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1. MotivationComputer systems require sophisti
ated se
urity, best attained when akey or password is shared between several people in su
h a way that it 
anonly be re
onstru
ted by a suÆ
iently large and responsible group a
tingin agreement. Shared se
urity systems are used in banks, in other �nan
ialinstitutions, in 
ommuni
ations networks and in 
omputing systems servingedu
ational institutions, though the best-known examples are military: forinstan
e, in the a
tivation of nu
lear weapons or missiles, several oÆ
ersmust 
on
ur fully before the ne
essary password 
an be re
onstru
ted.S
hemes for determining the distribution of the partial information tothe people involved are known as se
ret sharing s
hemes or a

ess s
hemes,and lead to shared 
ontrol. The pie
es of partial information whi
h aredistributed are known as shares and may be of equal value (as in the mili-tary examples mentioned above) or more often of unequal value, probablyarranged a

ording to a hierar
hy of some kind. For example in a university
omputing system, shares whi
h lead to the re
onstru
tion of the systemmanager's or superuser's key are far more valuable than those whi
h leadonly to a student's key.Se
ret sharing s
hemes have often been based on 
onstru
tions from �-nite geometries [?℄, numeri
al linear algebra [?℄, the theory of error-
orre
ting
odes [?℄ and, more re
ently, design theory [?℄. A geometri
 example is easyto visualise. Suppose that the se
ret is the 
ombination of a safe, and thatit 
onsists of three digits, xyz: We 
ould share the se
ret between a groupof n people by giving ea
h of them the equation of a plane through thepoint (x; y; z):� If we 
hoose the planes so that their pairwise interse
tions give distin
tlines through (x; y; z); then any two people 
an together determine aline through the point and any three 
an determine the point itself,and hen
e the 
ombination of the lo
k. This is an example of a (3; n)threshold s
heme with threshold three, meaning that any three of then shares determine the se
ret, but no two shares determine it.� Suppose, on the other hand, we 
hoose the planes so that all butone of them have a line, l, say, in 
ommon, and the remaining plane,P , interse
ts l in the point (x; y; z): Then �nding the point requiresknowledge of the plane P and any two other planes. This means2



that the agreement of the person who knows P is essential for thedetermination of the se
ret, and the s
heme is not just a thresholds
heme.Situations where shares of unequal value are used arise often in pra
-ti
e. For example, 
onsider the authorisation of ele
troni
 transfer of largeamounts of money between �nan
ial institutions. One might expe
t, say,that two vi
e-presidents 
ould jointly authorise the transfer of amountsover $10000 000, two junior vi
e-presidents amounts between $1 000000and $10000 000, two senior tellers amounts between $100000 and $1 000000and two tellers lesser amounts. This is in a situation where the appropri-ate password is never revealed outside the ele
troni
 fa
ility (in the bank'shead oÆ
e) whi
h re
onstru
ts the password from the information sharesfed into it. What if a vi
e-president and a junior vi
e-president are delayedin another 
ity by airport fog?An obvious solution is to share the authorisation 
ode for transfer oflarger amounts of money between larger numbers of more junior sta�, butdoing this eÆ
iently presents a problem. At present, many a

ess s
hemesare known and some of them, based on 
ombinatorial designs and �nitegeometries, have been proved to be the best possible (in a theoreti
al sense).2. DesignsA 
ombinatorial design is a way of sele
ting, from a �nite set, X , a
olle
tion of b subsets whi
h meets 
ertain requirements. These b subsetsare usually referred to as the blo
ks of the design. If all the blo
ks 
ontainthe same number, k, of elements and if all the v elements of the underlyingset X o

ur in the same number, r, of blo
ks, the design is said to be ablo
k design. Counting the elements in the design shows that vr = bk:A blo
k design in whi
h all pairs of elements o

ur equally often, say �times, is said to be balan
ed; 
ounting pairs of elements in the design showsthat �(v � 1) = r(k � 1): Su
h a design is often referred to as a 2{(v; k; �)design sin
e the parameters b and r 
an be 
al
ulated from v; k and �: Inparti
ular, a 2-(v; 3; 1) design is 
alled a Steiner triple system, often denotedby STS(v): In this paper we are 
on
erned only with simple designs, thatis, those in whi
h no blo
k is repeated.As an example, suppose it is required to sele
t from a given set, X;subsets (blo
ks) 
ontaining three elements ea
h, and to sele
t them in su
h3



