
Stronger Generalization Bounds for Deep Nets via a Compression Approach

Sanjeev Arora 1 Rong Ge 2 Behnam Neyshabur 3 Yi Zhang 1

Abstract

Deep nets generalize well despite having more

parameters than the number of training samples.

Recent works try to give an explanation using

PAC-Bayes and Margin-based analyses, but do

not as yet result in sample complexity bounds

better than naive parameter counting. The cur-

rent paper shows generalization bounds that are

orders of magnitude better in practice. These

rely upon new succinct reparametrizations of the

trained net — a compression that is explicit and

efficient. These yield generalization bounds via a

simple compression-based framework introduced

here. Our results also provide some theoretical

justification for widespread empirical success in

compressing deep nets. Analysis of correctness

of our compression relies upon some newly iden-

tified “noise stability”properties of trained deep

nets, which are also experimentally verified. The

study of these properties and resulting general-

ization bounds are also extended to convolutional

nets, which had eluded earlier attempts on proving

generalization.

1. Introduction

A mystery about deep nets is that they generalize (i.e., pre-

dict well on unseen data) despite having far more parameters

than the number of training samples. One commonly voiced

explanation is that regularization during training –whether

implicit via use of SGD (Neyshabur et al., 2015c; Hardt

et al., 2016) or explicit via weight decay, dropout (Srivas-

tava et al., 2014), batch normalization (Ioffe and Szegedy,

2015), etc. –reduces the effective capacity of the net. But

Zhang et al. (2017) questioned this received wisdom and

Authors listed in alphabetical order 1Princeton University, Com-
puter Science Department 2Duke University, Computer Science
Department 3Institute for Advanced Study, School of Mathe-
matics. Correspondence to: Rong Ge <rongge@cs.duke.edu>,
Behnam Neyshabur <bneyshabur@ias.edu>, Yi Zhang
<y.zhang@cs.princeton.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

fueled research in this area by showing experimentally that

standard architectures using SGD and regularization can

still reach low training error on randomly labeled examples

(which clearly won’t generalize).

Clearly, deep nets trained on real-life data have some proper-

ties that reduce effective capacity, but identifying them has

proved difficult —at least in a quantitative way that yields

sample size upper bounds similar to classical analyses in

simpler models such as SVMs (Bartlett and Mendelson,

2002; Evgeniou et al., 2000; Smola et al., 1998) or matrix

factorization (Fazel et al., 2001; Srebro et al., 2005).

Qualitatively (Hochreiter and Schmidhuber, 1997; Hinton

and Van Camp, 1993) suggested that nets that generalize

well are flat minima in the optimization landscape of the

training loss. Recently Keskar et al. (2016) show using

experiments with different batch-sizes that sharp minima

do correlate with higher generalization error. A quanti-

tative version of “flatness” was suggested in (Langford

and Caruana, 2001): the net’s output is stable to noise

added to the net’s trainable parameters. Using PAC-Bayes

bound (McAllester, 1998; 1999) this noise stability yielded

generalization bounds for fully connected nets of depth 2.

The theory has been extended to multilayer fully connected

nets (Neyshabur et al., 2017b), although thus far yields sam-

ple complexity bounds much worse than naive parameter

counting. (Same holds for the earlier Bartlett and Mendel-

son (2002); Neyshabur et al. (2015b); Bartlett et al. (2017);

Neyshabur et al. (2017a); Golowich et al. (2017); see Fig-

ure 3). Another notion of noise stability —closely related to

dropout and batch normalization—is stability of the output

with respect to the noise injected at the nodes of the network,

which was recently shown experimentally (Morcos et al.,

2018) to improve in tandem with generalization ability dur-

ing training, and to be absent in nets trained on random data.

Chaudhari et al. (2016) suggest adding noise to gradient

descent to bias it towards finding flat minima.

While study of generalization may appear a bit academic —

held-out data easily establishes generalization in practice—

the ultimate hope is that it will help identify simple, measur-

able and intuitive properties of well-trained deep nets, which

in turn may fuel superior architectures and faster training.

We hope the detailed study —theoretical and empirical—in

the current paper advances this goal.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Contributions of this paper.

1. A simple compression framework (Section 2) for prov-

ing generalization bounds, perhaps a more explicit and

intuitive form of the PAC-Bayes work. It also yields

elementary short proofs of recent generalization re-

sults (Section 2.2).

2. Identifying new form of noise-stability for deep nets:

the stability of each layer’s computation to noise in-

jected at lower layers. (Earlier papers worked only

with stability of the output layer.) Figure 1 visualizes

the stability of network w.r.t. Gaussian injected noise.

Formal statements require a string of other properties

(Section 3). All are empirically studied, including their

correlation with generalization (Section 6).

3. Using the above properties to derive efficient and prov-

ably correct algorithms that reduce the effective num-

ber of parameters in the nets, yielding generalization

bounds that: (a) are better than naive parameter count-

ing (Section 6) (b) depend on simple, intuitive and

measurable properties of the network (Section 4) (c)

apply also to convolutional nets (Section 5) (d) empiri-

cally correlate with generalization (Section 6).

The main idea is to show that noise stability allows individ-

ual layers to be compressed via a linear-algebraic procedure

Algorithm 1. This results in new error in the output of the

layer. This added error is “Gaussian-like” and tends to get

attenuated as it propagates to higher layers.

