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Strong Uniqueness for Certain Infinite
Dimensional Dirichlet Operators and
Applications to Stochastic Quantization

VITALI LISKEVICH - MICHAEL RÖCKNER

Abstract. Strong and Markov uniqueness problems in L2 for Dirichlet operators
on rigged Hilbert spaces are studied. An analytic approach based on a priori
estimates is used. The extension of the problem to the Lp-setting is discussed. As
a direct application essential self-adjointness and strong uniqueness in Lp is proved
for the generator (with initial domain the bounded smooth cylinder functions) of
the stochastic quantization process for Euclidean quantum field theory in finitevolume A C 

Mathematics Subject Classification (1991): 47B25, 81S20 (primary), 31C25,
60H 15, 81 Q 10 (secondary).

1. - Introduction

The theory of Dirichlet forms is a rapidly developing field of modem

analysis which has intimate relationships with potential theory, probability theory,
differential equations and quantum physics. We refer to the monographs [16],
[17], [20] and [32] where the theory of Dirichlet forms with applications to
different branches of analysis and probability theory is presented. Though the
abstract general theory is well developed, specific analytic questions remain open
when one studies concrete situations. In this paper we mainly discuss Dirichlet
forms and corresponding Dirichlet operators on infinite-dimensional state spaces.
In particular, we are concerned with the classical Dirichlet form of gradient type
on a separable Hilbert space with a probability measure. Initially, the form is
defined on some "minimal" domain D.

The first analytic problem which arises when one studies such forms is

closability. This problem is well understood and necessary and sufficient condi-
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tions have been found (cf. [7]). The operators associated to the Dirichlet forms
generate Markov semigroups (see e.g., [17], [20], [32]) on the corresponding
L2-space. If one assumes that the same domain D is contained in the domain
of the generator, the next natural question which arises is whether the extension
in L2 of the generator restricted to D is unique. There are at least two different
statements of the uniqueness problem in this context. The first is the so-called
Markov uniqueness problem when one asks whether the extension generating a
Markov semigroup is unique. This problem is completely solved for the finite
dimensional case in [41] where Markov uniqueness was obtained under the most
general conditions. The situation is quite different in the infinite dimensional
case. We refer to [ 11 ], [12] for the best results in this direction known so far.

One speaks of strong uniqueness for the Dirichlet form resp. operator
when there is only one lower bounded self-adjoint extension of the Dirichlet
operator originally defined on D. As is well-known this is equivalent to essential
selfadjointness. This problem was addressed in many papers such as e.g. [1],
[12], [3], [14], [31], [43], [46] (see also the references therein). The results

obtained in [1], [3] and in [31] ] turn out to be incomparable, although they
are all expressed in terms of conditions on the logarithmic derivative of the
measure.

The aim of this paper is to investigate several "uniqueness problems" con-
nected with Dirichlet forms resp. Dirichlet operators on rigged Hilbert spaces.
The main result (Theorem 1) concerns strong uniqueness in L2. The method
we use is inherited from [31] (see also [1], [2], [3]) and based upon an a
priori estimate of the cylindric smooth solutions to the corresponding parabolic
equations. This estimate is a generalization of the estimate obtained in [31] ] to

the case when the logarithmic derivative of the measure contains two terms:
one of them satisfies the conditions of [31] ] and the other is modeled according
to that in [3] (see also [1], [2]). The method of this paper is purely analytic, in
contrast to that in [3]. It consists of the reduction of the problem to estimates
(independent of dimension) of gradients of solutions of the finite dimensional
projections of the problem. We use these estimates to show that any arbitrary
semigroup generated by an extension of the original Dirichlet operator on D can
be approximated by the same approximation sequence, and therefore is unique.

While the main result of this paper is a (strict) generalization of [31], it

is, though similar in nature, still quite disjoint from those in [1], [2], [3] w.r.t.

applications. Nevertheless, our main result can be applied to prove essential
self-adjointness of the corresponding Dirichlet operator in a situation where

this, despite several attempts, had been an open problem for quite some time.
That is the so-called stochastic quantization of field theory in finite volume.
More precisely, here the underlying space is a Sobolev space of distributions
on an open bounded set in R 2 and the measure is a two-dimensional Euclidean
quantum field in finite volume with polynomial self-interaction. We refer to

