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Strong Valid Inequalities for Orthogonal Disjunctions

and Bilinear Covering Sets

Mohit Tawarmalani 1, Jean-Philippe P. Richard 2, Kwanghun Chung 2

September 24, 2008

Abstract

In this paper, we develop a convexification tool that enables the construction of convex hulls
for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques.
A distinguishing feature of our technique is that, unlike most applications of disjunctive pro-
gramming, it does not require the introduction of new variables in the relaxation. We develop
and apply a toolbox of results that help in checking the technical assumptions under which the
convexification tool can be employed. We demonstrate its applicability in integer programming
by deriving the intersection cut for mixed-integer polyhedral sets and the convex hull of certain
mixed/pure-integer bilinear sets. We then develop a key result that extends the applicability
of the convexification tool to relaxing nonconvex inequalities, which are not naturally disjunc-
tive, by providing sufficient conditions for establishing the convex extension property over the
non-negative orthant. We illustrate the utility of this result by deriving the convex hull of a
continuous bilinear covering set over the non-negative orthant.

1 Introduction and Motivation

Finding globally optimal solutions to nonconvex problems is a challenging problem that has received
much attention in the last few decades; see Neumaier [16] for a survey of the existing solution meth-
ods. Nonlinear branch-and-bound is one such method that has been implemented successfully in vari-
ous global optimization software; see Adjiman et al. [1], Sahinidis and Tawarmalani [18], LINDO Sys-
tems Inc. [14], and Belotti et al. [7]. The branch-and-bound method typically bounds the nonconvex
optimization problem by solving its convex relaxations over successively refined partitions (see Falk
and Soland [11] and Horst and Tuy [13]). For factorable problems–problems involving functions that
can be written as recursive sums and products of univariate functions–McCormick [15] proposed a
composition theorem that allows automatic construction of convex relaxations provided that tight
concave and/or convex envelopes are known for the intrinsic nonlinear terms. McCormick’s relax-
ation is an instance of a commonly used technique for deriving convex relaxations for nonconvex
problems that relaxes inequalities of the form f(x) ≥ r by f̄(x) ≥ r, where f̄(x) is a concave over-
estimator of the function f(x). There is a significant amount of literature that develops techniques
for deriving tight overestimators for various classes of functions; see Tawarmalani and Sahinidis [22]
and Bliek et al. [8] for a more detailed treatment. However, the current literature rarely considers
the right-hand-side of the inequality. More precisely, the above technique relaxes the hypograph of
f(x) instead of relaxing the appropriate upper-level set. As a result, the derived relaxations can be
weak. For an illustration of the difference, consider the set S defined as:

S =
{

(x, y, z) ∈ R3
+

∣

∣ xy + z ≥ r
}

,

where r > 0. It can be easily seen that S is not convex since both
(√
r,
√
r, 0
)

and (0, 0, r) belong to S
while their convex combination with a weight of 1

2 on each point does not. Therefore, if the constraint
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defining S was to appear as one of the constraints in a problem, local optimization techniques would
not be guaranteed to find a globally optimal solution for the problem. However, because this set
belongs to the general family of factorable programs, it can be relaxed using McCormick’s scheme.
More generally, if traditional techniques were used to derive a convex relaxation of S, a concave
overestimator f̄ of the function f(x, y, z) = xy+z would first be obtained. Observe that the concave
envelope of this function over the non-negative orthant is infinite as long as x and y are both positive.
The resulting convex relaxation of S is

{

(x, y, z) ∈ R3
+

∣

∣ x, y > 0
}

∪
{

(x, y, z) ∈ R3
+ | z ≥ r, xy = 0

}

.
If in addition, the concave overestimator is required to be upper-semicontinuous, as is typically the
case, or even if the relaxation is required to be a closed set, then the relaxation would be R3

+. In
other words, standard relaxation schemes will essentially drop the defining constraint.

In this paper, we propose a scheme that produces tighter convex approximations by considering
the right-hand-side of the constraint. In particular, for the set S presented above, our scheme
produces the following convex relaxation

RS =

{

(x, y, z) ∈ R3
+

∣

∣

∣

∣

√

xy

r
+
z

r
≥ 1

}

,

which is a much tighter approximation than R3
+. Considering this simple example, we can make

three interesting observations. First, the relaxation, RS, is nonlinear. This is in contrast to cur-
rent implementations of nonlinear branch-and-bound that typically construct linear relaxations for
multivariate terms (see Tawarmalani and Sahinidis [25]). Second, the form of the nonlinear cut is
surprising as it applies different functions to the different terms of the initial inequality. For S,
the first term is modified using a square-root after being divided by r, while the second is simply
divided by r. Third, RS is not only a convex relaxation of S, but it is in fact (as will be shown
later) the convex hull of S. Surprisingly, the convex hull for these sets can be expressed in a simple
form without introducing new variables while developing the concave envelope of the corresponding
polynomial can be much harder.

The convex hull representation for bilinear covering sets arises from a general theory of orthogonal
disjunctions that we develop in this paper. To provide an example, consider the set S again. We
will show that the convex hull of S is determined by the points of S that either belong to the
half-plane (x, y, 0), where (x, y) ∈ R2

+ or to the half-line (0, 0, z), where z ∈ R+. In other words,
the set S satisfies the convex extension property (see Tawarmalani and Sahinidis [23]) in which
the important subsets belong to orthogonal subspaces. Because such a convex extension property
holds, it is natural to expect that one could build a higher dimensional description of the convex
hull of S using disjunctive programming arguments; see Rockafellar [17] and Balas [4]. Disjunctive
programming has been used to develop tight relaxations and cutting planes in integer, nonlinear, and
robust optimization; see [3, 20, 21, 9, 24, 6, 2, 19]. Unlike this paper, the literature on disjunctive
programming formulations, however, is mostly focused on naturally disjunctive sets. Cutting planes
based on disjunctive formulations, are typically linear and derived by solving separation problems
over extended formulations; see Cornuéjols and Lemaréchal [10]. One interesting observation in this
paper is that, as long as the disjunctive terms are orthogonal and a few technical conditions are
satisfied, there is no need to introduce additional variables. Furthermore, the convex hull of S can
be easily expressed in closed-form using the representations of the convex hull of S in each of the
two orthogonal subspaces, namely

√

xy
r

≥ 1 and z
r
≥ 1. We establish a much more general set of

conditions under which the argument evoked above is correct, allowing the use of both right-hand-side
and left-hand-side information in the derivation of convex relaxations for nonlinear programming.
Our results rely on the ability to prove that a convex extension property holds over orthogonal
disjunctions and the ability to derive closed form expressions of convex hulls (possibly in a higher
dimensional space) over each of the subspaces. Our techniques are applicable to large families
of problems and yield stronger convex approximations than those currently used in the nonlinear
branch-and-bound solvers.

In Section 2, we describe a tool to obtain the convex hull of orthogonal disjunctive sets. The result
can be evoked under certain technical conditions. We provide tools to verify these assumptions. We
also provide counterexamples to show the need for some of the assumptions. The intersection/split
cut for mixed integer linear sets is shown to be a special case of our general convexification tool. In
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Section 3, we illustrate the application of the tool in nonlinear integer programming by convexifying
a bilinear pure/mixed-integer set. Nonconvex inequalities in continuous variables are not naturally
disjunctive. For such inequalities, we establish sufficient conditions under which the convex extension
property holds over the non-negative orthant. We show that these sufficient conditions are satisfied
by continuous bilinear covering sets and develop their convex hulls over the non-negative orthant.
We summarize the contributions of this work in Section 4 and conclude with remarks and directions
for future research.

2 Convexification of Orthogonal Disjunctive Sets

In this section, we first introduce and prove a general result that exposes the closed-form convex
hull inequality description of the disjunctive union of a finite number of sets defined over subspaces
that are orthogonal to each other. This result also applies to non-disjunctive sets provided that their
convex hulls are entirely defined by their restrictions over a finite number of orthogonal subspaces.
Next, we illustrate the utility of this result in finding convex hull descriptions. Simultaneously,
we discuss the need for certain seemingly technical assumptions in the statement of the result. In
particular, we discuss each one of the four assumptions of the theorem and describe, with examples,
situations where they are satisfied. For some of the assumptions, we establish sufficient conditions
that are simple to verify. We also show later that the cuts that yield the convex hull, under
the specified technical conditions, continue to produce valid inequalities even when some of the
conditions are not satisfied. Throughout, we demonstrate the generality and applicability of our
convexification result by deriving new convex hull descriptions of various continuous, mixed, and
pure integer bilinear covering sets, and providing an alternate derivation of the classic intersection
cut derived in the integer programming literature.

In the following, given a set S, we represent its convex hull by conv(S), its closure by cl(S),
and its projection on the space of z variables by projz S. For a closed convex set, S, 0+(S) denotes

the set of its recession directions. When we display equations, we sometimes write min

{

f(z)
g(z)

}

to

denote min{f(z), g(z)}.
Theorem 2.1. Let S ⊆ R

P

i
di and for all i ∈ N = {1, . . . , n}, let Si ⊆ S. Let the points z of S be

written as z = (z1, . . . , zi, . . . , zn) ∈ S, where zi ∈ Rdi . Assume that:
(A1) if (z1, . . . , zi, . . . , zn) ∈ Si, then zj = 0 for ∀j 6= i,
(A2) for any z ∈ S, there exists χi ∈ conv(Si), i ∈ I ⊆ N , such that z ∈ conv

(
⋃

i∈I χi

)

,

(A3) conv(Si) ⊆ projz Ai ⊆ cl
(

conv(Si)
)

, where, for each i ∈ {1, . . . , n},

Ai =

{

(

0, zi, ui, 0
)

∣

∣

∣

∣

t
ji

i (zi, ui) ≥ 1, ∀ji ∈ Ji,

vki

i (zi, ui) ≥ −1, ∀ki ∈ Ki,

wli
i (zi, ui) ≥ 0, ∀li ∈ Li

}

.

(1)

Assume that tji

i , vki

i , and wli
i are positively-homogenous functions, i.e., for λ > 0,

λt
ji

i

(zi, ui

λ

)

= t
ji

i (zi, ui), λv
ki

i

(zi, ui

λ

)

= vki

i (zi, ui), λw
li
i

(zi, ui

λ

)

= wli
i (zi, ui).

(A4) projz Ci is a subset of the recession cone of cl conv (
⋃n

i=1 Si), i.e., for all i,

proj
z
Ci ⊆ 0+

(

cl conv

(

n
⋃

i=1

Si

))

where

Ci =
{(

0, zi, ui, 0
) ∣

∣ t
ji

i (zi, ui) ≥ 0, ∀ji ∈ Ji,

vki

i (zi, ui) ≥ 0, ∀ki ∈ Ki,

wli
i (zi, ui) ≥ 0, ∀li ∈ Li

}

.
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Let

X =

{

(z, u)

∣

∣

∣

∣

∑

i∈N

t
ji

i (zi, ui) ≥ 1, ∀ji ∈ Ji,

∑

i∈I

vki

i (zi, ui) ≥ −1, ∀I ⊆ N, ∀ki ∈ Ki,

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0, ∀i,∀ji ∈ Ji, ∀ki ∈ Ki,

t
ji

i (zi, ui) ≥ 0, ∀i,∀ji ∈ Ji,

wli
i (zi, ui) ≥ 0, ∀i,∀li ∈ Li

}

.

(2)

Then, conv(S) ⊆ projz X ⊆ cl conv(S). If in addition, ∀i ∈ N , projz Ai is closed and projz Ci =
0+
(

cl conv(Si)
)

, then projz X = cl conv(S).

