Strong Turing Completeness of Continuous Chemical Reaction Networks and
Compilation of Mixed Analog-Digital Programs — Source link

François Fages, Guillaume Le Guludec, Olivier Bournez, Amaury Pouly

Institutions: Université Paris-Saclay, École Polytechnique, Max Planck Society

Published on: 27 Sep 2017 - Computational Methods in Systems Biology

Topics: Computability, Computable function, Turing completeness, Differential semantics and Compiler

Related papers:

 Programmable chemical controllers made from DNA

 DNA as a universal substrate for chemical kinetics

 Programmability of Chemical Reaction Networks

 Deterministic function computation with chemical reaction networks

 Rate-independent computation in continuous chemical reaction networks

Share this paper:

View more about this paper here: https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-
39o98pys7g

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-67471-1_7
https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g
https://typeset.io/authors/francois-fages-22awcdxi7n
https://typeset.io/authors/guillaume-le-guludec-1i727e1jqx
https://typeset.io/authors/olivier-bournez-1wu4o03d9d
https://typeset.io/authors/amaury-pouly-4ks59fvnsm
https://typeset.io/institutions/universite-paris-saclay-26bb7z4n
https://typeset.io/institutions/ecole-polytechnique-29q4ufob
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/conferences/computational-methods-in-systems-biology-2950pkop
https://typeset.io/topics/computability-31va4i8k
https://typeset.io/topics/computable-function-14tuu7vd
https://typeset.io/topics/turing-completeness-svnq2rft
https://typeset.io/topics/differential-semantics-1bi95wcv
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/papers/programmable-chemical-controllers-made-from-dna-2u5cq3iiqs
https://typeset.io/papers/dna-as-a-universal-substrate-for-chemical-kinetics-3fqqu2wmb9
https://typeset.io/papers/programmability-of-chemical-reaction-networks-o3gjnhpe52
https://typeset.io/papers/deterministic-function-computation-with-chemical-reaction-4gg6w2aiw2
https://typeset.io/papers/rate-independent-computation-in-continuous-chemical-reaction-3liu8rhyw7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g
https://twitter.com/intent/tweet?text=Strong%20Turing%20Completeness%20of%20Continuous%20Chemical%20Reaction%20Networks%20and%20Compilation%20of%20Mixed%20Analog-Digital%20Programs&url=https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g
https://typeset.io/papers/strong-turing-completeness-of-continuous-chemical-reaction-39o98pys7g

HAL Id: hal-01519828
https://hal.inria.fr/hal-01519828v3

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Turing Completeness of Continuous Chemical
Reaction Networks and Compilation of Mixed

Analog-Digital Programs
François Fages, Guillaume Le Guludec, Olivier Bournez, Amaury Pouly

To cite this version:
François Fages, Guillaume Le Guludec, Olivier Bournez, Amaury Pouly. Strong Turing Complete-
ness of Continuous Chemical Reaction Networks and Compilation of Mixed Analog-Digital Programs.
CMSB 2017 - 15th International Conference on Computational Methods in Systems Biology, Sep 2017,
Darmstadt, Germany. pp.108-127. hal-01519828v3

https://hal.inria.fr/hal-01519828v3
https://hal.archives-ouvertes.fr

Strong Turing Completeness of

Continuous Chemical Reaction Networks and

Compilation of Mixed Analog-Digital Programs

François Fages1, Guillaume Le Guludec1,2,
Olivier Bournez3, and Amaury Pouly4

1 Inria, Université Paris-Saclay, EP Lifeware, Palaiseau, France
2 Sup Telecom, Paris, France

3 LIX, CNRS, Ecole Polytechnique, Palaiseau, France
4 Max Planck Institute for Computer Science, Saarbrücken, Germany

Abstract. When seeking to understand how computation is carried out
in the cell to maintain itself in its environment, process signals and make
decisions, the continuous nature of protein interaction processes forces
us to consider also analog computation models and mixed analog-digital
computation programs. However, recent results in the theory of analog
computability and complexity establish fundamental links with classi-
cal programming. In this paper, we derive from these results the strong
(uniform computability) Turing completeness of chemical reaction net-
works over a finite set of molecular species under the differential seman-
tics, solving a long standing open problem. Furthermore we derive from
the proof a compiler of mathematical functions into elementary chemi-
cal reactions. We illustrate the reaction code generated by our compiler
on trigonometric functions, and on various sigmoid functions which can
serve as markers of presence or absence for implementing program control
instructions in the cell and imperative programs. Then we start compar-
ing our compiler-generated circuits to the natural circuit of the MAPK
signaling network, which plays the role of an analog-digital converter in
the cell with a Hill type sigmoid input/output functions.

1 Introduction

“The varied titles of Turing’s published work disguise its unity of purpose. The
central problem with which he started, and to which he constantly returned, is the
extent and the limitations of mechanistic explanations of nature.”, Max Newman.

The Church-Turing thesis states that there is only one notion of effective com-
putation over discrete structures (integers, words, ...), and in fact all mechanistic
computation models devised up to now (Church’s λ-calculus, Post’s rewriting
systems, random access machines, programming languages,...) have always been
shown to be encodable in Turing machines. The more recent physical Church-
Turing thesis goes beyond the original thesis by stating that all physically com-
putable functions are Turing-computable.

In this view, it is theoretically possible to give a computational meaning to
information processing in the cell in terms of algorithms and programs. However,
while one lesson of Computer Science is that digital computation scales up to
very large circuits and programs, contrarily to analog computation, one has to
face the paradox that in a cell, even if one can observe an all-or-nothing activation
of genes, one cannot deny the importance of the continuous gradual activations
of protein complexes, of the time it takes, of the absence of clock signals, i.e. the
importance of analog computation in the cell [20,43,41].

Classical computability and complexity theories mainly focus on computa-
tion over discrete domains, i.e. words or integers. When dealing with reals or
functions, several approaches can be considered. In computational analysis, the
notion of computation over the real numbers is defined in terms of approximation
in arbitrary but finite precision:

Definition 1 ([48]). A real number r ∈ R is computable (resp. in polynomial
time) in the sense of computational analysis if there exists an effective approxi-
mation program of r in arbitrary precision, i.e. a Turing machine which takes as
input a precision p ∈ N and outputs a rational number rp ∈ Q s.t. |r− rp| ≤ 2−p

(resp. in a time polynomial in p).

