
STRONGER SECURITY NOTIONS FOR TRAPDOOR
FUNCTIONS AND APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Adam O’Neill

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2010



STRONGER SECURITY NOTIONS FOR TRAPDOOR
FUNCTIONS AND APPLICATIONS

Approved by:

Professor Alexandra Boldyreva,
Advisor
College of Computing
Georgia Institute of Technology

Professor Chris Peikert
College of Computing
Georgia Institute of Technology

Professor Mihir Bellare
Computer Science and Engineering
University of California, San Diego

Professor Dana Randall
College of Computing
Georgia Institute of Technology

Professor Richard Lipton
College of Computing
Georgia Institute of Technology

Professor Patrick Traynor
College of Computing
Georgia Institute of Technology

Date Approved: 9 August 2010



To my parents,

John (Chuck) and Phyllis O’Neill,

and my sister Katie,

for their unconditional support.

iii



ACKNOWLEDGEMENTS

My Ph.D. studies have been a significant undertaking, which would not have been

possible without the help and guidance of many people (please forgive any omissions).

First of all, I’d like to thank my parents, for encouraging me to pursue higher

education and giving me the opportunity to do so.

My intellectual development was greatly fostered during my time as an undergrad-

uate at UCSD, and for that I have many friends and teaching assistants to thank. I

would especially like to thank Daniel Bryant for helping me during my freshman year,

and Derek Newland for inviting me to do an independent study with him. I would

also like to thank Mihir Bellare for taking the time to help undergraduates find out

about graduate school and encouraging them to take graduate-level courses.

In graduate school, Sasha Boldyreva has been a lot of fun to have as an advisor, and

I thank her for believing in me and all the effort she has put into helping me become

a better researcher. Early on, I also received helpful advice from Subhash Khot and

Dana Randall. During the course of my studies, I also benefited tremendously from

interaction with other members of the cryptographic community, especially Michel

Abdalla, Mihir Bellare, Yevgeniy Dodis, Serge Fehr, Marc Fischlin, Craig Gentry,

Vipul Goyal, Eike Kiltz, Dick Lipton, Payman Mohassel, Chris Peikert, Krzysztof

Pietrzak, Adam Smith, and Ramarathnam Venkatesan. Additionally, I would like to

thank my fellow students for helping me not go (completely) crazy during this time,

especially Gagan Goel and Ashish Sangwan.

Lastly, thanks to my landlords Bruce, Kim, and Hannah for making my stay in

Atlanta pleasant.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on Trapdoor Functions . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for Stronger Security Notions . . . . . . . . . . . . . . . 3

1.3 Our Goals and Approach . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Results on Deterministic Encryption . . . . . . . . . . . . . 8

1.4.2 Results on Adaptive Trapdoor Functions . . . . . . . . . . . 13

1.5 Related and Follow-Up Work . . . . . . . . . . . . . . . . . . . . . 17

1.6 Organization and Credits . . . . . . . . . . . . . . . . . . . . . . . 19

II PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Statistical Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Code-Based Game Playing . . . . . . . . . . . . . . . . . . . . . . . 28

III DETERMINISTIC ENCRYPTION I . . . . . . . . . . . . . . . . . . . . 30

3.1 Deterministic Encryption and its Security . . . . . . . . . . . . . . 30

3.2 Some Useful Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Constructions in the Random Oracle Model . . . . . . . . . . . . . 36

3.3.1 The Encrypt-with-Hash Scheme . . . . . . . . . . . . . . . . 37

3.3.2 The RSA-DOAEP Scheme . . . . . . . . . . . . . . . . . . . 40

v



IV DETERMINISTIC ENCRYPTION II . . . . . . . . . . . . . . . . . . . 52

4.1 Definitional Equivalences . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Single Versus Multiple Messages . . . . . . . . . . . . . . . 52

4.1.2 An Indistinguishability-Based Notion . . . . . . . . . . . . . 53

4.2 Constructions in the Standard Model . . . . . . . . . . . . . . . . . 59

4.2.1 Robust Hardcore Functions . . . . . . . . . . . . . . . . . . 59

4.2.2 The Encrypt-with-Hardcore Scheme . . . . . . . . . . . . . 61

4.3 Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Instantiations based on Exponential One-Wayness . . . . . . 64

4.3.2 Instantiation Based on Lossiness . . . . . . . . . . . . . . . 66

4.4 Improved Schemes from Lossy Trapdoor Functions . . . . . . . . . 67

4.4.1 Crooked Leftover Hash Lemma and Extensions . . . . . . . 67

4.4.2 The General Scheme . . . . . . . . . . . . . . . . . . . . . . 70

V ADAPTIVE TRAPDOOR FUNCTIONS . . . . . . . . . . . . . . . . . 75

5.1 Adaptive Trapdoor and Tag-based Trapdoor Functions . . . . . . . 75

5.2 Chosen-Ciphertext Secure Encryption from Adaptivity . . . . . . . 77

5.2.1 Constructions from Adaptive TDFs . . . . . . . . . . . . . . 77

5.2.2 Constructions from Adaptive Tag-based TDFs . . . . . . . . 79

5.3 Adaptivity from Stronger Trapdoor Functions . . . . . . . . . . . . 83

5.3.1 Constructions from Correlated-Product TDFs . . . . . . . . 83

5.3.2 Constructions from Lossy and All-but-One TDFs . . . . . . 85

5.4 On the Complexity of Adaptive Trapoor Functions . . . . . . . . . 86

5.4.1 A Black-Box Separation from Correlated-Product TDFs . . 88

5.4.2 Adaptivity versus Tag-Based Adaptivity . . . . . . . . . . . 90

5.4.3 Adaptivity from an Assumption on RSA Inversion . . . . . 91

5.5 Chosen-Ciphertext Secure Deterministic Encryption . . . . . . . . . 94

5.5.1 Constructions in the Random Oracle Model . . . . . . . . . 94

5.5.2 Constructions without Random Oracles . . . . . . . . . . . 96

vi



LIST OF FIGURES

1 Relations between cryptographic assumptions and notions of security
for deterministic encryption. . . . . . . . . . . . . . . . . . . . . . . 13

2 Relations between the various security notions for trapdoor functions
and CCA-secure PKE, centered around adaptive trapdoor functions. 17

3 IND-CPA adversary B for proof of Theorem 5.5.1. . . . . . . . . . . . 39

4 Games for the proof of Theorem 3.3.1. The boxed labels indicate which
games include the boxed statements and which do not. . . . . . . . . 40

5 Algorithm GetQuery for the proof of Theorem 3.3.2. . . . . . . . . . 47

6 Games for the proof of Theorem 3.3.2. The boxed labels indicate which
games include the boxed statements and which do not. All games have
the same Finalize procedure, namely procedure Finalize(g): If g = t0
then Return 1, Else Return 0. . . . . . . . . . . . . . . . . . . . . . . 48

7 More games for the proof of Theorem 3.3.2. The boxed labels indicate
which games include the boxed statements and which do not. All games
have the same Finalize procedure, namely procedure Finalize(g): If
g = t0 then Return 1, Else Return 0. . . . . . . . . . . . . . . . . . . 49

8 Game Grand for the proof of Theorem 3.3.2. . . . . . . . . . . . . . . 50

9 Knowledge extractor K for the proof of Theorem 3.3.2. . . . . . . . . 51

10 Adversary D for the proof of Theorem 5.2.1. . . . . . . . . . . . . . . 80

11 Games for the proof of Theorem 5.2.1. . . . . . . . . . . . . . . . . . 81

12 Games for the proof of Theorem 4.3.4. . . . . . . . . . . . . . . . . . 87

13 IND-CPA adversary B for proof of Theorem 5.5.1. . . . . . . . . . . . 97

14 Games for the proof of Theorem 5.5.1. Only differences as compared
to the games in Figure 4 are shown. . . . . . . . . . . . . . . . . . . . 98

vii



SUMMARY

Trapdoor functions, introduced in the seminal paper of Diffie and Hellman [34],

are a fundamental notion in modern cryptography. Informally, trapdoor functions

are (injective) functions that are easy to evaluate but hard to invert unless given

an additional input called the trapdoor. Specifically, the classical security notion

considered for trapdoor functions is one-wayness, which asks that it be hard to invert

(except with very small probability) a uniformly random point in the range without

the trapdoor.

Motivated by the demands of emerging applications of cryptography as well as

stronger security properties desired from higher-level cryptographic primitives con-

structed out of trapdoor functions, this thesis studies new strengthenings to the clas-

sical notion of one-way trapdoor functions and their applications. Our results are

organized along two separate threads, wherein we introduce two new cryptographic

primitives that strengthen the notion of one-wayness for trapdoor functions in differ-

ent ways:

Deterministic Encryption: Our notion of deterministic (public-key) encryption

addresses the weaknesses of using trapdoor functions directly for encryption articu-

lated by Goldwasser and Micali [47], to the extent possible without randomizing the

encryption function (whereas Goldwasser and Micali address them using randomized

encryption). Specifically, deterministic encryption ensures no partial information is

leaked about a high-entropy plaintext or even multiple correlated such plaintexts.

Deterministic encryption has applications to fast search on encrypted data, secur-

ing legacy protocols, and “hedging” randomized encryption against bad randomness
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(cf. [6]). We design a conceptually appealing semantic-security style definition of se-

curity for deterministic encryption as well as an easier-to-work-with but equivalent

indistinguishability style definition. In the random oracle model of Bellare and Rog-

away [11], we show a secure construction of deterministic encryption for an unbounded

number of arbitrarily correlated high-entropy plaintexts based on any randomized en-

cryption scheme, as well as length-preserving such construction based on RSA. In the

standard model, we develop a general framework for constructing deterministic en-

cryption schemes based on a new notion of “robust” hardcore functions. We show

a secure construction of deterministic for a single high-entropy plaintext based on

exponentially-hard one-way trapdoor functions; single-message security is equivalent

to security for an unbounded number of messages drawn from a block-source (where

each subsequent message has high entropy conditioned on the previous) by a result

of Fehr [41]. We also show a secure construction of deterministic encryption for a

bounded number of arbitrarily correlated high-entropy plaintexts (or an unbounded

number of messages drawn from a q-block-source, where the “blocks” consists of q mes-

sages and within each block are arbitrarily correlated high-entropy plaintexts) based

on the notion of lossy trapdoor functions introduced by Peikert and Waters [68].

Adaptive Trapdoor Functions: Our notion of adaptive trapdoor functions asks

that one-wayness be preserved in the presence of an inversion oracle that can be

queried on some range points. The main application we give is the construction

of black-box chosen-ciphertext secure public-key encryption from weaker general as-

sumptions. (“Black-box” means that the specific code implementing the trapdoor

function is not used in the construction, which typically incurs a huge efficiency

cost.) Namely, we show such a construction of chosen-ciphertext secure public-key

encryption from adaptive trapdoor functions. We then show that adaptive trapdoor

ix



functions can be realized from the recently introduced notions of lossy trapdoor func-

tions by Peikert and Waters [68] and correlated-product secure trapdoor functions by

Rosen and Segev [72]. In fact, by extending a recent result of Vahlis [76] we show

adaptivity is strictly weaker than the latter notions (in a black-box sense). As a con-

sequence, adaptivity is the weakest security property of trapdoor functions known to

imply black-box chosen-ciphertext security. Additionally, by slightly extending our

framework and considering “tag-based” adaptive trapdoor functions, we obtain ex-

actly the chosen-ciphertext secure encryption schemes proposed in [68, 72], thereby

unifying them, although the schemes we obtain via adaptive trapdoor functions are

actually more efficient. Finally, we show that adaptive trapdoor functions can be

realized from a (non-standard) computational assumption on RSA inversion, lead-

ing to a very efficient RSA-based chosen-ciphertext secure encryption scheme in the

standard model.
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CHAPTER I

INTRODUCTION

A central thrust of modern cryptography is studying stronger security notions for

cryptographic primitives, providing definitions, constructions, and applications. Typ-

ically, this is done for “higher-level” cryptographic primitives, such as encryption

or digital signature schemes. In this thesis, we instead pursue such a thrust for a

“lower-level” cryptographic primitive, namely trapdoor functions. Here the distinc-

tion between “higher-level” and ”lower-level” primitives is that the latter are usually

simpler and the former construted out of the latter. We find that a study of stronger

security notions for trapdoor functions is both timely from a practical perspective,

as it provides notions that are useful in emerging applications and computing envi-

ronments, as well as foundationally interesting, raising natural theoretical questions

which, somewhat surprisingly, have not been studied before.

1.1 Background on Trapdoor Functions

Trapdoor functions. The notion of a trapdoor function forms a cornerstone of

modern cryptography. Trapdoor functions were introduced in the landmark paper

of Diffie and Hellman [34], which put forward the concept of public-key cryptogra-

phy. The most well-known realization of this concept was given several years later by

Rivest, Shamir, and Adleman [71], based on modular arithmetic. Informally, a trap-

door function is a (injective) function that is easy for anyone evaluate in the forward

direction, but for which evaluation in the backward direction requires a secret input

called the trapdoor.
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One-wayness. More specfically, the classical security notion for trapdoor functions

is called one-wayness. Intuitively, one-wayness means that given a point in the range

(but not the trapdoor!), it is hard to figure out the preimage. Note that the preimage

always exists in an absolute sense, so “hard” here refers to computational hardness,

i.e., that computing it requires an infeasibly long period of time. (This distinction is

akin to that between ontological and epsitemological existence in philosophy.) One

immediately sees, however, that there some subtleties in how one-wayness is formal-

ized. In particular, inversion cannot be computationally hard for every point in the

range. Indeed, consider the algorithm that just outputs some fixed point in the do-

main. Then for some point in the range, this algorithm outputs the correct answer.