Section 5 below for the (extensive list of the) corresponding literature and more
details. We only mention here that Markov uniqueness, however, had been
shown already in [40, Section 7].
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Furthermore, it should be mentioned that the approach of the present paper
to the uniqueness problem naturally extends to the Lp-setting. The question
is then whether the extension of the Dirichlet operator on D generating a Co-
semigroup on LP is unique. For the first Lp-uniqueness result based upon the
method of a priori estimates we refer to [30]. In this paper we obtain the

uniqueness in L 1 (Theorem 2) which requires much simpler a priori estimates
than that needed for the proof of essential selfadjointness. As a consequence
we derive a new approximation criterium for Markov uniqueness (Corollary 1).
We also discuss the uniqueness problem in LP for p &#x3E; 1, p i= 2 generalizing
the result from [30], although we do not present the details for the a priori
estimates needed for this in the present paper, in order to avoid overloading the
reader with additional technicalities. But we emphasize that the corresponding
results then also apply to the cases described in Section 5 mentioned above. For
further results on strong uniqueness in LP we refer to [45], where uniqueness
results of "perturbative type" for p = 1 are proved, and to [19] where, in

particular, strong uniqueness in LP in the above mentioned situation of the
stochastic quantization is also proved, but only for 1  2. The latter case

corresponds to our Theorems 2 and 4.
The organization of this paper is as follows. In Section 2 we present

the framework and the main uniqueness results. In Section 3 we derive the
a priori estimates for gradients of the solutions to parabolic equations with
smooth cylindric coefficients. In Section 4 we give proofs of the uniqueness
results. In Section 5 we discuss the said applications. Section 6 is devoted to
the discussion of the uniqueness problem in LP.

2. - Framework and main results

Let Ho be a separable real Hilbert space with the inner product (., .)o and
norm ) . 10. Let

be a rigging of ~Lo by the Hilbert spaces x+ and H- with the assumption that
the embeddings are dense, continuous and belong to the Hilbert-Schmidt class.
Without loss of generality we can suppose then that there exists a selfadjoint
operator T = 7~ ~ 1 in xo with ’D(T) = H+ such that T-1 is Hilbert-

Schmidt. We refer to [13, Chap. 6, Section 3] for the details. We use the

orthonormal system 1 of eigenvectors of T as a basis in T ei =

hiei (i - 1, 2, 3,... ). For ei E H+, x E H-, we define xi : = + (ei , x ) _, where
+( , )- denotes the dualization between ~C_ and H+. Clearly, the norms in
7-~~ can be calculated as follows
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For N E N define

Below we mostly identify the linear span of f e 1, ... , eN) with 
We will denote the space of k-times continuously differentiable bounded

mappings from ?-~C_ into a Banach space
is a Banach space with the norm

where £(H-, X) denotes the space of all bounded linear operators from
X. When X is the set of complex numbers C we identify

and with the operator J
In this case

So we make the convention that ’ 
1

By let us denote the set of all functions f on 7~- such
that there exist N e N, C H+ and G e such that

Let v be a probability measure defined on the a -algebra .~’ of Borel subsets
of ~-L_ with supp v = H-. Assume that v has a logarithmic derivative in the
sense that there exists an 0-measurable mapping P : ~-~C_ and V q E

) and the following integration by parts
formula holds

where We also use the following notations

, is the norm in is the inner product in L2, and
denotes expectation w.r.t. v.

We introduce the Dirichlet form in L2 as a closure of the form
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Under the stated conditions the form is closable (see [7]). The integration by
parts formula implies that

Let A be the operator associated with the form E. Then A = A* &#x3E; 0. The
semigroup (e -tA , t &#x3E; 0) is positivity preserving. _ 

i ...., r

and L 00 -contractive
We also have that since A 1 = 0. Recall that such
a semigroup is called Markov semigroup and its generator is called Markov

generator. It is a standard fact that this semigroup defines a family of Co-
semigroups of contractions in L p , p E [1, oo) :

In what follows we use a stronger condition on the logarithmic derivative,
namely, we assume that pi E L 2(H_) which enables us to identify the action
of the operator A:

The operator A associated with the Dirichlet form is called the Dirichlet

operator.
In the following definitions we define different types of the uniqueness

problem for the operator A.

DEFINITION 1. A linear set D c D(A) is called a domain of strong unique-
ness of A if there exists only one selfadjoint extension of A ~ D in L2.

We note that according to a theorem by J. von Neumann this is equivalent
to the essential selfadjointness of A ~ D.

