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1. MotivationComputer systems require sophistiated seurity, best attained when akey or password is shared between several people in suh a way that it anonly be reonstruted by a suÆiently large and responsible group atingin agreement. Shared seurity systems are used in banks, in other �nanialinstitutions, in ommuniations networks and in omputing systems servingeduational institutions, though the best-known examples are military: forinstane, in the ativation of nulear weapons or missiles, several oÆersmust onur fully before the neessary password an be reonstruted.Shemes for determining the distribution of the partial information tothe people involved are known as seret sharing shemes or aess shemes,and lead to shared ontrol. The piees of partial information whih aredistributed are known as shares and may be of equal value (as in the mili-tary examples mentioned above) or more often of unequal value, probablyarranged aording to a hierarhy of some kind. For example in a universityomputing system, shares whih lead to the reonstrution of the systemmanager's or superuser's key are far more valuable than those whih leadonly to a student's key.Seret sharing shemes have often been based on onstrutions from �-nite geometries [?℄, numerial linear algebra [?℄, the theory of error-orretingodes [?℄ and, more reently, design theory [?℄. A geometri example is easyto visualise. Suppose that the seret is the ombination of a safe, and thatit onsists of three digits, xyz: We ould share the seret between a groupof n people by giving eah of them the equation of a plane through thepoint (x; y; z):� If we hoose the planes so that their pairwise intersetions give distintlines through (x; y; z); then any two people an together determine aline through the point and any three an determine the point itself,and hene the ombination of the lok. This is an example of a (3; n)threshold sheme with threshold three, meaning that any three of then shares determine the seret, but no two shares determine it.� Suppose, on the other hand, we hoose the planes so that all butone of them have a line, l, say, in ommon, and the remaining plane,P , intersets l in the point (x; y; z): Then �nding the point requiresknowledge of the plane P and any two other planes. This means2



that the agreement of the person who knows P is essential for thedetermination of the seret, and the sheme is not just a thresholdsheme.Situations where shares of unequal value are used arise often in pra-tie. For example, onsider the authorisation of eletroni transfer of largeamounts of money between �nanial institutions. One might expet, say,that two vie-presidents ould jointly authorise the transfer of amountsover $10000 000, two junior vie-presidents amounts between $1 000000and $10000 000, two senior tellers amounts between $100000 and $1 000000and two tellers lesser amounts. This is in a situation where the appropri-ate password is never revealed outside the eletroni faility (in the bank'shead oÆe) whih reonstruts the password from the information sharesfed into it. What if a vie-president and a junior vie-president are delayedin another ity by airport fog?An obvious solution is to share the authorisation ode for transfer oflarger amounts of money between larger numbers of more junior sta�, butdoing this eÆiently presents a problem. At present, many aess shemesare known and some of them, based on ombinatorial designs and �nitegeometries, have been proved to be the best possible (in a theoretial sense).2. DesignsA ombinatorial design is a way of seleting, from a �nite set, X , aolletion of b subsets whih meets ertain requirements. These b subsetsare usually referred to as the bloks of the design. If all the bloks ontainthe same number, k, of elements and if all the v elements of the underlyingset X our in the same number, r, of bloks, the design is said to be ablok design. Counting the elements in the design shows that vr = bk:A blok design in whih all pairs of elements our equally often, say �times, is said to be balaned; ounting pairs of elements in the design showsthat �(v � 1) = r(k � 1): Suh a design is often referred to as a 2{(v; k; �)design sine the parameters b and r an be alulated from v; k and �: Inpartiular, a 2-(v; 3; 1) design is alled a Steiner triple system, often denotedby STS(v): In this paper we are onerned only with simple designs, thatis, those in whih no blok is repeated.As an example, suppose it is required to selet from a given set, X;subsets (bloks) ontaining three elements eah, and to selet them in suh3