Instead, one-wayness is formalized as saying that inversion is hard with high proba-

bility over the random choice of a point in the range. (One should think of this point

as sampled by first choosing a random point in the domain and then applying the

function.)

Application to encryption. Diffie and Hellman suggested trapdoor functions for

use as public-key encryption schemes directly. That is, the encryption of a message is

its image under the trapdoor function. Early on, however, Lipton [56] and Goldwasser

and Micali [47] raised serious objections to such usage. Specifically, despite their

power, it was noticed that trapdoor functions have certain “undesirable” properties

for use as an encryption scheme. In particular, trapdoor functions such as RSA [71]

leak partial information about their input. That is, given a random point in range,

it may be hard to compute the preimage, but it may very well be feasible to recover

some information about it. (In the specific case of RSA, the Jacobi symbol of the

input is leaked.) Additionally, while trapdoor functions may be hard to invert over

a random choice from the entire range, they may in fact be easy to invert over a

random choice from a subset of the range, say the points whose bit representation

forms ASCII character text.
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1.2 Motivation for Stronger Security Notions

Goldwasser and Micali proposed addressing the weaknesses of using trapdoor func-

tions for encryption by using probabilistic encryption instead. In a probabilistic en-

cryption scheme, the encryption algorithm generates fresh random coins each time a

message is encrypted. (So, encryption is now one-to-many, but decryption still re-

covers the unique preimage.) Indeed, the notion of semantic security for encryption

they put forward — which roughly says that given the encryption of any message it

is hard to guess any function of that message — inherently requires the scheme to be

probabilistic. However, good randomness is not always easy to come by in practice,

especially on resource constrained devices. Moreover, when securing legacy protocols,

using randomness for encryption may result in an unacceptable increase to ciphertext

length. It thus becomes an interesting question to what extent randomness is actu-

ally necessary for good encryption. In particular, could not it be possible to design

a trapdoor function that hides all partial information about its input, without using

randomness?

Additionally, using a trapdoor function for encryption turns out to provide some

attractive properties in emerging applications. When thinking of cryptography, many

might think of the classical problem of secure communication over an public channel,

where Alice wants to communicate a private message to Bob, but Eve is sitting on

the wire and can read any transmission she sends. With the rise of new computing

environments such as cloud computing, however, the situation can be much more

complicated. For instance, Bob may not store any of his data locally, but rather

on a remote service that he asks only for pieces of his data as needed. Thus, it is

desirable for the remote service to be able to efficiently process an encrypted search

query from Bob. In the database community, this setting is known as an outsourced

database or database-as-service [49], and how to integrate it with encryption is of

increasing practical interest (see, e.g., [48, 51]). Or, encryption might be used for files

3



in a distributed file system, such as the Tahoe file system [1]. An important property

of such systems is being able to detect duplicate files efficiently, in order to avoid

wasted space. (The problem of designing an encryption scheme that allows this was

first introduced in [2].) Since the same plaintext is encrypted to the same ciphertext,

using a trapdoor function rather than a probabilistic encryption scheme provides the

needed functionalities in these applications. In the first case, the remote service is

able to index Bob’s encrypted files in a standard data structure, such that if Bob

submits an encrypted file the server can locate it (and any associated data) in the

data structure efficiently. Similarly, in the second case duplicate files can be detected

efficiently by the system.

Finally, motivation for studying strengthenings to one-wayness comes from the

stronger security properties desired from higher-level cryptographic primitives. His-

torically, one-way trapdoor functions played a central role in the construction of se-

mantically secure encryption; in particular, it was shown that such a scheme could be

constructed in a simple, black-box way from any one-way trapdoor function [15, 46].

Here “black-box” means that any trapdoor function will do, and moreover the con-

struction does not depend on the implementation details of the latter (which typically

incurs a huge efficiency cost).

However, semantic security only captures privacy against a passive adversary. In

practical applications, adversarial parties often have considerably more power. For

example, they may be able to inject their own packets into the network based on

observed communication and see how the other parties react. This might help them

learn what encrypted messages the latter are sending. A stronger notion of security

capturing such chosen-ciphertext attacks — which additionaly allows the adversary to

ask for the decryptions of some ciphertexts of its choice — was introduced by Rackoff

and Simon [69], and has since become the “gold standard” for security of encryption.

Constructing encryption schemes secure against chosen-ciphertext attacks seems
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to be much harder than sematically secure encryption. So far, cryptographers have not

found any generic construction (black-box or otherwise) based on one-way trapdoor

functions. Intial constructions were instead based on more exotic objects called “non-

interactive zero-knowledge proofs” [63], and then came more practical schemes from

number theoretic assumptions, starting with [28]. However, Peikert and Waters [68],

and subsequently Rosen and Segev [72], recently proposed novel strengthenings to the

notion of one-wayness for trapdoor functions and showed that these do yield simple,

black-box constructions of chosen-ciphertext secure encryption. Still, an underlying

“theory” of these proposed strengthenings seems lacking, and it is not clear whether

weaker properties of a trapdoor function would suffice for such a construction. (We

stress that, while this motivates looking at weaker properties than lossiness or security

under correlated products, we are still interested in notions stronger than classical

one-wayness.)

1.3 Our Goals and Approach

Our goal is to study strengthenings to the classical notion of one-wayness for trapdoor

functions. Specifically, we consider the following (informal) ways in which the notion

of one-wayness may be strengthened:

Input entropy: The input on which the function is evaluted may be drawn from a

non-uniform distribution.

Input correlations: The adversary may be given the evaluation of the function on

multiple, related inputs.

Information hiding: It should be hard for the adversary to guess even “partial

information” about the function’s input.

Adaptivity: The adversary may have access to an inversion oracle for the function,

which it may query on some points in the range.
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We would like to know how these properties can be defined, whether they can be

achieved, and what applications they have. Our approach to studying these questions

is based on provable security, the foundations of which were laid by Blum, Goldwasser,

Micali, and others in the 1980s (see, e.g., [15, 47]). At a high level, there are two

phases of this approach, which we may call definitional and constructive.

In the definitional phase, we first provide a syntactic definition of the type of object

we want to study, i.e., the algorithms that comprise it. This allows us to delineate

the design space. We then give a correctness definition, i.e., the functionality that

these algorithms should fulfill for their intended usage. Finally, we design a security

definition or experiment involving an adversary against a candidate implementation of

the object. In this definition, the adversary is allowed to interact with the candidate

implementation in certain ways, and we define by what outcomes the adversary is

said to “win.” Such outcomes are meant to capture a security breach.

In the constructive phase, we design a realization of this object for which we

can prove that it meets our definitions. However, we typically cannot prove an object

meets the security condition unconditionally; even the existence of a one-way function

implies P ̸= NP, a long-standing open problem in complexity theory. Therefore, we

prove conditional security, based on the assumption that some computational problem

is intractible. In other words, a security proof is a reduction showing that a successful

adversary against the realization can be used to solve the underlying computational

problem.

Classically, the treatment of security was asymptotic; security of a cryptographic

object was formulated as no “probabilistic polynomial-time” adversary being able to

win in the security experiment with “non-negligible” probability. In this thesis, we

follow a more precise approach advocated by Bellare and Rogaway in the 1990s (see,

e.g., [12]) where we do not define what security means formally. Rather, our security
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theorems are “concrete,” meaning they explicitly relate the amount of resources con-

sumed by a given adversary to the amount of resources needed to solve the underlying

computational problem via our reduction. In particular, this allows practitioners to

determine the values of the scheme’s parameters needed to ensure security in a given

appliction.

Another component of their approach we use in some cases is the random oracle

model [11]. The random oracle model is a model of computation in which all parties

have access to one or more oracles that implement truly random functions. One

first carries out the design of schemes and security proofs in this model, and then

to implement the scheme in practice one heuristically “instantiates” the oracles in

certain ways using cryptographic hash functions like SHA1. Note that there is no

formal evidence that the resulting scheme is secure, which is why the instantiation is

a heuristic. In particular, a line of work starting with Canetti et al. [23] has identified

certain (contrived) schemes that are secure in the random oracle but but trivially

insecure under any instantiation. Therefore, the random oracle model must be used

with care. When we use the random oracle model, we pay particular attention to how

we are using it and what we are able to accomplish without it.

1.4 Results

We present our results along two central threads. First, we introduce a notion

called deterministic encryption, which, intuitively, is public-key encryption that is

“as-secure-as-possible” subject to the constraint that the encryption algorithm not

use randomness. (Note that, syntactically, deterministic encryption is thus the same

thing as a trapdoor function, but we use the term “encryption” to emphasize its

intended usage.) This notion has applications we already mentioned, namely fast

equality search on encrypted data and securing legacy protocols. Moreover, follow-up

work to ours [6] explored the application of our notion to “hedging” probabilistic

7



encryption schemes against bad randomness.

Second, we introduce a notion of adaptivity for trapdoor functions, which roughly

says that the function should remain one-way even if the adversary is allowed to ask for

the inverse of some points in the range. The main application is to the construction of

efficient, black-box chosen ciphertext secure (probabilistic) encryption. In particular,

our notion of adaptivity serves to weaken the general assumptions known to imply

the latter and unify prior schemes.

1.4.1 Results on Deterministic Encryption

A security definition. We first define a security notion deterministic encryption

should achieve. We provide a semantic-security style notion called DET-CPA, namely

one that asks that no partial information about the plaintexts is leaked by encryption,

while taking into account two inherent limitations of deterministic encryption. First,

no privacy is possible if the plaintext is known to come from a small space. Indeed,

knowing that c is the encryption under public key pk of a plaintext x from a set

X, the adversary can compute the encryption cx of x under pk for all x ∈ X, and

return as the decryption of c the x satisfying cx = c. We address this by only

requiring privacy when the plaintext is drawn from a space of large min-entropy.

Second, and more subtle, is that the ciphertext itself is partial information about

the plaintext. We address this by only requiring non-leakage of partial information

when the plaintext and partial information do not depend on the public key. This is

reasonable because in real life public keys are hidden in our software and data does

not depend on them. Our definition also explicitly models privacy for multiple related

messages, requiring that each individual message has large min-entropy. Additionally,

it extends to chosen-ciphertext security by giving the adversary a decryption oracle;

however, we just address chosen-plaintext security for now, leaving chosen-ciphertext

security for the part of the thesis about adaptive trapdoor functions.
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A generic construction in the RO model. We next turn to constructions

meeting our new notion. Our first construction is generic and natural: Determin-

istically encrypt plaintext x by applying the encryption algorithm of a randomized

scheme but using as coins a hash of (the public key and) x. We show that this

“Encrypt-with-Hash” deterministic encryption scheme is DET-CPA secure in the ran-

dom oracle (RO) model of [11] assuming the starting randomized scheme is IND-CPA

secure. We note that a similar idea was used by [8] to show that IND-CPA secure

randomized encryption scheme implies one-way trapdoor functions in the RO model;

our results show that via this technique we can actually achieve a much stronger

security notion.

A length-preserving construction in the RO model. Our second construc-

tion is an extension of RSA-OAEP [12] that we call RSA-DOAEP (“D” for determinis-

tic). Unlike OAEP, the padding transform is deterministic, using part of the message

in place of the randomness in OAEP, and uses three Feistel rounds rather than the two

of OAEP. RSA-DOAEP is proven DET-CPA secure in the RO model assuming RSA

is one-way. This construction has the attractive feature of being length-preserving.

(The length of the ciphertext equals the length of the plaintext.) This is important

when bandwidth is expensive —senders could be power-constrained devices— and for

securing legacy code.

An indistinguishability-based notion. Towards constructing deterministic en-

cryption schemes in the standard model, we next revisit our DET-CPA security no-

tion. The DET-CPA security notion captures our intuition about security of deter-

minsitic encryption well but is difficult to work with. Moreover, having alternative

but equivalent definitions of security increases our confidence that we have the “right”

one. Following Goldwasser and Micali [47], who in addition to semantic security for-

mulated an indistinguishability-based notion for probabilistic encryption that was

later shown equivalent [59], we would like to find a simpler indistinguishability-based
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definition of security for deterministic encryption. Fortunately, Dodis and Smith [38]

already formulated such a definiton in the context of information-threoretically se-

cure, one-time symmetric encryption for high-entropy messages, which we can adapt

straightforwardly to our context. The definition, which we call DH-CPA (for “distri-

bution hiding”), asks that it be hard to distinguish the encryptions of two messages

drawn from any two high min-entropy distrbutions on the plaintext space, respec-

tively. We prove that DET-CPA security is equivalent to DH-CPA security for plain-

texts of slightly lower min-entropy. Note that this entropy loss is in some sense

inherent, since the definitions certainly cannot be equivalent for uniformly random

messages (in this case, every scheme is trivially DH-CPA secure).

Single or multiple messages. We also examine relations between single and

multiple-message security for deterministic encryption. In the classical setting of

probabilistic encryption, a hybrid argument proves equivalence of secuity in these

cases [4]. This hybrid argument fails in the case of deterministic encryption, how-

ever, and in fact we show the two definitions are not equivalent. Thus, in general

we must explicitly model the encryption of multiple messages, and it also becomes

interesting to consider weaker variants of the definition that relax the requirements

on the message distributions. In particular, Fehr [41] has shown that the equivalence

between security for single and multiple messages is recovered when multi-message

security is considered for block-sources, that is, where each message has sufficient

“fresh” entropy conditioned on the others. We also consider q-bounded determinis-

tic encryption, where at most q arbitrarily correlated messages are encrypted. (Our

above-mentioned counter-example shows single-message and 2-bounded determinis-

tic encryption are inequivalent; we conjecture that q-bounded and (q + 1)-bounded

deterministic encryption are also inequivalent.)

