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Abstract. Starting from a biochemical signalling pathway model ex-
pressed in a process algebra enriched with quantitative information we
automatically derive both continuous-space and discrete-state represen-
tations suitable for numerical evaluation. We compare results obtained
using implicit numerical differentiation formulae to those obtained using
approximate stochastic simulation thereby exposing a flaw in the use of
the differentiation procedure producing misleading results.

1 Introduction

The malfunction of cellular signalling processes has significant detrimental ef-
fects, leading to uncontrolled cell proliferation, as in cancer; or leading to other
cells in the body being attacked, as in auto-immune diseases. The dynamics of
cell signalling mechanisms are profoundly complex and at present are not fully
understood. Computational modelling of cell signal transduction is an important
intellectual tool in the scientific study of the biological processes which control
and regulate cellular function.

An example of an influential computational study of intracellular signal net-
works is [1]. The authors develop an ordinary differential equation (ODE) model
of epidermal growth factor (EGF) receptor signal pathways in order to give in-
sight into the activation of the MAP kinase cascade through the kinases Raf,
MEK and ERK-1/2. The ODE model is substantial, consisting of 94 state vari-
ables and 95 parameters. It is analysed using the numerical integration proce-
dures of the Matlab numerical computing platform and tested using sensitivity
analysis. The results increase our understanding of EGF receptor signal trans-
duction and suggest avenues for experimental work to test hypotheses generated
from the computational model. Published in 2002 the article is highly regarded
and has subsequently been cited by as many as 150 other research papers.

We have previously proposed a method of investigating cell signalling path-
ways using a process algebra enhanced with quantitative information, PEPA [2],
applied in [3] and [4]. Process algebras are well-known in theoretical computer
science but are still unfamiliar to most computational biologists so we wished to
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Fig. 1. A high-level model in the PEPA process algebra can be used to generate either
a system of ODEs or a stochastic simulation.

help to establish their relevance by reproducing the results of [1], starting from
the published paper together with its supplementary material and the Matlab
ODE model made available by the authors.

We were able to reproduce the results from [1] starting from our model in
the PEPA process algebra but because we were starting from the vantage point
of modelling in process algebra we could apply other analysis procedures, un-
available to the authors of [1] (Figure 1). To our surprise when modelling in
process algebra we discovered that the computational simulation conducted by
ODEs in [1] contains a systematic flaw in the analysis process which affects many
of the results, some significantly. To the best of our knowledge these errors are
presently unknown: at the very least they were unknown to us. Using the insights
obtained from our analysis procedures we were able to return to the differen-
tial equation model, diagnose and correct the flaws in the analysis, and show
agreement between the results obtained using continuous-space analysis and the
results obtained using a discrete-state stochastic analysis.

Computational methods are well-understood to be complex and delicate so
the relevance of this finding is not that there is an error in one particularly rich
and valuable numerical study, or that modelling with ODEs is an unsatisfactory
procedure, but rather that modelling in high-level languages (such as process
algebras or Petri nets) may give a methodological advantage which allows an
entire class of hard-to-detect errors and corner cases to be discovered and diag-
nosed before the results are published and promulgated to the wider scientific
community.

As original contributions the present paper contains the analysis of the pro-
cess used to detect the error in the earlier modelling study [1], a description
of the new software tool used for integrated continuous-space and discrete-state
stochastic analysis of PEPA process algebra models, and an overview of an ex-
tensive process algebra modelling study comprising 188 process definitions de-
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scribing the dynamics of 95 of the reaction channels in the signalling cascade of
the EGF receptor-induced MAP kinase pathway.

Structure of this paper: In Section 2 we present background material on our
previous work. We follow this in Section 3 with a discussion of related work. In
Section 4 we present an introduction to quantitative process algebras, considering
the expressive capabilities of these languages. In Section 5 we explain how these
languages are used in modelling. Section 6 presents a comparison of our analysis
results and the results of other authors. In Section 7 we discuss the software tool
used to perform the analysis. Finally, we present conclusions in Section 8.

2 Background

In an earlier study we made two distinct computational models of the Ras/Raf-
1/MEK/ERK signalling pathway, both expressed in the PEPA process algebra.
Our models were based on the deterministic model presented directly as a system
of coupled ordinary differential equations in [5].