Clearly, every real number can be represented as an infinite string represent-
ing a converging Cauchy sequence as above, and a computable real is one whose
representation is computable. In this setting, a computable real number can thus
be seen as a program which takes as input an accuracy, and returns as output
an approximation of the real number by a rational number at the requested pre-
cision. A computable function is then a program that maps any (computable or
not5) approximation of a real x to an approximation of f(x).

Definition 2 ([48]). A function f : R → R is computable if there exists a
Turing machine with oracle which computes an approximation of f(x) given x
as oracle. It is computable in polynomial time if this is done in a time polynomial
in p and m for x ∈ [−2m, 2m].

In this paper, we consider these notions to give a mathematical meaning to
the notion of biochemical computation with continuous concentrations. In this
view, the language of biochemical reactions is seen as a programming language
for computing with non negative real valued concentrations, i.e. over R+. We
consider elementary reactions, i.e. reactions with at most two reactants and with
mass-action-law kinetics. It is well known that the other classical biochemical
rate functions, such as Michaelis-Menten, Hill kinetics, are derived by reduction
of elementary reaction systems with mass-action law kinetics, using for instance
quasi-steady state or quasi equilibrium approximations [44].

We first show the Turing completeness in the strong sense of uniform com-
putability, of elementary biochemical reactions without polymerisation under

5 Restricting the definition to computable arguments might seem quite natural but is
not the classical definition of computable analysis, see the appendix of [48].

2

the differential semantics on a finite universe of molecular species. This solves
an open problem explicitly mentionned in [17]. where it was shown that a Turing
machine could be simulated by a chemical reaction network with a small prob-
ability of error. Although not surprising, this result is in sharp contrast to the
discrete semantics of reaction systems which are not Turing complete without
either the tolerance of a small probability error [17], or the addition of other
mechanisms such as the unbounded dynamic creation of membranes [2,38,9], or
the presence of polymerization reactions on an infinite universe of polymers [10]
or DNA stacks [40].

Furthermore, following [6] we generalize the purely analog characterization of
the complexity class PTIME to positive binary reaction systems which stabilize
on one component with a trajectory length bounded by a polynomial of the
input and the precision.

Then we derive from the proof of these results a compiler of behavioural
specifications6 into elementary reaction systems, without prejudging of their
biochemical implementation, by enzymatic reactions [37], DNA [13] or RNA for
instance.

We illustrate this approach with the compilation of trigonometric functions,
such as the the cosine function, as either functions of time or of an input variable.
Then, we study different sigmoid functions which can serve as markers of pres-
ence or absence for implementing program control instructions and compiling
imperative programs.

Then we start comparing our compiler-generated circuits to natural circuits,
with the example of the MAPK signaling network, which plays the role of an
analog-digital converter in the cell with a Hill type sigmoid input/output func-
tion [28].

2 Computational Functions and Computational

Complexity over the Reals

The General Purpose Analog Computer (GPAC) of Shannon [46] is a model
of computation based on circuits built from analog blocks. A set of variables
or entries x, y, z, . . . including time t are considered and four types of blocks
(constants, sums, products, and Stieltjes integral of one variable with respect to
another variable - by default the time variable when it is not indicated) are con-
nected (with possibly feedback connexions) in order to generate a system whose
dynamic is considered as “generating” functions. Shannon’s original presentation
suffers from several problems, including the fact that some circuits may or may
not have a solution. This problem was solved in [26] which gives a satisfactory
definition of GPAC-generable functions in terms of the solution to polynomial
initial value problems in polynomial differential equations (PIVP):

6 For the sake of reproducibility, all the examples described in this paper are directly
executable online in Biocham v4 (http://lifeware.inria.fr/biocham4) notebooks
available at http://lifeware.inria.fr/wiki/software/#CMSB17.

3

http://lifeware.inria.fr/biocham4
http://lifeware.inria.fr/wiki/software/#CMSB17

Definition 3. [26] A function f : R+ → R is GPAC-generable7 if it is one
component of the y(t) solution of some ordinary differential equation y′(t) =
p(y(t)) for a polynomial vector p ∈ Rn[Rn] and initial values y(0) ∈ Rn.

Fig. 1. GPAC circuit for generating the cosine function as a function of time, and
numerical simulation trace.

For example, the GPAC (y = integral integral -1 * y) shown in Figure
1 is constructed with two integral blocks and a multiplication by −1 which gives
y′′(t) = −y(t). This circuit when initialized with y(0) = 1 generates the cosine
function, cos(t), as a function of time. The class of GPAC-generable functions
enjoys a number of properties, such as stability by addition, multiplication and
composition, and also contains elementary functions such as trigonometric func-
tions, exponential functions, logarithms, etc. This notion of generability has for
some time been considered synonymous with analog-computability, which made
the GPAC a computation model less expressive than computational analysis as
some functions such as Rieman’s Zeta function or Euler’s Gamma functions are
known not to be differentially algebraic [46].

However, it is possible to define a notion of GPAC-computability which is
both natural in terms of PIVP and equivalent to computational analysis. The
idea is to proceed by approximation of the result for any entry on one component
of the system, as follows:

Definition 4. [4] A function f : R → R is GPAC-computable if there are
polynomial vectors p ∈ Rn[Rn], a polynomial q ∈ Rn[R] such that for all x there
exists some (necessarily unique) function y : R → Rn such that

y(0) = q(x), y′(t) = p(y(t))

and |y1(t)− f(x)| ≤ y2(t), with y2(t) ≥ 0 decreasing and limt→∞ y2(t) = 0.

7 This definition can be generalized to functions of several variables over different
domains [7].

4

In other words, the computation of f with the argument x consists in putting
the system in a polynomially dependent state of x, then letting the system evolve
according to the dynamics described by p. The result of the computation is
obtained in one component of the system, say the first, with arbitrary precision
given by some other component of the system, say the second, is decreasing8 to
0.

Then the following theorem perfectly reconciles the notions of digital (i.e. by
Turing machines) and analog (i.e. by PIVP) computability:

Theorem 1. [4,5] A function is computable in the sense of computational anal-
ysis if and only if it is GPAC-computable.

While previous result is conciliating both notions at the computability level,
such a result was missing at the complexity level. A clear difficulty is that a
naive definition of the complexity in terms of the time necessary to reach a
given precision can not be appropriate, since it is always possible to contract
time in a PIVP by a change of the time variable, e.g. tfast = et, and multiply
the differential equations by an arbitrary term.