Before proving Theorem 2.1, we briefly comment on its assumptions, its practical importance,
and its applicability. In Assumption (A2), we impose that any point in S can be expressed as a
convex combination of points in some of the Sis. This implies that only the subsets Sis are needed
when computing the convex hull of S. In Assumption (A1), we require that these subsets are
orthogonal to each other and aligned along the principal axes. In Assumption (A3), we require that
an inequality description of the convex hull of each one of the sets Si be known. Note that this
inequality description might make use of an extended formulation (using the additional variables
ui). The assumption that the right-hand-sides of all the inequalities are either 1, 0, or −1 is
without loss of generality as inequalities with nonzero right-hand-sides can be rescaled to satisfy
this assumption. Note also that in Theorem 2.1, we require that all inequalities be defined using
positively-homogeneous functions. We will show later that this assumption is often not needed
to prove the validity of the cuts derived in Theorem 2.1. In Assumption (A4), we impose, in
essence, that the recession directions of each one of the sets Ai are also the recession directions for
the closure convex hull of the union of the Sis. Under these four assumptions, we show that an
inequality description of the convex hull of S can be obtained by combining in a systematic way the
inequalities arising in the convex hull descriptions of the Sis. Note however that, for reasons that
will be described later, this inequality description might describe a superset of the desired convex
hull. However, the superset will never be larger than the closure convex hull of S, which is sufficient
for all practical purposes.

Proof. Claim 1: We claim that conv(S) = conv (
⋃n

i=1 Si). We first show that conv(S) contains
conv (

⋃n
i=1 Si). Clearly, for all i, Si ⊆ S. Therefore, S ⊇ ⋃n

i=1 Si and, so, conv(S) ⊇ conv (
⋃n

i=1 Si).
Now, we show that (A2) implies that conv(S) ⊆ conv (

⋃n
i=1 Si). Let z ∈ S. There exists I ⊆ N

and χi ∈ conv(Si) such that z ∈ conv
(
⋃

i∈I χi

)

⊆ conv (
⋃n

i=1 Si). Claim 1 is thus proved and,
therefore, we can use disjunctive programming techniques to compute the convex hull of S. Using
these techniques, we now show that it is possible to construct, in a closed-form, a set X that contains
conv (

⋃n
i=1 Si) and is itself contained in cl

(

conv (
⋃n

i=1 Si)
)

.
For T ⊆ N , we define

RT (λT ) =

{

(zT , uT )

∣

∣

∣

∣

∑

i∈T

t
ji

i (zi, ui) ≥ λT ∀ji ∈ Ji

∑

i∈I

vki

i (zi, ui) ≥ −λT ∀I ⊆ T, ∀ki ∈ Ki

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0 ∀i,∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (zi, ui) ≥ 0 ∀i,∀ji ∈ Ji

wli
i (zi, ui) ≥ 0 ∀i,∀li ∈ Li

}

.

In the remainder of this proof, whenever T is a singleton, say {i}, we will denote it as i itself. Also,
we define

Q =

{

(λ, z, u)

∣

∣

∣

∣

λi ≥ 0 ∀i ∈ N

4



(zi, ui) ∈ Ri(λi) ∀i ∈ N
n
∑

i=1

λi = λ1,...,n = 1

}

.

We next prove that X = projz,uQ and conv(S) ⊆ projz Q ⊆ cl conv(S). Clearly, together these
results imply that conv(S) ⊆ projz X ⊆ cl conv(S). First, we prove that X = projz,uQ. Given two
disjoint subsets A and B of N , we consider

W =

{

(λA, λB , λA∪B, zA, uA, zB, uB)

∣

∣

∣

∣

λA ≥ 0

(zA, uA) ∈ RA(λA)
λB ≥ 0
(zB, uB) ∈ RB(λB)

λA + λB = λA∪B

}

,

and

P =

{

(λA∪B , zA∪B, uA∪B)

∣

∣

∣

∣

λA∪B ≥ 0

(zA∪B, uA∪B) ∈ RA∪B(λA∪B)

}

.

A straightforward sequential application of the following claim shows that when λ1, . . . , λn are
projected out from Q we obtain RN (1) = X .

Claim 2: If zA∪B = (zA, zB) and uA∪B = (uA, uB), then P is the set obtained when λA and λB

are projected out from W . Note that since A and B are disjoint and zA∪B ∈ R|Pi∈A
di+

P

i∈B
di| =

R|Pi∈A
di| × R|Pi∈B

di|, the definitions of zA∪B and, similarly, uA∪B are dimensionally consistent.
Claim 2 is verified by first substituting λB = λA∪B − λA and then projecting λA out using Fourier-
Motzkin elimination; see Theorem 1.4 in [26]. We substitute λB = λA∪B − λA in W to obtain:

λA ≥ 0
(zA, uA) ∈ RA(λA)
λA∪B − λA ≥ 0
(zB, uB) ∈ RB(λA∪B − λA).

On the one hand, note that the inequalities

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0, (3)

t
ji

i (zi, ui) ≥ 0, (4)

wli
i (zi, ui) ≥ 0 (5)

for all i ∈ A ∪ B, ji ∈ Ji, ki ∈ Ki, and li ∈ Li remain untouched during projection since they are
independent of λA. On the other hand, the inequalities containing λA can be rewritten as:

min















∑

i∈A

t
ji

i (zi, ui)

λA∪B + min
B′⊆B

∑

i∈B′

vki

i (zi, ui)















≥ λA ≥ max















λA∪B −
∑

i∈B

t
ji

i (zi, ui)

− min
A′⊆A

∑

i∈A′

vki

i (zi, ui)















so that Fourier-Motzkin elimination is simple to perform. Observe that the constraints λA∪B −λA ≥
0 and λA ≥ 0 are represented in the above system respectively when A′ = ∅ and B′ = ∅. Projecting
λA out of the system, we obtain:

∑

i∈A∪B

t
ji

i (zi, ui) ≥ λA∪B (6)

5



∑

i∈A

t
ji

i (zi, ui) +
∑

i∈A′

vki

i (zi, ui) ≥ 0 ∀A′ ⊆ A, ji ∈ Ji, ki ∈ Ki (redundant) (7)

∑

i∈B

t
ji

i (zi, ui) +
∑

i∈B′

vki

i (zi, ui) ≥ 0 ∀B′ ⊆ B, ji ∈ Ji, ki ∈ Ki (redundant) (8)

∑

i∈A′∪B′

vki

i (zi, ui) ≥ −λA∪B ∀B′ ⊆ B,A′ ⊆ A. (9)

Inequalities (3) for i ∈ A′ and (4) for i ∈ A\A′ imply (7), showing that (7) is redundant. Similarly,
Inequality (8) can be shown to be redundant. Observe that λA∪B ≥ 0 can be shown to be represented
in (9) by selecting A′ = B′ = ∅. Therefore, the set obtained by projecting λA and λB out of W
is given by (3), (4), (5), (6), and (9), which is exactly the definition of P . We have thus proved
Claim 2. By applying this result sequentially, we obtain that X = projz,uQ.

We now prove that conv(S) ⊆ projz Q ⊆ cl
(

conv(S)
)

. We first show that if z ∈ conv (
⋃n

i=1 Si),
it can be extended to a point that belongs to Q by suitably defining (λ, u). If z ∈ conv (

⋃n
i=1 Si),

then, by (A1), there exist λi and z′i such that

z = (z1, . . . , zi, . . . , zn) =

n
∑

i=1

λi(0, z
′
i, 0),

where, for each i, λi ≥ 0, (0, z′i, 0) ∈ conv(Si), and the multipliers sum up to one, i.e.,
∑n

i=1 λi = 1.
We reindex Si so that the sets containing the points associated with non-zero multipliers are indexed
from 1 to t. Then, (z, u) =

∑t
i=1 λi(0, z

′
i, u

′
i, 0), where (0, z′i, u

′
i, 0) ∈ Ai, λi > 0 for i = 1, . . . , t, and

∑t
i=1 λi = 1. Such a representation exists since z is expressible as a convex combination of points

in conv(Si) which can be extended to belong to Ai, the representation of a superset of conv(Si),
possibly in a higher dimensional space. Observe that λiz

′
i = zi and λiu

′
i = ui. Observe further that

Ri(1) is the same as Ai, except that it is defined in a lower-dimensional space. Since (z′i, u
′
i) ∈ Ri(1)

for each i ∈ {1, . . . , t}, it is clear that

t
ji

i (z′i, u
′
i) ≥ 1 ∀ji ∈ Ji

vki

i (z′i, u
′
i) ≥ −1 ∀ki ∈ Ki

t
ji

i (z′i, u
′
i) + vki

i (z′i, u
′
i) ≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (z′i, u
′
i) ≥ 0 ∀ji ∈ Ji

wli
i (z′i, u

′
i) ≥ 0 ∀li ∈ Li.

After substituting (z′i, u
′
i) =

(

zi

λi
, ui

λi

)

for each i ∈ {1, . . . , t} and multiplying both sides of the

inequalities by the positive value λi, we obtain:

λit
ji

i

(

zi

λi

,
ui

λi

)

≥ λi ∀ji ∈ Ji

λiv
ki

i

(

zi

λi

,
ui

λi

)

≥ −λi ∀ki ∈ Ki

λit
ji

i

(

zi

λi

,
ui

λi

)

+ λiv
ki

i

(

zi

λi

,
ui

λi

)

≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

λit
ji

i

(

zi

λi

,
ui

λi

)

≥ 0 ∀ji ∈ Ji

λiw
li
i

(

zi

λi

,
ui

λi

)

≥ 0 ∀li ∈ Li.

Since tji

i , vki

i and wli
i are positively-homogenous by (A3), and λi > 0, the above system of inequalities

can be rewritten as:

t
ji

i (zi, ui) ≥ λi ∀ji ∈ Ji

6



vki

i (zi, ui) ≥ −λi ∀ki ∈ Ki

t
ji

i (zi, ui) + vki

i (zi, ui) ≥ 0 ∀ji ∈ Ji, ∀ki ∈ Ki

t
ji

i (zi, ui) ≥ 0 ∀ji ∈ Ji

wli
i (zi, ui) ≥ 0 ∀li ∈ Li,

which implies that (zi, ui) ∈ Ri(λi). Therefore, it follows that, for each i ∈ {1, . . . , t}, (λi, zi, ui)
is such that λi > 0 and (zi, ui) ∈ Ri(λi). Additionally, we set (zi, ui) = 0 for t < i ≤ n. Since
t
ji

i (0, 0) = λt
ji

i

(

0
λ
, 0

λ

)

for λ > 0, it follows that tji

i (0, 0) = 0. Similarly, for all i, ji ∈ Ji, ki ∈ Ki,

and li ∈ Li, t
ji

i (0, 0) = wli
i (0, 0) = vki

i (0, 0) = 0. It follows that (0, 0) ∈ Ri(0). In other words,
for each i ∈ N , (λi, zi, ui) is such that λi ≥ 0 and (zi, ui) ∈ Ri(λi). Therefore, (λ, z, u) ∈ Q.
Now, we show that if (λ, z, u) ∈ Q then z ∈ cl conv (

⋃n
i=1 Si). Clearly, if (λ, z, u) ∈ Q and

λi > 0, then by positive homogeneity of tji

i , vki

i , and wli
i , it follows that (zi,ui)

λi
∈ Ri(1). As

before, then
(

0, zi

λi
, ui

λi
, 0
)

∈ Ai. Assume without loss of generality, by reindexing Si if neces-

sary, that λi > 0 for i = 1, . . . , t and λi = 0 for i = t + 1, . . . , n. Then, it follows easily that
(z1, u1, . . . , zt, ut, 0, 0) ∈ conv

(
⋃n

i=1 Ai

)

since it can be expressed as a convex combination of points

in
⋃t

i=1Ai. Since projz conv
(
⋃n

i=1 Ai

)

⊆ conv
(
⋃n

i=1 projz Ai

)

and, by (A3), projz Ai ⊆ cl conv(Si),

it follows that (z1, . . . , zt, 0) ∈ conv
(
⋃n

i=1 cl(conv(Si)
)

⊆ cl conv (
⋃n

i=1 Si). Now, since λt+1 = 0,

then by (A4), (0, zt+1, 0) ∈ 0+
(

cl conv (
⋃n

i=1 Si)
)

. Therefore, (z1, . . . , zt, zt+1, 0) ∈ cl conv (
⋃n

i=1 Si).
By induction, z ∈ cl conv (

⋃n
i=1 Si).