A construction from “robust” hardcore functions. The DH-CPA notion
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gives us a handle on how to construct deterministic encryption schemes in the stan-

dard model. To this end, we introduce a new notion we call a “robust” hardcore

function. Recall that a hardcore function [15] of a trapdoor function is a function

of the input whose output is indistinguishable from random, even given the image

of the input under the trapdoor function. By “robust” we means that that hardcore

function remains hardcore even if the entropy of the input is slightly reduced. We

use this to give a generic construction of DET-CPA secure deterministic encryption

from certain trapdoor functions. The scheme is similar to the Encrypt-with-Hash RO

model scheme. Specifically, one encrypts plaintext x by encrypting under a random-

ized scheme the image of x under the trapdoor function, using the hardcore function

applied to x as the coins. Using our above-mentioned equivalence between DH-CPA

and DET-CPA, this “Encrypt-with-Hardcore” scheme is shown DET-CPA for any

distribution on the input for which the trapdoor function admits a robust hardcore

function of appropriate output length.

Instantiations. We show that in the case of a single input (or, equivalently, block-

sources [41]), a suitable hardcore function can be obtained from exponentially-hard

one-way trapdoor permutations or trapdoor functions, via the Goldreich-Levin func-

tion [46]. (Trapdoor permutations require less hardness; in particular, in the case

of standard one-way trapdoor permutations we obtain a construction for nearly uni-

form inputs.) We also consider lossy trapdoor functions, introduced by Peikert and

Waters [68]. Intuitively, lossy trapdoor functions have a description that is indistin-

guishable from that of a function that loses information about its input (i.e., has a

bounded range). Peikert and Waters showed that a universal hash function is hard-

core for a lossy trapdoor function, and we show that it additionally has the prop-

erties we need here. We thereby obtain instantiations of the Encrypt-with-Harcore

scheme under these assumptions secure for encrypting a single high-entropy message

(or block-sources [41]).

11



Improved constructions from lossy trapdoor functions. In fact, based on

lossy trapdoor functions we give improved constructions, both in terms of efficiency

and the plaintext distributions for which they achieve security. The improvements

are based on a paradigm introduced by Dodis and Smith [38], who showed that

in addition to producing a uniform output randomness extractors actually hide all

partial information about their input. Indeed, this follows in our context from the

DH-CPA and DET-CPA equivalence. To apply this idea to deterministic encryp-

tion, we use lossy trapdoor functions where the lossy mode has some randomness

extraction property. For example, if the lossy mode is a universal hash, then security

under our DH-CPA notion follows by the Leftover Hash Lemma [50]. (The latter

says that any small-range universal hash “smoothes out” any high-entropy source

to nearly uniform on the range.) To use standard lossy trapdoor functions, we can

first pre-process the input plaintext with a pairwise independent permutation and

appeal to the “Crooked” Leftover Hash Lemma [37] for security, which says that a

pairwise-independent permutation composed with any small range function f looks

like f applied to uniform input. By strengthening to the Crooked Leftover Hash

Lemma, we show that to acheive q-bounded security (i.e., security for up to q ar-

bitrarily correlated high min-entropy plaintexts) we can use a 2q-wise independent

permutation instead (More generally, the resulting construction achieves security for

q-block-sources, where every q messages “fresh” entropy is introduced.) However, per-

mutations with independence greater than 3-wise are not known to exist. Fortunately,

Kaplan et al. [52] give good constructions of almost q-wise independent permutations

that we show suffices for our purposes.

Our high-level results on determinsitic encryption are summarized in Figure 1. In

the figure, dashed implications are trivial. Regarding assumptions, “IND-CPA+RO”

means IND-CPA secure encryption and in the RO model, “LTDF” means lossy trap-

door functions, and “EXH-TDF” means exponentially-hard (in terms of one-wayness)
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IND-CPA + RO LTDF EXH-TDF

DH-CPA DH-CPA-q DH-CPA-1

DET-CPA DET-CPA-q DET-CPA-BS

[41]

/

Figure 1: Relations between cryptographic assumptions and notions of security for
deterministic encryption.

trapdoor function. For simplicity the figure does not consider chosen-ciphertext at-

tacks.

1.4.2 Results on Adaptive Trapdoor Functions

Adaptivity for trapdoor functions. Our second strengthening to one-wayness

for trapdoor functions is a notion we call adaptive trapdoor functions. Loosely speak-

ing, adaptive trapdoor functions remain one-way even when the adversary is given

access to an inversion oracle, which it may query on points other than its challenge

(the point it needs to invert). We also introduce a natural extension we call tag-based

adaptive trapdoor functions, which in addition to the normal input also take a tag.

For tag-based adaptive trapdoor functions, the adversary may query its oracle on any

point, but on a tag other than the challenge one.

Chosen-ciphertext security. We next give a black-box construction of chosen-

ciphertext secure encryption from adaptive trapdoor functions and from adaptive

tag-based trapdoor functions. While constructing chosen-ciphertext secure public-

key encryption from tag-based adaptive trapdoor functions is straightforward, con-

structing the former from adaptive trapdoor functions turns out to be more subtle.

Namely, we first obtain a such a scheme for a single-bit message using the hardcore

13



bit of the trapdoor function, but unlike for the classical constructions of semantically-

secure encryption based on one-way trapdoor functions [15] it is important here that

the ciphertext not contain the message xor’ed with the latter; rather the message is

encrypted as the hardcore bit itself. By a recent result of Myers and Shelat [61], this

construction implies a black-box many-bit scheme as well. On the other hand, hybrid

encryption (where the public-key encryption scheme is only used to encrypt a sym-

metric key, the latter being used to encrypt the actual message) permits a much more

efficient direct construction of such a scheme in the case that the adaptive trapdoor

function is a permutation or has linearly many simultaneous hardcore bits.

Adaptive trapdoor functions in the RO model. In the random oracle

model [11], the notions of adaptive one-wayness and one-wayness are equivalent in

the sense that each such function can be constructed from the other. In fact, we show

that the Encrypt-with-Hash determinstic encryptions scheme is DET-CCA, which is a

strengthening to the notion of adaptive one-wayness, if its starting randomized scheme

is only IND-CPA but meets a minor extra condition, namely that no ciphertext oc-

curs with too high a probability over the choice of the randomness for encryption.

This turns out to be a quite mild condition satisfied by all practical schemes.

Adaptive trapdoor functions in the standard model. To construct adap-

tive trapdoor functions in the standard model, we examine their relation to the notions

of correlated-product [72] and lossy trapdoor functions [68]. Intuitively, correlated-

product trapdoor functions remain one-way even if the adversary sees many indepen-

dent instances of the function evaluated on the same random input. Inspired by the

constructions of chosen-ciphertext secure public-key encryption in [68, 72] (which are

based on earlier work by Dolev et al. [39]), we show simple, black-box constructions

of both adaptive trapdoor functions and adaptive tag-based trapdoor functions from

correlated-product trapdoor functions. Since as shown in [72, 60], lossy trapdoor
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functions imply the latter, this also gives us adaptive trapdoor functions from lossi-

ness. However, we go on to show that adaptivity is sufficiently general to allow a

much more efficient direct constructions using an all-but-one trapdoor functions, an

extension to lossy trapdoor functions introduced in [68] as well. In fact, we show this

construction achieves a stronger notion of “adaptive lossiness,” which, when plugged

into our constructions of deterministic encryption based of lossy trapdoor functions,

serves to “upgrade” these schemes from chosen-plaintext to chosen-ciphertext security

without random oracles.

Unifying prior work. Additionally, applying our generic construction of chosen-

ciphertext secure encryption from adaptive tag-based trapdoor functions to the above

constructions yields precisely chosen-ciphertext secure shemes of [72] and [68], respec-

tively. This means that these works were implicitly constructing adaptive tag-based

trapdoor functions, and that the latter notion “abstracts out” a particular aspect of

their constructions not formalized before. This unifies and clarifies their schemes from

a conceptual standpoint. It also leads to optimized schemes based on a transforma-

tion proposed by Boneh et al. [17]. A noteworthy feature of the optimized schemes is

that they are fully “witness-recovering” as defined in [68]; that is, via the decryption

process the receiver is able to recover all of the randomness used by the sender for

encryption. (The original constructs of [68, 68, 72] technically do not achieve this

since, as the authors note, the receiver does not recover the coins used to generate

one-time signature keys in their scheme.)

A black-box separation from correlated-products. Recently, Vahlis [76]

showed that there is no black-box construction of correlated-product trapdoor func-

tions from one-way trapdoor functions. We next observe that his result extends to rule

out a black-box construction of the former from adaptive trapdoor functions as well,

by using the same “breaking” oracle. This does not immediately rule out a black-box
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construction of correlated-product trapdoor functions from tag-based adaptive trap-

door functions, but we also rule this out by giving a construction of tag-based adaptive

trapdoor functions from exponentially-hard adaptive trapdoor functions (see below);

the latter is separated from correlated-product trapdoor functions by our extension

of Vahlis’s result as well. Combined with the above-mentioned constructions, this

means that, surprisingly, adaptive trapdoor functions and tag-based adaptive trap-

door functions are strictly weaker than correlated-product trapdoor fuctions and lossy

trapdoor functions, cf. Figure 2. In the figure,→ is an implication while ̸→ is a black-

box separation. Dashed lines indicate trivial implications.s The considered notions

for TDFs are extractable TDF (EX-TDF), lossy TDF, correlated-product TDF (CP-

TDF), one-more TDF (OM-TDF), and one-way TDF (OW-TDF). Whether adaptive

trapdoor functions can be shown weaker than standard (one-way) trapdoor functions

remains an interesting open question.

Relations between tag-based and non-tag-based adaptivity. To better

understand the relation between adaptive trapdoor function and adpative tag-based

trapdoor functions, we note that tag-based trapdoor functions can be viewed as trap-

door functions where part of the input is output in the clear. Using this observation,

we show that adaptive trapdoor functions and adaptive tag-based trapdoor functions

are equivalent under exponential hardness, meaning an exponentially-hard version

of one primitive implies an exponentially hard version of the other. Whether the

equivalence holds in general remains open.

Adaptivity from RSA. Finally, we show that tag-based adaptive trapdoor func-

tions are realizable from specific assumptions not known to imply correlated-product

trapdoor functions. Namely, we consider the “instance-independent” RSA assump-

tion (II-RSA) introduced (in a more general form) by Paillier and Villar [66]. Roughly,

the assumption is that solving an RSA challenge y = xe mod N remains hard even

when the adversary is given access to an inversion oracle that on input (y′, e′) returns
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EX-TDF

Lossy TDF CP-TDF ATDF OM-TDF OW-TDF

CCA PKE

/
[72]

/

/[76]

Figure 2: Relations between the various security notions for trapdoor functions and
CCA-secure PKE, centered around adaptive trapdoor functions.

y′1/e
′
mod N , where e ̸= e′ are primes. We show that II-RSA gives rise to a tag-based

adaptive trapdoor functions. This also leads to a very efficient chosen-ciphertext

secure RSA-based public-key encryption scheme in the standard model.

1.5 Related and Follow-Up Work

Prior to our intial work on deterministic encryption, we are not aware of any general

study of stronger notions of security for trapdoor functions.1 However, an earlier line

of research looked at properties stronger than one-wayness that seem to be satisfied

by plain RSA. In particular, Bellare et al. [10] defined the “one-more RSA” problem in

order to argue security of Chaum’s blind signature scheme. The “one-more” property

can actually be considered a general security notion for trapdoor functions, although

the authors did not treat it at this level of generality. Additionally, our work treats

properties of trapdoor functions that are not satisfied by “conventional” schemes like

plain RSA.

In the symmetric setting, deterministic encryption is both easier to define and to

achieve than in the asymmetric setting. Consider the experiment that picks a random

challenge bit b and key K and provides the adversary with a left-or-right oracle that,

given plaintexts x0, x1 returns the encryption of xb under K. Security asks that the

1The works of [68, 72] came afterwards.
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adversary find it hard to guess b as long as its queries (x1
0, x

1
1), . . . , (x

q
0, x

q
1) satisfy the

condition that x1
0, . . . , x

q
0 are all distinct and also x1

1, . . . , x
q
1 are all distinct. To the best

of our knowledge, this definition of privacy for deterministic symmetric encryption

first appeared in [9]. However, it is met by a pseudorandom permutation and in this

sense deterministic symmetric encryption goes back to [57].

Our work on deterministic encryption builds on that on perfectly one-way proba-

bilistic hash functions (POWHFs) [21, 25] and information-theoretically secure one-

time symmetric encryption (also called “entropic security”) [73, 38]. These works also

consider security notions that hold for high min-entropy inputs. The first however

cannot be met by deterministic schemes, and neither handle the public-key related

subtleties of deterministic public-key encryption (namely that we cannot protect func-

tions of the message depending on the public key) or correlated messages.

Regarding the application to efficient search on encrypted data, we note that

Boneh et al. [18] introduced an earlier notion of “public-key encryption with keyword

search” designed for applcations such as secure email routing. When applied to the

database setting it results in linear time (in the size of the database) search, whereas

a large body of work in the database community indicates they want more efficient

solutions (see e.g. [48, 51]), which deterministic encryption addresses.

