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Abstract

We present one way in which combinatorial designs can be used
to give conditionally perfect secret sharing schemes. Schemes formed
in this way have the advantage over classical secret sharing schemes
of being easily adapted for use as compartmentalized or hierarchical
access structures.

We study the problem of completion of structures, given partial
information, to obtain measures of how closely the behaviour of the
secret sharing schemes approaches to ideal behaviour in practice.

It may happen that part of a combinatorial design can never be
reconstructed from a subset of a minimal defining set. That is, to find
the blocks of what is called the strongboz of a given minimal defining
set of a design, we must have the whole of the minimal defining set
and be able to complete the whole design. The strongbox is that
part of the design which may most safely be used to hold secret

information. We study the size of the strongbox.
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1. Motivation

Computer systems require sophisticated security, best attained when a
key or password is shared between several people in such a way that it can
only be reconstructed by a sufficiently large and responsible group acting
in agreement. Shared security systems are used in banks, in other financial
institutions, in communications networks and in computing systems serving
educational institutions, though the best-known examples are military: for
instance, in the activation of nuclear weapons or missiles, several officers
must concur fully before the necessary password can be reconstructed.

Schemes for determining the distribution of the partial information to
the people involved are known as secret sharing schemes or access schemes,
and lead to shared control. The pieces of partial information which are
distributed are known as shares and may be of equal value (as in the mili-
tary examples mentioned above) or more often of unequal value, probably
arranged according to a hierarchy of some kind. For example in a university
computing system, shares which lead to the reconstruction of the system
manager’s or superuser’s key are far more valuable than those which lead
only to a student’s key.

Secret sharing schemes have often been based on constructions from fi-
nite geometries [?], numerical linear algebra [?], the theory of error-correcting
codes [?] and, more recently, design theory [?]. A geometric example is easy
to visualise. Suppose that the secret is the combination of a safe, and that
it consists of three digits, zyz. We could share the secret between a group
of n people by giving each of them the equation of a plane through the
point (z,y, 2).

e If we choose the planes so that their pairwise intersections give distinct
lines through (z,v, ), then any two people can together determine a
line through the point and any three can determine the point itself,
and hence the combination of the lock. This is an example of a (3,n)
threshold scheme with threshold three, meaning that any three of the
n shares determine the secret, but no two shares determine it.

e Suppose, on the other hand, we choose the planes so that all but
one of them have a line, [, say, in common, and the remaining plane,
P, intersects [ in the point (x,y, z). Then finding the point requires

knowledge of the plane P and any two other planes. This means



that the agreement of the person who knows P is essential for the
determination of the secret, and the scheme is not just a threshold
scheme.

Situations where shares of unequal value are used arise often in prac-
tice. For example, consider the authorisation of electronic transfer of large
amounts of money between financial institutions. One might expect, say,
that two vice-presidents could jointly authorise the transfer of amounts
over $10000000, two junior vice-presidents amounts between $1000000
and $10000 000, two senior tellers amounts between $100 000 and $1 000 000
and two tellers lesser amounts. This is in a situation where the appropri-
ate password is never revealed outside the electronic facility (in the bank’s
head office) which reconstructs the password from the information shares
fed into it. What if a vice-president and a junior vice-president are delayed
in another city by airport fog?

An obvious solution is to share the authorisation code for transfer of
larger amounts of money between larger numbers of more junior staff, but
doing this efficiently presents a problem. At present, many access schemes
are known and some of them, based on combinatorial designs and finite

geometries, have been proved to be the best possible (in a theoretical sense).

2. Designs

A combinatorial design is a way of selecting, from a finite set, X, a
collection of b subsets which meets certain requirements. These b subsets
are usually referred to as the blocks of the design. If all the blocks contain
the same number, k, of elements and if all the v elements of the underlying
set X occur in the same number, r, of blocks, the design is said to be a
block design. Counting the elements in the design shows that vr = bk.
A block design in which all pairs of elements occur equally often, say A
times, is said to be balanced; counting pairs of elements in the design shows
that A(v — 1) = r(k — 1). Such a design is often referred to as a 2—(v, k, \)
design since the parameters b and r can be calculated from v, k and A. In
particular, a 2-(v, 3, 1) design is called a Steiner triple system, often denoted
by STS(v). In this paper we are concerned only with simple designs, that
is, those in which no block is repeated.