We now prove the last part of the theorem. For this, we assume that, for every i, projz Ai

is closed and projz Ci = 0+
(

cl conv(Si)
)

. Since the sets Si are orthogonal, there do not ex-
ist vectors ψi = (0, zi, 0) ∈ projz Ci, not all zero, such that

∑n
i=1 ψi = 0. Define Ti(λi) =

λi cl conv(Si) for λi > 0 and Ti(0) = 0+(cl conv(Si)). Then, by Theorem 9.8 in [17], it follows
that

⋃n
i=1 {z |∑n

i=1 λi = 1, zi ∈ Ti(λi)}, denoted hereafter as T , equals cl conv(S). If z̄ ∈ T , then
there exists a λ such that z̄i ∈ Ti(λi). If λi > 0, then z̄i

λi
∈ cl conv(Si), and therefore, there exists ui

such that (z̄i,ui)
λi

∈ Ai. On the other hand, if λi = 0, there exists ui such that (z̄i, ui) ∈ Ci. Since
Ai and Ci (restricted to the space of zi and ui variables) are Ri(1) and Ri(0) respectively, it follows
that (λ, z̄, u) ∈ Q and so z̄ ∈ projz X and cl conv(S) ⊆ projz X . However, we already showed that
projz X ⊆ cl conv(S) and, therefore, projz X is equal to cl conv(S).

We now discuss the result and the assumptions of Theorem 2.1 in more detail. Considering first
the result of this theorem, one might initially think that the stronger result that projz X = conv(S)
holds. We show with examples that projz X can be different from conv(S) and from cl conv(S). In
that sense, the result of Theorem 2.1 is as tight as possible. We consider first an example where
conv(S) ( projz X .

Example 2.2. Consider the set S ⊆ R2
+, defined as S = S1 ∪S2, where S1 =

{

(z1, 0)
∣

∣ 1 ≤ z1 ≤ 2
}

and S2 =
{

(0, z2)
∣

∣ z2 ≥ 1
}

. It can be easily verified that conv(S) =
{

(z1, z2)
∣

∣ z1 + z2 ≥ 1, z1 ≥
0, z1 < 2, z2 ≥ 0

}

∪
{

(2, 0)
}

as is shown in Figure 1. Observe that conv(S) is not closed. We now
apply the convexification tool of Theorem 2.1 to S and derive a set X that contains conv(S) but is
no larger than cl conv(S). First, we verify that the set S satisfies the assumptions of Theorem 2.1.
Clearly, (A1) and (A2) hold by the definition of S. Next, it is easy to verify that conv(S1) =
{(

z1, 0
) ∣

∣ z1 ≥ 1,− 1
2z1 ≥ −1

}

and conv(S2) =
{(

0, z2
) ∣

∣ z2 ≥ 1
}

. Since z1, − 1
2z1, and z2 are lin-

ear, and, therefore, positively-homogeneous, (A3) clearly holds. Finally, since C1 =
{

(0, 0)
}

⊆
0+
(

cl conv(S)
)

and C2 =
{

(0, z2)
∣

∣ z2 ≥ 0
}

⊆ 0+
(

cl conv(S2)
)

⊆ 0+
(

cl conv(S)
)

, then (A4) also

holds. Applying Theorem 2.1, we obtain that X =
{(

z1, z2
) ∣

∣ z1 + z2 ≥ 1, z1 ≤ 2, z1 ≥ 0, z2 ≥ 0
}

. In
fact, since, for each i, Ci = 0+ (cl conv(Si)) and conv(Si) is closed, it follows from Theorem 2.1
and is apparent for this example that X = cl conv(S). This example illustrates that X may contain
conv(S) as a strict subset.

We now consider an example where projz X ( cl conv(S).

Example 2.3. Consider the set S =
⋃n

i=1 Si, where Si = projz
{

(0, zi, ui, 0) ∈ R2n
+

∣

∣

√
ziui ≥ 1

}

=
{

(0, zi, 0)
∣

∣ zi > 0
}

. Clearly, (A1) and (A2) hold by the definition of S. Since
√
ziui is positively-

homogeneous, (A3) is also satisfied. Observe that projz Ci = projz
{

(0, zi, ui, 0) ∈ R2n
+

∣

∣

√
ziui ≥ 0

}

=
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Figure 1: Illustration of Theorem 2.1 and that conv(S) ( projz X

{

(0, zi, 0)
∣

∣ zi ≥ 0
}

⊆ 0+
(

cl conv(S)
)

. Therefore, (A4) holds. Applying Theorem 2.1, we obtain that

X =
{

(z, u) ∈ R2n
+

∣

∣

∑n
i=1

√
ziui ≥ 1

}

. If, for any i, zi > 0 then there exists u such that (z, u) ∈ X.

Further, for all u, it is easy to see that (0, u) 6∈ X. Therefore, projz X =
{

z ∈ Rn
+

∣

∣

∑n
i=1 zi > 0

}

.
This example illustrates that if projz Ai is not closed then projz X may not be closed either and that,
in some cases, projz X ( cl conv(S).

In the above example, we exploit the fact that projz Ais are not closed to show that projz X
may not be closed either. Instead, if projz Ais were closed for all i then, as shown in Theorem 2.1,
projz X would typically be closed as well.

We now turn our attention to Assumption (A1) in Theorem 2.1. Assumption (A1) requires that
the sets Si be oriented along orthogonal principal subspaces. A weaker assumption however suffices
to prove the theorem. Consider Li, for i ∈ {1, . . . , n}, to be linear subspaces of R

P

n

i=1
di , where Li

has dimension di. Further, assume that a vector zi ∈ Li cannot be expressed as a linear combination
of vectors in {L1, . . . , Li−1, Li+1, . . . , Ln}. In this case, it is possible to construct a matrix B whose

columns form a basis for R
P

n

i=1
di where the columns, that are indexed from 1+

∑j−1
i=1 di to

∑j
i=1 di,

form a basis for Lj . Then, define new variables s such that s = B−1z. If z ∈ Sj ⊆ Lj, it follows that

sk 6= 0 only if 1 +
∑j−1

i=1 di ≤ k ≤∑j
i=1 di. Therefore, the theorem now applies to the transformed

space of s variables. This observation leads to the following simple derivation of the intersection cut
in integer programming.

Example 2.4. Consider a polyhedral cone P = {x | Ax ≤ b}, where A ∈ Rn×n is an invertible
matrix. Let X be the set of points that satisfy the disjunction πTx ≤ π1

0 ∨πTx ≥ π2
0 , where π1

0 < π2
0 .

We are interested in deriving the convex hull of P ∩X. Observe that this setting can be used to derive
all intersection/split cuts (see Balas [5]). Introducing the slack variables µ and defining γ = πTA−1,
γ1
0 = γb− π2

0 , and γ2
0 = γb− π1

0, we reduce the above problem into one involving convexification of
M = {µ | µ ≥ 0, γµ ≤ γ1

0 ∨ γµ ≥ γ2
0}. We assume without loss of generality that, for each i, γi 6= 0.

The reformulation of the problem in the space of the slack variables, after suitable translation, is an
example of the orthogonalization discussed above. Here, µ corresponds to −s and x corresponds to z.
The matrix B equals A−1 and its columns are the extreme rays of P . Since µ ≥ 0 is the recession cone
for M, whenever it contains a feasible point, if µ = 0 is feasible to M, then conv(M) = {µ | µ ≥ 0}.
Define pi =

γ1

0

γi
and qi =

γ2

0

γi
. If µ = 0 is not feasible to M, then γ1

0 < 0 and γ2
0 > 0. It follows

that, for each i, exactly one of pi or qi is greater than 0. Since µi ≥ 0 is a recession direction for
conv(M) and the extreme points of M have at most one non-zero, it follows that:

conv(M) =

n
⋃

i=1

{

(0, . . . , 0, µi, 0, . . . , 0)
∣

∣ µi ≥ max{pi, qi}
}

.
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Now, applying Theorem 2.1, it follows that:

conv(M) =

{

µ

∣

∣

∣

∣

n
∑

i=1

µi

max{pi, qi}
≥ 1, µ ≥ 0

}

.

Substituting back µ, pi, and qi in the above, we obtain:

conv(M) =











x

∣

∣

∣

∣

∣

n
∑

i=1

(b−Ax)i

max
{

πT A
−1

·i
b−π2

0

πT A
−1

·i

,
πT A

−1

·i
b−π1

0

πT A
−1

·i

} ≥ 1, Ax ≤ b











.

We next discuss Assumption (A3). This assumption requires that the convex hulls of the sets
Si be known, possibly in a higher dimensional space, and that the functions tji

i , for all ji ∈ Ji, v
ki

i ,

for all ki ∈ Ki, and wli
i , for all li ∈ Li, used in the description of the convex hulls be positively-

homogenous. In the ensuing example, we show that a simple transformation might suffice to convert
the natural inequality description of conv(Si) into one that uses positively-homogenous functions.
We also illustrate that it is necessary to make the assumption that the functions are positively-
homogenous.

Example 2.5. Let S =
⋃n

i=1 Si, where Si =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣ xiyi ≥ r
}

and r > 0. Clearly,
(A1) and (A2) hold by the definition of S. Since Si is already closed and convex, cl conv(Si) = Si,
i.e., cl conv(Si) =

{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

1
r
xiyi ≥ 1

}

. The above representation of cl conv(Si) does
not directly satisfy (A3) since 1

r
xiyi is not a positively-homogenous function of (xi, yi). However,

cl conv(Si) may be rewritten as cl conv(Si) =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

∣

√

1
r
xiyi ≥ 1

}

, an expression that

uses the function,
√

1
r
xiyi, which is positively-homogenous in (xi, yi). With this representation,

(A3) is satisfied. Since Ci =
{

(0, xi, yi, 0) ∈ R2n
+

∣

∣

√
xiyi ≥ 0

}

= 0+(cl conv(Si)), (A4) is satis-

fied. Therefore, Theorem 2.1 implies that X = cl conv(S) =
{

(x, y) ∈ R2n
+

∣

∣

∑n
i=1

√
xiyi ≥ √

r
}

.
Observe finally that the transformation to positively-homogenous functions is necessary and not
an artifact of the proof technique. In fact, if we use the original definition of cl conv(Si), when
applying Theorem 2.1, and disregard the lack of positive-homogeneity, the resulting set would be
X ′ =

{

(x, y) ∈ R2n
+

∣

∣

∑n
i=1 xiyi ≥ r

}

. The set X ′ is nonconvex and does not even contain conv(S).
To see this, let r = 1 and n = 2. Note that (x1, y1, x2, y2) = (0.5, 0.5, 0.5, 0.5) is expressible as a
convex combination of the two points in S, namely, (1, 1, 0, 0) ∈ S1 and (0, 0, 1, 1) ∈ S2. There-
fore (0.5, 0.5, 0.5, 0.5) belongs to conv(S). However, it does not satisfy the defining inequality of X ′

whereas it does satisfy the defining inequality of X.

If λit
ji

i

(

zi

λi
, ui

λi

)

≤ t
ji

i (zi, ui) for all λ ∈ (0, 1], then X still outer-approximates cl conv(S). Intu-

itively, while performing Fourier-Motzkin elimination, λit
ji

i

(

zi

λi
, ui

λi

)

≤ t
ji

i (zi, ui) ensures that X is

contained in the closure convex hull of the disjunctive union of Si, whereas λit
ji

i

(

zi

λi
, ui

λi

)

≥ t
ji

i (zi, ui)

ensures that X is contained in cl conv (
⋃n

i=1 Si). Similar statements can be made about vki

i (zi, ui)

and wli
i (zi, ui). The latter of these conditions will be explored further in Proposition 3.8 to derive

sufficient conditions that help verify a slightly relaxed version of (A2).
We now turn our attention to Assumption (A4). This assumption might appear quite technical

and might also seem difficult to verify in practice. However, this is not the case. We show next
that by simply requiring that the functions tji

i , vki

i , and wli
i are concave, in addition to being

positively-homogenous, Assumption (A4) is automatically satisfied. Concavity of tji

i , vki

i , and wli
i is

not an important restriction since the convexity of a positively-homogenous function’s upper-level
set implies concavity over the region of interest.