DEFINITION 2. A linear set D C D(A) is called a domain of Markov

uniqueness of A if there exists only one extension of A ~ D which is a Markov
generator in L 2 .

It is clear that if D is a domain of strong uniqueness of A it is also a

domain of Markov uniqueness, but not vice versa. (There are counterexamples
even if ?-~C_ = Hol = H+ = R’, cf. [19].)

We also extend the strong uniqueness problem to the Lp-setting.

DEFINITION 3. Let p &#x3E; 1. A linear set D C D(Ap) is called a domain of

Lp-strong uniqueness of A if all extensions B of A ~ D in LP such that -B
is a generator of a Co-semigroup in LP coincide with Ap.

According to a result by W.Arendt (cf. [35] Theorem A-II, 1.33, p. 46)
the latter is equivalent to the fact that D is a core of the operator Ap.

The following simple observation gives a link between the L 1-strong unique-
ness and the Markov uniqueness.
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PROPOSITION 1. Let A be a Markov generator. Let D C D(A) n V(A1). Then
if D is a domain of L 1-strong uniqueness for A, it is also a domain of Markov
uniqueness.

PROOF. Let f E D. Then by the definition of A 1 we have
and

Passing to the limit with respect to t t 0 we get A 1 f = A f . Now the result
follows easily. 0

Now we are ready to formulate the main results of the paper. The first

result concerns the strong uniqueness problem in L2. In [31] ] it was proved
that if 7Y- H Hol and )fl)o E then -A - _(~B, ~~)+ ~ r Cb is

essentially selfadjoint. However, in the infinite dimensional case these conditions
become quite restrictive in applications, in particular, because of the condition

E ~o for v-a.e. x E H-. The authors of [3] (using related analytic ideas,
but also stochastic techniques in an essential way) derived another sufficient
condition for essential selfadjointness, assuming the existence of the derivative
of P and that it satisfies certain one-sided estimates. The following result is a
strict generalization of [31] ] invoking, in addition, also a one sided estimate (but
involving the I 1+-norm rather than the ) 1--norm as in [3]). The primary idea
is to consider P as a sum of mappings a : ~_ 1-+ and 6 : ~-~C_ 1-+ H-. The

former satisfies the conditions of [31] ] whereas the derivative of the latter will
satisfy a one-sided estimate. Technically this is achieved by means of an a priori
estimate (see Section 3). Though this result remains quite disjoint from those
in [1], [2], [3] we are nevertheless able to apply it to new examples not covered
by those papers. The most striking one is to show essential selfadjointness of the
Dirichlet operator corresponding to the stochastic quantization of finite volume
quantum fields. This is presented in Section 5 below, to which we refer for
details and references.

THEOREM 1. Suppose
that there exist, I such that

where
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for all

Then i is essentially self-adjoint in

REMARK 1. Consider the following condition:

To compare (iii) and (iii’) one can rewrite them in the form

and

Therefore (iii) and (iii’) coincide if

The next theorem gives a criterium for the L 1-strong uniqueness of the
operator A.

THEOREM 2. . Suppose that there exists
a sequence of mappings such that

Then the operator i has a unique extension which generates

COROLLARY 1. Let the conditions of Theorem 2 be satisfied. Then is a

domain of Markov uniqueness for the operator A.

The proofs of Theorems 1 and 2 will be given in Section 4 after we derive
a priori estimates in Section 3. These estimates are the core of the method.
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3. - A priori estimates

The aim of this section is to obtain a priori estimates for solutions of

parabolic equations on Rd. So here Ho,H+, H- will be just R endowed
with the inner products (y, z)+ = ( y, z ) _ = and
the usual Euclidean product for To. The measure v above is correspondingly
now a measure on 

Let u (t, x) = u be the solution of the Cauchy problem

where f e b E with globally Holder continuous first
order derivatives. The operator A := A + (b, V.)o generates a Co-semigroup on

which can be extended to a Co-semigroup on (:= 
where dx denotes Lebesgue measure) and for the solution of (2) we have
u(t, .) = &#x3E; 0, and 1111100. Furthermore, we have u(t, .) E

(even with globally Holder continuous second order derivatives
and locally Holder continuous third order derivatives; cf. [27, Theorems 9.2.3
and 8.12.1 ]).