As an example, suppose it is required to select from a given set, X,

subsets (blocks) containing three elements each, and to select them in such



a way that any pair of elements occurs in precisely one block. Thus if we
start with the nine-element set X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then the
collection of 12 blocks in any column D; of Table 1 fulfils our requirements,
forming an ST'S(9). The boldface numbers in the leftmost column indicate
the block numbers in each design. The horizontal lines indicate the parti-
tion of the set of blocks of each design into four collections of three pairwise
disjoint blocks each, that is, into four parallel classes of blocks which par-
tition the set X. What is more, it can be shown that every ST'S(9) has

essentially the same structure as each D;.

#| D/ Dy Dy D, Ds Dg D
1] 123 124 125 126 127 128 129
2 || 456 389 378 359 368 347 367
31| 789 567 469 478 459 569 458
4 |[ 147 137 139 138 134 136 135
5| 258 259 268 245 269 257 247
6 || 369 468 457 679 578 489 689
7 || 159 158 148 149 156 145 146
8 || 267 236 279 237 248 239 238
9 || 348 479 356 568 379 678 579
10 || 168 169 167 157 189 179 178
11 || 249 278 234 289 235 246 256
12 || 357 345 589 346 467 358 349

Table 1: Large set of 2-(9,3,1) designs

We note that the seven columns of Table 1 give a partition of the set
of all (g) triples chosen from the set X into pairwise disjoint 2-(9,3,1)
designs. Such a partition is known as a large set of designs and exists for
all STS(v) for v # 7 [?, ?]. It has been proposed by Stinson and Vanstone
[?] as a foundation on which to construct a threshold scheme. Suppose for
instance that the secret key is 5 and that it is to be shared among three
people. Then they could be given the shares 1, 8 and 9 respectively, the
key being the number of the design in which the block 189 appears. Each
element occurs four times in each design, so knowing that the design has
blocks containing the element ‘1’ is of no advantage to an individual trying

to guess the key. Similarly, since each pair occurs once in each design,



knowing that the design has a block containing, say, the pair ‘18’ is of no
advantage to a pair of shareholders trying to guess the key. But the set of
three shares uniquely identifies the design. Since this is true in general, we
have a (3, 3) threshold scheme.

Now we concentrate on the design labelled D;, and more formally, we
write Dy = (X, By), where By is the set of blocks of the design. Some subsets
of the set B; have special properties. The set of blocks S(4) = {1,2,4,5}
can be completed to a 2-(9, 3, 1) design in only one way, namely to D;. The
same is true of the set Si5) = {1,4,5,7,11}. Each of these sets is said to
be a defining set of the design D; and, since no proper subset of either set
defines D; uniquely, each of them is a minimal defining set.

On the other hand, the set of blocks R = {1,2,5,7} can be completed
to an ST'S(9) in two ways, by adjoining the blocks {3, 12}, together with
either

T = {147,168,249, 267, 348, 369}

to give the design D; as before, or
T' = {148, 167,247,269, 349, 368}

to give a new design D;. Then T and 7' form a trade in the design; that
is, the set of blocks 7 can be removed from the design D; and replaced by
the set 7' to give a different design with the same parameters. Since no
subset of 7 can be traded to give an ST'S(9), they form a minimal trade.

Every defining set and every trade within a design must have at least
one common block, and the automorphism group of a defining set is a
subgroup of the automorphism group of the design; see K Gray [?, ?, ?].
These properties have been essential in the development of algorithms for
finding minimal defining sets; see Greenhill [?], Delaney [?]. In finding
fast algorithms that complete a design from a given partial design, block
intersection patterns have been important, especially linkage; see Ramsay
[?], Utami [?], Lawrence [?].

3. Secret Sharing Schemes

We are studying the problem of completion of structures, given partial
information, to obtain measures of how closely the behaviour of a secret
sharing scheme approaches to ideal behaviour in practice. This allows com-

parison of the information content of the partial structure with that of the



complete structure [?]. In particular if the partial structure can be uniquely
completed then it, together with the rules for completion, contains the same
information as the entire structure.

Even for small orders the number of inequivalent combinatorial designs
grows extremely rapidly. Here this feature becomes a strength, since the
choice of parameters for which there are a very large number of inequivalent
designs makes the secret sharing scheme more secure.