This has been solved recently in [39] by demonstrating that taking the length
of the trajectory as measure of computational complexity, i.e. a combination of
time and space (amplitude), which takes into account the cost of computing
for instance tfast = et, yields a valid notion of time complexity, equivalent to
classical time complexity. In particular, a purely analog characterization of the
complexity class PTIME has been given in [6]. Let ||y|| refers to the infinite norm
of y (i.e. the maximum absolute value of its components).

Definition 5. [6] A function f : R → R is said to be Ω -computable in length,
where Ω : R2

+ → R, if there are polynomial vectors p ∈ Rn[Rn], a polynomial
q ∈ Rn[R] such that for all x there exists some (necessarily unique) function
y : R → Rn satisfying for all t ∈ R+:

– y(0) = q(x) and y′(t) = p(y(t)) with ||y′(t)|| ≥ 1 (holds if t is one variable),

– for any µ, if
∫ t

0
||y′(τ)|| dτ ≥ Ω(|x|, µ) then |y1(t)− f(x)| ≤ e−µ.

Theorem 2. [6] The Ω-computable functions in length, where Ω is a polyno-
mial, are exactly the functions computable in polynomial time in the sense of the
computational analysis.

Taking unrestricted Ω leads back to the previous notion of computable func-
tions in the sense of computational analysis.

Theorem 1 implies in particular that polynomial differential equations (PIVP)
are universal. This is in a strong sense, compared to notions of universality used
in articles such as [34,27] where it is basically shown that boolean circuits can
be realized, yielding a non-uniform notion of computability: for each input there

8 The decreasing assumption is here to yield a simple way to decide when the result
on the first component is correct with the required precision: given some precision
ǫ, just wait until the second component is less than ǫ.

5

exists an ODE system computing the result. Here this is a uniform computabil-
ity result: a given polynomial differential equation is able to simulate a Turing
machine on all inputs, independently of the size of the input.

In order to be more concrete on the encoding of Turing machines, let us
rephrase [6]. One can fix a finite alphabet Γ = {0, .., k − 2} and encode a word

w = w1w2 . . . w|w| by the couple ψ(w) =
(

∑|w|
i=1 wik

−i, |w|
)

. There is nothing

special about this encoding, other encodings may be used, however, two crucial
properties are necessary: (i) ψ(w) must provide a way to recover the word without
ambiguity, (ii) ||ψ(w)|| is O(|w|). In particular, over the alphabet Γ = {0, 1},
the use of base 3 (instead of base 2) simplifies the decoding.

Now consider any decision problem (language) L ⊂ Γ ∗. If L is decidable,
then there is a Turing machine that decides it. Then [6] provides (effectively
from the Turing machine) some polynomial vectors p ∈ Rn[Rn] and a polynomial
q ∈ Rn[R] such that for all w ∈ Γ ∗ there is a (unique) y : R+ → Rd such that
for all t ∈ R+:

1. y(0) = q(ψ(w)) and y′(t) = p(y(t)) with ||y′(t)|| ≥ 1,
2. if |y1(t)| > 1 for some t then |y1(u)| > 1 for all u > t (the decision is stable)
3. if w ∈ L (resp. /∈ L) then there is some t with y1(t) > 1 (resp. 6 −1)

Furthermore, if L is decided in polynomial time (i.e. is in class PTIME) then
there is some polynomial Ω (that can be obtained effectively from the polynomial
bound for L and from the Turing machine) such that this happens in polynomial
length: condition 3. is replaced by

3. if w ∈ L (resp. /∈ L) and
∫ t

0
||y′(τ)|| dτ ≥ Ω(|w|) then y1(t) > 1 (resp. 6 −1)

In other words, [6] is considering a notion of termination given by the fact
that some variable becomes of absolute value greater than 1: if the value is
greater than 1 (repectively: less than −1) this corresponds to acceptance (resp.
rejection). Other criteria for acceptance could be considered as seen from the
proofs of [6]. The fact that the acceptance region is at some distance from the
rejectance region (a value between −1 and 1 means the absence of decision) is
here only to avoid representation problems if one wants to simulate the involved
equations.

Notice that [6] was leaving open the issue whether the involved polynomial
in the polynomial ordinary differential equations could have non-rational coeffi-
cients (notice that the constructions were however using only computable coef-
ficients, but possibly irrational). It has been proved recently that only rational
coefficients are needed [3].

The notion of uniform computability is the strong notion of Turing univer-
sality involved in the rest of this paper.

3 Turing Completeness of Elementary Chemical Reaction

Networks

The previous results provide a solid foundation for studying biochemical ana-
log computation. However, a biochemical reaction system is a positive dynamical

6

system living in the cone Rn
+, where the state is defined by the positive concentra-

tion values of the molecular species9. Furthermore, we wish to restrict ourselves
to elementary reaction systems, governed by the mass-action-law kinetics and
where each reaction has at most two reactants.

Let M be a finite set of n molecular species {y1, . . . , yn}.

Definition 6. [21] A reaction is a triple (R,P, f), where R : M → N is a
multiset of reactants, P : M → N is a multiset of products and f : Rn

+ → R+,
called the rate function, is a partially differentiable function verifying R(yi) > 0
iff ∂f

∂yi
(y) > 0 for some y ∈ Rn

+.
A reaction system is a finite set of reactions.
A mass-action-law reaction is a reaction in which the rate function f is a

monomial of the form k ∗Πy∈MyR(y) where k is called the rate constant.
An elementary reaction is a mass-action-law reaction with at most two reac-

tants.

For the sake of both readibility and reproducibility, the examples will be
noted in the sequel in Biocham syntax, where a reaction (R,P, f) is written
f for R => P, or just R => P if the rate function is a mass action kinetics with
rate constant is equal to 1; the multisets are written with linear expressions
and _ stands for the empty multiset. Furthermore, a reaction with catalysts
f for R+C => C+P is abbreviated as f for R =[C]=> P.

Definition 7. The differential semantics of a reaction system {(Ri, Pi, fi)}i∈I

is the ODE system

{y′ = Σi∈I(Ri(y)− Pi(y)) ∗ fi}y∈M.