Figure 1. Attenuation of injected noise on a VGG-19 net trained

on CIFAR-10. The x-axis is the index of layers and y-axis denote

the relative error due to the noise (‖x̂i−xi‖/‖xi‖). A curve starts

at the layer where a scaled Gaussian noise is injected to its input,

whose ℓ2 norm is set to 10% of the norm of its original input. As

it propagates up, the injected noise has rapidly decreasing effect

on higher layers. This property is shown to imply compressibility.

Other related works. Dziugaite and Roy (2017) use non-

convex optimization to optimize the PAC-Bayes bound and

get a non-vacuous sample bound on MNIST. While very

creative, this provides little insight into favorable properties

of networks. Liang et al. (2017) have suggested Fisher-

Rao metric, a regularization based on the Fisher matrix and

showed that this metric correlate with generalization. Un-

fortunately, they could only apply their method to linear

networks. Recently Kawaguchi et al. (2017) connects Path-

Norm (Neyshabur et al., 2015a) to generalization. However,

the proved generalization bound depends on the distribution

and measuring it requires vector operations on exponentially

high dimensional vectors. Other works have designed exper-

iments to empirically evaluate potential properties of the net-

work that helps generalization(Arpit et al., 2017; Neyshabur

et al., 2017b; Dinh et al., 2017). The idea of compressing

trained deep nets is very popular for low-power applications;

for a survey see Cheng et al. (2018).

Finally, note that the terms compression and stability are

traditionally used in a different sense in generalization the-

ory (Littlestone and Warmuth, 1986; Kearns and Ron, 1999;

Shalev-Shwartz et al., 2010). Our framework is compared

to other notions in the remarks after Theorem 2.1.

Notation: We use standard formalization of multiclass clas-

sification, where data consists of sample x and its label y
(an integer from 1 to k). A multiclass classifier f maps input

x to f(x) ∈ R
k and the maximum coordinate of f(x) is

the predicted label. The classification loss for any distribu-

tion D is defined as P(x,y)∼D [f(x)[y] < maxi 6=y f(x)[j]]
where f(x)[y] is the y-th coordinate of f(x). If γ > 0 is

some desired margin, then the expected margin loss is

Lγ(f) = P(x,y)∼D

[

f(x)[y] ≤ γ +max
i 6=y

f(x)[j]

]

(Notice, the classification loss corresponds to γ = 0.) Let

L̂γ denote empirical estimate of the margin loss. General-

ization error is the difference between the two.

For most of the paper we assume that deep nets have fully

connected layers, and use ReLU activations. We treat con-

volutional nets in Section 5. If the net has d layers, we

label the vector before activation at these layers by x0, x1,

xd for the d layers where x0 is the input to the net, also

denoted simply x. So xi = Aiφ(xi−1) where Ai is the

weight matrix of the ith layer. (Here φ(x) if x is a vector

applies the ReLU component-wise. The ReLU is allowed a

trainable bias parameter, which is omitted from the notation

because it has no effect on any calculations below.) We

denote the number of hidden units in layer i by hi and set

h = maxdi=1 h
i. Let fA(x) be the function calculated by

the above network.

Stable rank of a matrix B is ‖B‖2F /‖B‖22, where ‖ · ‖F
denotes Frobenius norm and ‖ · ‖2 denotes spectral norm.

Note that stable rank is at most (linear algebraic) rank.

For any two layer i ≤ j, denote by M i,j the operator for

composition of these layers and J i,j
x be the Jacobian of

this operator at input x (a matrix whose p, q is the partial

derivative of the pth output coordinate with respect to the

q’th input input). Therefore, we have xj =M i,j(xi). Fur-

thermore, since the activation functions are ReLU, we have

Stronger Generalization Bounds for Deep Nets via a Compression Approach

M i,j(xi) = J i,j
xi x

i.

2. Compression and Generalization

Our compression framework rests on the following obvious

fact. Suppose the training data contains m samples, and f
is a classifier from a complicated class (e.g., deep nets with

much more than m parameters) that incurs very low empir-

ical loss. We are trying to understand if it will generalize.

Now suppose we can compute a classifier g with discrete

trainable parameters much less than m and which incurs

similar loss on the training data as f . Then g must incur

low classification error on the full distribution. This frame-

work has the advantage of staying with intuitive parameter

counting and to avoid explicitly dealing with the hypothesis

class that includes f (see note after Theorem 2.1). Notice,

the mapping from f to g merely needs to exist, not to be

efficiently computable. But in all our examples the map-

ping will be explicit and fairly efficient. Now we formalize

the notions. The proofs are elementary via concentration

bounds and appear in the appendix.

Definition 1 ((γ,S)-compressible). For any set A of param-

eter values, let f be a classifier and GA = {gA|A ∈ A} be

a class of classifiers. We say f is (γ, S)-compressible via

GA if there exists A ∈ A such that for any x ∈ S, we have

for all y

|f(x)[y]− gA(x)[y]| ≤ γ.

We also consider a different setting where the compression

algorithm is allowed a“helper string” s, which is arbitrary

but fixed before looking at the training samples. Often s
will contain random numbers. A simple example is to let s
be the random initialization used for training the deep net

and then compress the difference between the final weights

and s. This can give better generalization bounds, similar

to (Dziugaite and Roy, 2017). Other nontrivial examples

appear later.

Definition 2 ((γ,S)-compressible using helper string s).
Suppose GA,s = {gA,s|A ∈ A} is a class of classifiers

indexed by trainable parameters A and fixed strings s. A

classifier f is (γ, S)-compressible with respect to GA,s us-

ing helper string s if there exists A ∈ A such that for any

x ∈ S, we have for all y

|f(x)[y]− gA,s(x)[y]| ≤ γ.