Our work on adaptive trapdoor functions builds on the work of Pandey et al. [67],

who introduced a notion they called “adaptive one-way functions,” although their

notion would be more accurately referred to as adaptive tag-based one-way functions.

Besides the obvious difference of not having a trapdoor (the inversion oracle in their

security experiment is unbounded), their notion differs from ours in that it does

not have a public key. This is crucial for the applications of [67] to non-malleable

commitment but also makes it much harder to construct. Indeed, they are not known

to be realizable based on any standard assumptions.
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Additionally, in [22] Canetti and Dakdouk define the notion of extractable trap-

door functions, which essentially says that no efficient adversary can compute f(x)

without “knowing” x (similar to the notion of plaintext-awareness for probabilistic

encryption [12]). This notion implies adaptivity but unfortunately no instantiation

based on standard assumptions is known (the authors only provide constructions of

extractable one-way functions, without a trapdoor).

Following our work on deterministic encryption, Bellare et al. [6] explored the

applications of our notion to designing “hedged” public-key encryption, a proabilistic

encryption scheme that “falls back” to determinsitic-encryption style security when

randomness is buggy. This was motivated in part by a bug in the Debian Linux version

of OpenSSL that caused the system to generate predictable randomness [79]. Addi-

tionally, Dent et al. [32] applied our notions to the design of “confidential” signature

schemes, which can be combined in an encrypt-and-sign way with digital signature

schemes such that the message remains hidden.

Following our work on adaptive trapdoor functions, Wee [77] introduced a notion

of adaptive trapdoor relations, which are like adaptive trapdoor functions except the

function itself is not efficiently computable but rather admits efficient sampling of a

random domain point together with its image. Wee shows this notion also implies

black-box chosen-ciphertext secure public-key encryption and furthermore admits in-

stantiations from standard computational assumptions like RSA and computational

Diffie-Hellman.

1.6 Organization and Credits

The remainder of this thesis is organized as followed. Chapter 2 introduces the no-

tation and conventions we will use throughout, as well as basic cryptographic and

statistical notions we will need. Chapter 3 introduces determinisitic encryption, pro-

viding a security definition and constructions in the random oracle model. Chapter 4
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studies more foundational issues for deterministic encryption, providing definitoinal

equivalences and constructions without random oracles. Chapter 5 studies adaptive

trapdoor functions and their applications to chosen-ciphertext security.

The material in Chapter 3 is based on joint work with Mihir Bellare and Alexandra

Boldyreva [5]. The material in Chapter 4 is based on joint work with Alexandra

Boldyreva and Serge Fehr [16] (which itself builds on an earlier work of Fehr [41])

and with Mihir Bellare, Marc Fischlin, and Thomas Ristenpart [7]. It additionally

draws on material from a manuscript of ours [64] that generalizes and strengthens

these results and is currently unpublished. The material in Chapter 5 is based on

joint work with Eike Kiltz and Payman Mohassel [54].

We take full responsibility for any errors appearing in this thesis. The reader is

encouraged to consult the public versions of any relevant publications for possible

clarifications or corrections.
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CHAPTER II

PRELIMINARIES

In this chapter, we collect the notation and conventions we will use throughout the

thesis as well as useful statistical and cryptographic notions.

2.1 Notation and Conventions

An adversary is either an algorithm or a tuple of algorithms. Unless otherwise indi-

cated, an adversary or algorithm may be randomized. By convention, the running-

time of an adversary includes both its actual running-time and the time to run its

overlying experiment. We denote by N the set of natural numbers and by Z the set

of integers. For n ∈ N, we denote by Zn the ring of integers modulo n and by [n] the

set {1, . . . , n}. The security parameter is denote by k, and 1k denotes the string of k

ones. We sometimes surpress dependence of variables on k for readability.

Algorithmic notation. If A is an algorithm then x
$← A(. . .) denotes that x is

assigned the output of running A on the elided inputs and a fresh random tape, while if

S is a finite set then s
$← S denotes that s is assigned a uniformly random element of S.

We often use the abbreviation x1, . . . , xn
$← A(. . .) for x1

$← A(. . .) ; . . . ; xn
$← A(. . .),

for any n ∈ N, and similarly for sets. If A is deterministic then we drop the dollar

sign above the arrow. We let “A(. . .)⇒ y” denote the event that A outputs y in the

above experiment.

Strings. We denote by {0, 1}∗ the set of all (binary) strings, and by {0, 1}n the

set of strings of length n, for any n ∈ N. If x is a string then |x| denotes its length

in bits and x[i . . . j] denotes bits i through j of x, for any 1 ≤ i ≤ j ≤ |x|. By

x1∥ · · · ∥xn we denote an encoding of strings x1, . . . , xn from which x1, . . . , xn are
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uniquely recoverable. We denote by x⊕ y the bitwise exclusive-or (xor) of equal-

length strings x, y. An n-bit string may also be interpreted as an n-dimensional

vector of GF (2). In particular, for two n-bit strings x, y we denote by ⟨x, y⟩ the

inner-product of x and y over GF (2).

Vectors. Vectors are denoted in boldface, for example x. If x is a vector then

|x| denotes the number of components of x and x[i] denotes its ith component, for

any 1 ≤ i ≤ |x|. For convenience, we extend algorithmic and functional notation to

operate on a vector of inputs component-wise. That is, if A is an algorithm and x,y

are vectors then z
$← A(. . . ,x, . . . ,y, . . .) denotes that z[i]

$← A(. . . ,x[i], . . . ,y[i], . . .)

for all 1 ≤ i ≤ |x|, where the elided inputs are fixed across all invocations.

2.2 Statistical Notions

We write PX for the distribution of random variable X and PX(x) for the prob-

ability that X puts on value x, i.e., PX(x) = P[X = x]. The min-entropy of

X is H∞(X) = − log(maxx PX(x)). The conditional min-entropy of X given Y

is defined as H∞(X|Y ) = − log(maxx,y PX|Y=y(x)). The average conditional min-

entropy of X given Y [36] is defined as H̃∞(X|Y ) = − log(
∑

y PY (y)maxx PX|Y=y(x)).

The statistical distance between random variables X and Y is given by ∆(X, Y ) =

1
2

∑
x |PX(x) − PY (x)|. If ∆(X, Y ) is at most ε then we say X, Y are ε-close and

write X ≈ε Y . The collision probability of random variable X is
∑

x PX(x)
2, and the

square of the 2-distance is D(X,Y ) =
∑

x

(
PX(x)− PY (y)

)2
. Note that for any ran-

dom variable X, Col(X) ≤ H∞(X). We also use that ∆(X, Y ) ≤ 1
2

√
|X | ·D(X, Y ),

which follows immediately from the Cauchy-Schwarz inequality.

t-wise independent functions. Let F : K ×D → R be a function. We say that

F is t-wise independent if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈ R

Pr
[
F (K, x1) = y1 ∧ . . . ∧ F (K, xt) = yt : K

$←K
]

=
1

|R|t
.
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In other words, F (K, x1), . . . , F (K, xt) are all uniformly and independently random

over R. 2-wise independence is also called pairwise independence. We say that F is

universal if for all distinct x1, x2 ∈ D

Pr
[
F (K,x1) = F (K,x2) : K

$←K
]

=
1

|R|
.

Note that universality is a weaker property than pairwise independence.

Leftover hash lemma. The classical Leftover Hash Lemma of H̊astad et al. [50]

says that a compressing univeral hash function “smoothes out” a high-entropy source

to essentially uniform.

Lemma 2.2.1. (Leftover Hash Lemma) [50] Let H : K ×D → R be a universal

function. Let X be a random variable over D. Then

∆
(
(K,H(K,X)), (K,U)

)
≤ 1

2

√
|R| · Col(X) ,

where K
$←K and U is uniform and independent on R.

2.3 Cryptographic Primitives

Public-key encryption. A public-key encryption scheme with plaintext-space

PtSp is a triple of algorithms Π = (K, E ,D). The key-generation algorithm K takes

input 1k to return a public key pk and matching secret key sk. We assume for

convenience that sk contains pk. The encryption algorithm E takes pk and a plaintext

m to return a ciphertext. The deterministic decryption algorithm D takes sk and a

ciphertext c to return a plaintext. We require that for all plaintexts m ∈ PtSp

Pr
[
D(sk, E(pk,m)) = m : (pk, sk)

$←K(1k)
]

= 1 .

In this thesis, we deal almost exclusively with public-key encryption. Therefore, when

we say “encryption scheme” we mean “public-key encryption scheme.” Additionally,

we use the terms “message” and “plaintext” interchangeably.
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Chosen-plaintext security. Next we define security against chosen-plaintext

attack for encryption [47], which captures the intuition that no information about

the message is leaked from the ciphertext. To an encryption scheme Π = (K, E ,D)

and an adversary A = (A1, A2) we associate

Experiment Expind-cpa
Π,A (k):

b
$←{0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state)
$← A1(pk)

c
$←E(pk,mb)

d
$← A2(pk, c, state)

If d = b return 1 else return 0

where we require A1’s output to satisfy |m0| = |m1|. Define the IND-CPA advantage

of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k)⇒ 1
]
− 1 .

Equivalently,

Adving-cpa
Π,A (k) = Pr

[
Expind-cpa

Π,A (k)⇒ 1 | b = 1
]
−Pr

[
Expind-cpa

Π,A (k)⇒ 1 | b = 0
]
.

Chosen-ciphertext security. Security against chosen-ciphertext attack [69] ad-

ditionally allows the adversary to submit decryption queries, capturing active attacks.

Let A = (A1, A2) be an adversary such that A2 has access to an oracle. To an en-

cryption scheme Π = (K, E ,D) and A we associate

Experiment Expind-cca
Π,A (k):

b
$←{0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state)
$← A1(pk)

c
$←E(pk,mb)

d
$← A

D(sk,·)
2 (pk, c, state)

If d = b return 1 else return 0
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where we require A1’s output to satisfy |m0| = |m1| and that A2 does not query c to

its oracle. Define the IND-CCA advantage of A against Π as

Advind-cca
Π,A (k) = 2 · Pr

[
Expind-cca

Π,A (k)⇒ 1
]
− 1 .

Equivalently,

Adving-cca
Π,A (k) = Pr

[
Expind-cca

Π,A (k)⇒ 1 | b = 1
]
− Pr

[
Expind-cca

Π,A (k)⇒ 1 | b = 0
]
.

It will sometimes be convenient for us to consider IND-CPA and IND-CCA adversaries

A = (A1, A2) that output vectors, meaning A1 outputs (x0,x1, state) and A2 takes

input (E(pk,xb), state). (Recall that E(pk,xb) is defined component-wise.) A hybrid

argument [4] implies security against such adversaries under the respective notions are

equivalent to security against one-message adversaries (In fact, a stronger equivalence

holds, where messages are chosen adaptively based on previously seen ciphertexts.)

Trapdoor functions and one-wayness. A trapdoor function generator is an

algorithm F that on input 1k outputs (f, f−1) where f is (the description of) an

injective function on {0, 1}k and f−1 is (a description of) its inverse. To a trapdoor

function generator F and inverter I we associate

Experiment Expowf
F ,I(k):

(f, f−1)
$←F

x
$←{0, 1}k

x′ $← I(f, f(x))

If x = x′ return 1 else return 0

Define the OWF advantage of I against F as

Advowf
F ,I(k) = Pr

[
Expowf

F ,A(k)⇒ 1
]
.

Hardcore bits and functions. Let hc be a function that takes as input a de-

scription of a function f and a point x ∈ {0, 1}k To a trapdoor function generator F ,

function hc, and distinguisher D we associate
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Experiment Exphcf
F ,hc,D(k):

b
$←{0, 1} ; (f, f−1)

$←F

h0 ← hc(f, x) ; h1
$←{0, 1}n

d
$←D(f, f(x), hb, r)

If d = b return 1 else return 0

For all k ∈ N, define the HCF advantage of A against F, hc as

Advhcf
F ,hc,A(k) = 2 · Pr

[
Exphcf

F ,hc,A(k)⇒ 1
]
− 1 .

Note that above we allow that hardcore function to depend on the description of the

TDF, which simplifies our exposition somewhat.

Goldreich-Levin function. The celebrated result of Goldreich and Levin [46]

provides a hardcore function for any one-way function (by first modifying the de-

scription of the function to be of a specific “padded” form). The output length of the

hardcore function depends on the computational hardness of inverting the one-way

function (i.e., the more resources required to invert it, the greater the length of its

hardcore function).

Namely, let F be a trapdoor function generator and letH : K×{0, 1}k → {0, 1}n be

a function. Define itsH-padded version F [H] that on input 1k returns (f,K), (f−1, K)

where (f, f−1)
$←F(1k) and K

$←K; evaluation is defined for x ∈ {0, 1}k as f(x) (i.e.,

evaluation just ignores K) and inversion is defined analogously. Define the length-i

Goldreich-Levin function GLi : {0, 1}i×k × {0, 1}k → {0, 1}i as

GLi(M,x) = Mx

where Mx is the matrix-vector product of M and x over Z2.

Theorem 2.3.1. (Goldreich-Levin Theorem [46]) Let F [GLi] be as defined above.

Let D be a distinguisher against GLi. Then there is a inverter I such that for all
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k ∈ N

Advhcf
F [GLi],GLi,D(k) ≤ 2i+3 ·Advowf

F ,I(k) . (1)

Furthermore, the running-time of I is the time for O(ε−4k3) executions of D where

ε = Advhcf
F [GLi],GLi,D(k).