a way that any pair of elements o

urs in pre
isely one blo
k. Thus if westart with the nine-element set X = f1; 2; 3; 4; 5; 6; 7; 8; 9g; then the
olle
tion of 12 blo
ks in any 
olumn Di of Table 1 ful�ls our requirements,forming an STS(9): The boldfa
e numbers in the leftmost 
olumn indi
atethe blo
k numbers in ea
h design. The horizontal lines indi
ate the parti-tion of the set of blo
ks of ea
h design into four 
olle
tions of three pairwisedisjoint blo
ks ea
h, that is, into four parallel 
lasses of blo
ks whi
h par-tition the set X: What is more, it 
an be shown that every STS(9) hasessentially the same stru
ture as ea
h Di:# D1 D2 D3 D4 D5 D6 D71 123 124 125 126 127 128 1292 456 389 378 359 368 347 3673 789 567 469 478 459 569 4584 147 137 139 138 134 136 1355 258 259 268 245 269 257 2476 369 468 457 679 578 489 6897 159 158 148 149 156 145 1468 267 236 279 237 248 239 2389 348 479 356 568 379 678 57910 168 169 167 157 189 179 17811 249 278 234 289 235 246 25612 357 345 589 346 467 358 349Table 1: Large set of 2-(9; 3; 1) designsWe note that the seven 
olumns of Table 1 give a partition of the setof all �93� triples 
hosen from the set X into pairwise disjoint 2-(9; 3; 1)designs. Su
h a partition is known as a large set of designs and exists forall STS(v) for v 6= 7 [?, ?℄. It has been proposed by Stinson and Vanstone[?℄ as a foundation on whi
h to 
onstru
t a threshold s
heme. Suppose forinstan
e that the se
ret key is 5 and that it is to be shared among threepeople. Then they 
ould be given the shares 1, 8 and 9 respe
tively, thekey being the number of the design in whi
h the blo
k 189 appears. Ea
helement o

urs four times in ea
h design, so knowing that the design hasblo
ks 
ontaining the element `1' is of no advantage to an individual tryingto guess the key. Similarly, sin
e ea
h pair o

urs on
e in ea
h design,4



knowing that the design has a blo
k 
ontaining, say, the pair `18' is of noadvantage to a pair of shareholders trying to guess the key. But the set ofthree shares uniquely identi�es the design. Sin
e this is true in general, wehave a (3; 3) threshold s
heme.Now we 
on
entrate on the design labelled D1; and more formally, wewriteD1 = (X;B1); where B1 is the set of blo
ks of the design. Some subsetsof the set B1 have spe
ial properties. The set of blo
ks S(4) = f1;2;4;5g
an be 
ompleted to a 2-(9; 3; 1) design in only one way, namely to D1: Thesame is true of the set S(5) = f1;4;5;7;11g: Ea
h of these sets is said tobe a de�ning set of the design D1 and, sin
e no proper subset of either setde�nes D1 uniquely, ea
h of them is a minimal de�ning set.On the other hand, the set of blo
ks R = f1;2;5;7g 
an be 
ompletedto an STS(9) in two ways, by adjoining the blo
ks f3;12g; together witheither T = f147; 168; 249; 267; 348; 369gto give the design D1 as before, orT 0 = f148; 167; 247; 269; 349; 368gto give a new design D01: Then T and T 0 form a trade in the design; thatis, the set of blo
ks T 
an be removed from the design D1 and repla
ed bythe set T 0 to give a di�erent design with the same parameters. Sin
e nosubset of T 
an be traded to give an STS(9); they form a minimal trade.Every de�ning set and every trade within a design must have at leastone 
ommon blo
k, and the automorphism group of a de�ning set is asubgroup of the automorphism group of the design; see K Gray [?, ?, ?℄.These properties have been essential in the development of algorithms for�nding minimal de�ning sets; see Greenhill [?℄, Delaney [?℄. In �ndingfast algorithms that 
omplete a design from a given partial design, blo
kinterse
tion patterns have been important, espe
ially linkage; see Ramsay[?℄, Utami [?℄, Lawren
e [?℄.3. Se
ret Sharing S
hemesWe are studying the problem of 
ompletion of stru
tures, given partialinformation, to obtain measures of how 
losely the behaviour of a se
retsharing s
heme approa
hes to ideal behaviour in pra
ti
e. This allows 
om-parison of the information 
ontent of the partial stru
ture with that of the5