Our process algebra models adhere to two distinct modelling styles—the
reagent-centric and pathway models from [3]. We interpreted these under the
continuous-time Markov chain semantics for the PEPA language, and thus these
gave rise to stochastic models of the pathway. We used well-known procedures
of numerical linear algebra to conduct a quantitative stochastic evaluation of
the pathway. We used the process algebraic reasoning apparatus of the PEPA
language to establish that these two models were strongly equivalent, meaning
that a timing-aware observer could not distinguish between them. In the exten-
sion of this work in [6] we presented automatic procedures for converting in both
directions between the reagent-centric and pathway views.

We revisited the reagent-centric model in [4], mapping it to a system of ODEs.
The model considered in [4] adds additional species to the model presented
in [5] in order to concentrate on a detail of the pathway not considered in [5].
We applied the mapping procedure from [4] to a reduced version of the model
without these additional species and were able to show that the model gave rise
to exactly the same system of ODEs as studied previously in [5] establishing
a precise formal equivalence between the process algebra model and the ODE
model.

The deterministic and stochastic approaches to computational modelling in
systems biology are often presented as alternatives; one should choose one ap-
proach or the other. Some authors have suggested that stochastic approaches are
technically superior because they can expose small-scale effects which are caused
by some molecular species being present in the reaction volume in very low copy
numbers. We are instead in agreement with the authors of [7], who argue that
the principal challenge is choosing the appropriate framework for the modelling
study at hand. For some problems the influence of effects such as intra-cellular
noise or circumstances such as low copy numbers is sufficiently great that a
thorough stochastic treatment is essential. In other modelling problems no such
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influences are manifest and a deterministic treatment based on reaction rate
equations is the correct approach.

The divergence between the stochastic behaviour exposed at low copy num-
bers of reactants and the deterministic approach based on reaction rate equations
is due to the reliance of the ODE-based analysis on the assumption of continuity
and the use of the law of mass action, essentially an empirical law derived from
in vitro experimentation. Gillespie’s Stochastic Simulation Algorithm (SSA) [8]
makes no use of such an empirical law, and is instead grounded in the theory of
statistical thermodynamics. In consequence it is an exact procedure for numer-
ically simulating the dynamic evolution of a chemically reacting system, even
at low copy numbers. However, the SSA method converges, as the number of
reactants increases, to the solution computed by the ODEs so that the methods
are in agreement in the limit [9].

Gillespie’s exact algorithm models systems in which there are M possible
reactions represented by the indexed family Rµ (1 ≤ µ ≤ M). It builds on a
reaction probability density function P (τ, µ | X) such that P (τ, µ | X)dτ is the
probability that given the state X at time t, the next reaction in the volume will
occur in the infinitesimal time interval (t+ τ, t+ τ +dτ) and be an Rµ reaction.
Starting from an initial state, SSA randomly picks the time and type of the next
reaction to occur, updates the global state to record the fact that this reaction
has happened, and then repeats.

In practice, Gillespie’s SSA is effective only for non-stiff systems on short
time scales. An approximate acceleration procedure called “τ -leaping” was later
developed by Gillespie and Petzold [10]. The “implicit τ -leaping” method [11]
was developed to attack the orthogonal problem of stiffness, common in multi-
scale modelling, where different time-scales are appropriate for reactions. Recent
advances in the field include the development of slow-scale SSA which produces
a dramatic speed-up relative to SSA by prioritising rare events [12].

A recent survey paper on stochastic simulation is [13]. A comparison paper on
stochastic simulation methods and their relation to differential-equation based
analysis of reaction kinetics is [9].

3 Related work

We are not the first authors to investigate the model from [1] using stochastic
simulation methods. An earlier comparison using the binomial τ -leap method
appeared in [14]. However, the authors of [14] compare the solutions computed
by their binomial τ -leap method with the solutions computed by Gillespie’s
stochastic simulation algorithm and did not compare with the results from [1].
For this reason the authors of [14] did not find the error which we uncovered
by comparing the results computed by stochastic simulation with the results
computed by the authors of [1] using ordinary differential equations.

In [15] the authors use the PRISM probabilistic model checker [16] to check
logical formulae of Continuous Stochastic Logic (CSL) [17] against models of sig-
nalling pathways expressed as state-machines in the PRISM modelling language,
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comparing the result against an ODE model coded in the Matlab numerical plat-
form.