a way that any pair of elements ours in preisely one blok. Thus if westart with the nine-element set X = f1; 2; 3; 4; 5; 6; 7; 8; 9g; then theolletion of 12 bloks in any olumn Di of Table 1 ful�ls our requirements,forming an STS(9): The boldfae numbers in the leftmost olumn indiatethe blok numbers in eah design. The horizontal lines indiate the parti-tion of the set of bloks of eah design into four olletions of three pairwisedisjoint bloks eah, that is, into four parallel lasses of bloks whih par-tition the set X: What is more, it an be shown that every STS(9) hasessentially the same struture as eah Di:# D1 D2 D3 D4 D5 D6 D71 123 124 125 126 127 128 1292 456 389 378 359 368 347 3673 789 567 469 478 459 569 4584 147 137 139 138 134 136 1355 258 259 268 245 269 257 2476 369 468 457 679 578 489 6897 159 158 148 149 156 145 1468 267 236 279 237 248 239 2389 348 479 356 568 379 678 57910 168 169 167 157 189 179 17811 249 278 234 289 235 246 25612 357 345 589 346 467 358 349Table 1: Large set of 2-(9; 3; 1) designsWe note that the seven olumns of Table 1 give a partition of the setof all �93� triples hosen from the set X into pairwise disjoint 2-(9; 3; 1)designs. Suh a partition is known as a large set of designs and exists forall STS(v) for v 6= 7 [?, ?℄. It has been proposed by Stinson and Vanstone[?℄ as a foundation on whih to onstrut a threshold sheme. Suppose forinstane that the seret key is 5 and that it is to be shared among threepeople. Then they ould be given the shares 1, 8 and 9 respetively, thekey being the number of the design in whih the blok 189 appears. Eahelement ours four times in eah design, so knowing that the design hasbloks ontaining the element `1' is of no advantage to an individual tryingto guess the key. Similarly, sine eah pair ours one in eah design,4



knowing that the design has a blok ontaining, say, the pair `18' is of noadvantage to a pair of shareholders trying to guess the key. But the set ofthree shares uniquely identi�es the design. Sine this is true in general, wehave a (3; 3) threshold sheme.Now we onentrate on the design labelled D1; and more formally, wewriteD1 = (X;B1); where B1 is the set of bloks of the design. Some subsetsof the set B1 have speial properties. The set of bloks S(4) = f1;2;4;5gan be ompleted to a 2-(9; 3; 1) design in only one way, namely to D1: Thesame is true of the set S(5) = f1;4;5;7;11g: Eah of these sets is said tobe a de�ning set of the design D1 and, sine no proper subset of either setde�nes D1 uniquely, eah of them is a minimal de�ning set.On the other hand, the set of bloks R = f1;2;5;7g an be ompletedto an STS(9) in two ways, by adjoining the bloks f3;12g; together witheither T = f147; 168; 249; 267; 348; 369gto give the design D1 as before, orT 0 = f148; 167; 247; 269; 349; 368gto give a new design D01: Then T and T 0 form a trade in the design; thatis, the set of bloks T an be removed from the design D1 and replaed bythe set T 0 to give a di�erent design with the same parameters. Sine nosubset of T an be traded to give an STS(9); they form a minimal trade.Every de�ning set and every trade within a design must have at leastone ommon blok, and the automorphism group of a de�ning set is asubgroup of the automorphism group of the design; see K Gray [?, ?, ?℄.These properties have been essential in the development of algorithms for�nding minimal de�ning sets; see Greenhill [?℄, Delaney [?℄. In �ndingfast algorithms that omplete a design from a given partial design, blokintersetion patterns have been important, espeially linkage; see Ramsay[?℄, Utami [?℄, Lawrene [?℄.3. Seret Sharing ShemesWe are studying the problem of ompletion of strutures, given partialinformation, to obtain measures of how losely the behaviour of a seretsharing sheme approahes to ideal behaviour in pratie. This allows om-parison of the information ontent of the partial struture with that of the5