Proposition 2.6. If, for all i, ji ∈ Ji, ki ∈ Ki, and li ∈ Li, the functions tji

i , vki

i , and wli
i , as

defined in Theorem 2.1, are concave in addition to being positively-homogeneous, and the sets Si

are not empty, then projz Ci ⊆ 0+
(

cl conv (
⋃n

i=1 Si)
)

, i.e., Assumption (A4) is satisfied. Moreover,
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if the upper-level set of a positively-homogenous function is convex, then the function is concave,
wherever it is positive. More precisely, if W =

{

(z, u) | t(z, u) ≥ 1
}

is convex and t(z, u) is
positively-homogenous, then D = {(z, u) | t(z, u) > 0} is convex and t(z, u) is concave over D. If,
in addition, cl(D) is locally simplicial or more specially, polyhedral, and t(z, u) is continuous then
t(z, u) is concave over cl(D).

Proof. Let (0, zi, 0) ∈ Si. By Assumption (A3), there exists ui such that (0, zi, ui, 0) ∈ Ai. Consider
(0, z′i, u

′
i, 0) ∈ Ci and α > 0. Then, by positive homogeneity and concavity of tji

i , it follows that

t
ji

i (zi + αz′i, ui + αu′i) ≥ t
ji

i (zi, ui) + t
ji

i (αz′i, αu
′
i) = t

ji

i (zi, ui) + αt
ji

i (z′i, u
′
i) ≥ t

ji

i (zi, ui) ≥ 1.

The first inequality holds because of Theorem 4.7 in [17], the first equality because tji

i s are positively-
homogenous, the second inequality because (0, z′i, u

′
i, 0) ∈ Ci and α > 0, and the last inequality

because (0, zi, ui, 0) ∈ Ai. Similarly, vki

i (zi + αz′i, ui + αu′i) ≥ −1 and wli
i (zi + αz′i, ui + αu′i) ≥

0. Therefore, (zi + αz′i, ui + αu′i) ∈ Ai and so, for all α > 0, (0, zi + αz′i, 0) ∈ cl conv(Si) ⊆
cl conv (

⋃n
i=1 Si). Since (0, zi, 0) ∈ cl conv (

⋃n
i=1 Si), it follows by Theorem 8.3 in [17] that (0, z′i, 0) ∈

0+
(

cl conv (
⋃n

i=1 Si)
)

.

If W is convex, then WK =
{

(λ, x) | λ > 0, x = λ(z, u), t(z, u) ≥ 1
}

is the smallest convex cone

containing
{

(1, x) | x ∈ W
}

. Exploiting the positive homogeneity of t, we may rewrite WK as:

WK = {(λ, x) | λ > 0, t(x) ≥ λ} .

Now, D is the projection of WK in the space of x and is therefore convex. Further, the hypograph
of t(z, u) over D is {(r, x) | r ≤ t(x), x ∈ D} = {(r, x) | r ≤ λ ≤ t(x), λ > 0}, which is convex if WK

is convex. The last statement of the proposition follows from Theorems 10.3 and 20.5 in [17].

Even when some of the technical assumptions of Theorem 2.1 are not satisfied, it is typically the
case thatX yields an outer-approximation of conv(S). To see this, observe that Proposition 2.6 shows
that the functions tji

i , vki

i , and wli
i are concave, if they are positively-homogenous, as is assumed

in Theorem 2.1, and their upper-level sets are convex. However, if concavity of these functions is
known, then the outer-approximation of conv(S) by projz X can be shown under relatively mild
assumptions.

Proposition 2.7. Let S ⊆ R
P

i
di and, for all i ∈ N = {1, . . . , n}, let Si ⊆ S. Let the points

z of S be written as z = (z1, . . . , zi, . . . , zn) ∈ S, where zi ∈ Rdi . Assume that Assumption (A1)
of Theorem 2.1 holds. Further, assume that projz Ai, where Ai is as defined in (1), yields an
outer-approximation of conv(Si) and that, for all i ∈ N , ji ∈ {1, . . . , Ji}, ki ∈ {1, . . . ,Ki}, and
li ∈ {1, . . . , Li}, tji

i (0, 0), vki

i (0, 0), and wli
i (0, 0) are non-negative. Then, projz(X), where X is as

defined in (2), outer-approximates
⋃n

i=1 Si. If, in addition, Assumption (A2) of Theorem 2.1 holds

and X is convex (for example, if the functions tji

i , vki

i , and wli
i are concave), then projz X ⊇ conv(S).

Proof. If Assumption (A1) is satisfied, then the sets Si, for i ∈ N , are orthogonal. It can be easily
verified that, if tji

i (0, 0), vki

i (0, 0), and wli
i (0, 0) are non-negative, then every constraint defining X is

valid for all Si, where i ∈ N . Therefore, projz X ⊇ ⋃n
i=1 Si. If Assumption (A2) is satisfied as well,

then Claim 1 in the proof of Theorem 2.1 holds. Therefore, conv(S) = conv (
⋃n

i=1 Si). Further, if
X is convex, so is projz X . Since projz X ⊇ ⋃n

i=1 Si, it follows that projz X ⊇ conv (
⋃n

i=1 Si) =
conv(S).

When the constituent functions tji

i , vki

i , and wli
i are concave, the result of Proposition 2.7 could

also be derived using disjunctive programming. We verify Proposition 2.7 using this approach, since
it more clearly reveals the source of the difference between the outer-approximation of Proposition 2.7
and the convex hull identified in Theorem 2.1. For example, one can assert that

∑

i∈N t
ji

i (zi, ui) ≥ 1,
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by simply noticing that if λi > 0 for i ∈ {1, . . . , t} then:

1 =
t
∑

i=1

λi

≤
t
∑

i=1

λit
ji

i

(

zi, ui

λi

)

+

n
∑

i=t+1

t
ji

i (zi, ui)

≤
t
∑

i=1

λi



t
ji

i

(

zi, ui

λi

)

+
∑

i′∈N, i′ 6=i

t
ji′

i′

(

0, 0

λi

)



+

n
∑

i=t+1

t
ji

i (zi, ui) ≤
n
∑

i=1

t
ji

i (zi, ui),

(10)

where the first inequality follows by summing the inequalities λi ≤ λit
ji

i

(

zi,ui

λi

)

for i ∈ {1, . . . , t}
and t

ji

i (zi, ui) ≥ 0 for i ∈ {t + 1, . . . , n}, the second inequality follows since t
ji′

i′ (0, 0) ≥ 0, and the

third inequality from the concavity of
∑t

i=1 t
ji

i (zi, ui). Similarly,
∑

i∈T v
ji

i (zi, ui) ≥ −1, by realizing,
in addition, that −∑i∈T λi ≥ −1.

Proposition 2.7 provides a simple proof of the validity of the constraints defining X for conv(S).
In fact, if the primary purpose of deriving X is to develop a convex outer-approximation, then
Proposition 2.7 can often replace Theorem 2.1. For example, the convex hull description for the
bilinear covering sets (derived in Proposition 3.9) can be shown to yield a convex-outerapproximation,
if Proposition 2.7 is invoked instead of Theorem 2.1 in the proof of the result. Nevertheless, the
insights gained from Theorem 2.1 are very useful. For example, we illustrate next that the search for
a representation of conv(Si) using positively-homogenous functions can substantially improve the
relaxation. This insight will play an important role in deriving relaxations for the bilinear covering
set.

Example 2.8. Consider S =
⋃n

i=1 Si, where, for each i ∈ {1, . . . , n}, let

Si =
{

(0, . . . , 0, zi, 0, . . . , 0) ∈ Rn
+

∣

∣

√
zi ≥ 1

}

.

Proposition 2.7 shows that

X ′ =

{

(z1, . . . , zn) ∈ Rn
+

∣

∣

∣

∣

∣

n
∑

i=1

√
zi ≥ 1

}

is a convex outer-approximation of conv(S). Note that the square-root function used in expressing
Si is concave, but not positively-homogenous. Instead, if Sis are represented equivalently as

Si =
{

(0, . . . , 0, zi, 0, . . . , 0) ∈ Rn
+

∣

∣ zi ≥ 1
}

,

then Theorem 2.1 yields the convex hull of S, which is

X =

{

(z1, . . . , zn) ∈ Rn
+

∣

∣

∣

∣

∣

n
∑

i=1

zi ≥ 1

}

.

Clearly, by construction, X = conv(S) ⊆ X ′. In this particular example, the inclusion of X in X ′

can also be verified using the subadditivity of the square-root function for non-negative variables. This
example illustrates that it often helps to find representations of convex hulls of Si using positively-
homogenous functions, even when equivalent representations exist using concave functions.

As discussed in Example 2.8, if one can find a description of conv(Si) that uses positively-
homogenous functions then one can apply Theorem 2.1 to identify the convex hull of the orthogonal
disjunctions, thus deriving a superior relaxation. In general, a positive homogenous description can
be obtained by adding one homogenizing variable for each orthogonal disjunction and expressing

Ai using the inequalities, tji

i

(

zi,ui

λi

)

≥ 1 for all ji ∈ Ji, v
ki

i

(

zi,ui

λi

)

≥ −1 for all ki ∈ Ki, and

wli
i

(

zi,ui

λi

)

≥ 1 for all li ∈ Li along with the inequalities, λi ≥ 1 and −λi ≥ −1. However, this
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process suffers from the drawback that it introduces new variables in the relaxation. Instead, it may
be possible to find a separating hyperplane without increasing the problem dimension and, thereby,
circumvent the need to introduce new variables. Consider, for simplicity, the case of Theorem 2.1,
where Ai is not an extended formulation, i.e., it does not need the additional ui variables. The
case where Ai contains ui variables can be handled similarly. Now, consider a point z′ that does

not belong to cl conv(S). If it is possible to find, for all i, a j′i ∈ argminj

{

t
j
i (z

′
i)
∣

∣

∣ j = 1, . . . , Ji

}

,

a k′i ∈ argmink

{

vk
i (z′i)

∣

∣ k = 1, . . . ,Ki

}

and an l′i ∈ argminl

{

wl
i(z

′
i)
∣

∣ l = 1, . . . , Li

}

then using the
closed-form expression of X in (2), one can identify an inequality that separates z′ from X . For
example, if an inequality of the form

∑

i∈N t
ji

i (zi) ≥ 1 violates z′i, i.e.,
∑

i∈N t
ji

i (z′i) < 1, then
∑

i∈N t
j′
i

i (z′i) < 1 as well, since, by the definition of j′i, t
j′
i

i (z′i) ≤ t
ji

i (z′i) for all i. Such a technique will
be useful in deriving a separating hyperplane for mixed-integer and pure-integer bilinear covering
sets.

Now, we discuss another technique that can be used to find representations of the convex hull
of each Si that uses positively-homogenous functions but does not require additional variables. The
main idea is that one can homogenize the inequality using an extra variable and then maximize the
resulting function over the introduced variable to derive a positively-homogenous function describing
the set. We illustrate this idea by deriving a positively-homogenous function that describes the
following bilinear covering set:

Q =
{

(x, y) ∈ R2
+ | axy + bx+ cy ≥ r

}

, (11)

where a, b, and c are assumed to be non-negative. We assume without loss of generality that r > 0.
Otherwise, Q = R2

+. We may also assume without loss of generality that c ≥ b and, consequently,
assume that at least one of a and c is strictly positive. Then, for any feasible (x, y), it follows that

ax+ c > 0. Therefore, Q =
{

(x, y) ∈ R2
+ | y ≥ r−bx

ax+c

}

. First, we verify that the inequality is convex.