omplete stru
ture [?℄. In parti
ular if the partial stru
ture 
an be uniquely
ompleted then it, together with the rules for 
ompletion, 
ontains the sameinformation as the entire stru
ture.Even for small orders the number of inequivalent 
ombinatorial designsgrows extremely rapidly. Here this feature be
omes a strength, sin
e the
hoi
e of parameters for whi
h there are a very large number of inequivalentdesigns makes the se
ret sharing s
heme more se
ure.As our model, we take a situation in whi
h the group of parti
ipantsin
ludes a dealer (or trusted authority), as well as the shareholders.� In the distribution phase, the dealer 
hooses a 2-(v; k; �) design,with suitable parameters, for whi
h a (preferably minimal) de�ningset is known. A permutation is applied to the set of elements underly-ing the design, thus relabelling the elements of ea
h blo
kto hide anystru
tural information. Ea
h parti
ipant (ex
ept the dealer) is givena suitable size share, 
onsisting of one or more whole blo
ks. Notethat no shareholder needs to know the parameters of the design.� In the 
ombination phase, ea
h shareholder presents the givenshare to the 
ombiner, who 
ompletes the design and hen
e deter-mines the key, by using the shares, the permutation, the parametersv; k and �; the rules for 
ompletion and an algorithm for 
omple-tion. In the s
heme we are proposing, the key will be 
ontained inthe strongbox or part of the design most diÆ
ult to re
onstru
t frompartial information; the strongbox is de�ned formally in Se
tion 4.If a unique design is re
onstru
ted, then ea
h shareholder 
an feel 
on-�dent that the others are who they say they are (a matter of mutual au-thenti
ation) and that the se
ret is as intended. If the design 
annot bere
onstru
ted, then either someone has made a mistake or someone is try-ing to 
heat. How easily 
an an unauthorised group of shareholders 
heat?In an ideal situation, we assume that no shareholder knows any of thefollowing:[A1℄ parameters of the design;[A2℄ size of the de�ning set being used;[A3℄ the permutation being applied to the elements.6



But if there is any suspi
ion of 
heating, it is prudent to assume that the
oalition of 
heaters know all of the following:[C1℄ parameters of the design;[C2℄ whi
h of the inequivalent designs is being used;[C3℄ whi
h of the inequivalent permutations is being used;[C4℄ all but one of the shares, and if the shares have varyingproperties, that the missing share is one of those with the leastpower.We also always assume that an opponent has unlimited resour
es toatta
k the s
heme. In the next se
tion, we look at several small examplesof designs and see what 
an be dis
overed about them when only part of ade�ning set is known.4. Partial De�ning Sets of DesignsA minimal de�ning set, S, of a design D provides a small amount ofdata from whi
h D 
an be re
onstru
ted uniquely. Analogous subsets ofLatin squares are 
alled 
riti
al. These were �rst studied in 
onne
tionwith a problem at Rothamsted Experimental Station; see Nelder [?℄. Any
ombinatorial stru
tures whi
h have rules for 
ompletion may be used to
onstru
t se
ret sharing s
hemes.In parti
ular we are 
on
erned here with the problem of uniquely 
om-pleting a 2-(v; k; �) blo
k design given a proper subset of its set of blo
ks B:This is of interest in 
omparing the information 
ontent of the partial datawith that of the whole design. A proper subset of B whi
h 
an be uniquely
ompleted must, together with the rules for 
ompletion, 
ontain the sameinformation as the whole design.We study the information inherent in proper subsets of B 
ompletableto at least two distin
t designs, and in the minimal de�ning sets of su
hdesigns. Our approa
h is related to that of Fitina, Seberry and Chaudhry[?℄ for Latin squares.Let S be a de�ning set of a design D = (X;B) and let B 2 B be ablo
k of S: We make the following de�nitions, using the term `
olle
tion',as oppposed to `set', when repeated obje
ts may o

ur. However in oursmall examples multiple blo
ks and multiple partial blo
ks do not arise.7