A recent technical note [18] uses modelling in a stochastic process calculus
and stochastic simulation to investigate the MAPK cascade previously studied
in [19] using ordinary differential equations. [18] uses synthetic values for rate
constants (all are set to 1.0) so comparison with the results of [19] is not mean-
ingful.

4 Process algebras

Process algebras are concise formally-defined modelling languages for the precise
description of concurrent, communicating systems. Our belief is that they are
well-suited to modelling cell signalling pathways and our interest here is exclu-
sively in process algebras which are decorated with quantitative information [20].
The PEPA process algebra [2] which we use benefits from formal semantic de-
scriptions of different characters which are appropriate for different uses. The
structured operational semantics presented in [2] maps the PEPA language to
a Continuous-Time Markov Chain (CTMC) representation. A continuous-space
semantics maps PEPA models to a system of ordinary differential equations
(ODEs) [21], admitting different solution procedures.

4.1 Expressiveness

Because we are modelling in a high-level language it is possible to apply these
very different numerical evaluation procedures to compute different kinds of
quantitative information from the same model. This is a freedom which we would
not have if we had coded a Markov chain or a differential equation-based rep-
resentation of the model directly in a numerical computing platform such as
Matlab. One freedom which the use of a high-level language gives the modeller
is the possibility to use either discrete-state or continuous-space analysis pro-
cedures. Another is the option of applying both types of analysis to the same
model, and that is the approach which we have used here.

One strength of the PEPA process algebra as an expressive and practical
modelling language is its support for multi-way co-operation; we have made
use of this expressive power in all of our modelling studies in systems biology.
Genuinely tri-molecular collisions occur only exceptionally rarely in dilute fluids
so these do not normally arise in our modelling for this reason. Rather a collision
between, say, an enzyme and a substrate to produce a compound, is expressed
in PEPA as a three-way co-operation between the input enzyme and substrate
(whose molecular concentrations are reduced) and the output compound (whose
molecular concentration is increased). Similarly a reaction channel with two
input species and two output species is represented as a four-way co-operation
in PEPA. Some reaction channels may have more inputs or more outputs and
so having this expressive power available in our chosen process algebra seems
well-suited to the type of modelling which is undertaken in the area.
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4.2 Combinators of the Language

We give only a brief introduction to the PEPA language here. The reader is
referred to [2] for the definitive description.

PEPA provides a set of combinators which allow expressions to be built which
define the behaviour of components via the activities that they engage in. These
combinators are presented below.

Prefix (α, r).P : Prefix is the basic mechanism by which the behaviours of
components are constructed. This combinator implies that after the component
has carried out activity (α, r), it behaves as component P .

Choice P1 + P2: This combinator represents a competition between com-
ponents. The system may behave either as component P1 or as P2. All current
activities of the two components are enabled. The first activity to complete dis-
tinguishes one of these components and the other is then discarded.

Cooperation: P1 ��
L

P2: This describes the synchronization of components
P1 and P2 over the activities in the cooperation set L. The components may
proceed independently with activities whose types do not belong to this set.
A particular case of the cooperation is when L = ∅. In this case, components
proceed with all activities independently. The notation P1 ‖ P2 is used as a
shorthand for P1 ��

∅
P2. In a cooperation, the rate of a shared activity is defined

as the rate of the slowest component.
Hiding: P/L This component behaves like P except that any activities of

types within the set L are hidden, i.e. such an activity exhibits the unknown type
τ and the activity can be regarded as an internal delay by the component. Such
an activity cannot be carried out in cooperation with any other component: the
original action type of a hidden activity is no longer externally accessible, to an
observer or to another component; the duration is unaffected.

Constant: A
def= P Constants are components whose meaning is given by a

defining equation: A
def= P gives the constant A the behaviour of the component P .

This is how we assign names to components (behaviours). An explicit recursion
operator is not provided but components of infinite behaviour may be readily
described using sets of mutually recursive defining equations.

5 Modelling

For this system we developed a reagent-centric model. In this style of modelling
we associate a distinct PEPA component with each reagent in the system. This
is a more abstract mapping than is used in most of the work using stochastic
π-calculus [22], where a distinct component is associated with each molecule in
the system.