Let f(x) = r−bx
ax+c

. Since

∂2f

∂x2
=

2a(bc+ ar)

(ax+ c)3

is nonnegative if x ≥ 0, Q is expressed as the intersection of the epigraph of a convex function with
the non-negative orthant. Therefore, Q is convex. Also, note that the defining inequality of Q is not
positively-homogenous. We show how the above inequality can be homogenized without introducing
new variables in the formulation. To carry out this transformation, we first homogenize the defining
inequality, axy+ bx+ cy ≥ r, using an additional variable h, that is restricted to be positive. This is
accomplished by rewriting the defining inequality of Q as axy

h
+ bx+ cy ≥ rh. Since h is positive, we

can multiply throughout by h, and express the above inequality as: axy + bxh+ cyh ≥ rh2. This is
a positively-homogenous inequality which defines Q as long as h is positive. Therefore, Q can now
be described by the inequalities:

axy + bxh+ cyh ≥ rh2 and h ≥ 1.

In order for (x, y, h) to satisfy the first inequality above, h must be such that:

bx+ cy −
√

(bx+ cy)2 + 4arxy

2r
≤ h ≤ bx+ cy +

√

(bx+ cy)2 + 4arxy

2r
.

It can be easily verified that the functions bounding h are positively-homogenous. In fact, when the
bounding functions on h are derived from a positively-homogenous constraint, they must, in general,
be positively-homogenous. This can be inferred because for each (x, y, h) that satisfies a positively-
homogenous constraint and an arbitrary λ > 0, it must be that (λx, λy, λh) satisfies the constraint
as well. The lower bounding function is nonpositive. Therefore, the set Q can be rewritten as:

η(x, y) =
1

2

(

bx+ cy +
√

(bx+ cy)2 + 4arxy
)

≥ r. (12)

We have thus expressed Q as the upper-level set of a positively-homogenous function without intro-
ducing new variables. In fact, since Proposition 2.6 asserts that a positively-homogenous function
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whose upper-level set is convex, is concave, it follows from the convexity of Q that η(x, y) must be
concave over the non-negative quadrant. In other words, we have established the following result.

Proposition 2.9. Let Q =
{

(x, y) ∈ R2
+ | axy + bx+ cy ≥ r

}

, where a, b, c are non-negative, and
r is strictly positive. Then, Q has a convex description (upper level set of a concave function) that
uses positively-homogenous functions. In particular, Q =

{

(x, y) ∈ R2
+ | η(x, y) ≥ r

}

, where η(x, y)
is as defined in (12).

3 Convex Extension Property

In this section, we study the convex extension property which is the basis for Assumption (A2)
in Theorem 2.1. The convex extension property clearly holds when S is defined as the union of
orthogonal sets, Si, for i ∈ {1, . . . , n}. However, it is also satisfied in other situations where it
may not initially be suspected to hold. In this section, we show that the convex extension property
holds for certain mixed, pure and continuous bilinear sets. In the process, we establish a general
set of sufficient conditions that are useful in proving that the convex extensions property holds for
many bilinear covering sets. We first formally define the notion of a convex extension for orthogonal
disjunctive sets. This definition is adapted from Tawarmalani and Sahinidis [23].

Definition 3.1. Let Si ⊆ S for i ∈ N = {1, . . . , n}. We say that S has the convex extension
property for orthogonal disjunctive sets Si if (A1) and a slightly relaxed form of (A2) hold. More
specifically, S has the convex extension property if every point z in S can be expressed as a convex
combination of points χi in cl conv(Si) and/or a conic combination of rays ψi in 0+

(

cl conv(Si)
)

,
i.e., for i ∈ I ⊆ N , there exist λi ≥ 0 and µi ≥ 0, that satisfy

∑

i∈I λi = 1, such that

z =
∑

i∈I

λiχi +
∑

i∈I

µiψi. (13)

The convex extension property in Definition 3.1 is more general than Assumption (A2) in Theo-
rem 2.1, in that it allows the use of non-negative multiples of recession directions in the expression
of z. Since χi + µi

λi
ψi ∈ cl conv(Si), it may seem that the recession directions in (13) are not nec-

essary. However, this is not true since λi may be zero even when µi is not. This technicality is
often important in practical applications. Nevertheless, it can be observed that even if (A2) is
replaced with (13), Theorem 2.1 holds with slight modifications, as discussed below. Instead of
conv(S) = conv (

⋃n
i=1 Si), as was proved in Claim 1 in the proof of Theorem 2.1, we can only

establish that (13) implies

cl conv(S) = cl conv

(

n
⋃

i=1

Si

)

. (14)

In fact, (14) is equivalent to (13). On the one hand, since, for each i ∈ {1, . . . , n}, Si ⊆ S it follows
that cl conv (

⋃n
i=1 Si) ⊆ cl conv(S). On the other hand, since Sis are orthogonal, by Theorem 9.8 in

[17],

cl conv

(

n
⋃

i=1

Si

)

=
⋃

{

λ1 cl conv(S1) + · · ·λn cl conv(Sn)

∣

∣

∣

∣

∣

λi ≥ 0+,

n
∑

i=1

λi = 1

}

, (15)

where the notation λi ≥ 0+ means that λi cl conv(Si) is taken to be 0+ (cl conv(Si)) rather than {0}
when λi = 0. Observe that (13) is another way to represent the set on the right-hand-side of (15)
since if λi > 0 then χi + µi

λi
ψi ∈ cl conv(Si). Otherwise, ψi ∈ 0+ (cl conv(Si)). Now, if we assume

(13), or equivalently, (14), the proof of Theorem 2.1 shows that cl projz X = cl conv (
⋃n

i=1 Si), and,
therefore, by (14), cl projz X = cl conv(S). In this case, the last statement of Theorem 2.1 can often
be used to establish closedness of projz X . Note that projz Ai is closed whenever conv(Si) is closed.
Therefore, if conv(Si) is closed and projz Ci = 0+ (cl convSi), it follows that projz X = cl conv(S).
Since most practical situations demand cl conv(S), it suffices to establish (13) instead of Assumption
(A2) in Theorem 2.1. Similarly, if Assumption (A2) is replaced with (13) in Proposition 2.7, it can
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be easily established that cl conv(S) ⊆ cl projz X . This is because cl conv(S) = cl conv (
⋃n

i=1 Si) ⊆
cl conv (projz X) = cl projz X , where the first equality follows from the equivalence of (13) and (14),
the first containment since

⋃n
i=1 Si ⊆ projz X , and the last equality since projz X is convex.

We next present a nontrivial set for which it can be proved from first principles that the convex
extension property holds for orthogonal disjunctive sets. This set appears in a nonconvex formulation
of the trim-loss problem proposed by Harjunkoski et al. [12]. The model is designed to determine
the best way to cut a finite number of large rolls of a raw-material into smaller products using a
certain number of cutting patterns. Let I be the index set of products and the J be the index set
of the cutting patterns that are to be chosen. The demand for a product i is known a priori and is
denoted by ni,order. For each (i, j) ∈ I × J , let nij ∈ Z+ be the decision variable that specifies the
number of products to type i produced in the cutting pattern j and, for each j ∈ J , let mj ∈ Z+

be the number of times the cutting pattern j is used. The following bilinear constraints model that
the demand for each product is met:

J
∑

j=1

mjnij ≥ ni,order, for i = 1, . . . , I, (16)

In Proposition 3.2, we show that the bilinear integer sets defined by the constraint (16) satisfy the
convex extension property for disjunctive orthogonal sets. We use this result along with Theorem 2.1
to obtain the convex hull of integer bilinear covering sets in Proposition 3.3.

Proposition 3.2. Consider a bilinear integer knapsack set

BI =
{

(x1, y1, x2, y2) ∈ Z2
+ × Z2

+

∣

∣ x1y1 + x2y2 ≥ r
}

.

where r > 0. Then, BI has the convex extension property (13) with respect to the orthogonal
disjunctive sets

BI
1 =

{

(x1, y1, 0, 0) ∈ Z2
+ × Z2

+

∣

∣ x1y1 ≥ r
}

,

BI
2 =

{

(0, 0, x2, y2) ∈ Z2
+ × Z2

+

∣

∣ x2y2 ≥ r
}

.

Proof. Let (x1, y1, x2, y2) ∈ BI . We show that there exist (i) certain subsets I and I ′ of {1, 2}, (ii)
for each i ∈ I, a finite ji, (iii) for each i ∈ I ′, a finite j′i, (iv) for each i ∈ I and j ∈ {1, . . . , ji}, a
point χi,j ∈ BI

i , and (v) for each i ∈ I ′ and j ∈ {1, . . . , j′i}, a ray ψi,j of BI
i , such that

(x1, y1, x2, y2) =
∑

i∈I

ji
∑

j=1

λi,jχi,j +
∑

i∈I′

j′
i
∑

j=1

µi,jψi,j , (17)

where the multipliers are such that (a)
∑

i∈I

∑ji

j=1 λi,j = 1, (b) for each i ∈ I and j ∈ {1, . . . , ji},
λi,j ≥ 0, and (c) for each i ∈ I ′ and j ∈ {1, . . . , j′i}, µi,j ≥ 0.

We assume without loss of generality that x1 ≤ y1 ≤ y2 and x2 ≤ y2 since the variables x1, y1,
x2, and y2 can be renamed such that the largest variable is called y2 and the largest variable in the
other pair is called y1. Note first that if x1 = 0, it suffices to choose I = {2}, I ′ = {1}, j2 = 1,
j′1 = 1 with χ2,1 = (0, 0, x2, y2) and ψ1,1 = (0, 1, 0, 0) to show that (13) holds. Therefore, we assume
in the remainder of this proof that x1 ≥ 1 and, consequently, x1y1 ≥ 1. We consider two cases.

Case 1: x2 ≥ x1y1. In this case, we choose I = {1, 2}, I ′ = {2}, and j1 = j2 = j′2 = 1. Consider
the points χ1,1 = ((y2 + 1)x1, (y2 + 1) y1, 0, 0) and χ2,1 = (0, 0, x2, y2 + 1), and the ray ψ2,1 =
(0, 0, 1, 0). Clearly, χ1,1 ∈ BI

1 , since (y2+1)2x1y1 ≥ x1y1+y2
2x1y1 ≥ x1y1+y2

2 ≥ x1y1+x2y2 ≥
r. Similarly, χ2,1 ∈ BI

2 , since x2 (y2 + 1) ≥ x2y2 + x2 ≥ x2y2 + x1y1 ≥ r. It is easily verified
that

(x1, y1, x2, y2) =
1

y2 + 1
χ1,1 +

y2

y2 + 1
χ2,1 +

x2

y2 + 1
ψ2,1

which shows that (17) is feasible.
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Case 2: x2 ≤ x1y1 − 1. In this case, we choose I = {1, 2}, I ′ = {1, 2}, j2 = 1, and j1 = j′1 = j′2 = 2
with χ1,1 = (x1 +α, y1, 0, 0), χ1,2 = (x1, y1 +β, 0, 0), χ2,1 = (0, 0, x2, y2 + δ), ψ1,1 = (1, 0, 0, 0),

ψ1,2 = (0, 1, 0, 0), ψ2,1 = (0, 0, 1, 0), and ψ2,2 = (0, 0, 0, 1), where α =
⌈

x2y2

y1

⌉

, β =
⌈

x2y2

x1

⌉

, and

δ =
⌈

x1y1

x2

⌉

. It follows from the way α, β, and δ are defined that χ1,1 and χ1,2 belong to B1
I

whereas χ2,1 belongs to B2
I . We need to prove that (17) has a feasible solution. Eliminating

µi,j and using λ2,1 = 1 − λ1,1 − λ1,2 to eliminate λ2,1, (17) reduces to the following system:

λ1,1(x1 + α) + λ1,2(x1) ≤ x1

λ1,1(y1) + λ1,2(y1 + β) ≤ y1
(1 − λ1,1 − λ1,2)x2 ≤ x2 (redundant)

(1 − λ1,1 − λ1,2) (y2 + δ) ≤ y2
λ1,1 + λ1,2 ≤ 1

λ1,1 ≥ 0
λ1,2 ≥ 0.