Lossy trapdoor functions. A lossy trapdoor function (LTDF) generator [68] is

a pair LTDF = (F ,F ′) of algorithms. Algorithm F is a trapdoor function generator,

and algorithm F ′ outputs a (description of a) function f ′ on {0, 1}k. We call F the

“injective mode” and F ′ the “lossy mode” of LTDF respectively, and we call F “lossy”

if it is the first component of some lossy TDF. For a distinguisher D, define its LTDF

advantage against LTDF as

Advltdf
LTDF,D(k) = Pr

[
D(f)⇒ 1 : (f, f−1)

$←F
]
− Pr

[
D(f ′)⇒ 1 : f ′ $←F ′

]
.

We say LTDF has residual leakage s if for all f ′ output by F ′ we have |R(f ′)| ≤ 2s.

The lossiness of LTDF is ℓ = k − s.

RSA. An RSA trapdoor-permutation generator [71] is an algorithm F that on input

1k returns (N, e), (N, d) where N is the product of two distinct k/2-bit primes and

ed ≡ 1 mod ϕ(N). (Here ϕ(·) is Euler’s phi function, so ϕ(N) = (p− 1)(q − 1).)

Partial one-wayness of RSA. The RSA trapdoor permutation is widely believed

to be one-way. We also use a result of Fujisaki et al. [42] that one-wayness of RSA is

equivalent to what they call “partial one-wayness.” Partial one-wayness means that

it is hard to compute the last k0 bits of x for some k0. Namely, to a trapdoor function

generator F and inverter I we associate
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Experiment Exppowf
F ,I (k):

(f, f−1)
$←F

x
$←{0, 1}k

x′ $← I(f, f(x))

If x[n− k0 + 1 . . . k] = x′ return 1 else return 0

Define the POWF advantage of I against F as

Advpowf
F ,I (k) = Pr

[
Exppowf

F ,A (k)⇒ 1
]
.

Intuitively, the following lemma from [42] says that RSA is one-way if it is partial

one-way and k0 is large enough. (What [42] shows is actually more general, but we

only need a specific case.)

Lemma 2.3.2. (Partial One-Wayness of RSA) [42] Let RSA be an RSA trap-

door permutation generator with modulus length k1 and let I ′ be a partial one-way

adversary against RSA. Then there exists an inverter I against RSA such that

Advpowf
RSA,I′(k) ≤

√
Advowf

RSA,I(k) + 22k−4k0+10 + 2k−2k0+5 .

Furthermore, the running-time of I is at most twice that of I ′ plus O(k3).

2.4 Code-Based Game Playing

Our security analyses often employ the code-based game playing technique of [14].

We recall some game-related language and conventions from [14] that we will use.

A game consists of an Initialize procedure, procedures that respond to an adver-

sary’s oracle queries, and a Finalize procedure. For an example, see Figure 4. First,

the Initialize procedure executes, and its outputs, as given by the Return statement,

are passed as inputs to the adversary. Now the latter executes, oracle queries being

answered by the procedures for this purpose associated to the game. The output of

the adversary becomes the input to the Finalize procedure of the game. The output
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of the game is whatever is returned by the Finalize procedure. The boxed games

include the boxed statements in the code and the unboxed games do not.

We let “GA
i ⇒ s” denote the event that the output of Game Gi when executed

with an adversary A is s, and we let “GA
i sets bad ′′ denote that event that Game Gi

when executed with A sets the flag bad.

Both for the games and for the adversary, we adopt the convention that boolean

variables are automatically initialized to false and arrays begin everywhere undefined.

Two games G1, G2 are called identical-until-bad if their code differs only following

the setting of flag bad. Note that this is a purely syntactic condition. We use the

following lemma from [14].

Lemma 2.4.1. (Fundamental Lemma of Game-Playing [14]) Let Games G1, G2

be identical-until-bad. Then

Pr
[
GA

1 ⇒ s
]
≤ Pr

[
GA

2 ⇒ s
]
+ Pr

[
GA

1 sets bad
]
.

The lemma is quite useful in order to construct “game chains” that bound an

adversary’s advantage.
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CHAPTER III

DETERMINISTIC ENCRYPTION I

In this chapter, we introduce the notion of deterministic encryption. Deterministic

encryption can be viewed a strengthening of the standard notion of one-way trapdoor

functions that addresses the well-known deficiencies of the former as an encryption

scheme articulated by Goldwasser and Micali [47], to the extent possible without using

randomness in the encryption algorithm. Intuitively, deterministic encryption instead

draws upon message entropy to achieve security.

3.1 Deterministic Encryption and its Security

Let Π = (K, E ,D) be an encryption scheme. We say that Π is deterministic if E is

deterministic.

Our first task is to formulate a suitable security defintion for deterministic encryp-

tion. In the definition that follows, we do not actually require that the encryption

scheme be deterministic, but rather this is an important special case for us.

Let Π = (K, E ,D) be an encryption scheme. A DET-CPA adversary A =

(A0, A1, A2) against Π operates in three stages. First, A0 gets as input the secu-

rity parameter and outputs some state information state. Next, A1 gets as input

state and outputs a vector of messages x and a “test” string t. (We clarify that A1

does not update the state information.) Finally, A2 gets as input the public key pk, a

vector of ciphertexts c, and state, and ouptuts a “guess” string g. To an encryption

scheme Π = (K, E ,D) and a DET-CPA adversary A = (A0, A1, A2) we associate
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Experiment Expdet-cpa
Π,A (k):

b
$←{0, 1} ; state $← A0(1

k)

(x0, t0), (x1, t1)
$← A1(state)

c
$←E(pk,xb)

g
$← A2(pk, c, state)

If g = t return 1 else return 0

We require A1’s output to satisfy |x0| = |x1| and |x0[i]| = |x1[i]| for all 1 ≤ i ≤ |x0|.

Moreover, we require that x0[i1] = x0[i2] if and only if x1[i1] = x1[i2] for all 1 ≤

i1, i2 ≤ |x0|. (This reflects the fact that deterministic encryption leaks the equality

pattern of the plaintexts; in fact, when the encryption scheme is deterministic we may

assume without loss of generality that all the x0[i] are distinct.) Define the DET-CPA

advantage of A against Π as

Advdet-cpa
Π,A (k) = 2 · Pr

[
Expdet-cpa

Π,A (k)⇒ 1
]
− 1 .

Equivalently,

Advdet-cpa
Π,A (k) = Pr

[
Expdet-cpa

Π,A (k)⇒ 1 | b = 1
]
−Pr

[
Expdet-cpa

Π,A (k)⇒ 1 | b = 0
]
.

Permitted message distributions. In absence of additional restrictions on the

output distribution ofA1, it is clear that the definition is unachievable by deterministic

Π. To see this, consider A1 that outputs that outputs (0, 0) with probability 1/2 and

(1, 1) with probability 1/2. Then A2(pk, c) could return 0 if E(pk, 0) = c and 1

otherwise, giving A an advantage of 1/2. This reflects the fact that trial encryption

of candidate messages is always a possible attack when encryption is deterministic.

Thus, in applications we consider security relative to a particular class of DET-

CPA adversaries. In particular, we say that A has min-entropy µ(·) if H∞(Xi) ≥ µ

where Xi is the random variable with the distribution of x[i] over (x, t)
$← A1(state),

for all state output by A0 and all 1 ≤ i ≤ v where A1 outputs vectors of length v.
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Generalizing the above, a necessary condition for A to have advantage at most ε is

that its min-entropy is log 1/ε.

Access to the public key. If A0 or A1 were given pk, the definition would again

be unachievable for deterministic Π. Indeed, A1 could output (x, t) where x[1] is

chosen at random from {0, 1}k, |x| = 1, and t = E(pk,x). Then A2(1
k, pk, c) could

return c, and A would have min-entropy k but

Advdet-cpa
Π,A (k) ≥ 1− 2−k .

Intuitively, the ciphertext is non-trivial information about the plaintext, showing that

any deterministic scheme leaks information about the plaintext that depends on the

public key. Our definition asks that information unrelated to the public key not leak.

Note that this also means that we provide security only for messages unrelated to the

public key, which is acceptable in practice because normal data is unlikely to depend

on any public key. In real life, public keys are abstractions hidden in our software, not

strings we look at. However, this does reveal a limitation of deterministic encryption

that may not be obvious at first glance.

The state. Note that since A0 does not take input the public key, we can always

hardwire A1 and A2 with the “best” state value for A (i.e., which maximizes A’s

advantage). Thus, we may assume without loss of generality that a given DET-CPA

adversary A has “empty” A0 (meaning A0 outputs the empty string); we write such

an adversary as A = (A1, A2) to indicate this.1 However, allowing non-empty A0

greatly facilitates some proofs.

Single or multiple messages. The classical definitions explicitly only model the

encryption of a single plaintext, but a simple hybrid argument from [4] shows that

1Actually, in the random oracle (RO) model [11], where A0 is given access to the RO (see below),
this is unclear because the best state could depend on the values returned by the RO. However,
we show in Lemma 3.2.2 that against what we call “public-key respecting” schemes we may assume
without loss of generality that A0 does not make any RO queries. Since all our schemes are public-key
respecting, we may thus assume “empty” A0 even in the RO model.
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security when multiple plaintexts are encrypted follows. This hybrid argument fails

in our setting, and in fact the two versions are not equivalent, which is why we have

explicitly considered the encryption of multiple messages. We discuss this further in

Chapter 4 when we consider other definitional equivalences.

Chosen-ciphertext security. For simplicity, the definition of security given here

only treats chosen-plaintext security. Extending them to chosen-ciphertext security

is straightforward (essentially, A2 is given a decryption oracle). We further address

this notion, which we call DET-CCA, in Chapter 5.

Random oracle model. In the random (RO) oracle model [11], all algorithms,

both of the scheme and of the adversary, are given oracle access to the ROs. (In

the formal model there is only one RO, but it is easy to see that this is equivalent

to multiple ROs.) A security experiment begins by selecting the ROs uniformly

at random from the set of all functions with appropriate domain and range. For

simplicity, we do not make this selection explicit in the DET-CPA experiment above.

3.2 Some Useful Lemmata

We establish two lemmata that will be useful in the proofs in this section.

Max public-key probability. Let Π = (K, E ,D) be a public-key encryption

scheme. For all k ∈ N, define mpkΠ(k) to be the maximum, taken over all w ∈ {0, 1}∗,

of the quantity

Pr
[
pk = w : (pk, sk)

$←K(1k)
]
.

We call mpkΠ(·) the max public-key probability of Π. We use the following simple

lemma about it, which says that for IND-CPA security the max public-key probability

of a scheme must be small.
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Lemma 3.2.1. Let Π = (K, E ,D) be an encryption scheme. Then there is an adver-

sary A = (A1, A2) such that for all k ∈ N

mpkΠ(k) ≤
√

Advind-cpa
Π,A (k) . (2)

Furthermore, the running-time of A is at that for O(1) computations of K,D.

We note that although Lemma 3.2.1 shows that for IND-CPA security the max

public-key probability of a scheme must be small, the reduction is not tight. For

most specific schemes, one can in fact easily and unconditionally (meaning, without

assumption) show that the max public-key probability is small. For example, in

ElGamal [43], the public key is gx, where x is a random exponent in the secret key.

In this case, the max public-key probability is 1/|G|, where |G| is the order of the

corresponding group. Using some facts about the density of primes (see [74, Theorem

5.3]), one can show that the max public-key probability of RSA is O(k/2k) .

Proof. Consider the following IND-CPA adversary A = (A1, A2):

Algorithm A1(pk):

Return (0, 1)

Algorithm A2(pk, c):

(pk ′, sk ′)
$←K(1k)

If pk ̸= pk ′ return 0

b′ ← D(1k, pk ′, sk ′, c)

Return b′

Then

Pr
[
Expind-cpa

Π,A (k)⇒ 1 | b = 1
]

= Pr [ pk = pk ′ ] ≥ (mpkΠ(k))
2

and

Pr
[
Expind-cpa

Π,A (k)⇒ 1 | b = 0
]

= 0 .

Subtracting, we get

Advind-cpa
Π,A (k) ≥ (mpkAE)

2 ,
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which is equivalent to (2). The claimed running-time of A is easy to verify.

RO-oblivious adversaries. Let Π = (K, E ,D) be a RO-model encryption scheme.

We say that a RO query x made by E(pk, ·) or D(pk, ·) is public-key prefixed if it has

the form x = pk∥y for some string y. We say Π is public-key respecting if K makes

no RO queries and every RO query of E or D is public-key prefixed. We say that

A = (A0, A1, A2) is RO-oblivious if A0, A1 make no RO queries and A3 makes only

public-key prefixed queries. The following says that for DET-CPA security against

public-key respecting schemes it suffices to consider RO-oblivious adversaries. (Note

that here we explicitly allow adversaries to have non-empty state, since, as discussed

above, in general the “best” state could depend on the values of the RO.)

Lemma 3.2.2. Let Π = (K, E ,D) be a RO-model encryption scheme. Let F =

{Fk}k∈N be a family of functions with the same domain and range as the RO for Π. If

Π is public-key respecting then for any adversary B = (B0, B1, B2) against Π there is

a RO-oblivious adversary A = (A0, A1, A2) against Π and a PRF adversary D against

F such that

Advdet-cpa
Π,B (k) ≤ Advdet-cpa

Π,A (k) + 2q ·mpkAE +Advprf
F,D(k) ,

where q is the maximum number of queries B1, B2 make to their RO in total. Fur-

thermore, the running-time of A is the time to run B plus at most q computations of

F , and A makes at most q queries to its RO.