Theorem 2.1. Suppose GA,s = {gA,s|A ∈ A} where A is

a set of q parameters each of which can have at most r dis-

crete values and s is a helper string. Let S be a training set

with m samples. For any margin γ > 0, if the trained clas-

sifier f is (γ, S)-compressible via GA,s with helper string

s, then there exists A ∈ A such that with high probability

over the training set,

L0(gA) ≤ L̂γ(f) +O

(
√

q log r

m

)

.

Remarks: (1) The framework proves the generalization not

of f but of its compression gA. (An exception is if the two

are shown to have similar loss at every point in the domain,

not just the training set. This is the case in Theorem 2.2.)

(2) The previous item highlights how our framework steps

away from uniform convergence framework, e.g., covering

number arguments (Dudley, 2010; Anthony and Bartlett,

2009). There, one needs to fix a hypothesis class indepen-

dent of the training set. By contrast we have no hypothesis

class, only a single neural net that has some specific prop-

erties (described in Section 3) on a single finite training

set. But if we can compress this specific neural net to a

simpler neural nets with fewer parameters then we can use

covering number argument on this simpler class to get the

generalization of the compressed net.

(3) Issue (1) exists also in standard PAC-Bayes framework

for deep nets (see tongue-in-cheek title of Langford and

Caruana (2001)). They yield generalization bounds not for

f but for a noised version of f (i.e., net given by W + η,

where W is parameter vector of f and η is a noise vector).

(4) As we will see later, our compression which is achieved

via a randomized algorithm seems “non-destructive” and

should not overfit to the training set more than the original

network. Moreover, for us issue (1) could be fixed by show-

ing that if f satisfies the properties of Section 3 on training

data then it satisfies them on the entire domain. This is left

for future work.

2.1. Example 1: Linear classifiers with margin

To illustrate the above compression method and its connec-

tion to noise stability, we use linear classifiers with high

margins. Let c ∈ R
h(‖c‖ = 1) be a classifier for binary

classification whose output on input x is sgn(c · x). Let

D be a distribution on inputs (x, y) where ‖x‖ = 1 and

y ∈ {±1}. Say c has margin γ if for all (x, y) in the train-

ing set we have y(c⊤x) ≥ γ.

If we add Gaussian noise vector η with coordinate-wise

variance σ2 to c, then E[x · (c+ η)] is c · x and the variance

is σ2. (A similar analysis applies to noising of x instead of

c.) Thus the margin is large if and only if the classifier’s

output is somewhat noise-stable.

A classifier with margin γ can be compressed to one that has

onlyO(1/γ2) non-zero entries. For each coordinate i, toss a

coin with Pr[heads] = 8c2i /γ
2 and if it comes up heads set

the coordinate to equal to γ2/8ci (see Algorithm 2 in supple-

mentary material). This yields a vector ĉ with only O(1/γ2)
nonzero entries such that for any vector u, with reasonable

Stronger Generalization Bounds for Deep Nets via a Compression Approach

probability |ĉ⊤u− c⊤u| ≤ γ, so ĉ and c will make the same

prediction. We can then apply Theorem 2.1 on a discretized

version of ĉ to show that the sparsified classifier has good

generalization with O(log d/γ2) samples.

This compressed classifier works correctly for a fixed input

x with good probability but not high probability. To fix

this, one can recourse to the “compression with fixed string”

model. The fixed string is a random linear transformation.

When applied to unit vector x, it tends to equalize all coor-

dinates and the guarantee |ĉ⊤u− c⊤u| ≤ γ can hold with

high probability. This random linear transformation can be

fixed before seeing the training data. See Section A.2 in

supplementary material for details.

2.2. Example 2: Existing generalization bounds

Our compression framework gives easy and short proof of

the generalization bounds of a recent paper; see appendix

for slightly stronger result of Bartlett et al. (2017).

Theorem 2.2. ((Neyshabur et al., 2017a)) For any deep

net with layers A1, A2, . . . Ad and output margin γ on a

training set S, the generalization error can be bounded by

Õ

√

√

√

√

hd2 maxx∈S ‖x‖∏d
i=1 ‖Ai‖22

∑d
i=1

‖Ai‖2

F

‖Ai‖2

2

γ2m

.

The second part of this expression (
∑d

i=1
‖Ai‖2

F

‖Ai‖2

2

) is sum of

stable ranks of the layers, a natural measure of their true

parameter count. The first part (
∏d

i=1 ‖Ai‖22) is related to

the Lipschitz constant of the network, namely, the maximum

norm of the vector it can produce if the input is a unit vector.

The Lipschitz constant of a matrix operator B is just its

spectral norm ‖B‖2. Since the network applies a sequence

of matrix operations interspersed with ReLU, and ReLU is

1-Lipschitz we conclude that the Lipschitz constant of the

full network is at most
∏d

i=1 ‖Ai‖2.
To prove Theorem 2.2 we use the following lemma to com-

press the matrix at each layer to a matrix of smaller rank.

Since a matrix of rank r can be expressed as the product of

two matrices of inner dimension r, it has 2hr parameters

(instead of the trivial h2). (Furthermore, the parameters can

be discretized via trivial rounding to get a compression with

discrete parameters as needed by Definition 1.)

Lemma 1. For any matrix A ∈ R
m×n, let Â be the trun-

cated version of A where singular values that are smaller

than δ‖A‖2 are removed. Then ‖Â−A‖2 ≤ δ‖A‖2 and Â
has rank at most ‖A‖2F /(δ2‖A‖22).

Proof. Let r be the rank of Â. By construction, the max-

imum singular value of Â − A is at most δ‖A‖2. Since

the remaining singular values are at least δ‖A‖2, we have

‖A‖F ≥ ‖Â‖F ≥ √
rδ‖A‖2.