omplete struture [?℄. In partiular if the partial struture an be uniquelyompleted then it, together with the rules for ompletion, ontains the sameinformation as the entire struture.Even for small orders the number of inequivalent ombinatorial designsgrows extremely rapidly. Here this feature beomes a strength, sine thehoie of parameters for whih there are a very large number of inequivalentdesigns makes the seret sharing sheme more seure.As our model, we take a situation in whih the group of partiipantsinludes a dealer (or trusted authority), as well as the shareholders.� In the distribution phase, the dealer hooses a 2-(v; k; �) design,with suitable parameters, for whih a (preferably minimal) de�ningset is known. A permutation is applied to the set of elements underly-ing the design, thus relabelling the elements of eah blokto hide anystrutural information. Eah partiipant (exept the dealer) is givena suitable size share, onsisting of one or more whole bloks. Notethat no shareholder needs to know the parameters of the design.� In the ombination phase, eah shareholder presents the givenshare to the ombiner, who ompletes the design and hene deter-mines the key, by using the shares, the permutation, the parametersv; k and �; the rules for ompletion and an algorithm for omple-tion. In the sheme we are proposing, the key will be ontained inthe strongbox or part of the design most diÆult to reonstrut frompartial information; the strongbox is de�ned formally in Setion 4.If a unique design is reonstruted, then eah shareholder an feel on-�dent that the others are who they say they are (a matter of mutual au-thentiation) and that the seret is as intended. If the design annot bereonstruted, then either someone has made a mistake or someone is try-ing to heat. How easily an an unauthorised group of shareholders heat?In an ideal situation, we assume that no shareholder knows any of thefollowing:[A1℄ parameters of the design;[A2℄ size of the de�ning set being used;[A3℄ the permutation being applied to the elements.6



But if there is any suspiion of heating, it is prudent to assume that theoalition of heaters know all of the following:[C1℄ parameters of the design;[C2℄ whih of the inequivalent designs is being used;[C3℄ whih of the inequivalent permutations is being used;[C4℄ all but one of the shares, and if the shares have varyingproperties, that the missing share is one of those with the leastpower.We also always assume that an opponent has unlimited resoures toattak the sheme. In the next setion, we look at several small examplesof designs and see what an be disovered about them when only part of ade�ning set is known.4. Partial De�ning Sets of DesignsA minimal de�ning set, S, of a design D provides a small amount ofdata from whih D an be reonstruted uniquely. Analogous subsets ofLatin squares are alled ritial. These were �rst studied in onnetionwith a problem at Rothamsted Experimental Station; see Nelder [?℄. Anyombinatorial strutures whih have rules for ompletion may be used toonstrut seret sharing shemes.In partiular we are onerned here with the problem of uniquely om-pleting a 2-(v; k; �) blok design given a proper subset of its set of bloks B:This is of interest in omparing the information ontent of the partial datawith that of the whole design. A proper subset of B whih an be uniquelyompleted must, together with the rules for ompletion, ontain the sameinformation as the whole design.We study the information inherent in proper subsets of B ompletableto at least two distint designs, and in the minimal de�ning sets of suhdesigns. Our approah is related to that of Fitina, Seberry and Chaudhry[?℄ for Latin squares.Let S be a de�ning set of a design D = (X;B) and let B 2 B be ablok of S: We make the following de�nitions, using the term `olletion',as oppposed to `set', when repeated objets may our. However in oursmall examples multiple bloks and multiple partial bloks do not arise.7