We note that pseudorandom functions can be constructed in theory from any

one-way function [45], which is trivially implied by a DET-CPA scheme, and so the

former does not constitute an additional cryptographic assumption in Lemma 3.2.2.

Proof. Consider the following DET-CPA adversary A = (A0, A1, A2):

35



Alg A0(1
k):

K
$←K

Run B0 on 1k:

On H query x:

Return F (K,x)

To recieve state

Return K∥state

Alg A1(K∥state):

Run B1 on state:

On H query x:

Return F (K,x)

To recieve (x, t)

Return x, t,K∥state

Alg A
H(·)
2 (pk, c, K∥state):

Run B2 on (pk, c, state):

On query Hash(x):

If x is public-key prefixed

Return H(x)

Else return F (K,x)

To recieve g

Return g

Note that A is RO-oblivious as required. Let BAD be the event that B0 or B1

makes a public-key prefixed query to its RO. Then

Advdet-cpa
Π,B (k) ≤ Pr

[
Expdet-cpa

Π,A (k)⇒ 1 | BAD
]
+ Pr [ BAD ]

≤ Pr
[
Expdet-cpa

Π,A (k)⇒ 1 | BAD
]
+ 2qmpkΠ(k) ,

where the last line is because B is run twice in the DET-CPA experiment and B1, B2

get no information about pk. We next claim that for a PRF adversary D that is

standard to construct

Pr
[
Expdet-cpa

Π,A (k)⇒ 1 | BAD
]
≤ Advdet-cpa

Π,A (k) +Advprf
Π,D(k) .

This follows by a standard hybrid argument, and then observing that if BAD does

not occur then B’s view is the same as in the DET-CPA experiment. Substituting,

we get (3). The claimed resource usage of the constructed adversaries is easy to

verify.

3.3 Constructions in the Random Oracle Model

Here we present deterministic encryption schemes meeting our new notion in the

random oracle model. Specifically, we present schemes achieving

• DET-CPA security based on any IND-CPA (probabilistic) encryption scheme

(in fact, as we show in Chapter 5, the scheme is DET-CCA secure).
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• DET-CPA security based on RSA, where furthermore the scheme is length-

preserving.

These constructions meet security under the minimal requirements on permitted mes-

sage distributions for deterministic encryption as discussed in Section 3.1.

3.3.1 The Encrypt-with-Hash Scheme

The scheme. We show a generic construction of DET-CPA deterministic encryption

scheme from any IND-CPA randomized one. Our construction replaces the coins used

by the latter with the hash of the message and the public key. More formally, let

Π = (K, E ,D) be an encryption scheme. Say that E(pk, x) draws its coins from a

set Coinspk(|x|). We assume the RO has the property that H(pk∥x) ∈ Coinspk(|x|)

for all pk output by K and all x ∈ {0, 1}∗. Define the RO-model Encrypt-with-Hash

deterministic encryption scheme EwHash[Π] = (K,DE ,DD) associated to Π via

Algorithm DEH(·)(pk, x):

r ← H(pk∥x)

c← E(pk, x; r)

Return c

Algorithm DDH(·)(sk, c):

x← D(sk, c)

r ← H(pk∥x)

If E(pk, x; r) = c then return x

Else return ⊥

Security analysis. The security proof for the Encrypt-with-Hash scheme is more

subtle than it may appear. Intuitively, we would like to say that, unless the adversary

queries the high-entropy message to its hash oracle, then the hash value looks just

like random coins. But for the former to hold we need to appeal to IND-CPA security

of the starting scheme (to argue that the adversary does not get any additional in-

formation about the message), which itself requires coins to be random. The security

proof resolves this apparent circularity.

Theorem 3.3.1. Let A = (A1, A2) be a RO-oblivious DET-CPA adversary against

EwHash[Π] with min-entropy µ, which outputs vectors of length at most v and makes
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at most q queries to its hash oracle. Then there is an IND-CPA adversary B =

(B1, B2) against Π such that for all k ∈ N

Advdet-cpa
EwHash,A(k) ≤ Advind-cpa

Π,B (k) +
qv

2µ−1
. (3)

Furthermore, the running-time of B is at most that of A plus O(vn).

Proof. Adversary B is given in Figure 3. Consider the games depicted in Figure 4.

We claim the following sequence of inequalities:

Pr
[
GA2

1 ⇒ b
]
≤ Pr

[
GA2

2 ⇒ b
]

(4)

≤ Pr
[
GA2

3 ⇒ b
]
+ Pr[G2A2 sets bad ] (5)

≤ Pr
[
GA2

3 ⇒ b
]
+

vq

2−µ
(6)

= Pr
[
GA2

4 ⇒ b
]
+

vq

2−µ
(7)

= Pr
[
GA2

5 ⇒ b
]
+

vq

2−µ
(8)

by which Equation (3) follows from multiplying each side by 2 and subtracting 1,

taking into account the definition of the advantages of A,B.

To see Equation 4, observe that the Finalize procedure of Game G2 begins by

defining its output bit d in certain ways depending on the flags zer, one if either of

these are true, and otherwise defining it as in G1. However, in case the value of d

set by the first two “If” statements is wrong, meaning not equal to b, the third “If”

statement corrects, setting d to b. The net result is that in the cases that G2 assigns

d differently from G1, the assignment made by G2 is correct, meaning equal to b.

Additionally G2 sets a flag bad but this does not influence its choice of d. So the

probability that d equals b can only go up.

As Games G2, G3 identical-until-bad, Lemma 2.4.1 applies to justify (5). The

probability that A2 makes hash query x ∈ x1−b when executed with G3 is at most

qv/2−µ by a union bound because A2 gets no information about x1−b. This justifies

(6). Since the third “If” statement in G3 only sets a flag that does not influence the
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Adversary B1(pk):

(x0, t0), (x1, t1)
$← A1(1

k)
state ← x0∥t0∥x1∥t1
Return (x0,x1, state)

Adversary B2(pk, c, state):
x0∥t0∥x1∥t1 ← state
Run A2 on inputs pk, c:

On hash query pk∥x do:

If H[x] is undefined then

H[x]
$← Coinspk(|x|)

If x ∈ x0 then
If one = false then zer← true

If x ∈ x1 then
If zer = false then one← true

Return H[x]
Let g be the output of A2

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 3: IND-CPA adversary B for proof of Theorem 5.5.1.

game output, dropping this entire statement results in an equivalent game G4. This

justifies Equation (6).

To see Equation 7, we can consider a common finite space of coins associated

to the executions of A2 with either G4 or G5. Consider the execution of A2 with

G4 when a particular coin sequence is chosen at random from this set. One of the

boxed statements in the procedure to respond to a hash query can be executed only

if either one = true or zer = true, due to the “If” statements that precede the boxed

statements. However, once one of these flags is set to true, the output of the Finalize

procedure is determined. (Nothing further that happens in the execution can change

it. Note we use here that at most one of zer, one can be true, never both, and once one

of them is true, it never becomes false.) This means that the boxed statements have

no effect on the output of the game, and eliminating them results in the equivalent

game G5.
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procedure Initialize: All games

b
$←{0, 1}

(x0, t0), (x1, t1)
$← A1(1

k)

(pk, sk)
$←K(1k)

For i ∈ {0, 1}, j ∈ [v] do:

Ri,j
$← Coinspk(|xi[j])

ci[j]← E(pk,xi[j];Ri,j

Return pk, c

On H query pk∥x: G1–G4 ,G5

If H[x] is undefined then

H[x]
$← Coinspk(|x|)

If ∃i such that x = x0[i] then
If one = false then zer← true

H[x]← R0,i

If ∃i such that x = x1[i] then
If zer = false then one← true

H[x]← R1,i

Return H[x]

procedure Finalize(g): G1

If g = t1 then d← 1 else d← 0
Return d

procedure Finalize(g): G2, G3

If zer = true then d← 0
Else If one = true then d← 1
Else If g = t1 then d← 1
Else d← 0
If (b = 1 ∧ zer = true)
∨ (b = 0 ∧ one = true)

then bad← true ; d← b
Return d

procedure Finalize(g): G4, G5

If zer = true then d← 0
Else If one = true then d← 1
Else If g = t1 then d← 1
Else d← 0
Return d

Figure 4: Games for the proof of Theorem 3.3.1. The boxed labels indicate which
games include the boxed statements and which do not.

3.3.2 The RSA-DOAEP Scheme

It is sometimes important to minimize the number of bits transmitted over the net-

work. We devise an efficient deterministic encryption scheme that is optimal in this

regard, namely is length-preserving. (That is, the length of the ciphertext equals the

length of the plaintext.) Length-preserving schemes can also be needed for securing

legacy code. Our construction is inspired by RSA-OAEP [12]. But in place of the

randomness in this scheme we use part of the message, and in contrast to RSA-OAEP

our scheme requires a 3-round rather than 2-round underlying Feistel transform.

The scheme. Formally, the scheme is parameterized by integers k0, k1 > 0. The

plaintext space PtSp(k) consists of all strings of length at least max(k1, 2k0 + 1).
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We assume here for simplicity that all messages to encrypt have a fixed length n =

n(k) satisfying n > 2k0 and n ≥ k1. Let RSA be the RSA trapdoor-permutation

generator with modulus length k1. The key-generation algorithm of the associated

RO-model deterministic encryption scheme RSA-DOAEP (“D” for “deterministic”)

is RSA. The encryption and decryption algorithms have oracle access to functions

H1, H2 : {0, 1}∗ → {0, 1}n−k0 and R : {0, 1}∗ → {0, 1}k0 , and are defined as follows:

Algorithm EH1,H2,R((N, e), x):

xl ← x[1 . . . k0]

xr ← x[k0 + 1 . . . n]

s0 ← H1((N, e)∥xr)⊕ xl

t0 ← R((N, e)∥s0)⊕ xr

s1 ← H2((N, e)∥t0)⊕ s0

x1 ← (s1∥t0)[1 . . . n− k1]

x2 ← (s1∥t0)[n− k1 + 1 . . . n]

y ← x1∥(xe
2 mod N)

Return y

Algorithm DH1,H2,R((N, e, d), y):

x1 ← y[1 . . . n− k1]

y1 ← y[n− k1 + 1 . . . n]

x← x1∥(yd1 mod N)

s1 ← x[1 . . . k0]

t0 ← x[k0 + 1 . . . n]

s0 ← H2((N, e)∥t0)⊕ s1

xr ← R((N, e)∥s0)⊕ t0

xl ← H1((N, e)∥xr)⊕ s0

Return xl∥xr

Security analysis. We prove that RSA-DOAEP is secure in our sense assuming

RSA is one-way.

Theorem 3.3.2. Let A = (A1, A2) be a RO-oblivious DET-CPA adversary against

RSA-DOAEP with min-entropy µ that makes at most qhi queries to oracle Hi for

i ∈ {1, 2} and qr to oracle R, and outputs vectors of size v with components of length

n. We consider two cases:

• Case 1: n < k0 + k1. Then there is an inverter I against RSA such that

Advdet-cpa
RSA-DOAEP,A(k) ≤ qh2v ·

√
Advowf

RSA,I(k) + 22k1−4(n−k0)+5 + (9)

2qrv

2k0
+

2qh1qrv

2µ
. (10)
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Furthermore the running-time of I is at most twice that of A plus O(log v +

qh2 log qh2 + k3
1).

• Case 2: n ≥ k0 + k1. Then there is an inverter I against RSA such that

Advdet-cpa
RSA-DOAEP,A(k) ≤ v ·Advowf

RSA,I +
2qrv

2k0
+

2qh1qrv

2µ
.

Furthermore, the running-time of I is at most that ofA plusO(log v+qh2 log qh2).

In practice, we will have, e.g. k1 = 2048, and then we can set parameter k0 to,

say, 160 bits to effectively maximize security in either case of the theorem. Then, the

relation between n−160 and 2048 then determines which case of the theorem applies.

Proof. We prove Case 1, meaning we assume that n−k0 < k1. For the proof, we con-

struct a partial one-way adversary against RSA and then conclude by Lemma 2.3.2.