For each i replace layer i by its compression using the above

lemma, with δ = γ(3‖x‖d∏d
i=1 ‖Ai‖2)−1. How much

error does this introduce at each layer and how much does

it affect the output after passing through the intermediate

layers (and getting magnified by their Lipschitz constants)?

Since A − Âi has spectral norm (i.e., Lipschitz constant)

at most δ, the error at the output due to changing layer i in

isolation is at most δ‖xi‖∏d
j=1 ‖Aj‖2 ≤ γ/3d.

A simple induction (see (Neyshabur et al., 2017a) if needed)

can now show the total error incurred in all layers is bounded

by γ. The generalization bound follows immediately from

Theorem 2.1.

3. Noise Stability Properties of Deep Nets

This section introduces noise stability properties of deep

nets that imply better compression (and hence generaliza-

tion). They help overcome the pessimistic error analysis of

our proof of Theorem 2.2: when a layer was compressed,

the resulting error was assumed to blow up in a worst-case

manner according to the Lipschitz constant (namely, prod-

uct of spectral norms of layers). This hurt the amount of

compression achievable. The new noise stability properties

roughly amount to saying that noise injected at a layer has

very little effect on the higher layers. Our formalization

starts with noise sensitivity, which captures how an operator

transmits noise vs signal.

Definition 3. IfM is a mapping from real-valued vectors to

real-valued vectors, and N is some noise distribution then

noise sensitivity of M at x with respect to N , is

ψN (M,x) = Eη∈N

[‖M(x+ η‖x‖)−M(x)‖2
‖M(x)‖2

]

,

The noise sensitivity of M with respect to N on a set of

inputs S, denoted ψN ,S(M), is the maximum of ψN (M,x)
over all inputs x in S.

To illustrate, we examine noise sensitivity of a matrix (i.e.,

linear mapping) with respect to Gaussian distribution. Low

sensitivity turns out to imply that the matrix has some large

singular values (i.e., low stable rank), which give directions

that can preferentially carry the “signal”x whereas noise η
attenuates because it distributes uniformly across directions.

Proposition 3.1. The noise sensitivity of a matrix M at any

vector x 6= 0 with respect to Gaussian distribution N (0, I)
is exactly ‖M‖2F ‖x‖2/‖Mx‖2, and at least its stable rank.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Proof. Using E[ηη⊤] = I , we bound the numerator by

Eη[‖M(x+ η‖x‖)−Mx‖2] = Eη[‖x‖2‖Mη‖2]
= Eη[‖x‖2tr(Mηη⊤M⊤)] = ‖x‖2tr(MM⊤) = ‖M‖2F ‖x‖2.

Thus noise sensitivity ψ at x is ‖M‖2F ‖x‖2/‖Mx‖2, which

is at least the stable rank ‖M‖2F /‖M‖22 since ‖Mx‖ ≤
‖M‖2‖x‖.

The above proposition suggests that if a vector x is aligned

to a matrix M (i.e. correlated with high singular directions

of M), then matrix M becomes less sensitive to noise at x.

This intuition will be helpful in understanding the properties

we define later to formalize noise stability.

The above discussion motivates the following approach.

We compress each layer i by an appropriate randomized

compression algorithm, such that the noise/error in its output

is “Gaussian-like”. If layers i + 1 and higher have low

sensitivity to this new noise, then the compression can be

more extreme produce much higher noise. We formalize

this idea using Jacobian J i,j , which describes instantaneous

change of M i,j(x) under infinitesimal perturbation of x.

3.1. Formalizing Error-resilience

Now we formalize the error-resilience properties. Section 6

reports empirical findings about these properties. The first

is cushion, to be thought of roughly as reciprocal of noise

sensitivity. We first formalize it for single layer.

Definition 4 (layer cushion). The layer cushion of layer i
is similarly defined to be the largest number µi such that for

any x ∈ S, µi‖Ai‖F ‖φ(xi−1)‖ ≤ ‖Aiφ(xi−1)‖.

Intuitively, cushion considers how much smaller the

output Aiφ(xi−1) is compared to the upper bound

‖Ai‖F ‖φ(xi−1)‖. Using argument similar to Proposi-

tion 3.1, we can see that 1/µ2
i is equal to the noise sensitivity

of matrixAi at input φ(xi−1) with respect to Gaussian noise

η ∼ N (0, I).

Of course, for nonlinear operators the definition of error

resilience is less clean. Let’s denote by M i,j : Rhi → R
hj

the operator corresponding to the portion of the deep net

from layer i to layer j, and by J i,j its Jacobian. If infinitesi-

mal noise is injected before level i then M i,j passes it like

J i,j , a linear operator. When the noise is small but not in-

finitesimal then one hopes that M i,j still behaves roughly

linearly (recall that ReLU nets are piecewise linear). To

formalize this, we define Interlayer Cushion (Definition 5)

that captures the local linear approximation of the operator

M .

Definition 5 (Interlayer Cushion). For any two layers i ≤ j,

we define the interlayer cushion µi,j as the largest number

such that for any x ∈ S:

µi,j‖J i,j
xi ‖F ‖xi‖ ≤ ‖J i,j

xi x
i‖

Furthermore, for any layer i we define the mini-

mal interlayer cushion as µi→ = mini≤j≤d µi,j =

min{1/
√
hi,mini<j≤d µi,j}1.

Since J i,j
x is a linear transformation, a calculation similar

to Proposition 3.1 shows that its noise sensitivity at xi with

respect to Gaussian distribution N (0, I) is at most 1
µ2

ij

.