Nest: N (S; B); the nest of B in S; is the set of bloks of S nfBg; togetherwith all the omplete and partial bloks fored by the presene ofS n fBg: More preisely, we writeN (S; B) = (S n fBg) [N 0 [N 00where N 0 and N 00 are, respetively, the olletion of omplete bloksfored by SnfBg; and the olletion of partial bloks fored by SnfBgexluding those partial bloks of t or fewer elements sine these arealready fored by the parameters of the design.Power: P(S; B); the power of B in S; is the number of ompletions ofS n fBg to a design with the parameters of D.Inuene: I(S; B); the inuene of B in S; is the number of ompletebloks in the design D whih are not fored when the rules for om-pletion are applied to S n fBg:Strongbox: S(S); the strongbox of S; is the set of omplete bloks of Bnot ontained in the nest of any blok of S; that is, the set of blokswhih annot be found from any proper subset of the minimal de�ningset S of D:In order to test the suitability of a de�ning set S to be used for a seretsharing sheme we need to assess how easy it is for an attaker to guess thedesign from partial information.We onsider three small examples, eah with t = 2: In Example 1,t = k � 1; in Examples 2 and 3, t < k � 1: In Examples 1 and 2, � = 1; inExample 3, � = 2: In Example 1, the smallest de�ning set (4 bloks) has astrongbox of 6 bloks but the other minimal de�ning set (5 bloks) has astrongbox of only one blok. In Example 2, the two smallest de�ning setshave six bloks eah, but one has a strongbox of three bloks and the otherof only one blok. In Example 3, the two smallest de�ning sets have �vebloks eah and eah has a strongbox onsisting of one blok.We note that the designs of Examples 1 and 2 are related, in that the�rst is a residual of the seond. However we have been unable to relate thebehaviour of their de�ning sets. 8



Example 1Suppose we wish to rereate the 2-(9; 3; 1) design D1; given that the pa-rameters are known, from one of the minimal de�ning sets S(4) and S(5):This is the aÆne plane of order 3.Table 2 shows the bloks of S(4); the triples in their nests, and the pairsstill required to omplete the design, where �(x) denotes the set of pairsovered by the blok x: Eah blok in S(4) has power 4, and inuene 8.Thus knowing three of the four bloks in the de�ning set gives a 1 in 4hane of �nding the orret design. The strongbox of S(4) is S(S(4)) =f7;8;9;10;11;12g: This shows the possibility of having a strongbox biggerthan the original de�ning set.B N 0(S(4); B) N 00(S(4); B) Pairs still needed1 6 ; �(1;3;7;8;9;10;11;12)2 6 ; �(2;3;7;8;9;10;11;12)4 3 ; �(4;6;7;8;9;10;11;12)5 3 ; �(5;6;7;8;9;10;11;12)Table 2: Properties of S(4) in design D1Table 3 shows the analogous information for S(5); using the notation�(x) as before. Eah blok in S(5) has power 2, and inuene 6. Thusknowing four of the �ve bloks in the de�ning set gives a 1 in 2 hane of�nding the orret design. The strongbox of S(5) is S(S(5)) = f2g: Sine 2onsists of the elements 4,5,6, this might for example be used to store theombination of a lok.B N 0(S(5); B) N 00(S(5); B) Pairs still needed1 3, 6 ; �(1;2;8;9;10;12)4 8, 9 ; �(2;3;4;6;10;12)5 10, 12 ; �(2;3;5;6;8;9)7 6, 8 ; �(2;3;7;9;10;12)11 6, 10 ; �(2;3;8;9;11;12)Table 3: Properties of S(5) in design D19



No seret sharing sheme in whih a blok of a design is given to ashareholder is perfet. For example, on a given set of 9 elements, there are840 2-(9,3,1) designs, but if one blok is spei�ed, only 120 of these arepossible. The strongbox tells us the portion of the design with regard towhih the sheme is onditionally perfet.In this example, t = k � 1; so the maximal partial bloks fored by thesubsets of minimal de�ning sets are always t-sets, that is, in this ase, pairs.Thus N 00 = ;: Also, sine � = 1; N 0 is always a set.Example 2Consider the 2-(13; 4; 1) design, unique to isomorphism; this is the proje-tive plane of order 3, isomorphi to an extension of D1: The quarti residuesmodulo 13, together with 0, form a starter blok for the design P ; that is,P = f0; 1; 3; 9g is taken as the �rst blok, and the remaining bloks formedby addition modulo 13. Letting A, B, C respetively denote 10, 11, 12,we have 1 = P; 2 = P + 1 = 124A; 3 = P + 2 = 235B and so on, till0 = P + C = C028: This design is symmetri; that is, it has b = v andonsequently also r = k: Its smallest de�ning sets have 6 bloks eah [?℄.B N 0(S(); B) N 00(S(); B) K2;91 9,A 1B0 n 0;78C n 7 (0,7; 1,2,3,6,8,9,A,B,C)2 8,A 270 n 2;9BC n B (2,B; 1,4,6,7,8,9,A,C,0)3 9,C 370 n 2;8AB n A (2,A; 3,5,6,7,8,9,B,C,0)4 A,C 47B n 6;890 n 8 (6,8; 2,3,4,7,9,A,B,C,0)5 8,C 5B0 n 0;79A n 9 (9,0; 2,4,5,6,7,8,A,B,C)6 8,9 67B n 6;AC0 n C (6,C; 1,2,5,7,8,9,A,B,0)Table 4: Properties of S() in design PIn a 2-(v; k; 1) design, the set of all the bloks whih do not ontain some�xed element form a de�ning set [?℄. In this partiular ase, six of the ninesuh bloks form a smallest de�ning set, suh as S(8) = f1;2;3;4;5;7gwhih omits the element 8. The only other smallest de�ning set is isomor-phi to S() = f1;2;3;4;5;6g onsisting of six onseutive bloks.Table 4 shows the bloks of S(); the bloks and partial bloks in theirnests, and the pairs still needed in the ompletion to a design with the10