(18)

Projecting out λ1,1 using Fourier-Motzkin elimination, we obtain

max

{

0,
αδ − x1y2

α (y2 + δ)

}

≤ λ1,2 ≤ min

{

1,
y1

y1 + β
,

y1y2

β (y2 + δ)

}

.

Since βδ =
⌈

x2y2

x1

⌉ ⌈

x1y1

x2

⌉

≥ x2y2

x1

x1y1

x2

= y1y2, it follows that:

y1y2

β(y2 + δ)
=

1

β
y1

(

1 + δ
y2

) ≤ 1
β
y1

+ 1
=

y1

y1 + β
= min

{

1,
y1

y1 + β

}

.

Moreover, since αδ =
⌈

x2y2

y1

⌉ ⌈

x1y1

x2

⌉

≥ y2x1, it follows that 0 ≤ αδ−x1y2

α(y2+δ) and (18) is feasible if

αβδ ≤ αy1y2 + βx1y2. We consider two cases:

Case 2.1: x2 = 1. In this case, α =
⌈

y2

y1

⌉

, β =
⌈

y2

x1

⌉

, and δ = x1y1. There exist fα, fβ ∈ [0, 1)

such that α = y2

y1

+ fα and β = y2

x1

+ fβ . We observe that

αβδ =

(

y2

y1
+ fα

)(

y2

x1
+ fβ

)

x1y1

= y1y2

(

y2

y1
+ fα

)

+ x1y2

(

y1

y2
fαfβ + fβ

)

≤ y1y2

(

y2

y1
+ fα

)

+ x1y2

(

y2

x1
+ fβ

)

= αy1y2 + βx1y2

where the inequality holds because x1 ≤ y1 ≤ y2 implies that x1y1fαfβ ≤ x1y1 ≤ y2
2 .

Case 2.2: x2 ≥ 2. For (u, v) ∈ Z2
+, we define l̄(u, v) = u− l where l is the only integer in the

interval {0, . . . , v−1} that is such that u = qv+ l for some q ∈ Z+, i.e., l is the remainder

when u is divided by v. Using this notation, it is easy to verify that α = x2y2+l̄(x2y2,y1)
y1

,

β = x2y2+l̄(x2y2,x1)
x1

, and δ = x1y1+l̄(x1y1,x2)
x2

. Now observe that:

δ

y2
=
x1y1 + l̄ (x1y1, x2)

x2y2
≤ x1y1 + x2 − 1

x2y2

=
x1y1

x2y2

(

1 +
x2 − 1

x1y1

)

≤ x1y1

x2y2

(

1 +
x2 − 1

x2 + 1

)
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=
1

x2y2

(

x1y1

1 + 1
x2

+
x1y1

1 + 1
x2

)

≤ 1

x2y2

(

x1y1

1 + y1−1
x2y2

+
x1y1

1 + x1−1
x2y2

)

≤ x1y1

x2y2 + l̄ (x2y2, y1)
+

x1y1

x2y2 + l̄ (x2y2, x1)
=
x1

α
+
y1

β
,

where the first inequality holds because l̄ (x1y1, x2) ≤ x2−1, the second inequality because
x2 ≤ x1y1 − 1, the third inequality holds since y1 ≤ y2 implies y1−1

y2

≤ 1 and x1 ≤ y2

implies that x1−1
y2

≤ 1, and the fourth inequality holds since y1 − 1 ≥ l̄ (x2y2, y1) and

x1 − 1 ≥ l̄ (x2y2, x1). Therefore, αβδ ≤ αy1y2 + βx1y2.

In summary, for (x1, y1, x2, y2) ∈ BI , (17) is feasible, and, therefore, (13) holds for BI .

We now apply the result of Proposition 3.2 in conjunction with Theorem 2.1 to obtain the
following result that describes the convex hull of (16).

Proposition 3.3. Let

BI =

{

(x, y) ∈ Zn
+ × Zn

+

∣

∣

∣

∣

∣

n
∑

i=1

xiyi ≥ r

}

, (19)

where r > 0 and, for each i ∈ {1, . . . , n}, define:

BI
i =

{

(x, y) ∈ BI
∣

∣ (xj , yj) = (0, 0), ∀j 6= i
}

.

Let the convex hull of BI
i be represented by:

conv(BI
i ) =

{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 1, ∀j ∈ J
}

,

where lj(xi, yi) = αjxi + βjyi. Then,

conv(BI) =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ J

}

. (20)

Proof. We prove this result by applying Theorem 2.1. Let zi = (xi, yi). Assumption (A1) holds by
the definition of BI

i . The convex extension property, (13), follows from a sequential application of
Proposition 3.2. Assumption (A3) is satisfied since conv

(

BI
i

)

is closed and the functions lj(xi, yi)

are positively-homogeneous. Further, since 0+
(

cl conv
(

BI
i

))

= Rn
+ × Rn

+, it follows that

Ci =
{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 0, ∀j ∈ J
}

⊆ 0+
(

cl conv
(

BI
i

))

.

Therefore, (A4) holds. Now, by Theorem 2.1 and the discussion following Definition 3.1, it follows
that

cl conv(BI) = X =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ J

}

,

where the closure operation is not needed on X since it is a closed set, being an intersection of closed
half-spaces. In fact, X is polyhedral, since there are only finitely many half-spaces in its expression.
Now, consider the closed sets BI′

i =
{

(x, y) ∈ Z2n
+

∣

∣ xiyi ≥ r
}

. Observe that BI
i ⊆ BI′

i ⊆ BI . Now,

by Corollary 9.8.1 in [17], conv
(

⋃n
i=1 B

I′

)

is closed. Since

conv
(

BI
)

⊆ cl conv(BI) ⊆ cl conv

(

n
⋃

i=1

BI′

i

)

= conv

(

n
⋃

i=1

BI′

i

)

⊆ conv
(

BI
)

,
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where the second containment holds since BI
i ⊆ BI′

i and because the discussion following Defini-

tion 3.1 argues that cl conv(BI) = cl conv
(

⋃n
i=1 B

I′

i

)

, the first equality since conv
(

⋃n
i=1 B

I′

i

)

is

closed, and the third containment since BI′

i ⊆ BI . Therefore, the equality holds throughout, and
the result follows.

Observe that, even though conv(BI) is closed, conv
(
⋃n

i=1B
I
i

)

is not closed. Proposition 3.3
shows that conv(BI) has exponentially many facets. In particular, if BI

i has |J | facets, there are
|J |n inequalities in the description of conv(BI). We note, however, that separation is not difficult
to perform as the coefficients of each pair of variables can be determined independently. Since there
is an obvious pseudo-polynomial algorithm to compute the facets of conv(BI

i ), it is clearly possible
to separate the facets of conv(BI) in pseudo-polynomial time.

Example 3.4. Consider the set

BI =
{

(x, y) ∈ Z2
+ × Z2

+

∣

∣ x1y1 + x2y2 ≥ 10
}

. (21)

It is easily verified that for both i ∈ {1, 2}

conv
(

BI
i

)

=
{

(0, xi, yi, 0) ∈ R4
+

∣

∣ yi ≥ 1, 10xi + 2yi ≥ 30, xi + yi ≥ 7, 2xi + 10yi ≥ 30, xi ≥ 1
}

.

It follows from Proposition 3.3 that the convex hull of BI has 25 inequalities and is represented by

conv(BI) =























(x, y) ∈ R2
+ × R2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























y1
5
15x1 + 1

15y1
1
7x1 + 1

7y1
1
15x1 + 5

15y1
x1























+























y2
5
15x2 + 1

15y2
1
7x2 + 1

7y2
1
15x2 + 5

15y2
x2























≥ 1























, (22)

where each pair of coefficients for (x1, y1) can be matched with each pair of coefficients for (x2, y2).

Similarly, the convex hull characterization for a variety of bilinear sets can be obtained using the
result of Theorem 2.1. In particular, we study now the mixed integer variant. We will study the
continuous version in Proposition 3.9.

Proposition 3.5. Let

BM =

{

(x, y) ∈ Zn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

aixiyi ≥ r

}

, (23)

where r > 0, and, for each i ∈ {1, . . . , n}, ai > 0. Define, for each i ∈ {1, . . . , n},

BM
i =

{

(x, y) ∈ BM
∣

∣ (xj , yj) = (0, 0), ∀j 6= i
}

.

Let the convex hull of BM
i be represented by:

conv
(

BM
i

)

=
{

(0, 0, xi, yi, 0, 0) ∈ Rn
+ × Rn

+

∣

∣ lj(xi, yi) ≥ 1, ∀j ∈ Ji

}

,

where lj(xi, yi) = αjxi + βjyi. Then,

conv
(

BM
)

=

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

∣

n
∑

i=1

lji(xi, yi) ≥ 1, ∀ji ∈ Ji

}

. (24)

Proof. Because the verification of the convex extension property is the only technical part of the
proof that is significantly different from that of BI , we only discuss the proof of this property next.
Because induction can be used, it suffices to prove the result when n = 2. Let (x1, y1, x2, y2) ∈ BM .
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We show that there exist (i) subsets I and I ′ of {1, 2}, (ii) for each i ∈ I, a point χi ∈ BM
i , and (iii)

for each i ∈ I ′, a ray ψi of BM
i , such that

(x1, y1, x2, y2) =
∑

i∈I

λiχi +
∑

i∈I′

µiψi, (25)

where the multipliers satisfy the following conditions: (a)
∑

i∈I λi = 1, (b) for all i ∈ I, λi ≥ 0, and
(c) for all i ∈ I ′, µi ≥ 0.

Note first that, if x2 = 0, it suffices to choose I = {1}, I ′ = {2}, χ1 = (x1, y1, 0, 0), and
ψ2 = (0, 0, 0, 1) to show that (13) holds. Similarly, if y2 = 0, it suffices to choose I = {1}, I ′ = {2},
χ1 = (x1, y1, 0, 0), and ψ2 = (0, 0, 1, 0) to show that (13) holds. We assume without loss of generality
that x1y1 ≥ x2y2 since the pair of variables (x1, y1) and (x2, y2) can be interchanged along with their
respective coefficients a1 and a2. Therefore, in addition to the positivity of x2 and y2, we may also

assume in the remainder of this proof that x1 ≥ 1 and y1 > 0. Define χ1 =
(

x1, y1 + a2x2y2

a1x1

, 0, 0
)

,

χ2 =
(

0, 0, x2, y2 + a1x1y1

a2x2

)

, ψ1 = (x1, 0, 0, 0), and ψ2 = (0, 0, x2, 0). It can be easily verified that

(x1, y1, x2, y2) =
a1x1y1

a1x1y1 + a2x2y2
(χ1 + ψ2) +

a2x2y2

a1x1y1 + a2x2y2
(χ2 + ψ1)

which shows that the convex extension property (13) holds.

Propositions 3.3 and 3.5 illustrate both the fact that the convex extension property used in
Theorem 2.1 holds in surprising settings and that this property might not always be trivial to verify.
We next present in Theorem 3.6 and Proposition 3.8 conditions under which the convex extension
property over orthogonal disjunctive sets can be shown to hold. For example, these conditions are
satisfied by bilinear covering sets we discuss later in this paper.