The dynamics given by the law of mass action leads to a polynomial ODE sys-
tem of the form y′(t) = p(y(t)) with p(y)i =

∑

j(Pj(yi)−Rj(yi)∗kj∗Π
n
i=1yi

Rj(yi).
There are thus additional constraints, compared to general PIVPs: the compo-
nents yi must always be positive, and the monomials of pi whose coefficient is
negative must have a non-zero yi exponent. These constraints are necessary con-
ditions for the existence of a set of biochemically realizable reactions that react
according to the dynamics y′ = p(y). Note however that we shall not discuss here
the choice of their possible implementations by particular biochemical devices,
such as DNA polymers [40], DNA double strands [33] or enzymatic reactions
[19,37] as this is beyond the scope of this paper.

Interestingly, the previous computability and complexity results can be gen-
eralized to elementary biochemical reaction systems. First, the restriction to
positive systems can be shown complete, by encoding each component yi by the
difference between two positive components y+i and y−i , which can be normalized
by a mutual annihilation reaction, y+i + y−i ⇒ , so that one variable is null. It
is worth noting that this encoding has been used in [36] for implementing linear
I/O systems.

9 Note that we do not impose that concentration values are small values, less than 1

7

Definition 8. A function f : R+ → R+ is chemically-computable if there exist
a mass-action-law reaction system {(Ri, Pi, fi)}i∈I over some molecular species
{y1, ..., yn}, and a polynomial q ∈ R+

n[R+] defining the initial concentration
values, such that f is GPAC-computed by q and its (polynomial) differential
semantics p ∈ R+

n[R+
n].

A function f : R+ → R is chemically-computable if there exists a chemically
computable function f+ : R+ → R+

2 (by straightfortward generalization of Def.4
to multiple computations) over {y+1 , ..., y

+
n , y

−
1 , ..., y

−
n } such that f = f+1 − f−2 .

In this definition, to compute f(x), one has thus to design a reaction system
over a finite set of molecular species, initialized to some values defined by a vector
of polynomials q(x) (e.g. following [8,12]), which guarantees that the result is
obtained in the concentration of one distinguished molecular species, with a
precision indicated by another distinguished molecular species (see Def. 4). Note
however that in practice, in the examples of the following sections, the precision
parameter will be left.

How to design such a reaction system is shown by the proofs of the following
results.

Theorem 3. Any GPAC-computable function can be computed by a mass-action-
law reaction system under the differential semantics preserving the polynomial
length complexity.

Proof. Let us consider a GPAC-computable function by a polynomial differential
equation p ∈ Rn[Rn]. Each variable yi ∈ R can be encoded by a couple of
variables (y+i , y

−
i) ∈ R2

+ such that at any time, yi = y+i − y−i .
Let p̂i(y

+
1 , y

−
1 , . . . , y

+
n , y

−
n) = pi[y = y+ − y−], we write p̂i = p̂+i − p̂−i , where

the monomials of p̂+i and p̂−i have positive coefficients. A positive system is then
defined by:

∀i ≤ n,

y+i
′
= p̂+i − fiy

+
i y

−
i

y−i
′
= p̂−i − fiy

+
i y

−
i

y+i (0)= max(0, yi(0))
y−i (0)=max(0,−yi(0))

where the fi’s are polynomials with positive coefficients such that fi ≥ max(p̂+i , p̂
−
i),

for instance fi = p̂+i + p̂−i . The terms −fiy
+
i y

−
i can be implemented by annihi-

lation reactions

fi for y+i + y−i
y+,y−

−−−−→

which ensure that one of the y±i always remains small.

Note that we have: y+i
′
≤ p̂+i (1 − y+i y

−
i) and y−i

′
≤ p̂−i (1 − y+i y

−
i), so that

(y+i y
−
i)

′ ≤ q · (1 − y+i y
−
i) where q is a polynomial with positive coefficients.

Since at t = 0 we have y+i y
−
i = 0, we deduce by a Gronwall inequality that

we always have y+i y
−
i ≤ 1. Therefore, |y±i | ≤ |yi| + 1, and |y±| ≤ |y| + n.

Consequently, if the original system is increased in space by a polynomial in the

for instance. We consider arbitrary large concentration and molecule numbers [25].

8

size of the input and the time, then this is still the case for the positive system
obtained by the preceding construction. Furthermore, each monoid of the form
λyα1

1 . . . yαm
m , λ > 0 appearing in the right term of an equality of the form y = p

can be implemented by a reaction of the form

α1y1 + . . .+ αmym
λ
−→ y + α1y1 + . . .+ αmym.

⊓⊔

Second, one can remark that we can also restrict ourselves to elementary
reactions, since every PIVP is equivalent to a quadratic PIVP:

Theorem 4. [11] Any solution of a PIVP is the solution of a PIVP of degree
at most two.

Proof. The proof consists in introducing variables for each monomial as follows

vi1,...,in = yi11 y
i2
2 , . . . , y

in
n .

We have y1 = v1,0,...,0 and so on. The substitution of these variables in the
differential equations of y′i gives equations of the first degree in the variables
vi1,...,in . The differential equations for variables that are not yi are of the form

v′i1,...,in =
n
∑

k=0

ik ∗ vi1,...,ik−1,...,in ∗ y′k

i.e. a polynomial of degree two since the y′k differentials are linear combinations
of the variables vi1,...,in . ⊓⊔

These results show that elementary biochemical reaction systems under the
differential semantics have the expressive power of PIVPs. By Theorems 1, 3
and 4, we get

Theorem 5. Elementary reaction systems on finite universes of molecules are
Turing-complete under the differential semantics.

It is worth noticing that this result differs from previous results on the uni-
versality of continuous chemical reaction networks or neural networks which were
based on a non-uniform notion of computability [34,27]. Here we obtain a uni-
form computability result: a given reaction system on a finite set of molecular
species is able to simulate a Turing machine on all inputs, independently of the
size of the input. This result can be considered as solving the open problem
mentionned explicitly in Section 8 of [17].

Furthermore, our translation of PIVPs to positive quadratic PIVPs preserves
the polynomial time complexity defined in PIVPs as the trajectory length up to
some precision. The translation of Theorem 2 together with Theorem 3 and 4
give

9

Theorem 6. A function over the reals is computable (resp. in polynomial time)
if and only if it is computable by an elementary reaction system using only syn-
thesis reactions with at most two catalysts of the form

- => z or _ =[x]=> z or _ =[x+y]=> z

and degradation reactions by annihilation of the form

x_p + x_m => _

(resp. with trajectories of polynomial length).