parameters of P : In desribing triples in the nest of blok 1, for instane,we use the notation 1B0 n 0 to mean that from eah of the bloks 1, Band 0, we delete the element 0, leaving the triples 139, 6AB and 28C inN 00(S();1): The rightmost olumn shows the pairs still needed; sine theyhappen to form a opy of the omplete bipartite graph K2;9 we show onlythe labels of the two parts of this graph. Eah blok of this de�ning sethas power 2 and inuene 6, and the strongbox onsists of three bloks,S(S()) = f7;B;0g:B N 0(S(8); B) N 00(S(8); B) K2;91 9,0 16C n 1;8AB n A (1,A; 3,5,6,7,8,9,B,C,0)2 8,C 690 n 8;2AB n A (8,A; 1,2,4,5,6,9,B,C,0)3 9,A 680 n 8;3BC n B (8,B; 1,2,3,5,6,7,A,C,0)4 B,0 689 n 8;4AC n C (8,C; 1,3,4,5,6,7,9,A,B)5 8,0 56A n 5;9BC n B (9,0; 2,4,5,6,7,8,A,B,C)7 8,9 67B n 6;AC0 n C (6,C; 1,2,5,7,8,9,A,B,0)Table 5: Properties of S(8) in design PTable 5 shows the bloks of S(8); the bloks and partial bloks in theirnests, and the pairs still needed in the ompletion to a design with theparameters of P : We use the same notation as in Table 4 for listing thetriples and pairs. Again eah blok of the de�ning set has power 2 andinuene 6, but now the strongbox onsists of only one blok, S(S(8)) = f6g:Here we have an example where, although power and inuene of bloksin eah de�ning set are the same, the nests in eah ase ontain six triples,and the pairs still needed for ompletion orrespond to the 18 edges ofK2;9;the strongboxes are of quite di�erent sizes. In either ase however, knowing�ve of the six bloks of a smallest de�ning set gives us a 1 in 2 hane of�nding the orret design.Example 3Consider the 2-(11; 5; 2) design, unique to isomorphism. The quadratiresidues modulo 11 form a starter blok for the design Q; that is, Q =f1; 3; 4; 5; 9g is taken as the �rst blok, and the remaining bloks formedby addition modulo 11. Letting A denote 10, we have 1 = Q; 2 = Q+ 1 =11