In the reagent-centric style, we represent the state of the system as the con-
junction of the states of the components, each local state corresponding to a
concentration level of an individual reagent. Concentration levels are discretized
and the local states of the PEPA component records the impact of each possible
reaction on the concentration level. The impact will depend on the role that the
reagent plays within this particular reaction. This is summarised in Table 1.
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Reagent role Impact on reagent Impact on reaction rate
Producer decreases concentration has a positive impact, i.e. proportional

to the current concentration level
Product increases concentration has no impact on the rate, except at

saturation
Enzyme concentration unchanged has a positive impact, i.e. proportional

to current concentration
Inhibitor concentration unchanged has a negative impact, i.e. inversely pro-

portional to current concentration

Table 1. The impact and role of reagents

Enzymatic reactions are possible when the enzyme is present in high con-
centration, and have no impact on the amount of enzyme although the current
concentration of the enzyme will affect the rate of reaction. Conversely for in-
hibitory reactions: the inhibitor must be in low concentration and will remain
low and its concentration has a regulatory effect on the rate of the reaction.

A PEPA model in this style can be thought to define a schematic for the
possible reactions in the system. In the ODE mapping the local states represent
the concentrations of the reagents. In the mapping to stochastic simulation, the
local states indicate the types of molecules involved in the reactions and this is
automatically mapped to a chemical master equation representation suitable for
simulation using Gillespie’s algorithm.

Figure 2 shows a small network, and the PEPA reagent-centric model that
describes the graphical representation. In this example the PEPA components
are A, B and C, and are tagged with H and L to designate the high and low
concentrations, the coarsest possible discretization. The PEPA equations record
the impact of each reaction on the concentration of that reagent.

BA

C

b_a

ab_c

c_bc_a

AH
def= (ab c, α).AL

AL
def= (b a, β).AH+(c a, γ).AH

BH
def= (ab c, α).BL+(b a, β).BL

BL
def= (c b, δ).BH

CH
def= (c a, γ).CL+(c b, δ).CL

CL
def= (ab c, α).CH

(AH ��
{ab c,b a}

BH) ��
{ab c,c a,c b}

CL

Fig. 2. PEPA reagent-centric example
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The PEPA definitions in Figure 2 give rise to four reactions shown in Figure 3
in the chemical reaction language format W,X → Y, Z. W is the name for the
reaction, X = {X1 + ... + Xn} lists all the components that are consumed in
this named reaction. Y is a list in the same format as X representing those
components that are increased by this reaction. The last part of the reaction, Z,
defines a rate constant from which the reaction rate is derived.

ab c, A + B → C , α c b, C → B , δ
b a, B → A , β c a, C → A , γ

Fig. 3. An equivalent model in chemical reaction language

The reaction ab c consists of two reactants and one product. From the PEPA
definition in Fig. 2, components A and B transition from a high to low state via
the activity/reaction ab c: they are the two reactants of reaction ab c. Similarly,
component C transitions from a low to high state by reaction ab c: it is the
product of this reaction. This form of reasoning is used to transform all the
PEPA equations into chemical reaction language format.

The rate of each reaction is not simply the defined constant. Where previously
the reaction ab c was defined as A + B → C, α, we take the constant α and
multiply it by the number of molecules in both the A and B components (to
allow for all permutations) to give a reaction rate of αAB, the mass action rate.

As outlined above, both stochastic simulation and ODE analysis are avail-
able. ODEs derived from PEPA in this manner will always respect the rules of
conservation, as PEPA works on a static number of components. The inclusion
of stoichiometric information outside of the PEPA model does however allow
for a more powerful representation. In this case the numbers of each compo-
nents required in each reaction are any valid integer i.e. ab c requires 3 units of
component A instead of 1.

5.1 Schoeberl Model in PEPA

In attempting to reproduce the model created by Schoeberl et al., the main
source of information came from the supplementary material to [1]. The com-
plexity of the model highlights the issues surrounding graphical representations
as can be seen in Fig. 4.