Theorem 3.6. Consider a function g(z1, . . . , zn) : R
P

i
di

+ 7→ R, where zi ∈ Rdi

+ , and the set

G =
{

z ∈ R
P

i
di

+

∣

∣ g(z1, . . . , zn) ≥ r
}

, where r > 0. Let Gi = G ∩
{

(0, . . . , 0, zi, 0, . . . , 0)
∣

∣ zi ∈ Rdi

+

}

and gi(zi) = g(0, . . . , 0, zi, 0, . . . , 0). If there exist functions hi : Rdi

+ 7→ Rki and f : R
P

i
ki 7→ R such

that:
(S1) g(z) ≤ f

(

h1(z1), . . . , hn(zn)
)

, where f is a convex function,
(S2) f(y1) > f(y2) whenever y1 ≥ y2 and at least one component of y1 is larger than the correspond-
ing component of y2,
(S3) gi(zi) = f(0, . . . , 0, hi(zi), 0, . . . , 0),
(S4) For all i, hi(0) = 0 and, for λ ∈ (0, 1], λhi

(

zi

λ

)

≥ hi(zi), and

(S5) For all i, hi(zi) ≤ 0 implies that (0, zi, 0) ∈ 0+
(

cl convGi

)

,

are satisfied over R
P

n

i=1
di

+ then the convex extension property, (13), holds for the set G. Assume
that, for each i ∈ {1, . . . , n}, conv(Gi) is closed. Define G′

i = conv(Gi)+
∑

i′ 6=i 0+(convGi′ ). If, for
all i, G′

i ⊆ conv(G) then conv(G) is closed.

Proof. Let z ∈ G and y(z) =
(

h1(z1), . . . , hn(zn)
)

. In the following, we sometimes denote hi(zi) as
yi(z) to emphasize that it is the ith component of y(z). Let T = {i | hi(zi) ≤ 0}. Then, by (S5),
for each i ∈ T , (0, zi, 0) ∈ 0+

(

cl convGi

)

. If z −∑i∈T (0, zi, 0) ∈ cl conv
(
⋃n

i=1Gi

)

, then so does z.

We now show that z′ = z −∑i∈T (0, zi, 0) ∈ cl conv
(
⋃n

i=1Gi

)

. Let δ be a subgradient of f at y(z′).

Then, (S2) implies that δ > 0. Otherwise, suppose that δi ≤ 0. Let ei denote the ith unit vector
and choose ǫ > 0. Observe that f(y(z′) − ǫei) ≥ f(y(z′)) − ǫ〈δ, ei〉 = f

(

y(z′)
)

− ǫδi ≥ f
(

y(z′)
)

, a
contradiction to (S2). Clearly, for each i 6∈ T , hi(z

′
i) = hi(zi). By construction, for each i ∈ T ,

z′i = 0 and, therefore, hi(z
′
i) = 0 ≥ hi(zi). In other words, y(z′) = max{y(z), 0}. Observe that (S1)

and (S2) together imply that f(y(z′)) ≥ f(y(z)) ≥ g(z) ≥ r.
First, consider the case where 〈δ, y(z′)〉 = 0. Then, y(z′) = 0. Consider any i and a z̄i ∈ Rdi

+ .
On the one hand, assume that hi(z̄i) > 0. Then, g(0, z̄i, 0) = gi(z̄i) = f(0, hi(z̄i), 0) > f(0) =
f(y(z′)) ≥ r, where the first equality follows from the definition of gi, the second from (S3), and
the first inequality from (S2) and hi(z̄i) > 0. Therefore, (0, z̄i, 0) ∈ G ⊆ cl conv(G). On the
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other hand, assume that hi(z̄i) ≤ 0. Then, by (S5), we know that (0, z̄i, 0) ∈ 0+
(

cl convGi

)

. Since

gi(0) = f(0) = f(y(z′)) ≥ r, it follows that 0 ∈ Gi. Combining 0 ∈ Gi and (0, z̄i, 0) ∈ 0+
(

cl convGi

)

,
we can conclude that (0, z̄i, 0) ∈ cl conv(Gi) ⊆ cl conv(G). In other words, regardless of the sign
of hi(zi), it follows that (0, z̄i, 0) ∈ cl conv(G). Since z̄i was arbitrarily chosen in Rdi

+ , it follows

that R
P

i
di

+ ⊆ cl conv (
⋃n

i=1Gi) ⊆ cl conv(G) ⊆ R
P

i
di

+ . Since equality holds throughout, (14), or
equivalently (13) holds for G.

Now, consider the case when 〈δ, y(z′)〉 > 0. Define λi = δiyi(z
′)

〈δ,y(z′)〉 . Since δi and yi(z
′) are non-

negative, it follows that λi ≥ 0 and
∑n

i=1 λi = 1. Define I =
{

i | λi > 0} and observe that |I| ≥ 1.
The following chain of implication holds

i 6∈ I ⇒ yi(z
′) = 0 ⇒ i ∈ T ⇒ z′i = 0,

where the first implication follows since δi > 0; the second because, for each i 6∈ T , yi(z
′) > 0;

and the third by the construction of z′. Therefore, z′ =
∑

i∈I z
′′
i , where z′′i =

(

0, . . . , 0, z′i, 0, . . . , 0
)

.

For each i ∈ I, let χi =
z′′

i

λi
. Observe that z′ =

∑

i∈I λiχi, i.e., z′ can be expressed as a convex
combination of χi for i ∈ I. The following shows that, for all i ∈ I, χi ∈ Gi:

g(χi) = gi

(

z′i
λi

)

= f
(

y(χi)
)

≥ f

(

1

λi

y(z′′i )

)

≥ f
(

y(z′)
)

+ δi
〈δ, y(z′)〉
δiyi(z′)

yi(z
′′) −

n
∑

j=1

δjyj(z
′)

= f
(

y(z′)
)

+ δi
〈δ, y(z′)〉
δiyi(z′)

yi(z
′) −

n
∑

j=1

δjyj(z
′) = f

(

y(z′)
)

≥ r.

The first equality follows from the definition of gi, the second equality from (S3), the first inequality

follows since f is non-decreasing by (S2) and hi

( z′

i

λi

)

≥ 1
λi
hi(z

′
i), the second inequality because

δ is a subgradient of f at y(z′), and the third equality because yi(z
′′) = hi(z

′
i) = yi(z

′). Since
z = z′ +

∑

i∈T (0, zi, 0), where, for each i ∈ T , (0, zi, 0) ∈ 0+ (cl conv(Gi)) it follows that (13) holds
for G.

We now prove the last statement of the theorem. Consider an arbitrary i ∈ N . Clearly, G′
i,

as defined in the statement of the theorem, is convex. We argue that it is closed as well. By
Corollary 9.1.1 in [17], G′

i is closed if there do not exist (0, zi, 0) ∈ conv(Gi) and, for i′ ∈ N\{i},
(0, zi′ , 0) ∈ 0+ (convGi′), not all zero, such that

∑n
i=1(0, zi, 0) = 0. But, the orthogonal vectors

(0, zi, 0) sum to zero if and only if each of the vectors is zero. Therefore, G′
i is closed. Again

by Corollary 9.1.1 in [17], 0+(G′
i) =

∑n
i=1 0+ (convGi). Since the recession directions of G′

i are
independent of i, it follows by Corollary 9.8.1 in [17] that conv (

⋃n
i=1Gi) is closed. Now,

conv(G) ⊆ cl conv(G) = cl conv

(

n
⋃

i=1

Gi

)

⊆ cl conv

(

n
⋃

i=1

G′
i

)

= conv

(

n
⋃

i=1

G′
i

)

⊆ conv(G),

where the first equality follows from the equivalence of (13) and (14), the second containment follows
since Gi ⊆ G′

i, the second equality follows since conv (
⋃n

i=1G
′
i) is closed and the third containment

follows since G′
i ⊆ conv(G).

The main challenge in applying Theorem 3.6 in practical situations is verifying Assumption
(S4). However, when hi(zi) is derived from other functions using operations such as summations,
minimizations, or maximizations, then (S4) can often be established easily by studying the same
properties for the functions used in the derivation of hi(zi). To see this, first note that the assumption
is satisfied trivially by any linear function. If h(z) = w (p1(z), . . . , pK(z)), for all k ∈ {1, . . . ,K},
pk(z) satisfies (S4), w satisfies (S4), w is isotonic, i.e., w(y1) ≥ w(y2) if y1 ≥ y2, and w(0, . . . , 0) = 0,
then h(z) satisfies (S4) as well. Clearly, h(0) = w(p1(0), . . . , pk(0)) = w(0, . . . , 0) = 0 and:

λh
( z

λ

)

= λw
(

p1

( z

λ

)

, . . . , pk

( z

λ

))

≥ λw

(

1

λ
p1(z), . . . ,

1

λ
pk(z)

)

≥ w (p1(z), . . . , pk(z)) = h(z),

where the first inequality follows since w is isotonic and pk(z) obeys (S4); and the second inequality
because w obeys (S4). If w satisfies (S4) only over the non-negative orthant, then pk(z) must be
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non-negative as well. In particular,
∑K

k=1 pk(z) satisfies the assumption as long as, for all k, pk(z)
satisfies the assumption. Now, consider h(z) = opy p(y, z), where op is an operator such as min or
max that satisfies opy f1(y) ≥ opy f2(y) if, for all y, f1(y) ≥ f2(y) and λ opy f(y) ≥ opy λf(y) for

λ ∈ (0, 1]. In addition, assume that λp
(

y, z
λ

)

≥ p(y, z) for λ ∈ (0, 1]. Then,

λh
( z

λ

)

= λ op
y
p
(

y,
z

λ

)

≥ λ op
y

1

λ
p(y, z) ≥ op

y
p(y, z) = h(z),

for λ ∈ (0, 1]. In particular, if h(z) = min
(

p1(z), . . . , pK(z)
)

and, for all λ ∈ (0, 1], pk(z) ≤ λpk

(

z
λ

)

then h(z) ≤ λh
(

z
λ

)

.
The following corollary of Theorem 3.6 discusses the case where f is the summation operator

and hi(zi) = gi(zi). Such a setup can be used to show that convex extensions property holds for
many bilinear covering sets. In addition, we also prove that conv(G) is closed if the function g(·)
eventually increases in each one of the principal directions of the non-negative orthant.

Corollary 3.7. Consider a function g(z1, . . . , zn) : R
P

i
di

+ 7→ R, where zi ∈ Rdi

+ , and the set

G =
{

z ∈ R
P

i
di

+

∣

∣ g(z1, . . . , zn) ≥ r
}

, where r > 0. Let Gi = G ∩
{

(0, . . . , 0, zi, 0, . . . , 0)
∣

∣ zi ∈ Rdi

+

}

and gi(zi) = g(0, . . . , 0, zi, 0, . . . , 0). If
(B1) g(z) ≤∑n

i=1 gi(zi),
(B2) For all i, gi(0) = 0 and, for λ ∈ (0, 1], λgi

(

zi

λ

)

≥ gi(zi), and

(B3) For all i, gi(zi) ≤ 0 implies that (0, zi, 0) ∈ 0+
(

cl convGi

)

,

are satisfied over R
P

n

i=1
di

+ then the convex extension property, (13), holds for the set G. Let ed
i be

the dth principal axis in the space of zi variables. Assume that, for all i, conv(Gi) is closed. Assume
further that there exists a γ ≥ 1 such that, for all γ′ ≥ γ, i ∈ N , d ∈ {1, . . . , di}, and z ≥ 0, it holds
that g

(

z + γ′ed
i

)

≥ g(z). Then, conv(G) is closed.