Let us introduce the derivative of the mapping b : 1--* as the linear

operator Ab whose matrix is (Ab)ij = (Vibj).
PROPOSITION 2. Let u be the solution to (2) with .f’ E Suppose that b

is as above satisfying, in addition, that there exists c+ e such that

Then

PROOF. Let wi := Vi u be the derivative of u in direction ei. Denote the inner

product in by (.,.) and the integral with respect to Lebesgue measure
dx by ( ~ ) (only in this Differentiating equation (2) in the direction ei we
get 

-

where . Multiplying both sides of the last equality by
after integration with respect to dx and summation with

respect to i from 1 to d we have
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The last term is equal to

Therefore, we obtain the equality

where ; is the norm in From (4) and the
- I 

--

assumption it follows that

or

Since passing to the limit we get

From now on as in Section 2 the norms I I I I p again denote the L p -norms
w.r.t. v.

PROPOSITION 3. Let f3 = a -f- 8, b =a1 + 81 1 with a, 8, aI, 81 : Suppose
that E L2(JRd, v), ~ 131- E v) and that the condition of Proposition 2 is
satisfied. Let u be the solution of (2). Then

PROOF. Multiplying (2) by u and integrating w.r.t. v we obtain after inte-
gration by parts that

Estimating the r.h.s. as follows

after integration with respect to t and using Proposition 2 one completes the
proof. 0
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PROPOSITION 4. Let u be the solution to (2). In addition to the conditions of
Proposition 3 assume that lalo E L4(JRd, v), 181- E v), 8 E C1(JRd, Rd),
and that there exist Eo E (0, 1 ), c (eo) E R+ such that

for all Then there exists C(so) E R+ (depending only on
80) such that

Before proving Proposition 4 we prove several lemmas (all of them under
the conditions of Proposition 4).

LEMMA 1. Let w := i7u. Then

PROOF. Using the equation and integrating by parts we have

Rewriting this in the form

we get the result.

LEMMA 2. Let u be the solution to (2), w = Vu. Then
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PROOF. Differentiating the equation in direction ei we get

Multiplying scalarly by wi in v) and summing over i we have the
equality

Again using the equation we rewrite the last equality in the form

To finish the proof of the lemma one should observe that

LEMMA 3. Let u be the solution to (2), w := Vu. Then
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PROOF. Using equation (2) and integrating by parts we obtain

where we used that + b2 and Lemma 1 in the last step. Now the
assertion follows. 0

PROOF OF PROPOSITION 4. Let us first estimate the first term of the right
hand side of (8):

The term in (8) containing dt is estimated by Lemma 1 as follows
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Therefore, using that ab  I a2+ for estimating the rest of the right hand
side of (8) we get by assumption (5) for any &#x3E; 0 from (8) that

where R+ only depends on Eo. Estimating the l.h.s. of the last in-

equality from below by Lemma 3 one obtains the desired result after integration
with respect to t applying Propositions 2 and 3, and properly choosing 8 and

(for instance,

4. - Proofs of the uniqueness results

In this section we prove the results formulated in Section 2. Our strategy
for the uniqueness in L2 and in L 1 is the same. Namely, we take an arbi-

trary extension of the original operator defined on which generates a

Co-semigroup in L 2 (L 1 respectively). Then we construct the approximation
sequence which converges to the generated semigroup in L2 (L 1 respectively).
This implies the uniqueness of the semigroup, and therefore the uniqueness of
the extension. The same approach is extendable to all Lp-spaces (see Section 6
for more details).

PROOF OF THEOREM 1. Let f E and let lV E N, G E Cbl (R N) such
that

For every n E N there exist

such that for defined by
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we have

We may assume that an &#x3E; N for all n E N. For m, n E N define

where Nm is as in assumption (i) of the theorem. We now apply the results
of Section 3 with b replaced by := Pdn,m o (an + 8m) í ffi.dn,m and v

replaced by v o For kEN let Xn,m,k e such that for all

the are uniformly bounded and such
that 1 provided k. Define Gn,m,k := xn,m,k . G, where G is
considered as a function on Then the solution of the Cauchy problem
on ffi.dn,m 

r¡

is given by a Co-semigroup on

where

, -- .. ,

Let now B with domain D ( B ) be an arbitrary lower bounded self-adjoint ex-
tension of (-A - - (fl, V.)+) on L2(1t-, v). It is an easy exercise to

see that c D ( B ) and that

in particular, Since

continuously differentiable from
from . Therefore,

Hence we have justified that the classical Duhamel formula applies in our case,
since the above implies that for all t &#x3E; 0 and fk := Pud .....
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Hence, if y E R such that B &#x3E; y, then

Here we used the fact that, since dn,m &#x3E; max(an, Nm), both
and 8m o ~. We want to show that for all t &#x3E; 0

Applying Proposition 2 we see that as m ~ oo the second term converges
to zero by assumption (ii) for each fixed n. We note that the assumption in
Proposition 2 is indeed satisfied with b = b n,m for fixed n and a constant

c+ independent of m, since r has bounded continuous derivatives

and because of assumption (iii). If a = 0, (9) follows. If a ~ 0, we apply
Proposition 4 to see that the first term converges to zero, too, if n - oo.