As our model, we take a situation in which the group of participants

includes a dealer (or trusted authority), as well as the shareholders.

e In the distribution phase, the dealer chooses a 2-(v, k, \) design,
with suitable parameters, for which a (preferably minimal) defining
set is known. A permutation is applied to the set of elements underly-
ing the design, thus relabelling the elements of each blockto hide any
structural information. Each participant (except the dealer) is given
a suitable size share, consisting of one or more whole blocks. Note

that no shareholder needs to know the parameters of the design.

e In the combination phase, each shareholder presents the given
share to the combiner, who completes the design and hence deter-
mines the key, by using the shares, the permutation, the parameters
v, k and A, the rules for completion and an algorithm for comple-
tion. In the scheme we are proposing, the key will be contained in
the strongboz or part of the design most difficult to reconstruct from
partial information; the strongbox is defined formally in Section 4.

If a unique design is reconstructed, then each shareholder can feel con-
fident that the others are who they say they are (a matter of mutual au-
thentication) and that the secret is as intended. If the design cannot be
reconstructed, then either someone has made a mistake or someone is try-
ing to cheat. How easily can an unauthorised group of shareholders cheat?

In an ideal situation, we assume that no shareholder knows any of the
following:

[A1] parameters of the design;
[A2] size of the defining set being used;
[A3] the permutation being applied to the elements.



But if there is any suspicion of cheating, it is prudent to assume that the
coalition of cheaters know all of the following;:

C1] parameters of the design;

[C1]

[C2] which of the inequivalent designs is being used;

[C3] which of the inequivalent permutations is being used;
[

C4] all but one of the shares, and if the shares have varying
properties, that the missing share is one of those with the least

power.

We also always assume that an opponent has unlimited resources to
attack the scheme. In the next section, we look at several small examples
of designs and see what can be discovered about them when only part of a

defining set is known.

4. Partial Defining Sets of Designs

A minimal defining set, S, of a design D provides a small amount of
data from which D can be reconstructed uniquely. Analogous subsets of
Latin squares are called critical. These were first studied in connection
with a problem at Rothamsted Experimental Station; see Nelder [?]. Any
combinatorial structures which have rules for completion may be used to
construct secret sharing schemes.

In particular we are concerned here with the problem of uniquely com-
pleting a 2-(v, k, A) block design given a proper subset of its set of blocks 5.
This is of interest in comparing the information content of the partial data
with that of the whole design. A proper subset of B which can be uniquely
completed must, together with the rules for completion, contain the same
information as the whole design.

We study the information inherent in proper subsets of B completable
to at least two distinct designs, and in the minimal defining sets of such
designs. Our approach is related to that of Fitina, Seberry and Chaudhry
[?] for Latin squares.

Let S be a defining set of a design D = (X,B) and let B € B be a
block of . We make the following definitions, using the term ‘collection’,
as oppposed to ‘set’, when repeated objects may occur. However in our

small examples multiple blocks and multiple partial blocks do not arise.



Nest: N(S, B), the nest of B in S, is the set of blocks of S\ { B}, together
with all the complete and partial blocks forced by the presence of
S\ {B}. More precisely, we write

N(S,B) = (S\ {BYUN' UN"

where N’ and A" are, respectively, the collection of complete blocks
forced by S\ {B}, and the collection of partial blocks forced by S\ {B}
excluding those partial blocks of ¢ or fewer elements since these are
already forced by the parameters of the design.

Power: P(S, B), the power of B in S, is the number of completions of

Y

S\ {B} to a design with the parameters of D.

Influence: Z(S, B), the influence of B in S, is the number of complete
blocks in the design D which are not forced when the rules for com-
pletion are applied to S\ {B}.

Strongbox: S(S), the strongbox of S, is the set of complete blocks of B
not contained in the nest of any block of S; that is, the set of blocks
which cannot be found from any proper subset of the minimal defining
set S of D.

In order to test the suitability of a defining set S to be used for a secret
sharing scheme we need to assess how easy it is for an attacker to guess the
design from partial information.

We consider three small examples, each with ¢ = 2. In Example 1,
t =k —1; in Examples 2 and 3, ¢t < k — 1. In Examples 1 and 2, A = 1; in
Example 3, A = 2. In Example 1, the smallest defining set (4 blocks) has a
strongbox of 6 blocks but the other minimal defining set (5 blocks) has a
strongbox of only one block. In Example 2, the two smallest defining sets
have six blocks each, but one has a strongbox of three blocks and the other
of only one block. In Example 3, the two smallest defining sets have five
blocks each and each has a strongbox consisting of one block.

We note that the designs of Examples 1 and 2 are related, in that the
first is a residual of the second. However we have been unable to relate the

behaviour of their defining sets.



Example 1

Suppose we wish to recreate the 2-(9,3,1) design Dy, given that the pa-
rameters are known, from one of the minimal defining sets Sy4) and Ss).
This is the affine plane of order 3.