Proof. Choose f to be the summation operator and hi(zi) = gi(zi). Then, the first part of the
result follows from Theorem 3.6. The rest of the result follows if G′

i, as defined in the statement of
Theorem 3.6, is contained in conv(G). Consider a z̄ which can be expressed as z̄i +

∑

i′ 6=i(0, z̄i′ , 0),
where z̄i ∈ conv (Gi) and for all i′ 6= i, z̄i′ ≥ 0. By Caratheodory’s theorem, there exist, for

d ∈ {1, . . . , di + 1}, z̃d and λd ≥ 0, such that
∑di+1

d=1 λdz̃
d = z̄i,

∑di+1
d=1 λd = 1, and z̃d ∈ Gi for all

d. Let D =
∑

i′ 6=i di′ . Then, define m = min {zi′dD | i′ 6= i, d = 1, . . . , di′ , zi′d > 0}. For each i′ 6= i

and d′ ∈ {1, . . . , di′}, define z̃dd′

i′ = z̃d + Dγ
zi′d′

m
ed′

i′ . On one hand, for all (i′, d′) with zi′d′ > 0,

D
zi′d′

m
≥ 1. Therefore, it follows that g

(

z̃dd′

i′

)

≥ g
(

z̃d
)

≥ r. On the other hand, if zi′d′ = 0 then

z̃dd′

i′ = z̃d ∈ G. It follows that z̃dd′

i′ ∈ G for all (i′, d, d′). Therefore, z̄ can be written as a convex
combination of points in G as follows:

di+1
∑

d=1



λd

γ − 1

γ
z̃d + λd

1

Dγ

∑

i′ 6=i

d
i′
∑

d′=1

z̃dd′

i′



 =

di+1
∑

d=1

λdz̃
d +

di+1
∑

d=1

λd

∑

i′ 6=i

d
i′
∑

d′=1

z̄i′d′ed′

i′ = z̄i +
∑

i′ 6=i

(0, z̄i′ , 0).

Observe that the multipliers are non-negative since γ ≥ 1 and

di+1
∑

d=1

λd





γ − 1

γ
+

1

Dγ

∑

i′ 6=i

di′
∑

d=1

1



 = 1.

Therefore, the result follows.

Theorem 2.1 also points to an interesting set of sufficient conditions that can be used to verify
the convex extension property. The primary difference from the conditions in Theorem 3.6 is that
Proposition 3.8 does not impose a structure on the original set S. Instead, it constructs a set X
whose projection in the z-space is contained within cl conv (

⋃n
i=1 Si), using a construction similar to

Theorem 2.1, and then leaves it to the user to verify that X outerapproximates S. This technique
may be useful when S is defined by more than one inequality. Also, note that the special case of
Theorem 3.6, discussed in Corollary 3.7, also follows from Proposition 3.8.
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Proposition 3.8. For a set S and its subsets Si ⊆ S for i ∈ N = {1, . . . , n}, let zi ∈ Rdi and
z = (z1, . . . , zi, . . . , zn) ∈ S ⊆ R

P

i
di . Assume that (A1) and (A4) are satisfied as in Theorem 2.1

and the sets Ai and X are as defined in (1) and (2) respectively. If, in addition, the following
assumptions are satisfied:
(N1) Si ⊆ projz Ai ⊆ cl

(

conv(Si)
)

,

(N2) tji

i , vki

i , and wli
i are such that for all 0 < λ ≤ 1,

λt
ji

i

(zi, ui

λ

)

≥ t
ji

i (zi, ui), λv
ki

i

(zi, ui

λ

)

≥ vki

i (zi, ui), λw
li
i

(zi, ui

λ

)

≥ wli
i (zi, ui),

(N3) S ⊆ cl projz X.
Then, (13) holds for S.

Proof. Here, Fourier-Motzkin elimination shows, as it did in the proof of Theorem 2.1, that X =
projz,uQ. We will now show that projz X = projz Q ⊆ cl conv (

⋃n
i=1 Si). The proof is again similar

to that for Theorem 2.1 except that the positive homogeneity is replaced by the weaker inequalities
assumed in (N2). Even then, if (λ, z, u) ∈ Q and 0 < λi ≤ 1, it follows that zi,ui

λi
∈ Ri(1) since the

inequalities are satisfied in the same manner as:

t
ji

i (zi, ui) ≥ λi and λit
ji

i

(

zi, ui

λi

)

≥ t
ji

i (zi, ui) ⇒ λit
ji

i

(

zi, ui

λi

)

≥ t
ji

i (zi, ui) ≥ λi ⇒ t
ji

i

(

zi, ui

λi

)

≥ 1.

Clearly, cl conv (
⋃n

i=1 Si) ⊆ cl conv(S) and we have assumed that S ⊆ projz X . Observe that
cl conv(S) ⊆ cl conv(projz X) ⊆ cl conv (

⋃n
i=1 Si) ⊆ cl conv(S) and, therefore, equality holds through-

out.

Observe that Assumptions (N1) and (N2) are less restrictive than (A3) in Theorem 2.1 since
projz Ai may be a nonconvex subset of conv(Si) and the positive homogeneity is relaxed. Here, it is
not necessary to use tji

i (zi, ui), v
ki

i (zi, ui) and wli
i (zi, ui) as the underestimators in Assumption (N2).

Rather, any function of (zi, ui) that underestimates λit
ji

i

(

zi,ui

λi

)

, λiv
ki

i

(

zi,ui

λi

)

, and λiw
li
i

(

zi,ui

λi

)

for all λi ∈ (0, 1] suffices. As long as the set Ci defined using these functions inner-approximates the
recession cone of cl conv(S), a suitable set X can be derived by projecting out the λ variables and
Assumption (N3) can be posed in terms of this set. Instead of exploring this extension further, we
will retain in the remainder of this paper that tji

i (zi, ui), v
ki

i (zi, ui), and wli
i (zi, ui) are themselves

the underestimating functions since it keeps the notation simpler while still conveys the main ideas.
We now discuss the application of Theorem 3.6 to convexifying bilinear covering sets. The bilinear

covering sets we consider generalize the bilinear set discussion in Proposition 2.9. In fact, the bilinear
covering set reduces to Q, as defined in (11) when restricted to any one of n orthogonal subspaces. As
long as the convex extension property holds, since Proposition 2.9 provides the defining inequality for
the convex hull in each of the orthogonal subspaces, we can use Theorem 2.1 to find the convex hull
description of the bilinear covering set over the non-negative orthant. We formalize this argument
in the following proposition.

Proposition 3.9. Consider a bilinear covering set:

BR =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

n
∑

i=1

(aixiyi + bixi + ciyi) ≥ r

}

.

where, for each i ∈ {1, . . . , n}, ai, bi and ci are non-negative and r is strictly positive. Let

ηi(xi, yi) =
1

2

(

bixi + ciyi +
√

(bixi + ciyi)2 + 4airxiyi

)

.

Then,

conv
(

BR
)

= X =

{

(x, y) ∈ Rn
+ × Rn

+

∣

∣

∣

∣

n
∑

i=1

ηi(xi, yi) ≥ r

}

. (26)
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Proof. We may assume without loss of generality that, for each i, at least one of ai, bi, or ci is
positive. First, we use Corollary 3.7 to show that the convex extension property (13) holds for BR.
Let zi = (xi, yi) and gi(zi) = aixiyi + bixi + ciyi. Clearly, gi(0) = 0 and for 0 < λ ≤ 1,

λgi

(zi

λ

)

=
aixiyi

λ
+ bixi + ciyi ≥ gi(zi).

Therefore, Assumption (B2) is satisfied. Let BR
i =

{

(0, xi, yi, 0) ∈ R2n
+

∣

∣ gi(xi, yi) ≥ 0
}

. Observe
that, if (x′i, y

′
i) ≥ 0, then gi(xi + x′i, yi + y′i) ≥ gi(xi, yi). Therefore, if z′i = (x′i, y

′
i) ≥ 0 then

(0, z′i, 0) ∈ 0+
(

cl convBR
i

)

and, consequently, Assumption (B3) is satisfied. It follows that the con-
vex extension property holds for BR. In fact, since g is non-decreasing and cl conv(BR

i ) = BR
i

it follows from the last statement of Corollary 3.7 that conv(BR
i ) is closed as well. By Proposi-

tion 2.9, it follows that the convex hull of BR
i is defined by ηi(xi, yi) ≥ r. Observe that ηi(xi, yi)

is a positively-homogenous function. Therefore, Assumption (A3) is satisfied. Finally, ηi(xi, yi) is
concave by Proposition 2.6 and since for sufficiently large zi, gi(xi, yi) ≥ r, it follows that BR

i 6= ∅
and, therefore, by Proposition 2.6 that Assumption (A4) is satisfied as well. Then, by Theorem 2.1
and the discussion following Definition 3.1, the set X in (26) is cl conv(BR). But, as argued earlier,
cl conv(BR) = conv(BR), and the result follows.

Consider the special case of Proposition 3.9 where bi = ci = 0. In this case, the convex hull
inequality takes the following simple form:

∑n
i=1

√
aixiyi ≥

√
r. First, the validity of the inequality

can be verified using the following argument:

n
∑

i=1

√
aixiyi ≥

√

√

√

√

n
∑

i=1

aixiyi ≥
√
r,

where the first inequality follows by the subadditivity of square-root over non-negative real numbers.
Second, by Example 2.5, the above inequality defines the closure convex hull of the disjunctive union
of {(xi, yi) | aixiyi ≥ r} over the non-negative orthant and, therefore, it must also be the closure
convex hull of

∑n
i=1 aixiyi ≥ r over the same set. Note that in the argument, we did not employ

Theorem 3.6. Instead, we replaced it with a proof that the convex hull of the disjunctive union
of orthogonal restrictions of the set includes the original set. This illustrates a different technique,
similar to the proof technique of Proposition 3.8, that may sometimes be useful in establishing the
convex extension property.

However, the above technique for establishing validity fails for another special case of Proposi-
tion 3.9, where the defining inequality is ax1y1 + bx2 ≥ r with a > 0, b > 0, and r > 0. A simpler
variant of this set was mentioned in the introduction of the paper. By Proposition 3.9, its convex
hull over the non-negative orthant is defined by

√

ax1y1

r
+
bx2

r
≥ 1. (27)

Note that the right-hand-side r participates differently with different subsets of variables in this
convex hull inequality. One could use subadditivity of the square-root function to instead derive the
following valid inequality

√

ax1y1

r
+

√

bx2

r
≥ 1. (28)

However, as expected, (28) is not as tight as (27). This can be seen by considering a point (x1, y1, x2)

that is feasible to (27). If bx2

r
≥ 1, it follows that

√

bx2

r
≥ 1. Otherwise, bx2

r
< 1, in which case

√

ax1y1

r
+

√

bx2

r
>

√

ax1y1

r
+
bx2

r
≥ 1.

Therefore, (x1, y1, x2) is feasible to (28) as well. Observe that the subadditivity of the square-root
function is not sufficient to prove the convex extension property for this bilinear covering set, and,
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thus, cannot replace Theorem 3.6. Without realizing the convex extension property a priori, even
the form of the inequality (27) is not obvious. The key to deriving this convex hull is thus to realize
that the convex hull is formed by restricting attention to orthogonal subspaces. The first subspace
spans the (x1, y1) variables and the second subspace spans x2. Then, Theorem 2.1 quickly reveals

the structure of the convex hull. Note that for this example,
√

bx2

r
≥ 1 as well as bx2

r
≥ 1 define the

convex hull of the set restricted to (0, 0, x2). However, as the insight from Theorem 2.1 suggests, it
is preferable to choose the latter representation since it uses a positively-homogenous function.

The construction of Proposition 3.9 can be carried out as long as it is possible to invoke The-
orem 3.6 to establish the convex extension property and Theorem 2.1 to convexify the orthogonal
disjunctions. This idea can be exploited to develop tighter relaxations when the variables are re-
stricted to belong to the hypercube by suitably altering the inequality outside the hypercube so that
Theorem 3.6 can still be invoked. This technique for deriving relaxations will be pursued in future
research.

4 Conclusions

In this paper, we developed a convexification tool for orthogonal disjunctions that does not introduce
new variables. As an application, we provided a simple derivation of intersection cuts for mixed-
integer polyhedral sets. The convexification tool was also shown to be useful in deriving cuts for
a variety of nonconvex constraints; those that satisfy a key convex extension property. Verifying
the convex extension property can be an arduous task. To address this difficulty, we provided a
general set of conditions that are sufficient to establish the convex extension property. We used the
convexification tool to find the convex hull representation for a bilinear covering set. Future work
will concentrate on applying these results to other classes of problems, and on incorporating the
findings in relaxation constructors within a branch-and-bound algorithm for global optimization.
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