Nest: N (S; B); the nest of B in S; is the set of blo
ks of S nfBg; togetherwith all the 
omplete and partial blo
ks for
ed by the presen
e ofS n fBg: More pre
isely, we writeN (S; B) = (S n fBg) [N 0 [N 00where N 0 and N 00 are, respe
tively, the 
olle
tion of 
omplete blo
ksfor
ed by SnfBg; and the 
olle
tion of partial blo
ks for
ed by SnfBgex
luding those partial blo
ks of t or fewer elements sin
e these arealready for
ed by the parameters of the design.Power: P(S; B); the power of B in S; is the number of 
ompletions ofS n fBg to a design with the parameters of D.In
uen
e: I(S; B); the in
uen
e of B in S; is the number of 
ompleteblo
ks in the design D whi
h are not for
ed when the rules for 
om-pletion are applied to S n fBg:Strongbox: S(S); the strongbox of S; is the set of 
omplete blo
ks of Bnot 
ontained in the nest of any blo
k of S; that is, the set of blo
kswhi
h 
annot be found from any proper subset of the minimal de�ningset S of D:In order to test the suitability of a de�ning set S to be used for a se
retsharing s
heme we need to assess how easy it is for an atta
ker to guess thedesign from partial information.We 
onsider three small examples, ea
h with t = 2: In Example 1,t = k � 1; in Examples 2 and 3, t < k � 1: In Examples 1 and 2, � = 1; inExample 3, � = 2: In Example 1, the smallest de�ning set (4 blo
ks) has astrongbox of 6 blo
ks but the other minimal de�ning set (5 blo
ks) has astrongbox of only one blo
k. In Example 2, the two smallest de�ning setshave six blo
ks ea
h, but one has a strongbox of three blo
ks and the otherof only one blo
k. In Example 3, the two smallest de�ning sets have �veblo
ks ea
h and ea
h has a strongbox 
onsisting of one blo
k.We note that the designs of Examples 1 and 2 are related, in that the�rst is a residual of the se
ond. However we have been unable to relate thebehaviour of their de�ning sets. 8



Example 1Suppose we wish to re
reate the 2-(9; 3; 1) design D1; given that the pa-rameters are known, from one of the minimal de�ning sets S(4) and S(5):This is the aÆne plane of order 3.Table 2 shows the blo
ks of S(4); the triples in their nests, and the pairsstill required to 
omplete the design, where �(x) denotes the set of pairs
overed by the blo
k x: Ea
h blo
k in S(4) has power 4, and in
uen
e 8.Thus knowing three of the four blo
ks in the de�ning set gives a 1 in 4
han
e of �nding the 
orre
t design. The strongbox of S(4) is S(S(4)) =f7;8;9;10;11;12g: This shows the possibility of having a strongbox biggerthan the original de�ning set.B N 0(S(4); B) N 00(S(4); B) Pairs still needed1 6 ; �(1;3;7;8;9;10;11;12)2 6 ; �(2;3;7;8;9;10;11;12)4 3 ; �(4;6;7;8;9;10;11;12)5 3 ; �(5;6;7;8;9;10;11;12)Table 2: Properties of S(4) in design D1Table 3 shows the analogous information for S(5); using the notation�(x) as before. Ea
h blo
k in S(5) has power 2, and in
uen
e 6. Thusknowing four of the �ve blo
ks in the de�ning set gives a 1 in 2 
han
e of�nding the 
orre
t design. The strongbox of S(5) is S(S(5)) = f2g: Sin
e 2
onsists of the elements 4,5,6, this might for example be used to store the
ombination of a lo
k.B N 0(S(5); B) N 00(S(5); B) Pairs still needed1 3, 6 ; �(1;2;8;9;10;12)4 8, 9 ; �(2;3;4;6;10;12)5 10, 12 ; �(2;3;5;6;8;9)7 6, 8 ; �(2;3;7;9;10;12)11 6, 10 ; �(2;3;8;9;11;12)Table 3: Properties of S(5) in design D19