Proof. In the proof of Theorem 3, we have shown that one consequence of the
annihilation reactions with fast kinetics is to make xp and xm not larger than
|x|+1 for all x, and thereby ensure the preservation of the polynomial complexity.
This inequality also shows that annihiliation reactions are useful to ensure the
convergence of the result components.

One can remark in this proof that the encoding of real valued variables by
two signed variables allows us to replace substractions by additions in the ODEs
just by sorting the monomials according to their sign. Furthermore, the proof of
Theorem 4 rewrites the terms with terms of degree at most 2 without changing
their sign. As a consequence, all the terms of the ODE are monomials of the
forms k, k ∗ x, k ∗ x ∗ y or −f ∗ xp ∗ xm which can be encoded with synthesis
reactions with at most two catalysts, and annihiliation reactions. ⊓⊔

The possible implementations of the particular synthesis and degradation
reactions used in Theorem 6 are beyond the scope of this paper. Let us just
remark that a formal synthesis reaction as _ =[x]=> z does not need to be a real
synthesis reaction with DNA or RNA, but can be implemented with proteins, for
instance by a phosphorylation reaction by kinase x, i.e. of the form iz =[x]=> z

where iz assumed to be in excess is the (inactive) dephosphorylated form of
z. Similarly, the annihilation reaction z_p + z_m => _ might be thought as
representing in reality, among many other possibilities, a complexation reaction
which produces an inactive (stable) complex.

4 Biochemical Compilation of Analog Functions

4.1 Compilation of GPAC-Generable Functions

The proof of Theorem 3 shows how a PIVP can be implemented with biochemical
reactions by doubling the number of variables for the positive and negative parts,
and by implementing each monomial of the differential equations by a catalytic
reaction of synthesis or degradation according to its sign. Similarly, the proof of
Theorem 4 shows how to restrict code generation to elementary reactions of at
most two reactants, by increasing the number of variables (i.e. molecular species),
that is to say by sacrificing the dimension of the system to the minimization of
the degrees.

10

These are the principles of our biochemical compiler which translates a math-
ematical function defined by a PIVP into a system of elementary reactions. For
implementation reasons however, our compiler departs from the previous theo-
retical framework in a few places. The annihilation reactions (which play no role
in the computability but in the complexity only) are implemented with a suffi-
ciently large rate constant called fast, instead of with a large polynomial. The
approximation error is not computed since we are not interested in the precision
of the result and assume to know in advance some time horizon sufficient to get
the results10.

As a first example, let us consider the biochemical compilation of the os-
cillator defined by the cosine function f = cos(t) as a function of time, itself
defined by the PIVP f ′′ = −f with f(0) = 1, i.e. {f ′ = z, z′ = −f} with
f(0) = 1, z(0) = 0. This example compiles into the six elementary synthesis
reactions below, where the first four reactions implement the PIVP, and the last
two reactions the normalization reactions by mutual annihilation of the positive
and negative variables.

biocham: compile_from_expression(cos, time, f).

_ = [z2_p] => f_p.

_ = [z2_m] => f_m.

_ = [f_m] => z2_p.

_ = [f_p] => z2_m.

fast*z2_m*z2_p for z2_m+z2_p => _.

fast*f_m*f_p for f_m+f_p => _.

present (f_p, 1).

biocham: list_ode.

d(f_p)/dt = z2_p-fast*f_m*f_p

d(f_m)/dt = z2_m-fast*f_m*f_p

d(z2_p)/dt = f_m-fast*z2_m*z2_p

d(z2_m)/dt = f_p-fast*z2_m*z2_p

This reaction system, produced with initial concentration value fp = 1 at
time 0 (and 0 for all other variables), is designed for the differential semantics.
Its robustness to extrinsic noise can be measured with respect to perturbations of
the parameter values [42]. Such a reaction system can also be interpreted in the
stochastic semantics [22], and simulated using Gillespie’s SSA algorithm [24] to
analyze its robustness to intrinsic noise. Figure 2 shows a differential simulation
trace and one stochastic simulation trace.

4.2 Compilation of GPAC-Computable Functions

Let us first remak that a PIVP that computes the value of y = f(x) at any point
x can be derived from a PIVP that generates f(t) as a function of time [39]. The
idea is to replace the PIVP that generates f(t) by a PIVP that generates f(γ(t))

10 Note also that the transformation to at most binary reactions is temporarily not
included in our compiler.

11

Fig. 2. Differential and stochastic simulation traces of the compiled reactions for gen-
erating the cosine function as a function of time.

where lim
t→∞

γ(t) = x, starting from a point x0 such that f(x) does not diverge

along the trajectory γ(t) [39]. Taking the trajectory γ(t) = x+(x0−x)e
−λt with

λ > 0, we have γ(t)′ = −(x0 − x)e−λt = x− γ(t).
Although not totally general since all GPAC-computable functions are not

GPAC-generable, we limit ourselves to this method for compiling computable
functions with the following

Algorithm 1 Transformation of a PIVP that generates a function f(t) in a
PIVP that computes the function f(x) for any x as f(γ(t)).

1. replace t by γ(t) in the ODE that generates the function f(t);
2. multiply all the terms of the ODE by x− γ(t);
3. add the equation γ′ = x− γ;
4. initialize γ to x0 and the result variable to f(x0).

For instance, the compilation of the cosine function cos(x) for any input
concentration x generates the following elementary synthesis reaction system,
where the first four reactions compute γ(t) in g_p and g_m (with λ = 1), and
the other reactions result from the multiplication by x−γ of the ODE terms for
cos(t) which basically translates to the addition of catalysts x_p and g_m to the
reactions for cos(t):

biocham: compile_from_expression(cos, x, r).

_ = [g_m] => g_p.

_ = [x_p] => g_p.

_ = [g_p] => g_m.

_ = [x_m] => g_m.

12

_ = [g_m+z4_p] => r_p.

_ = [g_p+z4_m] => r_p.

_ = [x_m+z4_m] => r_p.

_ = [x_p+z4_p] => r_p.

_ = [g_m+z4_m] => r_m.

_ = [g_p+z4_p] => r_m.

_ = [x_p+z4_m] => r_m.

_ = [x_m+z4_p] => r_m.

_ = [g_m+r_m] => z4_p.

_ = [g_p+r_p] => z4_p.

_ = [x_p+r_m] => z4_p.