The next property quantifies the intuitive observation on the

learned networks that for any training data, almost half of

the ReLU activations at each layer are active. If the input to

the activations is well-distributed and the activations do not

correlate with the magnitude of the input, then one would

expect that on average, the effect of applying activations at

any layer is to decrease the norm of the pre-activation vector

by at most some small constant factor.

Definition 6 (Activation Contraction). The activation con-

traction c is defined as the smallest number such that for any

layer i and any x ∈ S,

‖φ(xi)‖ ≥ ‖xi‖/c.

We discussed how the interlayer cushion captures noise-

resilience of the network if behaves linearly, namely, when

the set of activated ReLU gates does not change upon in-

jecting noise. In general the activations do change, but the

deviation from linear behavior is bounded for small noise

vectors, as quantified next.

Definition 7 (Interlayer Smoothness). Let η be the noise

generated as a result of substituting weights in some of

the layers before layer i using Algorithm 1. We define

interlayer smoothness ρδ to be the largest number such that

with probability 1− δ over noise η for any two layers i < j
any x ∈ S:

‖M i,j(xi + η)− J i,j
xi (x

i + η)‖ ≤ ‖η‖‖xj‖
ρδ‖xi‖

.

For a single layer, ρδ captures the ratio of input/weight align-

ment to noise/weight alignment. Since the noise behaves

similar to Gaussian, one expects this number to be greater

than one for a single layer. When j > i + 1, the weights

and activations create more dependencies. However, since

these dependences are applied on both noise and input, we

again expect that if the input is more aligned to the weights

than noise, this should not change in higher layers. In Sec-

tion 6, we show that the interlayer smoothness is indeed

good: 1/ρδ is a small constant. Please see Appendix A.4

for a more detailed discussion on interlayer smoothness.

4. Fully Connected Networks

We prove generalization bounds using for fully connected

multilayer nets. Details appear in Appendix Section B.

1Note that J i,i

xi = I and µi,i = 1/
√
hi

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Theorem 4.1. For any fully connected network fA with

ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin γ,

Algorithm 1 generates weights Ã for the network fÃ such

that with probability 1− δ over the training set and fÃ, the

expected error L0(fÃ) is bounded by

L̂γ(fA) + Õ

√

√

√

√

c2d2 maxx∈S ‖fA(x)‖22
∑d

i=1
1

µ2

i
µ2

i→

γ2m

where µi, µi→, c and ρδ are layer cushion, interlayer cush-

ion, activation contraction and interlayer smoothness de-

fined in Definitions 4,5,6 and 7 respectively.

To prove this we describe a compression of the net with re-

spect to a fixed (random) string. In contrast to the determinis-

tic compression of Lemma 1, this randomized compression

ensures that the resulting error in the output behaves like a

Gaussian. The proofs are similar to standard JL dimension

reduction.

Algorithm 1 Matrix-Project (A, ε, η)

Require: Layer matrix A ∈ R
h1×h2 , error parameter ε, η.

Ensure: Returns Â s.t. ∀ fixed vectors u, v,

Pr[|u⊤Âv − u⊤Av‖ ≥ ε‖A‖F ‖u‖‖v‖] ≤ η.

Sample k = log(1/η)/ε2 random matrices M1, . . . ,Mk

with entries i.i.d. ±1 (“helper string”)

for k′ = 1 to k do

Let Zk′ = 〈A,Mk′〉Mk′ .

end for

Let Â = 1
k

∑k
k′=1 Zk′

Note that the helper string of random matrices Mi’s were

chosen and fixed before training set S was picked. Each

weight matrix is thus represented as only k real numbers

〈A,Mi〉 for i = 1, 2, ..., k.

Lemma 2. For any 0 < δ, ε ≤ 1, let G = {(U i, xi)}mi=1 be

a set of matrix/vector pairs of sizem where U ∈ R
n×h1 and

x ∈ R
h2 , let Â ∈ R

h1×h2 be the output of Algorithm 1 with

η = δ/mn and ∆ = Â−A. With probability at least 1− δ
we have for any (U, x) ∈ G, ‖U∆x‖ ≤ ε‖A‖F ‖U‖F ‖x‖.

Next Lemma bounds the number of parameters of the com-

pressed network resulting from applying Algorithm 1 to all

the layer matrices of the net. The proof does induction on

the layers and bounds the effect of the error on the output of

the network using properties defined in Section 3.1.

Lemma 3. For any fully connected network fA with ρδ ≥
3d, any probability 0 < δ ≤ 1 and any error 0 < ε ≤
1, Algorithm 1 generates weights Ã for a network with
72c2d2 log(mdh/δ)

ε2 ·∑d
i=1

1
µ2

i
µ2

i→

total parameters such that

with probability 1− δ/2 over the generated weights Ã, for

any x ∈ S:

‖fA(x)− fÃ(x)‖ ≤ ε‖fA(x)‖.

where µi, µi→, c and ρδ are layer cushion, interlayer cush-

ion, activation contraction and interlayer smoothness de-

fined in Definitions 4,5,6 and 7 respectively.

Some obvious improvements: (i) Empirically it has been

observed that deep net training introduces fairly small

changes to parameters as compared to the (random) ini-

tial weights (Dziugaite and Roy, 2017). We can exploit this

by incorporating the random initial weights into the helper

string and do the entire proof above not with the layer matri-

ces Ai but only the difference from the initial starting point.

Experiments in Section 6 show this improves the bounds.