We note that by assumption (iv) we can indeed apply Proposition 4, since

the logarithmic derivative fJn,m of v o pil (as is easily checked) satisfies then m

equation 
’

for all j E { 1, ... , dn, m } . Here I denotes the conditional expec-
tation of v given the generated by Of course, the

constant c+ in the right hand side of inequality (6) depends on n and m. But
since we first take tn - oo it disappears so when afterwards taking n ~ oo,
the right hand side of (6) stays bounded.

Since e-tB fk - e-tB f in L~(7~-, v) as k - oo, equality (9) implies that
e-tB f, t &#x3E; 0, is independent of which extension B we took in the first place.
Since is dense in L2(H-, v), it follows that and hence that B

is uniquely determined. Thus, the theorem is proved. D

PROOF OF THEOREM 2. The idea of the proof is similar to that of Theo-

rem 1. We use the same approximating semigroups e-tAm,n as in the proof of
Theorem 1.

Let B be an arbitrary extension of (-0 - _ (~B, ~~)+ ~ such that
-B is the generator of a Co-semigroup in L 1 (~-C_, v).
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Now let f, fk, Gn,m,k be as in the proof of Theorem 1. Then again
A A

and using Duhamel’s formula we obtain the
estimate

Now we proceed as above, but using Proposition 3 instead of Proposition 4 to
show that

Therefore, the extension B is unique which implies the assertion of the theo-
rem. 0

5. - Application to the stochastic quantization of field theory in finite volume

In this section we present our main application. After the programme of
stochastic quantization of field theories was initiated by Parisi and Wu in [37]
and after its implementation for Euclidean quantum fields with polynomial inter-
action in finite volume by Jona-Lasinio and Mitter in the pioneering work [24],
there has been an enormous number of follow-up papers on this subject (see
e.g. [4], [5], [6], [8], [10], [ 11 ], [12], [15], [18], [21], [23], [25], [26], [33],
[34], [40], [42]. But the question whether the corresponding Dirichlet operator
restricted to is essentially self-adjoint remained open. Below, we shall
show that we can settle this problem positively as a simple application of The-
orem 1 above. We note that Markov uniqueness in this case was already shown
in [40, Section 7]. We use the same notation as in the latter paper, but for

completeness we now recall the complete framework.
Let A be an open rectangle in II~2 . Let (- 0 -f-1 ) N be the generator of the

following quadratic form on dx) : (u, v) « + fA uv dx
with u, v E {g E L2 (A, dx) ~ I Vg E (where V is in the sense of

distribution). Let E N} C be the (orthonormal) eigenbasis of
(-0 -f- 1)N and (hn n E N} (C]0, oo[) the corresponding eigenvalues (cf. [38,
p. 226]), i.e., we consider Neumann boundary conditions. Define for a E R
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equipped with the inner product

Clearly, we have that

(cf. [28, p. 79] for the latter).
Fix 3 &#x3E; 0. Since  oo, we have applying [47, Theorem 3.2]

(i.e., the Gross-Minlos-Sazonov theorem) with H := L2(A, dx), := 

3/2 d -1/2 h h 
..

Al := (-A + and A2 := (-A + that there exists a unique mean
zero Gaussian probability measure it on 7~_ := (called free field on A;
see [36]) such that

Clearly, supp tt = H-.