Table 2 shows the blocks of S(4), the triples in their nests, and the pairs
still required to complete the design, where 7(x) denotes the set of pairs
covered by the block x. Each block in S(4) has power 4, and influence 8.
Thus knowing three of the four blocks in the defining set gives a 1 in 4
chance of finding the correct design. The strongbox of Sy is S(S4)) =
{7,8,9,10,11,12}. This shows the possibility of having a strongbox bigger
than the original defining set.

B | N'(Suy,B)  N"(Suy, B) Pairs still needed

1 6 0 7(1,3,7,8,9,10,11,12)
2 6 0 7(2,3,7,8,9,10,11,12)
4 3 0 7(4,6,7,8,9,10,11,12)
5 3 0 7(5,6,7,8,9,10,11,12)

Table 2: Properties of S4) in design D;

Table 3 shows the analogous information for S), using the notation
m(x) as before. Each block in S5y has power 2, and influence 6. Thus
knowing four of the five blocks in the defining set gives a 1 in 2 chance of
finding the correct design. The strongbox of S5 is S(S(5)) = {2}. Since 2
consists of the elements 4,5,6, this might for example be used to store the
combination of a lock.

B | N'(S¢y,B)  N"(S(5),B)  Pairs still needed
1 3,6 0 n(1,2,8,9,10,12)
4 8,9 0 7(2,3,4,6,10,12)
5 10, 12 0 7(2,3,5,6,8,9)

7 6, 8 0 7(2,3,7,9,10,12)

11 6, 10 ) 7(2,3,8,9,11,12)

Table 3: Properties of S in design D,



No secret sharing scheme in which a block of a design is given to a
shareholder is perfect. For example, on a given set of 9 elements, there are
840 2-(9,3,1) designs, but if one block is specified, only 120 of these are
possible. The strongbox tells us the portion of the design with regard to
which the scheme is conditionally perfect.

In this example, t = k — 1, so the maximal partial blocks forced by the
subsets of minimal defining sets are always t-sets, that is, in this case, pairs.
Thus A" = (. Also, since A = 1, N’ is always a set.

Example 2

Consider the 2-(13,4,1) design, unique to isomorphism; this is the projec-
tive plane of order 3, isomorphic to an extension of D;. The quartic residues
modulo 13, together with 0, form a starter block for the design P; that is,
P =1{0,1,3,9} is taken as the first block, and the remaining blocks formed
by addition modulo 13. Letting A, B, C respectively denote 10, 11, 12,
we have 1 = P, 2 = P+ 1 = 124A, 3 = P + 2 = 235B and so on, till
0 = P + C = C028. This design is symmetric; that is, it has b = v and

consequently also r = k. Its smallest defining sets have 6 blocks each [?].

B N’(S(C),B) ./\/”(S(C),B) K279

1 9,A 1B0\0;78C\7 (0,7; 1,2,3,6,8,9,4,B,C)
2 8,A 270\ 2;9BC\B (2,B; 1,4,6,7,8,9,A,C,0)
3 9,C 370\ 2;8AB\A (2,A; 3,5,6,7,8,9,B,C,0)
4 A,C 47B\ 6;890\8 (6,8; 2,3,4,7,9,A,B,C,0)
5 8,C 5B0\0;79A\9 (9,0; 2,4,5,6,7,8,A,B,C)
6 8,9 67B\6:AC0\C (6,C; 1,2,5,7,8,9,A,B,0)

Table 4: Properties of S in design P

In a 2-(v, k, 1) design, the set of all the blocks which do not contain some
fixed element form a defining set [?]. In this particular case, six of the nine
such blocks form a smallest defining set, such as S5y = {1,2,3,4,5,7}
which omits the element 8. The only other smallest defining set is isomor-
phic to S¢) = {1,2,3,4,5,6} consisting of six consecutive blocks.

Table 4 shows the blocks of §(.), the blocks and partial blocks in their

nests, and the pairs still needed in the completion to a design with the
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parameters of P. In describing triples in the nest of block 1, for instance,
we use the notation 1BO \ 0 to mean that from each of the blocks 1, B
and 0, we delete the element 0, leaving the triples 139, 6AB and 28C in
N"(8(c), 1). The rightmost column shows the pairs still needed; since they
happen to form a copy of the complete bipartite graph K¢ we show only
the labels of the two parts of this graph. Each block of this defining set
has power 2 and influence 6, and the strongbox consists of three blocks,
S(Sy) = {7,B,0}.