No se
ret sharing s
heme in whi
h a blo
k of a design is given to ashareholder is perfe
t. For example, on a given set of 9 elements, there are840 2-(9,3,1) designs, but if one blo
k is spe
i�ed, only 120 of these arepossible. The strongbox tells us the portion of the design with regard towhi
h the s
heme is 
onditionally perfe
t.In this example, t = k � 1; so the maximal partial blo
ks for
ed by thesubsets of minimal de�ning sets are always t-sets, that is, in this 
ase, pairs.Thus N 00 = ;: Also, sin
e � = 1; N 0 is always a set.Example 2Consider the 2-(13; 4; 1) design, unique to isomorphism; this is the proje
-tive plane of order 3, isomorphi
 to an extension of D1: The quarti
 residuesmodulo 13, together with 0, form a starter blo
k for the design P ; that is,P = f0; 1; 3; 9g is taken as the �rst blo
k, and the remaining blo
ks formedby addition modulo 13. Letting A, B, C respe
tively denote 10, 11, 12,we have 1 = P; 2 = P + 1 = 124A; 3 = P + 2 = 235B and so on, till0 = P + C = C028: This design is symmetri
; that is, it has b = v and
onsequently also r = k: Its smallest de�ning sets have 6 blo
ks ea
h [?℄.B N 0(S(
); B) N 00(S(
); B) K2;91 9,A 1B0 n 0;78C n 7 (0,7; 1,2,3,6,8,9,A,B,C)2 8,A 270 n 2;9BC n B (2,B; 1,4,6,7,8,9,A,C,0)3 9,C 370 n 2;8AB n A (2,A; 3,5,6,7,8,9,B,C,0)4 A,C 47B n 6;890 n 8 (6,8; 2,3,4,7,9,A,B,C,0)5 8,C 5B0 n 0;79A n 9 (9,0; 2,4,5,6,7,8,A,B,C)6 8,9 67B n 6;AC0 n C (6,C; 1,2,5,7,8,9,A,B,0)Table 4: Properties of S(
) in design PIn a 2-(v; k; 1) design, the set of all the blo
ks whi
h do not 
ontain some�xed element form a de�ning set [?℄. In this parti
ular 
ase, six of the ninesu
h blo
ks form a smallest de�ning set, su
h as S(8) = f1;2;3;4;5;7gwhi
h omits the element 8. The only other smallest de�ning set is isomor-phi
 to S(
) = f1;2;3;4;5;6g 
onsisting of six 
onse
utive blo
ks.Table 4 shows the blo
ks of S(
); the blo
ks and partial blo
ks in theirnests, and the pairs still needed in the 
ompletion to a design with the10



parameters of P : In des
ribing triples in the nest of blo
k 1, for instan
e,we use the notation 1B0 n 0 to mean that from ea
h of the blo
ks 1, Band 0, we delete the element 0, leaving the triples 139, 6AB and 28C inN 00(S(
);1): The rightmost 
olumn shows the pairs still needed; sin
e theyhappen to form a 
opy of the 
omplete bipartite graph K2;9 we show onlythe labels of the two parts of this graph. Ea
h blo
k of this de�ning sethas power 2 and in
uen
e 6, and the strongbox 
onsists of three blo
ks,S(S(
)) = f7;B;0g:B N 0(S(8); B) N 00(S(8); B) K2;91 9,0 16C n 1;8AB n A (1,A; 3,5,6,7,8,9,B,C,0)2 8,C 690 n 8;2AB n A (8,A; 1,2,4,5,6,9,B,C,0)3 9,A 680 n 8;3BC n B (8,B; 1,2,3,5,6,7,A,C,0)4 B,0 689 n 8;4AC n C (8,C; 1,3,4,5,6,7,9,A,B)5 8,0 56A n 5;9BC n B (9,0; 2,4,5,6,7,8,A,B,C)7 8,9 67B n 6;AC0 n C (6,C; 1,2,5,7,8,9,A,B,0)Table 5: Properties of S(8) in design PTable 5 shows the blo
ks of S(8); the blo
ks and partial blo
ks in theirnests, and the pairs still needed in the 
ompletion to a design with theparameters of P : We use the same notation as in Table 4 for listing thetriples and pairs. Again ea
h blo
k of the de�ning set has power 2 andin
uen
e 6, but now the strongbox 
onsists of only one blo
k, S(S(8)) = f6g:Here we have an example where, although power and in
uen
e of blo
ksin ea
h de�ning set are the same, the nests in ea
h 
ase 
ontain six triples,and the pairs still needed for 
ompletion 
orrespond to the 18 edges ofK2;9;the strongboxes are of quite di�erent sizes. In either 
ase however, knowing�ve of the six blo
ks of a smallest de�ning set gives us a 1 in 2 
han
e of�nding the 
orre
t design.Example 3Consider the 2-(11; 5; 2) design, unique to isomorphism. The quadrati
residues modulo 11 form a starter blo
k for the design Q; that is, Q =f1; 3; 4; 5; 9g is taken as the �rst blo
k, and the remaining blo
ks formedby addition modulo 11. Letting A denote 10, we have 1 = Q; 2 = Q+ 1 =11