(ii) Cushions and other quantities defined earlier are data-

dependent, and required to hold for the entire training set.

However, the proofs go through if we remove say ζ fraction

of outliers that violate the definitions; this allows us to use

more favorable values for cushion etc. and lose an additive

factor ζ in the generalization error.

5. Convolutional Neural Networks

Now we sketch how to provably compress convolutional

nets. (Details appear in Section C of supplementary.) In-

tuitively, this feels harder because the weights are already

compressed— they’re shared across patches!

Theorem 5.1. For any convolutional neural network fA
with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin γ,

Algorithm 4 generates weights Ã for the network fÃ such

that with probability 1− δ over the training set and fÃ:

L0(fÃ) ≤ L̂γ(fA)

+ Õ

√

√

√

√

c2d2 maxx∈S ‖fA(x)‖22
∑d

i=1
β2(⌈κi/si⌉)2

µ2

i
µ2

i→

γ2m

where µi, µi→, c, ρδ and β are layer cushion, interlayer

cushion, activation contraction, interlayer smoothness and

well-distributed Jacobian defined in Definitions 4,8,6, 7 and

9 respectively. Furthermore, si and κi are stride and filter

width in layer i.

Let’s realize that obvious extensions of earlier sections fail.

Suppose layer i of the neural network is an image of dimen-

sion ni
1 × ni2 and each pixel has hi channels, the size of the

filter at layer i is κi × κi with stride si. The convolutional

filter has dimension hi−1 × hi × κi × κi. Applying ma-

trix compression (Algorithm 1) independently to each copy

of a convolutional filter makes number of new parameters

proportional to ni
1n

i
2, a big blowup.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Compressing a convolutional filter once and reusing it in

all patches doesn’t work because the interlayer analysis im-

plicitly requires the noise generated by the compression

behave similar to a spherical Gaussian, but the shared fil-

ters introduce correlations. Quantitatively, using the fully

connected analysis would require the error to be less than

interlayer cushion value µi→ (Definition 5) which is at most

1/
√

hini
1n

i
2, and this can never be achieved from compress-

ing matrices that are far smaller than ni1 × ni
2 to begin with.

We end up with a solution in between fully independent

and fully dependent: p-wise independence. The algorithm

generates p-wise independent compressed filters Â(a,b) for

each convolution location (a, b) ∈ [ni
1]× [ni

2]. It results in

p times more parameters than a single compression. If p
grows logarithmically with relevant parameters, the filters

behave like fully independent filters. Using this idea we

can generalize the definition of interlayer margin to the

convolution setting:

Definition 8 (Interlayer Cushion, Convolution Setting). For

any two layers i ≤ j, we define the interlayer cushion µi,j

as the largest number such that for any x ∈ S:

µi,j ·
1

√

ni
1n

i
2

‖J i,j
xi ‖F ‖xi‖ ≤ ‖J i,j

xi x
i‖

Furthermore, for any layer i we define the mini-

mal interlayer cushion as µi→ = mini≤j≤d µi,j =

min{1/
√
hi,mini<j≤d µi,j}2.

Recall that interlayer cushion is related to the noise sen-

sitivity of J i,j
xi at xi with respect to Gaussian distribu-

tion N (0, I). When we consider J i,j
xi applied to a noise

η, if different pixels in η are independent Gaussian ran-

dom variables, then we can indeed expect ‖J i,j
xi η‖ ≈

1√
hini

1
ni
2

‖J i,j
xi ‖‖η‖, which explains the extra 1√

ni
1
ni
2

fac-

tor in Definition 8 compared to Definition 5. The proof also

needs to assume —in line with intuition behind convolution

architecture— that information from the entire image field

is incorporated somewhat uniformly across pixels. It is for-

malized using the Jacobian which gives the partial derivative

of the output with respect to pixels at previous layer.

Definition 9 (Well-distributed Jacobian). Let J i,j
x be

the Jacobian of M i,j at x, we know J i,j
x ∈

R
hi×ni

1
×ni

2
×hj×nj

1
×nj

2 . We say the Jacobian is β well-

distributed if for any x ∈ S, any i, j, any (a, b) ∈ [ni
1 ×ni

2],

‖[J i,j
x]:,a,b,:,:,:‖F ≤ β

√

ni1n
i
2

‖J i,j
x ‖F

6. Empirical Evaluation

We study noise stability properties (defined in Section 3)

of an actual trained deep net, and compute a generalization

2Note that J i,i

xi = I and µi,i = 1/
√
hi

bound from Theorem 5.1. Experiments were performed

by training a VGG-19 architecture (Simonyan and Zisser-

man, 2014) and a AlexNet (Krizhevsky et al., 2012) for

multi-class classification task on CIFAR-10 dataset. Opti-

mization used SGD with mini-batch size 128, weight decay

5e-4, momentum 0.9 and initial learning rate 0.05, but de-

cayed by factor 2 every 30 epochs. Drop-out was used

in fully-connected layers. We trained both networks for

299 epochs and the final VGG-19 network achieved 100%
training and 92.45% validation accuracy while the AlexNet

achieved 100% training and 77.22% validation accuracy. To

investigate the effect of corrupted label, we trained another

AlexNet, which 100% training and 9.86% validation accu-

racy, on CIFAR-10 dataset with randomly shuffled labels.

Our estimate of the sample complexity bound used exact

computation of norms of weight matrices (or tensors) in

all bounds(||A||1,∞, ||A||1,2, ||A||2, ||A||F). Like previous

bounds in generalization theory, ours also depend upon nui-

sance parameters like depth d, logarithm of h, etc. which

probably are an artifact of the proof. These are ignored in

the computation (also in computing earlier bounds) for sim-

plicity. Even the generalization based on parameter counting

arguments does have an extra dependence on depth (Bartlett

et al., 2017). A recent work, (Golowich et al., 2017) showed

that many such depth dependencies can be improved.