_ = [x_m+r_p] => z4_p.

_ = [g_m+r_p] => z4_m.

_ = [g_p+r_m] => z4_m.

_ = [x_m+r_m] => z4_m.

_ = [x_p+r_p] => z4_m.

fast*z4_m*z4_p for z4_m+z4_p => _.

fast*r_m*r_p for r_m+r_p => _.

fast*g_m*g_p for g_m+g_p => _.

fast*x_m*x_p for x_m+x_p => _.

present (r_p, 1).

biocham: present (x_p, 4).

This reaction system then computes cos(x) by initializing the argument to
the desired value, for instance xp = 4 for which simulation traces are shown in
Figure 3.

Fig. 3. Differential and stochastic simulation traces of the compiler-generated reactions
for computing cos(4).

13

5 Compilation of Sigmoid Functions

A sigmoid function is a bounded differentiable real function that is defined for all
real input values and has a positive derivative at each point. Sigmoid functions
have an “S” shape. They can be used to implement analog/digital converters
which produce all-or-nothing outputs for a wide range of input levels. In bio-
chemistry, Hill functions, of the form xn/(k + xn), over R+ are examples of
sigmoid functions that have been shown to approximate the input/output re-
sponse of, first historically, cooperative allosteric enzymatic reactions [44], and
more recently of the MAPK signaling network [28] for instance. In this section
we study the biochemical compilation of various sigmoid functions which is key
to the implementation of digital logic with molecular reactions [32,31].

5.1 Logistic, Hyperbolic Tangent, Arc Tangent and Hill Sigmoids

For the sake of simplicity, we restrict here to the generation of sigmoid functions
as functions of time, with the idea of using Alg. 1 for computing those functions
as functions of some input variable. The logistic function S(t) = 1/(1 + et) is
a sigmoid function over R whose derivative can be written in terms of itself as
S′(t) = S(t) − S(t)2. It can be generated over R+ by two simple elementary
reactions, one autocatalyzed synthesis and one autocatalyzed degradation:

S => 2*S. S =[S]=> _. present(S,0.5).

The hyperbolic tangent tanh(t) has also a simple derivative expression tanh′(t) =
1− tanh(t)2 which can be implemented with two elementary reactions:

_ => HT. 2*HT => HT.

The arc tangent atan(t) has for derivative atan′(t) = 1/(1 + t2) which can
be implemented by

_ => T. 1/(1+T^2) for /T => AT.

Note however that in this presentation, the second synthesis reaction uses T as
reaction inhibitor, which is beyond the scope of this paper.

The Hill functions of degree d (resp. negative Hill functions) are defined by
Hd(t) = td/(k+ td) (resp. NHd(t) = 1/(k+ td)) for some parameter k ∈ R. One
can easily check that they are solutions of the PIVP H ′

d = d ∗ k ∗ td−1 ∗ NH2
d ,

NH ′
d = −d ∗ td−1 ∗NH2

d with Hd(0) = 0 and NHd(0) = 1/k, which leads to the
following (non elementary) reactions for their generation:

MA(d) for NHd =[(d-1)*T+NHd]=> _. present(NHd,1/k).

MA(d*k) for _ =[(d-1)*T+2*NHd]=> Hd.

5.2 Comparison to MAPK Signaling Circuits

MAPK (mitogen-activated protein kinases) signaling networks are very common
biochemical reaction modules which are found in multiple copies in eukaryotic
organisms. In these signaling cascades the proteins activated by phosphorylation
are themselves kinases which catalyze in cascade other phosphorylations. Thus,
the MAPK cascade has three stages of phosphorylation for a total of 30 ele-
mentary reactions: the entry E1 of the cascade, directly linked to the membrane

14

receptor, catalyses the phosphorylation of the kinase KKK of the first stage,
which in turn phosphorylates the kinase KK of the second stage, which in this
doubly phosphorylated form phosphorylates the protein K of the last stage of
the cascade, which, when doubly phosphorylated in Kpp, is able to migrate into
the nucleus and promote or inhibit gene transcription.

In [28] Huang and Ferrell have proposed an explanation for this structure by
showing that the MAPK cascades exhibit a (stationary) response in the form
of a Hill function which produces a nearly all-or-nothing response. That is, by
denoting (u, y) the input-output relation of the system, they could approximate

the dose-response diagram by an equation of the form Y (u) ≈ λ ud

cd+ud with d in
the order of 4.9 at the third level Kpp d ∼ 1.7 to the second KKpp and d = 1
at the first level KKKp.

The Hill function, as a function of an input, can be compiled in biochemical
reactions by applying Alg. 1 to the PIVP given in the previous section for the
Hill function as a function of time. This leads to the following reaction system:

γ →
x → x+ γ

2y1 + x→ y1 + x
2y1 + γ → 3y1 + γ

y2 + d+ x+ y1 → d+ x+ y1 + 2y2
2y2 + d+ x+ y1 → d+ x+ y1 + y2
y2 + d+ γ + y1 → d+ γ + y1
2y2 + d+ γ + y1 → d+ γ + y1 + 3y2

with the initial conditions (γ, y1, y2)t=0 = (1, 1, 1/2). This system satisfies y2 =
xd

1+xd at steady state, and therefore constitutes a binary presence indicator: if
x ≫ 1 , then y2 = 1, and if x ≪ 1, then y2 = 0, the greater d, the greater
the discrimination. Note that this value is given here by a fixed concentration
of molecule but could be represented more simply by a kinetic constant. This
converter, however, fails to create an intermediate value in 1

γ
which gives an

exponential amplitude for x = 0, and therefore an exponential computational
complexity in the sense of the previous section. If we restrict ourselves to taking x
in an interval of the form [ε,+∞[, with ε > 0, then the complexity becomes poly-
nomial. On the other hand, if we restrict to degree 2 and compile the expression
x2/(1+x2), the command compile_from_expression(id*id/(1+id*id),x,y)

produces a system of 259 reactions over 23 species (70 reactions over 19 species
for the function of time). However, the generated species for the possibly neg-
ative values, and their reactions, are useless in this example. Furthermore, our
syntax-directed compilation strategy currently associates one variable per term
occurrence, thus twice for the two occurrences of the expression x2, and performs
division in another variable. The computational complexity is polynomial, but
with one component of amplitude x2 which is computed in that strategy.