B NI(S(g),B) N”(S(g),B) Kg’g

1 9,0 16C\ 1;8AB\A (1,A; 3,5,6,7,8,9,B,C,0)
2 8,C 690\8:2AB\ A (8,A; 1,2,4,5,6,9,B,C,0)
3 9,A 680\8:3BC\B (8,B; 1,2,3,5,6,7,A,C,0)
4 B,0 689\8:4AC\C (8,C; 1,3,4,5,6,7,9,A,B)
5 8,0 56A\59BC\B (9,0; 2,4,5,6,7,8,A,B,C)
7 8,9 67B\6;AC0\C (6,C; 1,2,5,7,8,9,A,B,0)

Table 5: Properties of S(g) in design P

Table 5 shows the blocks of S(g), the blocks and partial blocks in their
nests, and the pairs still needed in the completion to a design with the
parameters of P. We use the same notation as in Table 4 for listing the
triples and pairs. Again each block of the defining set has power 2 and
influence 6, but now the strongbox consists of only one block, S(S(g)) = {6}.

Here we have an example where, although power and influence of blocks
in each defining set are the same, the nests in each case contain six triples,
and the pairs still needed for completion correspond to the 18 edges of K» o,
the strongboxes are of quite different sizes. In either case however, knowing
five of the six blocks of a smallest defining set gives us a 1 in 2 chance of

finding the correct design.

Example 3

Consider the 2-(11,5,2) design, unique to isomorphism. The quadratic
residues modulo 11 form a starter block for the design Q; that is, @ =
{1,3,4,5,9} is taken as the first block, and the remaining blocks formed
by addition modulo 11. Letting A denote 10, we have 1 =Q,2=0Q + 1 =

11



24564, 3 = (Q + 2 = 35670 and so on, till 0 = ) + A = 02348. This design
is also symmetric and its smallest defining set has 5 blocks [?, ?].

In a symmetric 2-(v, k, 2) design, the set of all the blocks which do not
contain some fixed element form a defining set [?]. In this particular case,
any five of the six such blocks form a smallest defining set [?]. We consider
the set Cy of blocks which do not contain the element 0, that is, the set of
blocks {1,2,4,5,6,A} = C,.

Table 6 shows what portions of the design can be completed from any
of the 15 sets of four blocks at a time which can be chosen from Cy. For
instance, given any of the sets {1, 2, 4, 5} or {4, 5, 6, A} or {1, 2, 6, A},
completion forces one extra whole block, 9, and six partial blocks, each of
which contains four elements. In the partial blocks, either 7 or 8 must be
added as shown to give a complete block, and choosing 7 or 8 in any one
case forces the rest of the design. Thus there are two possible completions
of the set {1, 2, 4, 5}: choosing the first option to complete each partial
block gives the original design; choosing the second option gives the design

{1,2,4,5,9} U {12348, 35608, 49408, 369A7, 15A07, 23407} .

For each smallest defining set contained in Cp, the power of each block is
2 since two completions are possible in each case; similarly since six blocks
are not forced in each completion, the influence of each block is 6. Thus
knowing any four blocks of Cy gives us a 1 in 2 chance of finding the correct
design.

In this case, we can regard the set Co \ {A} as a defining set Sy, the set
Co \ {6} as a defining set S» and the set {1, 2, 4, 5} as either S; \ {6} or
S2 \ {A}. Then in our previous notation, N'(S1,6) = N'(S2,A) =9, and

N"(81,6) = N"(S3,A) =
{1234, 3560, 4940, 3694, 15A0, 2340} U

{3A7,1A7,237, 367,507,307, 9A7,A07,407} U
{348,368, 9A8, 148,508, A08, 238, 308, 408}.

Now regard the set {1, 2, 4, 5} as S; \ {6}. To find the strongbox of
S = {1,2,4,5,6}, note that the only block neither in the set S;, nor
forced by any of its 4-block subsets, is the block A; hence S(S;) = {A}.
Similarly, S(Sz) = {6}.