2456A; 3 = Q+ 2 = 35670 and so on, till 0 = Q+ A = 02348: This designis also symmetri and its smallest de�ning set has 5 bloks [?, ?℄.In a symmetri 2-(v; k; 2) design, the set of all the bloks whih do notontain some �xed element form a de�ning set [?℄. In this partiular ase,any �ve of the six suh bloks form a smallest de�ning set [?℄. We onsiderthe set C0 of bloks whih do not ontain the element 0, that is, the set ofbloks f1;2;4;5;6;Ag = C0:Table 6 shows what portions of the design an be ompleted from anyof the 15 sets of four bloks at a time whih an be hosen from C0: Forinstane, given any of the sets f1, 2, 4, 5g or f4, 5, 6, Ag or f1, 2, 6, Ag,ompletion fores one extra whole blok, 9, and six partial bloks, eah ofwhih ontains four elements. In the partial bloks, either 7 or 8 must beadded as shown to give a omplete blok, and hoosing 7 or 8 in any onease fores the rest of the design. Thus there are two possible ompletionsof the set f1, 2, 4, 5g: hoosing the �rst option to omplete eah partialblok gives the original design; hoosing the seond option gives the designf1;2;4;5;9g [ f123A8; 35608; 49A08; 369A7; 15A07; 23407g:For eah smallest de�ning set ontained in C0; the power of eah blok is2 sine two ompletions are possible in eah ase; similarly sine six bloksare not fored in eah ompletion, the inuene of eah blok is 6. Thusknowing any four bloks of C0 gives us a 1 in 2 hane of �nding the orretdesign.In this ase, we an regard the set C0 n fAg as a de�ning set S1; the setC0 n f6g as a de�ning set S2 and the set f1, 2, 4, 5g as either S1 n f6g orS2 n fAg: Then in our previous notation, N 0(S1;6) = N 0(S2;A) = 9; andN 00(S1;6) = N 00(S2;A) =f123A; 3560; 49A0; 369A; 15A0; 2340g [f3A7; 1A7; 237; 367; 507; 307; 9A7;A07; 407g [f3A8; 368; 9A8; 1A8; 508; A08; 238;308; 408g:Now regard the set f1, 2, 4, 5g as S1 n f6g: To �nd the strongbox ofS1 = f1;2;4;5;6g; note that the only blok neither in the set S1, norfored by any of its 4-blok subsets, is the blok A; hene S(S1) = fAg:Similarly, S(S2) = f6g: 12



Given bloks N 0 Completions1, 2, 4, 5 9 123A[78℄, 3560[78℄, 49A0[78℄369A[87℄, 15A0[87℄, 2340[87℄4, 5, 6, A 1459[3A℄, 5670[3A℄, 2480[3A℄2456[A3℄, 1580[A3℄, 4790[A3℄1, 2, 6, A 2789[45℄, 3670[45℄, 18A0[45℄1678[54℄, 2380[54℄, 79A0[54℄1, 2, 4, 6 8 127A[39℄, 5670[39℄, 2480[39℄2578[93℄, 47A0[93℄, 1260[93℄1, 5, 6, A 456A[27℄, 3480[27℄, 1690[27℄3560[72℄, 49A0[72℄, 1468[72℄2, 4, 5, A 79A0[46℄, 1359[46℄, 2380[46℄389A[64℄, 3570[64℄, 1290[64℄1, 2, 4, A 3 3480[2A℄, 5789[2A℄, 1690[2A℄4790[A2℄, 3689[A2℄, 1580[A2℄1, 4, 5, 6 256A[14℄, 79A0[14℄, 2380[14℄2690[41℄, 237A[41℄, 58A0[41℄2, 5, 6, A 15A0[89℄, 1467[89℄, 2340[89℄1345[98℄, 47A0[98℄, 1260[98℄1, 2, 5, 6 0 1478[6A℄, 3570[6A℄, 1290[6A℄1580[A6℄, 4790[A6℄, 1237[A6℄1, 4, 5, A 3670[59℄, 246A[59℄, 18A0[59℄368A[95℄, 47A0[95℄, 1260[95℄2, 4, 6, A 3459[17℄, 2690[17℄, 58A0[17℄3560[71℄, 49A0[71℄, 2589[71℄1, 2, 5, A 7 58A0[13℄, 2690[13℄, 4678[13℄5670[31℄, 689A[31℄, 2480[31℄2, 4, 5, 6 18A0[25℄, 1349[25℄, 3670[25℄3480[52℄, 137A[52℄, 1690[52℄1, 4, 6, A 1290[68℄, 245A[68℄, 3570[68℄2579[86℄, 15A0[86℄, 2340[86℄Table 6: 2-(11; 5; 2) design ompletions from four bloks of C013