The natural MAPK circuit of 30 reactions [28] thus currently appears both
more concise, and with a lesser computational complexity, than the system of
reactions produced according to our first principles of compilation without any
optimization.

15

6 Compilation of Sequentiality and Program Control

Flows

The negative Hill sigmoid c
c+xd provides a binary absence indicator of higher

quality than those proposed in in [45] or even [29] for implementing sequential-
ity and program control flows, for which leakage phenomena may occur: even
in the relative absence of the x species, the presence indicator remains at a
sufficiently high concentration to catalyze certain reactions, or the opposite ef-
fect, the absence indicator may be too small. This is particularly visible in the
sequentiality implementation: given the Ri reactions, if we want R2 to be ex-
ecuted only once R1 is completed, one can impose an indicator of the absence
of one species consumed by R1 as catalyst of R2, ditto between R2 and R3, etc
This leads however to the following phenomenon: the reactions are made all the
more slowly as i is large, in other words, the reactions accumulate delay in their
execution due to the retention of absence indicators.

With a sufficiently powerful absence indicator, it is possible to implement
the sequentiality, the conditional instruction, and loop structures of algorithmic
programming. It has been shown in [29] how to compile small imperative pro-
grams into a system of biochemical reactions wherein the molecular species are
used as markers of the position of the program in a control flow graph. This
was illustrated with the compilation of Euclidean division and greatest common
divisor programs, and with strategies for species minimization in [30].

Fig. 4. ODE simulation trace of the generated reactions for the cell cycle loop.

Along the same lines, a minimalist specification of the cell division cycle can
be specified by the program

while true do {Growth; Replication; Verification; Mitosis;}

The compilation of this program in elementary reactions implements the sequen-
tiality of the four phases of the cycle by the degradation of the markers of each
of the phases, depicted in Figure 4. Interestingly, the resulting simulation curves

16

are quite similar to the concentration curves obtained in cell cycle models [23]
for the cyclin proteins, which appear here as necessary markers for implementing
sequentiality with biochemical reactions.

7 Discussion and Perspectives

Though one lesson of Computer Science is that analog computation does not
scale up, while digital computation does, the biological perspective provides
a new impetus to the study of analog computation and mixed analog/digital
parallel programs.

We have shown that recent results in computable analysis and theoretical
complexity establish solid links between analog and digital computation, and
can be used to compile analog specifications and mixed analog/digital programs
into elementary biochemical reactions. This opens new research avenues to ana-
lyze natural protein interaction circuits not only from point of view of the size
and the static complexity of the networks [1], but also from the computational
complexity and robustness points of view [39], to revisit the important partic-
ular case of linear time invariant systems [16,15,14], to design reaction code
optimizers, and compare natural circuits acquired by evolution to engineered
and compiler-generated synthesized circuits.

The concept of biochemical computation and compilation can also be exper-
imented in vitro and in vivo, either in Synthetic Biology, through the modifi-
cation and reprogramming of living cells [35,18], or in Synthetic Biochemistry,
through the creation and programming of non-living microfluidic vesicles [19],
with various applications including the design of biomarkers [18].

Furthermore, the formal specification by mathematical functions of the in-
put/output or transient behaviors of biochemical reaction systems under the
differential semantics, establishes novel ways to study the functions of natural
circuits mathematically, and on this route investigate their evolution history and
evolution capabilities [47].

Acknowledgements. We are grateful to especially one reviewer for his expert
proofreading which helped us to improve the presentation of our results, and to
the editors for providing us with the necessary extra space. Part of this research
is funded by the ANR-MOST Biopsy project. The first author acknowledges
fruitful discussions with Jie-Hong Jiang (NTU, Taiwan) on the compilation of
program control flows with reactions, and motivating discussions with Frank
Molina (CNRS, Sys2Diag, Montpellier) on the biochemical implementation by
enzymatic reactions in microfluidic vesicles.

References

1. Barabási, A.L.: Network Science. Cambridge University Press (2016)
2. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Sci-

ence 96 (1992)

17

3. Bournez, O., Graça, D.S., Pouly, A.: Polynomial Time corresponds to Solutions of
Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the
ACM (2017), accepted for publication

4. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential
equations compute all real computable functions on computable compact inter-
vals. Journal of Complexity 23(3), 317–335 (2007), https://hal-polytechnique.
archives-ouvertes.fr/inria-00102947

5. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: The general purpose
analog computer and computable analysis are two equivalent paradigms of analog
computation. In: International Conference on Theory and Applications of Models
of Computation. pp. 631–643. Springer (2006)

6. Bournez, O., Graça, D.S., Pouly, A.: Polynomial Time corresponds to Solutions of
Polynomial Ordinary Differential Equations of Polynomial Length. The General
Purpose Analog Computer and Computable Analysis are two efficiently equivalent
models of computations. In: 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. LIPIcs,
vol. 55, pp. 109:1–109:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016), http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=6244

7. Bournez, O., Graça, D.S., Pouly, A.: On the functions generated by the general
purpose analog computer. Information and Computation (accepted under minor
revision) (2017)

8. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing
algebraic functions with biochemical reaction networks. Artificial Life 15(1), 5–19
(2009)

9. Busi, N., Gorrieri, R.: On the computational power of brane calculi. In: Plotkin,
G. (ed.) Transactions on Computational Systems Biology VI, Lecture Notes in
BioInformatics, vol. 4220, pp. 16–43. Springer-Verlag (Nov 2006), cMSB’05 Special
Issue

10. Cardelli, L., Zavattaro, L.: Turing universality of the biochemical ground form.
Mathematical Structures in Computer Science 20(1), 45–73 (2010)

11. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties of
solutions to polynomial systems of differential equations. Electronic Journal of
Differential Equations 40 (2005)

12. Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous
chemical reaction networks. In: Proceedings of the 5th Conference on Innovations
in Theoretical Computer Science. pp. 313–326. ITCS ’14, ACM, New York, NY,
USA (2014)

13. Chen, Y., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig,
G.: Programmable chemical controllers made from dna. Nature Nanotechnology 8,
755–762 (Sep 2013)

14. Chiang, H.J., Jiang, J.H., Fages, F.: Reconfigurable neuromorphic computation in
biochemical systems. In: Proc. 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society EMBC (2015), http://lifeware.
inria.fr/~fages/Papers/CJF15ieee.pdf