6.1. Empirical investigation of noise stability properties

Section 3 identifies four properties in the networks that con-

tribute to noise-stability: layer cushion, interlayer cushion,

contraction, interlayer smoothness. Figure 2 plots the dis-

tribution of over different data points in the training set and

compares to a Gaussian random network and then scaled

properly. The layer cushion, which quantifies its noise sta-

bility, is drastically improved during the training, especially

for the higher layers (8 and higher) where most parameters

live. Moreover, we observe that interlayer cushion, activa-

tion contraction and interlayer smoothness behave nicely

even after training. These plots suggest that the driver of

the generalization phenomenon is layer cushion. The other

properties are being maintained in the network and prevent

the network from falling prey to pessimistic assumptions

that causes the other older generalization bounds to be very

high. The assumptions made in section 3 (also in B.1) are

verified on the VGG-19 net in appendix D.1 by histogram-

ming the distribution of layer cushion, interlayer cushion,

contraction, interlayer smoothness, and well-distributedness

of the Jacobians of each layer of the net on each data point

in the training set. Some examples are shown in Figure 2.

6.2. Correlation to generalization error

We evaluate our generalization bound during the training,

see Figure 3, Right. After 120 epochs, the training error is

Stronger Generalization Bounds for Deep Nets via a Compression Approach

0.0 0.1 0.2 0.3
a) layer cushion µi

random init

trained

0.2 0.4 0.6
b) minimal inter-layer cushion µi→

random init

trained

1.0 1.2 1.4
c) contraction c

random init

trained

0.00 0.02 0.04 0.06
d) interlayer smoothness 1/ρ

random init

trained

Figure 2. Distribution of a) layer cushion, b) (unclipped) mini-

mal interlayer cushion, c) activation contraction and d) interlayer

smoothness of the 13-th layer of VGG-19 nets on on training set.

The distributions on a randomly-initialized and a trained net are

shown in blue and orange. Note that after clipping, the minimal

interlayer cushion is set to 1/
√
hi for all layers except the first one,

see appendix D.1.

almost zero but the test error continues to improve in later

epochs. Our generalization bound continues to improve,

though not to the same level. Thus our generalization bound

captures part of generalization phenomenon, not all. Still,

this suggests that SGD somehow improves our generaliza-

tion measure implicitly. Making this rigorous is a good topic

for further research.

Furthermore, we investigate effect of training with normal

data and corrupted data by training two AlexNets respec-

tively on original and corrupted CIFAR-10 with randomly

shuffled labels. We identify two key properties that differ

significantly between the two networks: layer cushion and

activation contraction, see D.2. Since our bound predicts

larger cushion and lower contraction indicates better gen-

eralization, our bound is consistent w with the fact that the

net trained on normal data generalizes (77.22% validation

accuracy).

6.3. Comparison to other generalization bounds

Figure 3 compares our proposed bound to other neural-net

generalization bounds on the VGG-19 net and compares

to naive VC dimension bound (which of course is too pes-

simistic). All previous generalization bounds are orders

of magnitude worse than ours; the closest one is spectral

norms times average ℓ1,2 of the layers (Bartlett et al., 2017)

which is still about 1018, far greater than VC dimension.

(As mentioned we’re ignoring nuisance factors like depth

V
C

-d
im

120 200 280
0.075

0.08

0.085

0.09

0.095

Figure 3. Left) Comparing neural net generalization bounds. See

Appendix D.3 for details. Right) Comparing our bound to empiri-

cal generalization error during training. Our bound is rescaled to

be within the same range as the generalization error.

and log h which make the comparison to VC dimension a

bit unfair, but the comparison to previous bounds is fair.)

This should not be surprising as all other bounds are based

on product of norms is pessimistic (see note at the start of

Section 3) which we avoid due to the noise stability analysis

resulting in a bound that has more dependence on the data.

Table 1 shows the compressibility of various layers accord-

ing to the bounds given by our theorem. Again, this is a

qualitative due to ignoring nuisance factors, but it gives an

idea of which layers are important in the calculation.

layer
c2iβ

2

i ⌈κi/si⌉
2

µ2

i
µ2

i→

actual # param compression (%)

1 1644.87 1728 95.18

4 644654.14 147456 437.18

6 3457882.42 589824 586.25

9 36920.60 1179648 3.129

12 22735.09 2359296 0.963

15 26583.81 2359296 1.126

18 5052.15 262144 1.927

Table 1. Effective number of parameters identified by our bound.

Compression rates can be as low as 1% in later layers (from 9 to

19) whereas earlier layers are not so compressible. Dependence on

depth d, log factors, constants are ignored as mentioned in the text.

7. Conclusions

With a new compression-based approach, the paper has

made progress on several open issues regarding general-

ization properties of deep nets. The approach also adapts

specially to convolutional nets. The empirical verification of

the theory in Section 6 shows a rich set of new properties sat-

isfied by deep nets trained on realistic data, which we hope

will fuel further theory work on deep learning, including

how these properties play into optimization and expressiv-

ity. Another possibility is a more rigorous understanding of

deep net compression, which sees copious empirical work

motivated by low-power applications. Perhaps our p-wise in-

dependence idea used for compressing convnets (Section 5)

has practical implications.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

Acknowledgments

This research was done with support from NSF, ONR, Darpa,

SRC, Simons Foundation, Mozilla Research, and Schmidt

Foundation.