The reaction v7, highlighted in blue is a uni-directional reaction and shows
one instance of internalisation. Other reactions such as v2, v3 are bi-directional
yet with no obvious difference within the graphical scheme. Additional informa-
tion in the form of tabled reactions and rates, for example

v7, [(EGF-EGFR∗)2] → [(EGF-EGFRi∗)2]

can resolve some of the ambiguities, and by making joint use of these two repre-
sentations the PEPA model can be constructed. Each component is taken in turn,
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Fig. 4. An extract of the signalling pathway (reproduced from [1])

with each reaction it participates in recorded against it. If we use (EGF-EGFR)2
(which can be seen in Fig. 4) as an example; (EGF-EGFR)2 can become phos-
phorylated (v3) and form (EGF-EGFR∗)2, and this autophosphorylation can be
reversed. This information would allow us to construct a definition such as that
presented in equation (1).

EGF-EGFR2H
def= (v3, k3).EGF-EGFR2L

EGF-EGFR2L
def= (v-3, k-3).EGF-EGFR2H (1)

Going further, we realise that (EGF-EGFR)2 is formed from the dimeriza-
tion of EGF-EGFR (v2) and that this step can also be reversed. Adding this
information to the previous definitions produces the definitions shown in (2).

EGF-EGFR2H
def= (v3, k3).EGF-EGFR2L + (v-2, k-2).EGF-EGFR2L

EGF-EGFR2L
def= (v-3, k-3).EGF-EGFR2H + (v2, k2).EGF-EGFR2H (2)

In this manner, each component can be built up to form the complete model.
Some of the more complex compounds, such as (EGF-EGFR∗)2-GAP-Shc∗-
Grb2-Sos, participate in nine reactions creating large definitions. The definitions
are structurally similar, consisting of multiple choice operators for the prefixes.

This brief description can account for the majority of the model but not
all. The dimerization process seen in reactions v9 and v11 currently require the
addition of stoichiometric information. Through the interface to our software
tool (described in Section 7) you can stipulate that two EGF-EGFR complexes
form one (EGF-EGFR)2. When converting to Matlab this is translated to

dy(3)
dy

= −2k2y(3)2

and
dy(4)
dy

= k2y(3)2
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where y(3) is EGF-EGFR and y(4) is (EGF-EGFR)2. Certain complexes can
degrade such as EGFRi and EGFi, forming components that only increase in
volume.

The final behaviour that requires consideration is that of EGF. EGF binds
to the EGF receptors, circled in red on the left in Fig. 4. The reactions present
within [1] all suggest that EGF is consumed in this binding. This is not the
case and in the Matlab model the rate of change for EGF is set to zero for all
reactions it is involved in. This can be likened to a reservoir: the EGF is present
at a given concentration but there exists so much at this level that the reduction
is negligible. In the PEPA model this must be made explicit from the start. The
influence of EGF can be defined either as a secondary rate parameter, effectively
increasing the rate at which the reaction will take place, or EGF can be defined
as a catalyst in the relevant reactions. In the PEPA model the catalytic route
was taken and so defined as EGFH

def= (v1, k1).EGFH .

6 Comparison

Figure 5 shows the time series plots for the six components highlighted in the
original Schoeberl et al. paper. Each graph has three time series plots:

1. the solution of the original model1 from [1] which is a Matlab program which
specifies a fixed time step and solution using the ode15s procedure from the
Matlab ODE suite [23];

2. the result of a τ -leap simulation of our PEPA model; and
3. the solution of an amended version of the original model using smaller time

steps with the ode15s procedure.

Each form of analysis was run for the same duration (60 minutes) in order
to replicate the results of the original model as closely as possible. Of the six
components MEK-PP, Raf∗ and Ras-GTP spike in a short space of time, and so
to more readily show the differences the time series were cut short once the rate
of change had dropped off towards zero.

The use of the particular step within the solver is most apparent in Ras-GTP.
The original model’s results indicate a peak at two minutes with a value of 8000
molecules/cell. The true peak occurs earlier, reaching double the original value
at 16,000 molecules/cell. As can be seen, the value at two minutes is correct, but
that the speed at which this component changes means the bulk of the reaction
has already taken place, and the analysis incorrectly steps over the true peak
onto the negative gradient of the curve. Differences can be seen also within the
Raf∗ and to a lesser extent MEK-PP. In all of the graphs, it is nearly impossible
to distinguish the τ -leap and variable-step ode15s solver at this resolution.