15. Chiang, K., Jiang, J.H., Fages, F.: Building reconfigurable circuitry in a biochem-
ical world. In: BioCAS’14: IEEE Biomedical Circuits and Systems Conference.
IEEE, Lausanne, Switzerland (Oct 2014), http://lifeware.inria.fr/~fages/

Papers/CJF14biocas.pdf
16. Chiu, T.Y., Chiang, H.J.K., Huang, R.Y., Jiang, J.H.R., Fages, F.: Synthesizing

configurable biochemical implementation of linear systems from their transfer func-
tion specifications. PLoS ONE 10(9) (2015)

18

https://hal-polytechnique.archives-ouvertes.fr/inria-00102947
https://hal-polytechnique.archives-ouvertes.fr/inria-00102947
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=6244
http://lifeware.inria.fr/~fages/Papers/CJF15ieee.pdf
http://lifeware.inria.fr/~fages/Papers/CJF15ieee.pdf
http://lifeware.inria.fr/~fages/Papers/CJF14biocas.pdf
http://lifeware.inria.fr/~fages/Papers/CJF14biocas.pdf

17. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

18. Courbet, A., Endy, D., Renard, E., Molina, F., Bonnet, J.: Detection of pathological
biomarkers in human clinical samples via amplifying genetic switches and logic
gates. Science Translational Medicine (2015)

19. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochem-
ical programming of synthetic microreactors operating as logic-gated and multi-
plexed diagnostic devices. Submitted

20. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation
in living cells. Nature 497(7451), 619–623 (05 2013)

21. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary dif-
ferential equations. Theoretical Computer Science 599, 64–78 (Sep 2015), http:
//lifeware.inria.fr/~fages/Papers/FGS14tcs.pdf

22. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology.
Theoretical Computer Science 403(1), 52–70 (2008), http://lifeware.inria.fr/

~fages/Papers/FS07tcs.pdf

23. Gérard, C., Goldbeter, A.: Temporal self-organization of the cyclin/cdk network
driving the mammalian cell cycle. Proceedings of the National Academy of Sciences
106(51), 21643–21648 (Dec 2009)

24. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22, 403–434
(1976)

25. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

26. Graça, D., Costa, J.: Analog computers and recursive functions over the reals.
Journal of Complexity 19(5), 644–664 (2003)

27. Helmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and turing machines. PNAS 88, 10983–10987 (1991)

28. Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase
cascade. PNAS 93(19), 10078–10083 (Sep 1996)

29. Huang, D.A., Jiang, J.H., Huang, R.Y., Cheng, C.Y.: Compiling program control
flows into biochemical reactions. In: ICCAD’12: IEEE/ACM International Confer-
ence on Computer-Aided Design. pp. 361–368. ACM, San Jose, USA (Nov 2012),
http://lifeware.inria.fr/~fages/Papers/iccad12.pdf

30. Huang, R.Y., Huang, D.A., Chiang, H.J.K., Jiang, J.H., Fages, F.: Species mini-
mization in computation with biochemical reactions. In: IWBDA’13: Proceedings of
the fifth International Workshop on Bio-Design Automation. Imperial College, Lon-
don (Jul 2013), http://lifeware.inria.fr/~fages/Papers/HHCJF13iwbda.pdf

31. Jiang, H., Riedel, M., Parhi, K.K.: Digital signal processing with molecular reac-
tions. IEEE Design and Test of Computers 29(3), 21–31 (Jun 2012)

32. Jiang, H., Riedel, M., Parhi, K.K.: Digital logic with molecular reactions. In: IC-
CAD’13: IEEE/ACM International Conference on Computer-Aided Design. pp.
721–727. ACM (Nov 2013)

33. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and
analysis of dna strand displacement devices using probabilistic model checking.
Journal of the Royal Society Interface 9(72), 1470–1485 (2012)

34. Magnasco, M.O.: Chemical kinetics is turing universal. Physical Review Letters
78(6) (1997)

19

http://lifeware.inria.fr/~fages/Papers/FGS14tcs.pdf
http://lifeware.inria.fr/~fages/Papers/FGS14tcs.pdf
http://lifeware.inria.fr/~fages/Papers/FS07tcs.pdf
http://lifeware.inria.fr/~fages/Papers/FS07tcs.pdf
http://lifeware.inria.fr/~fages/Papers/iccad12.pdf
http://lifeware.inria.fr/~fages/Papers/HHCJF13iwbda.pdf

35. Nielsen, A.A.K., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski,
E.A., Ross, D., Densmore, D., Voigt, C.A.: Genetic circuit design automation.
Science 352(6281) (2016)

36. Oishi, K., Klavins, E.: Biomolecular implementation of linear i/o systems. IET
SYstems Biology 5(4), 252–260 (2011)

37. P.Arkin, A., Ross, J.: Computational functions in biochemical reaction networks.
Biophysical Journal 67, 560–578 (1994)

38. Paun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer
Science 287(1), 73–100 (2002)

39. Pouly, A.: Continuous models of computation: from computability to complexity.
Ph.D. thesis, Ecole Polytechnique (Jul 2015)

40. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
dna polymers. In: Proc. DNA Computing and Molecular Programming. LNCS, vol.
6518, pp. 123–140. Springer-Verlag (2011)

41. Rizik, L., Ram, Y., Danial, R.: Noise tolerance analysis for reliable analog and
digital computation in living cells. J Bioengineer & Biomedical Sci 6(186) (2016)

42. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of tempo-
ral logic specifications with applications to parameter optimization and robust-
ness measures. Theoretical Computer Science 412(26), 2827–2839 (2011), http:
//lifeware.inria.fr/~soliman/publi/RBFS11tcs.pdf

43. Sauro, H.M., Kim, K.: Synthetic biology: It’s an analog world. Nature 497(7451),
572–573 (05 2013)

44. Segel, L.A.: Modeling dynamic phenomena in molecular and cellular biology. Cam-
bridge University Press (1984)

45. Senum, P., Riedel, M.: Rate-independent constructs for chemical computation.
PLOS One 6(6) (2011)

46. Shannon, C.: Mathematical theory of the differential analyser. Journal of Mathe-
matics and Physics 20, 337–354 (1941)

47. Valiant, L.: Probably Approximately Correct. Basic Books (2013)
48. Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)

20

http://lifeware.inria.fr/~soliman/publi/RBFS11tcs.pdf
http://lifeware.inria.fr/~soliman/publi/RBFS11tcs.pdf