2456A; 3 = Q+ 2 = 35670 and so on, till 0 = Q+ A = 02348: This designis also symmetri
 and its smallest de�ning set has 5 blo
ks [?, ?℄.In a symmetri
 2-(v; k; 2) design, the set of all the blo
ks whi
h do not
ontain some �xed element form a de�ning set [?℄. In this parti
ular 
ase,any �ve of the six su
h blo
ks form a smallest de�ning set [?℄. We 
onsiderthe set C0 of blo
ks whi
h do not 
ontain the element 0, that is, the set ofblo
ks f1;2;4;5;6;Ag = C0:Table 6 shows what portions of the design 
an be 
ompleted from anyof the 15 sets of four blo
ks at a time whi
h 
an be 
hosen from C0: Forinstan
e, given any of the sets f1, 2, 4, 5g or f4, 5, 6, Ag or f1, 2, 6, Ag,
ompletion for
es one extra whole blo
k, 9, and six partial blo
ks, ea
h ofwhi
h 
ontains four elements. In the partial blo
ks, either 7 or 8 must beadded as shown to give a 
omplete blo
k, and 
hoosing 7 or 8 in any one
ase for
es the rest of the design. Thus there are two possible 
ompletionsof the set f1, 2, 4, 5g: 
hoosing the �rst option to 
omplete ea
h partialblo
k gives the original design; 
hoosing the se
ond option gives the designf1;2;4;5;9g [ f123A8; 35608; 49A08; 369A7; 15A07; 23407g:For ea
h smallest de�ning set 
ontained in C0; the power of ea
h blo
k is2 sin
e two 
ompletions are possible in ea
h 
ase; similarly sin
e six blo
ksare not for
ed in ea
h 
ompletion, the in
uen
e of ea
h blo
k is 6. Thusknowing any four blo
ks of C0 gives us a 1 in 2 
han
e of �nding the 
orre
tdesign.In this 
ase, we 
an regard the set C0 n fAg as a de�ning set S1; the setC0 n f6g as a de�ning set S2 and the set f1, 2, 4, 5g as either S1 n f6g orS2 n fAg: Then in our previous notation, N 0(S1;6) = N 0(S2;A) = 9; andN 00(S1;6) = N 00(S2;A) =f123A; 3560; 49A0; 369A; 15A0; 2340g [f3A7; 1A7; 237; 367; 507; 307; 9A7;A07; 407g [f3A8; 368; 9A8; 1A8; 508; A08; 238;308; 408g:Now regard the set f1, 2, 4, 5g as S1 n f6g: To �nd the strongbox ofS1 = f1;2;4;5;6g; note that the only blo
k neither in the set S1, norfor
ed by any of its 4-blo
k subsets, is the blo
k A; hen
e S(S1) = fAg:Similarly, S(S2) = f6g: 12



Given blo
ks N 0 Completions1, 2, 4, 5 9 123A[78℄, 3560[78℄, 49A0[78℄369A[87℄, 15A0[87℄, 2340[87℄4, 5, 6, A 1459[3A℄, 5670[3A℄, 2480[3A℄2456[A3℄, 1580[A3℄, 4790[A3℄1, 2, 6, A 2789[45℄, 3670[45℄, 18A0[45℄1678[54℄, 2380[54℄, 79A0[54℄1, 2, 4, 6 8 127A[39℄, 5670[39℄, 2480[39℄2578[93℄, 47A0[93℄, 1260[93℄1, 5, 6, A 456A[27℄, 3480[27℄, 1690[27℄3560[72℄, 49A0[72℄, 1468[72℄2, 4, 5, A 79A0[46℄, 1359[46℄, 2380[46℄389A[64℄, 3570[64℄, 1290[64℄1, 2, 4, A 3 3480[2A℄, 5789[2A℄, 1690[2A℄4790[A2℄, 3689[A2℄, 1580[A2℄1, 4, 5, 6 256A[14℄, 79A0[14℄, 2380[14℄2690[41℄, 237A[41℄, 58A0[41℄2, 5, 6, A 15A0[89℄, 1467[89℄, 2340[89℄1345[98℄, 47A0[98℄, 1260[98℄1, 2, 5, 6 0 1478[6A℄, 3570[6A℄, 1290[6A℄1580[A6℄, 4790[A6℄, 1237[A6℄1, 4, 5, A 3670[59℄, 246A[59℄, 18A0[59℄368A[95℄, 47A0[95℄, 1260[95℄2, 4, 6, A 3459[17℄, 2690[17℄, 58A0[17℄3560[71℄, 49A0[71℄, 2589[71℄1, 2, 5, A 7 58A0[13℄, 2690[13℄, 4678[13℄5670[31℄, 689A[31℄, 2480[31℄2, 4, 5, 6 18A0[25℄, 1349[25℄, 3670[25℄3480[52℄, 137A[52℄, 1690[52℄1, 4, 6, A 1290[68℄, 245A[68℄, 3570[68℄2579[86℄, 15A0[86℄, 2340[86℄Table 6: 2-(11; 5; 2) design 
ompletions from four blo
ks of C013