This discrepancy only became apparent when comparing the results from
the stochastic simulation and that of the ODE analysis, and we were only in a
position to compare these alternative models because we generated both from

1 Available on-line at http://web.mit.edu/dllaz/egf pap/
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Fig. 5. Graphs of differential equation and stochastic simulation results compared.
The solid red line is the solution of the original model from [1], which shows marked
differences in some graphs from the solution of the PEPA-derived τ -leap simulation and
(a dashed green line) and the solution of the ODE model using smaller time steps (a
dotted blue line). The solution of the PEPA-derived τ -leap simulation and the solution
of the ODE model using smaller time steps are virtually indistinguishable in the graphs.
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a high-level process algebra description. Prior to running the τ -leap simulation,
the arguments for the ODE analysis of the PEPA model had been extracted
from the original model. Hence the same results were obtained, with the peaks
in identical places.

The time taken to solve the ODE model using the stiff solver with smaller
time steps was almost identical to the time taken to solve model with fixed larger
time steps. The time taken to solve the model using the τ -leap method is longer
than the time taken to solve the model using Matlab’s stiff ODE solver (ode15s)
but shorter than the time required by a standard solver such as ode45.

7 Implementation

The reason to have a formally-defined high-level language for performance mod-
elling is that it is possible to implement software tools which evaluate models
according to the formal semantics of the language. For the present study we
produced a tool platform to support the compilation of PEPA models in the
reagent-centric style by extending the Choreographer platform [24] which we
developed for general quantitative analysis of PEPA models.

Choreographer is an integrated development environment for process alge-
braic modelling, comprising a language-sensitive editor for PEPA and a toolbox
of solution procedures for continuous-time Markov chains. We extended Choreog-
rapher to communicate with the publicly-available ISBJava library for stochastic
simulation as used by the Dizzy [25] chemical kinetics stochastic simulation soft-
ware package. We also extended Choreographer to communicate with the Matlab
numerical computing platform, which we use for numerical integration of ODEs.
A screenshot of our extended Choreographer platform appears in Figure 6.

8 Conclusions

Errors in the use of typical computing applications frequently manifest them-
selves as a null pointer dereference or a segmentation fault: the application tells
the user that an error has occurred. Errors in the use of numerical computing
routines are more insidious than errors in typical computing. No memory faults
are signalled and the application often completes normally within the antici-
pated duration of run, delivering a plausible graph of analysis results. Without
any such alarm bells being sounded the modeller must always be on guard to look
for potential traps such as an over-generous step-size and it is entirely forgivable
if they cannot always do this for every graph in every modelling study.

Rather than place this intellectual burden on the modeller we would prefer to
use stronger computational modelling procedures which would routinely apply
both continuous-state analysis methods (such as ODE solution) and discrete-
state analysis (such as stochastic simulation). High-level modelling languages
such as the PEPA process algebra are helpful here. Instead of coding the differ-
ential equations and the stochastic simulation directly we generate these from a
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Fig. 6. The Choreographer quantitative development and analysis platform

single process algebra model, gaining the value of the application of both types
of analysis without the expense of any re-implementation.

Using this approach we uncovered a flaw in the results presented in [1]. We
had no a priori reason to suspect that there was a flaw; comparing the stochastic
simulation results to the ODE solution identified a clear problem, at a modest
computational cost. All computations were done on a single desktop PC. We
believe that the insights obtained from this study stand as a good advertise-
ment for the usefulness of high-level modelling languages for analysing complex
biological processes whether process algebras, Petri nets or SBML [26].

We compared in Figure 5 the analysis results obtained by solution of the
differential equations with the solutions computed by stochastic simulation. As
is typical for stiff systems, some effects are best considered over different time
scales. Some species (such as ERK-PP and SHC) exhibit high concentration for
a period of hours. Others (such as Raf∗ and Ras-GTP) peak within minutes. The
large time step used in the computation in [1] is not a problem for the analysis
of the long-lived species but gives misleading results for those species which are
short-lived.

We discovered very good agreement between the results calculated by the
τ -leap method and the results calculated from the differential equations when a
variable timestep is used. The solution of the variable timestep ODEs agrees al-
most exactly everywhere with the solution obtained from Gillespie’s approximate
τ -leap method: these two lines are overlapping on the plots in Figure 5.
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