REMARK 2. In (13) we have realized the dual of H-6 as Hs using the
standard chain

Let h E L2(A, dx), n E N: and define : zn : (h) as follows (cf., e.g. [22,
Sect. 8.5]): fix n e N and let Hn(t), t E be the n-th Hermite polynomial,

, and set

where i. Then it is known that :

both in every
n. 

for p-a.e. z E H- (cf., e.g., [39, Sect. 3] for the latter). The function

z « zk : (h) is then a /t-version of : zn : (h ) . From now

on : zn : (h) will denote this particular version.
Now fix N E N, an E R, 0  n  2N with a2N  0 and define
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where 1 ~ denotes the indicator function of A. Let

Then ~p &#x3E; 0 it-a.e. and ~p E LP(H-, for all p E [I, oo[ (cf. e.g. [44,
Sect. 5.2] or [22, Sect. 8.6]). Set

We want to apply Theorem 1 to v, H- := H-8 (as above), Ho := Ha, where

and H+ := Clearly, then since by (17) in particular a &#x3E; 1 - 6, the

embeddings

are Hilbert-Schmidt. We note that thus H+ = (- 0 + 1 )a (?-~’ ) and that

are orthonormal bases of H- respectively. Define
where 6 : H- - 7-C_ and a : ?-~_ --~ ~Co are for (v-a.e.)

defined by

We have that Indeed,
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since by (17), and

since a &#x3E; 0 by (17) (cf. the proof of [40, Theorem 7.5]). Furthermore, for all

It follows by [40, Proposition 7.2] that (1) holds. Defining for

we check immediately that conditions (i)-(iv) of Theorem 1 hold with c+ =
0 = and Eo = 1, 0 V j E N. Hence the corresponding Dirichlet
operator (-A - -(fJ, V.)+ ( 0C§°) is essentially self-adjoint in L2(~-L_, v).

For probabilistic consequences concerning uniqueness of the corresponding
martingale problem (resp. the associated infinite-dimensional stochastic differen-
tial equation) we refer to [40] or the detailed discussion in [9] (see, in particular,
[9, Theorem 3.5]).

Finally, we emphasize that the stronger results on uniqueness in LP pre-
sented in the next section apply to the above case also.
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6. - Further results and final remarks

So far we have discussed the uniqueness problem in L2 and in L 1. In
both cases we used some a priori estimates. In the case of L-uniqueness
it was a relatively simple estimate (Proposition 3), whereas in case of L2-
uniqueness a much harder estimate was used (Proposition 4). The problem
is naturally extended to the LP setting, via Definition 3. A result on LP-

uniqueness can be proved along the same lines as in the proof of Theorem 1.
The only difference is that one has to have a uniform estimate of Vu, in the
corresponding L2p-space, similar to that obtained in Proposition 4. Also the
idea of obtaining such an estimate is the same as in Proposition 4, with one
exception: one has to change the test function. Namely, the appropriate test
function is + 8)p-2, 8 &#x3E; 0, instead of used in the proof of
Proposition 4 after differentiating the equation. We do not present this estimate
and its proof here because it contains too many tedious technicalities. We refer
to [30] where a similar estimate was obtained in a somewhat simpler situation.
Our present result on LP-uniqueness, a generalization of Theorem 1, reads as
follows.

THEOREM 3. Let fl E a + 8, E L~, ~!- E L 2. Suppose that
there exists a sequence of mappings (8m)mEN, Sm : ~-l- H H-, such that all
conditions of Theorem 1 hold. Then (0 +_ (~8, ~~)+ ~ has a unique extension
which generates a Co-semigroup on L p for all p E ( 1 ~ 1 + 1 £o , 1 + l-:aeo).

REMARK 3. The uniqueness result in [30] is now obtained as a particular
case of Theorem 3: one has to take 8 = 0. In this case 80 = 1 and the interval
of uniqueness becomes 3/2  p  oo. We do not know at the moment whether
the assumption on p is just a technical restriction or it reflects the essence of
the problem.

The analysis of the proof of Theorem 2 shows that it can also be extended
to the LP setting, for p E [1, 2). The corresponding result (i.e., Theorem 4
below) only complements Theorem 3 for the case p  1 + Otherwise,
it is, of course, contained in the latter result. 

+#i° ’

2p
THEOREM 4. Let 1  p  2, p = a + 3, L2-p, 181- E L 2. Suppose

that there exists a sequence of mappings (8m)mEN, Sm : ’H- ~--+ H-, such

that

Then the operator (A -f-_ V.)+ has a unique extension which generates
a Co-semigroup on LP.

The proof is an obvious modification of the proof of Theorem 2.
Applications of these results have already been discussed in the previous

section.
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Finally, we mention that the method used in this paper can be extended
to the case of Dirichlet forms with variable non-smooth coefficients. It is also

important to investigate the Lp-uniqueness problem for the Dirichlet operator
perturbed by a singular potential, especially with a form-bounded negative part
(see [29] for abstract results in this direction). We intend to return to these
problems in the future.
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