The other smallest de�ning set (up to isomorphism) of this design 
on-sists of any four blo
ks 
ontaining one parti
ular element, together with anyblo
k not 
ontaining it. We 
onsider here the de�ning set S5 = f1;2;3;4;5gin whi
h all the blo
ks ex
ept 4 
ontain the element 5. Table 7 shows in-formation 
orresponding to that of Table 6, for the blo
ks 1, 2, 3 and 5; infa
t, that for blo
k 3 repeats the �rst line of the previous table so we neednot re
al
ulate N 00:Given blo
ks N 0 Completions2, 3, 4, 5 0 127A[30℄, 1459[30℄, 689A[30℄1269[03℄, 158A[03℄, 479A[03℄1, 3, 4, 5 6 2380[41℄, 79A0[41℄, 256A[41℄2690[14℄, 58A0[14℄, 237A[14℄1, 2, 4, 5 9 3560[78℄, 49A0[78℄, 123A[78℄15A0[87℄, 2340[87℄, 369A[87℄1, 2, 3, 4 A 1690[2A℄, 0348[2A℄, 5789[2A℄1580[A2℄, 4790[A2℄, 3689[A2℄Table 7: 2-(11; 5; 2) design 
ompletions from four blo
ks of S5Blo
k 4 behaves rather di�erently: the set f1, 2, 3, 5g for
es theadditional 
omplete blo
k 8 = N 0(S5;4); the two possible 
ompletions areeither the original design Q 
ontaining the blo
ksU = f3689A; 14678; 1237A; 479A0; 23480; 12690gor a new design Q0 
ontaining the blo
ksU 0 = f12470; 239A0; 46890; 12368; 1679A; 3478Ag:This ordering shows the blo
ks in U and U 0 as disjoint pairs, but to
al
ulate N 00 we need to look at interse
tions. This time N 00 
ontains nopartial blo
ks of size 4, but instead 
onsists of 30 triples:N 00(S5;4) =f39A; 689; 368; 69A; 38A; 147; 468; 168; 167; 478g [f127; 23A; 123; 17A; 37A; 470; 9A0; 490; 79A; 47Ag [f240; 230; 480; 238; 348; 120; 290; 690; 126; 169g:14



These triples form a partially balan
ed blo
k design, in whi
h ea
h pair ofelements 
hosen from the set f1, 2, 3, 4, 6, 7, 8, 9, A, 0g appearsin either four triples (for 15 pairs) or one triple (for the remaining 30 pairs).Again the power of ea
h blo
k in S5 is 2, and its in
uen
e is 6, so asbefore, knowing four of the �ve blo
ks of this de�ning set gives a 1 in 2
han
e of �nding the 
orre
t design. The strongbox S(S5) = f7g: However,a 4-element subset of the blo
k 7 appears in ea
h of the nests of S5 forthe blo
ks 1, 2, 3 or 5, and �ve 3-element subsets of 7 for the blo
k 4,suggesting, �rst, that perhaps this strongbox is not parti
ularly se
ure and,se
ondly, that we should also 
onsider the use of partial blo
ks in a de�ningset.We note that, if we 
onsider the blo
k numbers as the elements of adual design, then the 66 sets of �ve blo
ks whi
h are not de�ning sets ofthe design Q form a 4-(11; 5; 1) design.5. Further QuestionsThe examples dis
ussed above have been 
hosen to illustrate the 
on-
epts of nest, power, in
uen
e and strongbox, but are far too small forpra
ti
al use. We are now investigating similar stru
tures in larger designs,with a view to determining their suitability for realisti
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