The other smallest de�ning set (up to isomorphism) of this design on-sists of any four bloks ontaining one partiular element, together with anyblok not ontaining it. We onsider here the de�ning set S5 = f1;2;3;4;5gin whih all the bloks exept 4 ontain the element 5. Table 7 shows in-formation orresponding to that of Table 6, for the bloks 1, 2, 3 and 5; infat, that for blok 3 repeats the �rst line of the previous table so we neednot realulate N 00:Given bloks N 0 Completions2, 3, 4, 5 0 127A[30℄, 1459[30℄, 689A[30℄1269[03℄, 158A[03℄, 479A[03℄1, 3, 4, 5 6 2380[41℄, 79A0[41℄, 256A[41℄2690[14℄, 58A0[14℄, 237A[14℄1, 2, 4, 5 9 3560[78℄, 49A0[78℄, 123A[78℄15A0[87℄, 2340[87℄, 369A[87℄1, 2, 3, 4 A 1690[2A℄, 0348[2A℄, 5789[2A℄1580[A2℄, 4790[A2℄, 3689[A2℄Table 7: 2-(11; 5; 2) design ompletions from four bloks of S5Blok 4 behaves rather di�erently: the set f1, 2, 3, 5g fores theadditional omplete blok 8 = N 0(S5;4); the two possible ompletions areeither the original design Q ontaining the bloksU = f3689A; 14678; 1237A; 479A0; 23480; 12690gor a new design Q0 ontaining the bloksU 0 = f12470; 239A0; 46890; 12368; 1679A; 3478Ag:This ordering shows the bloks in U and U 0 as disjoint pairs, but toalulate N 00 we need to look at intersetions. This time N 00 ontains nopartial bloks of size 4, but instead onsists of 30 triples:N 00(S5;4) =f39A; 689; 368; 69A; 38A; 147; 468; 168; 167; 478g [f127; 23A; 123; 17A; 37A; 470; 9A0; 490; 79A; 47Ag [f240; 230; 480; 238; 348; 120; 290; 690; 126; 169g:14



These triples form a partially balaned blok design, in whih eah pair ofelements hosen from the set f1, 2, 3, 4, 6, 7, 8, 9, A, 0g appearsin either four triples (for 15 pairs) or one triple (for the remaining 30 pairs).Again the power of eah blok in S5 is 2, and its inuene is 6, so asbefore, knowing four of the �ve bloks of this de�ning set gives a 1 in 2hane of �nding the orret design. The strongbox S(S5) = f7g: However,a 4-element subset of the blok 7 appears in eah of the nests of S5 forthe bloks 1, 2, 3 or 5, and �ve 3-element subsets of 7 for the blok 4,suggesting, �rst, that perhaps this strongbox is not partiularly seure and,seondly, that we should also onsider the use of partial bloks in a de�ningset.We note that, if we onsider the blok numbers as the elements of adual design, then the 66 sets of �ve bloks whih are not de�ning sets ofthe design Q form a 4-(11; 5; 1) design.5. Further QuestionsThe examples disussed above have been hosen to illustrate the on-epts of nest, power, inuene and strongbox, but are far too small forpratial use. We are now investigating similar strutures in larger designs,with a view to determining their suitability for realisti appliations.Referenes[1℄ M Bertilson and I Ingemarsson, A onstrution of pratial seret shar-ing shemes using linear blok odes, Proeedings of AUSCRYPT'92,LNCS 718 67{69, Springer{Verlag (1993).[2℄ G R Blakley, Safeguarding ryptographi keys, Proeedings of NCC,AFIPS Conferene Proeedings 48 313{317 (1979).[3℄ Cathy Delaney, Martin J Sharry and Anne Penfold Street, bds { Ra-tionale and User's Guide, CCRR-02-96, Centre for Combinatoris, De-partment of Mathematis, The University of Queensland, Brisbane,Australia, 1996. 15
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