References

Martin Anthony and Peter L Bartlett. Neural network learn-

ing: Theoretical foundations. cambridge university press,

2009.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David

Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan

Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio,

et al. A closer look at memorization in deep networks.

arXiv preprint arXiv:1706.05394, 2017.

Peter Bartlett, Dylan J Foster, and Matus Telgarsky.

Spectrally-normalized margin bounds for neural net-

works. arXiv preprint arXiv:1706.08498, 2017.

Peter L Bartlett and Shahar Mendelson. Rademacher and

gaussian complexities: Risk bounds and structural results.

Journal of Machine Learning Research, 3(Nov):463–482,

2002.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and

Yann LeCun. Entropy-sgd: Biasing gradient descent into

wide valleys. arXiv preprint arXiv:1611.01838, 2016.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model

compression and acceleration for deep neural networks:

The principles, progress, and challenges. IEEE Signal

Proc. Magazine, 35, Jan 2018.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua

Bengio. Sharp minima can generalize for deep nets. arXiv

preprint arXiv:1703.04933, 2017.

Richard M Dudley. Universal donsker classes and metric

entropy. In Selected Works of RM Dudley, pages 345–365.

Springer, 2010.

Gintare Karolina Dziugaite and Daniel M Roy. Computing

nonvacuous generalization bounds for deep (stochastic)

neural networks with many more parameters than training

data. arXiv preprint arXiv:1703.11008, 2017.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso

Poggio. Regularization networks and support vector ma-

chines. Advances in computational mathematics, 13(1):1,

2000.

Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A rank

minimization heuristic with application to minimum order

system approximation. In American Control Conference,

2001. Proceedings of the 2001, volume 6, pages 4734–

4739. IEEE, 2001.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-

independent sample complexity of neural networks. arXiv

preprint arXiv:1712.06541, 2017.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train

faster, generalize better: Stability of stochastic gradient

descent. In ICML, 2016.

Geoffrey E Hinton and Drew Van Camp. Keeping the neu-

ral networks simple by minimizing the description length

of the weights. In Proceedings of the sixth annual con-

ference on Computational learning theory, pages 5–13.

ACM, 1993.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima.

Neural Computation, 9(1):1–42, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. In ICML, 2015.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Ben-

gio. Generalization in deep learning. arXiv preprint

arXiv:1710.05468, 2017.

Michael Kearns and Dana Ron. Algorithmic stability and

sanity-check bounds for leave-one-out cross-validation.

Neural computation, 11(6):1427–1453, 1999.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,

Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-

batch training for deep learning: Generalization gap and

sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

John Langford and Rich Caruana. (not) bounding the true

error. In Proceedings of the 14th International Confer-

ence on Neural Information Processing Systems: Natural

and Synthetic, pages 809–816. MIT Press, 2001.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and

James Stokes. Fisher-rao metric, geometry, and complex-

ity of neural networks. arXiv preprint arXiv:1711.01530,

2017.

Nick Littlestone and Manfred Warmuth. Relating data com-

pression and learnability. Technical report, Technical

report, University of California, Santa Cruz, 1986.

David A McAllester. Some PAC-Bayesian theorems. In

Proceedings of the eleventh annual conference on Com-

putational learning theory, pages 230–234. ACM, 1998.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

David A McAllester. PAC-Bayesian model averaging. In

Proceedings of the twelfth annual conference on Compu-

tational learning theory, pages 164–170. ACM, 1999.

Ari Morcos, David GT Barrett, Matthew Botvinick, and

Neil Rabinowitz. On the importance of single di-

rections for generalization. In Proceeding of the In-

ternational Conference on Learning Representations,

2018. URL https://openreview.net/forum?

id=r1iuQjxCZ¬eId=r1iuQjxCZ.

Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Sre-

bro. Path-sgd: Path-normalized optimization in deep

neural networks. In Advances in Neural Information

Processing Systems, pages 2422–2430, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.

Norm-based capacity control in neural networks. In

Proceeding of the 28th Conference on Learning Theory

(COLT), 2015b.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.

In search of the real inductive bias: On the role of im-

plicit regularization in deep learning. Proceeding of the

International Conference on Learning Representations

workshop track, 2015c.

Behnam Neyshabur, Srinadh Bhojanapalli, David

McAllester, and Nathan Srebro. A pac-bayesian

approach to spectrally-normalized margin bounds for

neural networks. arXiv preprint arXiv:1707.09564,

2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David

McAllester, and Nati Srebro. Exploring generalization

in deep learning. In Advances in Neural Information

Processing Systems, pages 5949–5958, 2017b.

Christos Pelekis and Jan Ramon. Hoeffding’s inequality

for sums of weakly dependent random variables. arXiv

preprint arXiv:1507.06871, 2015.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and

Karthik Sridharan. Learnability, stability and uniform

convergence. Journal of Machine Learning Research, 11

(Oct):2635–2670, 2010.

Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

Alex J Smola, Bernhard Schölkopf, and Klaus-Robert

Müller. The connection between regularization opera-

tors and support vector kernels. Neural networks, 11(4):

637–649, 1998.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola.

Maximum-margin matrix factorization. In Advances in

neural information processing systems, pages 1329–1336,

2005.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1):1929–1958,

2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning

requires rethinking generalization. In International Con-

ference on Learning Representations, 2017.

https://openreview.net/forum?id=r1iuQjxCZ¬eId=r1iuQjxCZ
https://openreview.net/forum?id=r1iuQjxCZ¬eId=r1iuQjxCZ