12



Given blocks | N' Completions

1,2,4,5 9 | 123A[78], 3560[78], 49A0[78]
369A[87], 15A0[87], 2340[87]

4,5, 6, A 1459[3A1, 5670[3A1, 2480[3A]
2456[A3], 1580[A3], 4790[A3]
1,2,6, A 2789[45], 3670[45], 18A0[45]

1678[54], 2380[54]1, 79A0[54]
1,2,4,6 | 8 | 127A[39], 5670[39], 2480[39]
2578[93], 47A0[93], 1260[93]

1,5,6, A 456A[27], 3480[27]1, 1690[27]
3560[72], 49A0[72], 1468[72]
2,4,5, A 79A0[46]1, 1359[46], 2380[46]

389A[64]1, 3570[64]1, 1290[64]
1,2,4, A | 3 | 3480[2A], 5789[2A1, 1690[2A]
4790[A2], 3689[A2], 1580[A2]

1,4,5, 6 256A[14], 79A0[14], 2380[14]
2690[41], 237A[41], 58A0[41]
2,5,6, A 15A0(891, 1467[89]1, 2340[89]

1345[98], 47A0[98], 1260[98]
1,2,5,6 | 0 | 1478[6A], 3570[6A], 1290[6A]
1580[A6], 4790[A6], 1237[A6]

1,4,5, A 3670[59], 246A[59]1, 18A0[59]
368A[95]1, 47A0[95]1, 1260[95]
2,4, 6, A 3459[171, 2690[17]1, 58A0[17]

3560[71], 49A0[71], 2589[71]
1,2,5, A 7 | 58A0[13], 2690[13], 4678[13]
5670[31], 689A[31], 2480[31]

2,4,5,6 18A0[25], 1349[25], 3670[25]
3480[52], 137A[52], 1690[52]
1, 4,6, A 1290[68], 245A[68], 3570[68]

2579[86], 15A0[86]1, 2340[86]

Table 6: 2-(11,5,2) design completions from four blocks of Cg
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The other smallest defining set (up to isomorphism) of this design con-
sists of any four blocks containing one particular element, together with any
block not containing it. We consider here the defining set Ss = {1, 2, 3,4, 5}
in which all the blocks except 4 contain the element 5. Table 7 shows in-
formation corresponding to that of Table 6, for the blocks 1, 2, 3 and 5; in
fact, that for block 3 repeats the first line of the previous table so we need
not recalculate N'.

Given blocks | N’ Completions

2,3,4,5 | 0 | 127A[30], 1459[30]1, 689A[30]
1269[03], 158A[03], 479A[03]
1,3,4,5 | 6 | 2380[41], 79A0[41], 256A[41]
2690[14]1, 58A0[14], 237A[14]
1,2,4,5 | 9 | 3560[78], 49A0[78], 123A[78]
15A0[87], 2340[87], 369A[87]
1,2,3,4 | A | 1690[24], 0348[2A], 5789[2A]
1580[A2], 4790[A2], 3689[A2]

Table 7: 2-(11,5,2) design completions from four blocks of Ss

Block 4 behaves rather differently: the set {1, 2, 3, 5} forces the
additional complete block 8 = AN(Ss,4); the two possible completions are

either the original design Q containing the blocks

U = {36894, 14678, 1237A,479A0, 23480, 12690}
or a new design Q' containing the blocks

U' = {12470, 23940, 46890, 12368, 16794, 3478A}.

This ordering shows the blocks in &/ and U’ as disjoint pairs, but to
calculate N'" we need to look at intersections. This time N contains no

partial blocks of size 4, but instead consists of 30 triples:

N (S5, 4) =
{394,689, 368, 69A, 38A, 147,468, 168, 167,478} U
{127,234, 123, 17A, 374, 470, 9A0, 490, 79A, 47A} U
{240, 230,480, 238, 348, 120, 290, 690, 126, 169}.
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These triples form a partially balanced block design, in which each pair of
elements chosen from the set {1, 2, 3, 4, 6, 7, 8, 9, A, 0} appears
in either four triples (for 15 pairs) or one triple (for the remaining 30 pairs).

Again the power of each block in Sg is 2, and its influence is 6, so as
before, knowing four of the five blocks of this defining set gives a 1 in 2
chance of finding the correct design. The strongbox S(Ss) = {7}. However,
a 4-element subset of the block 7 appears in each of the nests of Sy for
the blocks 1, 2, 3 or 5, and five 3-element subsets of 7 for the block 4,
suggesting, first, that perhaps this strongbox is not particularly secure and,
secondly, that we should also consider the use of partial blocks in a defining
set.

We note that, if we consider the block numbers as the elements of a
dual design, then the 66 sets of five blocks which are not defining sets of
the design Q form a 4-(11,5, 1) design.

5. Further Questions

The examples discussed above have been chosen to illustrate the con-
cepts of nest, power, influence and strongbox, but are far too small for
practical use. We are now investigating similar structures in larger designs,

with a view to determining their suitability for realistic applications.
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