The former, which we call GetQuery, is given in Figure 5. The games for the proof

are in Figure 6, Figure 7, and Figure 8. Equation (10) follows from the following

sequence of inequalities, which we will justify below:
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Pr
[
GA2

1 ⇒ b
]

= Pr
[
GA2

2 ⇒ b
]
+ Pr[GA2

1 sets bad1 ] (11)

≤ Pr
[
GA2

2 ⇒ b
]
+

qrv

2k0
(12)

≤ Pr
[
GA2

3 ⇒ b
]
+

qrv

2k0
+ Pr[GA2

2 sets bad2 ] (13)

≤ Pr
[
GA2

3 ⇒ b
]
+

qrv

2k0
+

qh1qrv

2µ
(14)

≤ Pr
[
GA2

4 ⇒ b
]
+

qrv

2k0
+

qh1qrv

2µ
+ Pr[GA2

3 sets bad3 ]

≤ Pr
[
GA2

5 ⇒ b
]
+

qrv

2k0
+

qh1qrv

2µ
+ Pr[GA2

3 sets bad3 ]

+ Pr[GA2
4 sets bad4 ] (15)

= Pr
[
GA2

6 ⇒ b
]
+

qrv

2k0
+

qh1qrv

2µ
+ Pr[GA2

3 sets bad3 ]

+ Pr[GA2
4 sets bad4 ] (16)

≤ Pr
[
GA2

7 ⇒ b
]
+

qrv

2k0
+

qh1qrv

2µ
+ Pr[GA2

3 sets bad3 ]

+ Pr[GA2
4 sets bad4 ] + Pr[GA2

6 sets bad5 ] (17)

≤ 1

2
+

qrv

2k0
+

qh1qrv

2µ
+ Pr[GA2

3 sets bad3 ]

+ Pr[GA2
4 sets bad4 ] + Pr[GA2

5 sets bad5 ] (18)

≤ 1

2
+ Advpowf

RSA,GetQuery(k) +
qrv

2k0
+

qh1qrv

2µ
(19)

≤ 1

2
+ qh2v ·

√
Advowf

RSA,I(k) + 22k1−4(n−k0)+10

+ 2k1−2(n−k0)+5 +
qrv

2k0
+

qh1qrv

2µ
. (20)

Lemma 2.4.1 applies to justify (11). To bound the probability that Game G1

when executing A2 sets bad1, note that without A2 querying (N, e)∥mi,r (by which

we mean for some i ∈ {1, . . . v}) to H1 nor (N, e)∥Ti,0 to H2, the values of Si,1∥Ti,0, R
∗
i

are random and independently distributed of xb from its perspective. To make this

more precise, we define an auxilliary game called Grand in which all input to A2 and

answers to its oracle queries are independent and random of xb. We claim that the

probability G1 when executing A2 sets bad1 is the same that Grand does. To see this,

consider a common finite space of coins associated to the executions of A2 in either
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G1 or Grand. If A2 when executed using a particular sequence of coins from this space

causes G1 to set bad1 with some probability then A2 when executed using this same

coin sequence also causes Grand to set bad1 with the same probability, because on

such a coin sequence the input to A2 and the game’s oracle replies are identically

distributed from the perspective of A2 up to the point that bad1 is set. Since when

executed in Grand, A2 gets no information aboutH∗
1,i for any 1 ≤ i ≤ v, the probability

that Grand when executing A2 sets bad1 is at most qrv/2
k0 , giving Equation (12).

Equation (13) is again obtained via Lemma 2.4.1. We bound the probability that

G2 when executing A2 sets bad2 as follows. This is the same as the probability that

Grand does, by an analogous argument to the above, considering the fact that without

having queried (N, e)∥Si,0 to R nor (N, e)∥Ti,0 to H2, the value of Si,1∥Ti,0 is random

and independently distributed of xb from the perspective of A2. The probability of

that Grand sets bad2 is, in turn, the same, over a common finite set of coins with

which A2 is executed, as the probability that the “knowledge extractor” K given

in Figure 9 outputs a list containing the plaintext xb[i] for some 1 ≤ i ≤ v. The

probability that K outputs such a list is at most qh1qrv/2
µ because it gives A2 no

information about xb, giving (14). (Here is where we use the fact that the padding

transform of RSA-DOAEP consists of three Feistel rounds; with only two, this step

does not go through.)

Lemma 2.4.1 applies to justify all of (15), (15), and (17). We delay bounding the

probabilities here until later.

Next consider when A2 executed with Game G5 queries (N, e)∥mi,r to H1 but

prior to this has queried neither (N, e)∥Si,0 to R nor (N, e)∥Ti,0 to H2. Then, in reply

to query (N, e)∥mi,r, it receives H
∗
i,1, which is random and independent of everything

given to A2 so far. Then, after it queries (N, e)∥mi,r to H1, we see from the code

that the answers given to A2 in reply to any of its queries are likewise random and

independent. This means that, instead replying to query (N, e)∥mi,r with the special
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string H∗
i,1 defined at the beginning of the game, we could simply reply with a random

and independent string chosen “on the fly” during the particular invocation of the

procedure to respond toH1 queries. In other words, we may drop the “Else” statement

in this procedure to result in an equivalent game G5, which justifies (16).

Now, we have that the probability that G7 outputs the challenge bit b chosen

randomly at the beginning of the game when executing A2 is at most 1/2, because

this game does not give A2 any information about xb, giving (18).

Finally, observe that in each of the following cases, A2 when executed with a

particular sequence of coins (drawn, as usual, from a common finite set associated

to the execution of A2 in either game) causing the relevant game to set the flag also

causes Grand to do the same: game G3 sets bad3, game G4 set bad4, and game G6 sets

bad5. This is because on such a coin sequence the input to A2 and its oracle replies

have the same distribution (from the perspective of A2) in either game. In the first

case, this can be seen directly from the code. In the second case, observe that in

game G5 until A2 queries (N, e)∥Ti,0 to H2 then on query (N, e)∥mi,r H1 the response

it receives, namely H∗
i,2 defined at the beginning of the game, is in fact random and

independent of everything given to by the game. In the third case, this is again clear

from the code. Moreover, these cases exhaust all the possible sequences of queries

made by A2 for which A2 queries (N, e)∥Ti,0 for some i to its H2 oracle. Now the input

to A2 and its oracle replies are distributed identically when executed with Grand and

when run by algorithm GetQuery, except that the procedure to respond to queries to

H2 in Grand explicitly checks whether a query made by A2 is equal to Ti,0 for some

i, whereas algorithm GetQuery simply guesses whether this is the case by picking j

when the first such query (which it hopes is Tw,0) will occur, at which point its output

is determined. (Game Grand also makes some “If” checks omitted by GetQuery and

sets some flags, but these do not influence game output.) Since w, j are random and
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independent and A2 gets no information about them, we have

Pr[GA2
2 sets bad2 ] + Pr[GA2

4 sets bad3 ] + Pr[GA2
6 sets bad4 ]

≤ qh2v ·Advpowf
RSA,GetQuery(k)

justifying (19). Equation (20) then follows by Lemma 2.3.2. Multiplying both sides

by 2 then subtracting 1 and taking into account the definition of the advantage of A

yields Equation 10.

To finish the proof, we justify the running-time analysis of I by taking into account

the convention that the running-time of A includes that of its overlying experiment.

Additional time-complexity for GetQuery here is for picking two random numbers

between 1 and qh2 , v, respectively, and maintaining a counter up to value at most qh2 ,

incremented each time A2 makes a query to oracle H2, which is O(log v+ qh2 log qh2).

Then applying the running-time analysis in Lemma 2.3.2, we have that the running-

time of I twice that of GetQuery plus O(k3
1) as claimed.
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Algorithm GetQuery((N, e), y)
ctr ← 0

j
$←{1, . . . , qH2} ; w

$←{1, . . . , v}
c

$← ({0, 1}n)×v /* pick random v-size vector */

y′
$←{0, 1}n−k1

c[w]← y′∥y
Run A2 on inputs (N, e), c:

On H1 query ((N, e)∥x
If H1[x] is undefined then

H1[x]
$←{0, 1}n−k0

Return H1[x]
On R query (N, e)∥x
If R[x] is undefined then

R[x]
$←{0, 1}k0

Return R[x]
On H2 query (N, e)∥x
ctr ← ctr + 1
If H2[x] is undefined then

H2[x]
$←{0, 1}n−k0

If ctr = j then
T ← x

Return H2[x]
Until A2 halts
Return T

Figure 5: Algorithm GetQuery for the proof of Theorem 3.3.2.
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procedure Initialize: All Games

b
$←{0, 1}

(x0, t0), (x1, t1)
$← A1(1

k)

((N, e), (N, d))
$←RSA(1k)

For i = 1 to v do:
mi,l ← xb[i][1 . . . k0]
mi,r ← xb[i][k0 + 1 . . . n]

H∗
i,1, H

∗
i,2

$←{0, 1}n−k0 ; R∗
i

$←{0, 1}k0
Si,0 ← H∗

i,1 ⊕mi,l ; Ti,0 ← R∗
i ⊕mi,r

Si,1 ← H∗
i,2 ⊕ Si,0

yi,l ← (Si,1∥Ti,0)[1 . . . n− k1]
yi,r ← ((Si,1∥Ti,0)[n− k1 + 1 . . . n])e

c[i]← yi,l∥yi,r
Return ((N, e), c)

On H1 query (N, e)∥x: G1 , G2

If H1[x] is undefined then

H1[x]
$←{0,1}n−k0

If ∃i such that x = mi,r then
If Hi,2[Ti,0] is defined then
H1[x]← H∗

i,1

If R[Si,0] is defined then

H1[x]← H∗
i,1 Return H1[x]

On R query (N, e)∥x: G1 , G2

If R[x] is undefined then

R[x]
$←{0,1}k0

If ∃i such that x = Si,0 then
If H2[Ti,0] is defined then

R[x]← R∗
i

If H1[mr] is undefined then

bad1 ← true ; R[x]← R∗
i

Return R[x]

On R query (N, e)∥x: G2 , G3

If R[x] is undefined then

R[x]
$←{0,1}k0

If ∃i such that x = Si,0 then
If H2[Ti,0] is defined then
R[x]← R∗

i

If H1[mi,r] is defined then

bad2 ← true ; R[x]← R∗
i

Return R[x]

Figure 6: Games for the proof of Theorem 3.3.2. The boxed labels indicate which
games include the boxed statements and which do not. All games have the same
Finalize procedure, namely procedure Finalize(g): If g = t0 then Return 1, Else
Return 0.
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On H2 query (N, e)∥x: G1 −G3 , G4

If H2[x] is undefined then

H2[x]
$←{0,1}n−k0

If ∃i such that x = Ti,0 then
If R[Si,0] is defined then

bad3 ← true ; H2[x]← H∗
i,2

Else H2[x]← H∗
i,2

Return H2[x]

On H2 query (N, e)∥x: G4 , G5

If H2[x] is undefined then

H2[x]
$←{0,1}n−k0

If ∃i such that x = Ti,0 then
If H1[mi,r] is defined then

bad4 ← true ; H2[x]← H∗
i,2

Else H2[x]← H∗
i,2

Return H2[x]

On H1 query (N, e)∥x:
G5 , G6, G7

If H1[x] is undefined then

H1[x]
$←{0,1}n−k0

If ∃i such that x = mi,r then
If Hi,2[Ti,0] is defined then
H1[x]← H∗

i,1

Else H1[x]← H∗
i,1

Return H1[x]

On H2 query (N, e)∥x:
G6 , G7

If H2[x] is undefined then

H2[x]
$←{0,1}n−k0

If ∃i such that x = Ti,0 then
If R[Si,0], H1[s∥mi,r]
are undefined then

bad5 ← true ; H2[x]← H∗
i,2

Return R[x]

Figure 7: More games for the proof of Theorem 3.3.2. The boxed labels indicate
which games include the boxed statements and which do not. All games have the
same Finalize procedure, namely procedure Finalize(g): If g = t0 then Return 1,
Else Return 0.
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procedure Initialize:

b
$←{0, 1}

(x0, t1), (x1, t1)
$← A1(1

k)

(N, e), (N, d)
$←RSA

c
$← ({0, 1}n)×v

For i = 1 to v do :

H∗
i,1, H

∗
i,2

$←{0, 1}n−k0 ; R∗
i

$←{0, 1}k

Si,0, Si,1
$←{0, 1}n−k0 ; Ti,0

$←{0, 1}k0
Return ((N, e), c)

On H1 query (N, e)∥x:
If H1[x] is undefined then

H1[x]
$←{0,1}n−k0

Return H1[x]

On R query (N, e)∥x:
If R[x] is undefined then

R[x]
$←{0,1}k0

If ∃i such that x = Si,0 then
If H1[mr] is undefined then
bad1 ← true

Else bad2 ← true
Return R[x]

On H2 query (N, e)∥x:
If H2[x] is undefined then

H2[x]
$←{0,1}n−k0

If ∃i such that x = Ti,0 then
If R[Si,0] is defined
bad3 ← true ;

Else If H1[mi,r] is defined then
bad4 ← true

Else bad5 ← true
Return H2[x]

procedure Finalize(g):

If g = t0 then Return 1
Else Return 0

Figure 8: Game Grand for the proof of Theorem 3.3.2.
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Algorithm K(1k)

b
$←{0, 1}

(x0, t0), (x1, t1)
$← A1(1

k)

((N, e), (N, d))
$←RSA(1k)

c
$← ({0, 1}n)×v /* pick random v-size vector */

Run A2 on input 1k, (N, e), c, replying to its oracle queries as follows:
On H1 query (N, e)∥x
If H1[x] is undefined then

H1[s∥x]
$←{0, 1}n−k0

Return H1[s∥x]
On R query (N, e)∥x
If R[s∥x] is undefined then

For all z ∈ L1 add x⊕H1[(N, e)∥z]∥z to L2

R[x]
$←{0, 1}k0

Return R[x]
On H2 query (N, e)∥x
If H2[x] is undefined then

H2[x]
$←{0, 1}n−k0

Return H2[x]
Until A2 halts
Return L2

Figure 9: Knowledge extractor K for the proof of Theorem 3.3.2.
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CHAPTER IV

DETERMINISTIC ENCRYPTION II

In this chapter, we firm up the foundations of deterministic encryption by studying

alternative security definitions and constructions without random oracles.

4.1 Definitional Equivalences

The DET-CPA notion captures our intuition about privacy for determinsitic encryp-

tion well but is difficult to work with. We would like to find simpler but equivalent

definitions for this purpose.

4.1.1 Single Versus Multiple Messages

A basic question is whether there is an equivalence between DET-CPA security for

single and multiple messages. That is, we are asking whether in the DET-CPA notion

it suffices to consider adversaries that output vectors of size 1. Indeed, classical

definitions explicitly only model the encryption of a single plaintext, but a simple

hybrid argument from [4] shows that security when multiple plaintexts are encrypted

follows. This hybrid argument fails in our setting, and in fact the two versions are

not equivalent.

To show this, let Π = (K, E ,D) be deterministic encryption scheme. Define Π =

(K, E ,D) as follows:

Algorithm E(pk, x)

y ← E(pk, x)

z ← E(pk, x)

Return y∥z

Algorithm D(pk, y∥z)

x← D(sk, y)

x′ ← D(sk, z)

If x′ = x then return x

Else return ⊥
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Above and in what follows, s denotes the bitwise complement of a string s. If

Π is DET-CPA then Π is DET-CPA against one-message adversaries. However, the

following attack shows Π is insecure against adversaries that output vectors of size 2.

Consider A = (A1, A2) where A1(1
k) picks m1,m2 from {0, 1}k and a bit b at random,

and if b = 1 outputs ((m1,m1), 1) and otherwise ((m1,m2), 0). A2(pk, (y1∥z1, y2∥z2))

outputs 1 if z1 = y2 and 0 otherwise. Then A has min-entropy k but advantage 1/2.

As a consequence of this, we must, in general, explicitly consider DET-CPA adver-

saries that output arbitrary plaintext vectors in our security analyses. However, for

some specific classes of DET-CPA adversaries (defined by the distributions they put

on x) we can recover the equivalence. In particular, Fehr [41] has shown an equiv-

alence in the case of block-sources [27], where each plaintext has sufficient entropy

conditioned on the outcomes of the previous ones, under the condition that the dis-

tribution is “conditionally resampleable” for each block (or for message distributions

that are not necessarily efficiently sampleable).

4.1.2 An Indistinguishability-Based Notion

Based on prior work on the encryption of high-entropy messages in the symmetric,

information-theoretic context by Dodis and Smith [38], we propose the following

simpler indistinguishability-based notion for deterministic encryption that we call

“distribution hiding.” In particular, this definition will give us a handle on how to

achieve deterministic encryption without random oracles in Section 4.2.

Let Π = (K, E ,D) be an encryption scheme. A DH-CPA adversary D = (D1, D2)

against Π operates in three stages. First, D1 gets as input a bit b and outputs a vector

of messages x. Then, D2 gets as input the public key pk, a vector of ciphertexts c,

and ouptuts a “guess” bit d. To an encryption scheme Π = (K, E ,D) and a DH-CPA

adversary D = (D1, D2) we associate
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Experiment Expdh-cpa
Π,A (k):

b
$←{0, 1} ; (x, t) $←D1(b)

c
$←E(pk,x)

d
$←D2(pk, c)

If b = d return 1 else return 0

As before, we require D1’s output to satisfy |x0| = |x1| and |x0[i]| = x1[i] for all

1 ≤ i ≤ |x0|. Moreover, we require that x0[i1] = x0[i2] if and only if x1[i1] = x1[i2]

for all 1 ≤ i1, i2 ≤ |x0|. Define the DH-CPA advantage of D against Π as

Advdh-cpa
Π,D (k) = 2 · Pr

[
Expdh-cpa

Π,D (k)⇒ 1
]
− 1 .

The following theorem establishes equivalence between DET-CPA and DH-CPA.

(For simplicity, the theorem only shows that DH-CPA implies DET-CPA, which is

the “interesting” directions; the other direction is straightforward.) Note that [38]

show a similar equivalence but their reductions are not necessarily polynomial time,

which is crucial in our context.

Theorem 4.1.1. Let Π = (K, E ,D) be an encryption scheme and let A = (A1, A2)

be a DET-CPA adversary with min-entropy µ. Then there is a DH-CPA adversary

D = (D1, D2) with min-entropy µ such that

Advdet-cpa
Π,A (k) ≤ 36 ·Advdh-cpa

Π,D (k) +

(
3

4

)−k

.

Furthermore, D has min-entropy µ− 4 the running-time of D is the time for at most

that for k executions of A (but 4 in expectation).

The high-level intuition for the proof is as follows. We first show that it suffices to

consider DET-CPA adversaries for which A2 outputs (x, t) where t is boolean. Now,

we would like to use the fact if t is easy to guess from the encryption of x then, the

encryption of x conditioned on (1) the output (x, t) of A2 being such that t = 1 or (2)
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the output (x, t) of A2 being such that t = 0 are easy to distinguish. However, one of

these distributions may be hard to sample from and have low entropy. Therefore, we

next show it suffices to consider DET-CPA adversaries for which t is not just boolean

but also balanced, meaning the probability it is 0 or 1 is about the same. Then, we

can easily sample from the above-mentioned distributions by repeatedly running A.

Reduction to the boolean case. Call a DET-CPA adversary A boolean if it

outputs test strings of length 1. We first show that is suffices to consider boolean

DET-CPA adversaries.

Proposition 4.1.2. Let Π = (K, E ,D) be an encryption scheme and A = (A1, A2) be

a DET-CPA adversary that outputs test strings of length ℓ. Then there is a boolean

DET-CPA adversary B = (B0, B1, B2) such that

Advdet-cpa
Π,A (k) ≤ 2 ·Advdet-cpa

Π,B (k) .

Furthermore, the running-time of B is the time to run A plus O(ℓ).

Proof. The proof is identical to an argument in [33] for the information-theoretic

setting. Adversary B works as follows:

Alg B1(1
k):

r
$←{0, 1}n

Return r

Alg B2(r):

(x, t)
$← A1(1

k)

Return (x, ⟨t, r⟩)

Alg B3(pk, c, r):

g
$← A3(pk, c)

Return ⟨g, r⟩

For d ∈ {0, 1}, let Ad denote the event Expdet-cpa-d
Π,A (k)⇒ 1 and similarly Bd denote

Expdet-cpa-d
Π,B (k)⇒ 1. Then

Advdet-cpa
Π,B (k) = Pr [B1 ]− Pr [B0 ]

=
(
Pr [ A1 ] +

1

2
· (1− Pr [ A1 ])

)
−
(
Pr [ A0 ] +

1

2
· (1− Pr [ A0 ])

)
=

1

2
· (Pr [ A1 ]− Pr [ A0 ])

=
1

2
·Advdet-cpa

Π,A (k) .
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The claimed running-time of B is easy to verify.

Reduction to the balanced boolean case. The next step is to show that it

in fact suffices to consider boolean DET-CPA adersaries that are balanced, meaning

the probability the partial information is 1 or 0 is approximately 1/2. Namely, call a

boolean DET-CPA adversary A = (A0, A1, A2) δ-balanced if for all b ∈ {0, 1}∣∣∣∣Pr [ t = b : (x, t)
$← A1(1

k, state)
]
− 1

2

∣∣∣∣ ≤ δ

for all state output by A0.

Proposition 4.1.3. Let Π = (K, E ,D) be an encryption scheme and B = (B1, B2)

be a boolean DET-CPA adversary. Then for any 0 ≤ δ < 1/2 there is a δ-balanced

boolean DET-CPA adversary B′ = (B′
1, B

′
2) such that

Advdet-cpa
Π,B (k) ≤

(
2

δ
+ 1

)
·Advdet-cpa

Π,B′ (k) .

Furthermore, the running-time of B′ is the time to run B plus O(1/δ).

Proof. We give a simplified proof due to [32], where for simplicity we assume 1/δ is

an integer. Adversary B′ works as follows:

Algorithm B1(1
k):

(x, t)
$← A1(1

k)

i
$← [2(1/δ) + 1]

If i ≤ 1/δ then return (x, 0)

Else if i ≤ 2(1/δ) then return (x, 1)

Else return (x, t)

Algorithm B2(pk, c):

g
$← A2(pk, c)

j
$← [2(1/δ) + 1]

If j ≤ δ then return 0

Else if j ≤ 2(1/δ) then return 1

Else return g

Note that B is δ-balanced, since for all b ∈ {0, 1}∣∣∣∣Pr [ t = b : (x, t)
$← A1(1

k)
]
− 1

2

∣∣∣∣ ≤ 1

2(1/δ) + 1
.
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As before, for d ∈ {0, 1}, let Ad denote the event Expdet-cpa-d
Π,A (k)⇒ 1 and similarly

Bd denote Expdet-cpa-d
Π,B (k)⇒ 1. Then

Advdet-cpa
Π,B (k) = Pr [B1 ]− Pr [B0 ]

= Pr [ B1 | E ]− Pr [B0 | E ] + Pr
[
B1 | E

]
− Pr

[
B0 | E

]
= Pr [ B1 | E ]− Pr [B0 | E ] +

1

2
− 1

2

=
1

2
·Advdet-cpa

Π,A (k) .

As before, the claimed running-time of B′ is easy to verify.

Reduction to distribution hiding. The final component for the proof is as

follows.

Proposition 4.1.4. Let Π = (K, E ,D) be an encryption scheme and B = (B1, B2)

be a δ-balanced boolean DET-CPA adversary. Then there is a DH-CPA adversary

D = (D1, D2) with min-entropy µ− log(1− 2δ) + 1 such that

Advdet-cpa
Π,B (k) ≤ 2 ·Advdh-cpa

Π,D (k) +

(
3

4

)−k

.

Furthermore, the running-time of B is the time for at most k executions of A (but 4

in expectation).

Proof. Adversary D works as follows.

Algorithm D1(b):

For i = 1 to k do:

(x, t)
$← A1(1

k)

If t = b then return x

Return x

Algorithm D2(pk, c):

g
$← A2(pk, c)

Return g

Let BAD denote the event that the final return statement is executed. Let CORRECTD

be the event that b = d when D is executed in the DH-CPA experiment with Π and
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simiarly let CORRECTB denote the event that t = g when B is executed in the

DET-CPA experiment with Π. Then

Advdet-cpa
Π,B (k) = Pr [ CORRECTB | t = 1 ] + Pr [ CORRECTB | t = 0 ]

≤ Pr
[
CORRECTB | t = 1 ∧ BAD

]
+ Pr

[
CORRECTB | t = 0 ∧ BAD

]
+ Pr

[
BAD

]
= Pr [ CORRECTD | b = 1 ]

+ Pr [ CORRECTD | b = 0 ] + Pr
[
BAD

]
= Advdh-cpa

Π,D (k) + Pr
[
BAD

]
≤ Pr [ CORRECTD | b = 1 ]

+ Pr [ CORRECTD | b = 0 ] +

(
1

2
+ δ

)−k

where the last line uses that B is δ-balanced. So it remains to argue the min-entropy

of D. Let b ∈ {0, 1}, i ∈ [v], and x ∈ {0, 1}∗. Denote Pr
[
t = b : (x, t)

$← A1(1
k)
]

by PA(b), Pr
[
x[i] = x : (x, t)

$← A1(1
k)
]
by PA(x, i), and

Pr
[
x[i] = x ∧ t = b : (x, t)

$← A1(1
k)
]
by PA(x, i, b). We have

Pr
[
x[i] = x : (x, t)

$←D(b)
]

=

(
k−1∑
i=1

PA(b)
i−1PA(x, i, b)

)
+ PA(b)

k−1PA(x, i, b)

= PA(x, i, b)
1− PA(b)

k

PA(b)
+ PA(b)

k−1PA(x, i, b)

≤ 1

PA(b)
·
(
PA(x, i, b) + PA(x, i, b)

)
=

1

PA(b)
· PA(x, i)

=
1

1/2− δ
· 2−µ

and the claim follows.

Theorem 4.1.1 now follows by combining Propositions 4.1.2, 4.1.3, and 4.1.4 with

δ = 1/4.
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4.2 Constructions in the Standard Model

The constructions presented in Section 3.3 are quite practical and achieve all the secu-

rity we could hope for from a deterministic scheme. However, due to the well-known

limitations of the random oracle model [23], we would like to study constructions that

do not use random oracles. In this section, we relate the contruction of standard-

model deterministic encryption to that of one-way trapdoor functions with a special

kind of hardcore function we call robust. In particular, this leads to schemes achieving:

• Single-message (or block-source [41]) DET-CPA security from exponentially-

hard trapdoor permutations.

• Single-message (or block-source [41]) DET-CPA security for uniform messages

from exponentially-hard trapdoor functions.

• q-message DET-CPA security, where the public key is allowed to depend on q,

based on lossy trapdoor functions. (More generally, the scheme achieves security

for q-block-source, where every q messages we get “fresh entropy”).

4.2.1 Robust Hardcore Functions

Extensions to one-wayness and hardcore functions. For our results, we

extend the usual notions of one-wayness and hardcore functions to vectors of inputs

drawn from non-unform distributions, similar to the case of deterministic encryption.

To a trapdoor function generator F and inverter I = (I1, I2) we associate

Experiment Expowf
F ,I(k):

(f, f−1)
$←F

x
$← I1(1

k)

x′ $← I(f, f(x))

If ∃i such that x[i] = x′ return 1 else return 0
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Define the OWF advantage of I against F as

Advowf
F ,I(k) = Pr

[
Expowf

F ,A(k)⇒ 1
]
.

We extend hardore functions in a similar way. Namely, to a trapdoor function gener-

ator F , function hc, and distinguisher D = (D1, D2) we associate

Experiment Exphcf
F ,hc,D(k):

b
$←{0, 1} ; (f, f−1)

$←F

x
$←D1(1

k)

h0 ← hc(f,x) ; h1
$← ({0, 1}n)×|x|

d
$←D2(f, f(x),hb)

If d = b return 1 else return 0

For all k ∈ N, define the HCF advantage of A against F, hc as

Advhcf
F ,hc,A(k) = 2 · Pr

[
Exphcf

F ,hc,A(k)⇒ 1
]
− 1 .

Analogously to the case of deterministic encryption, we say that an inverter I =

(I1, I2) that outputs vectors of length v has min-entropy µ if H∞(Xi) ≥ µ for all 1 ≤

i ≤ v, where Xi is the random variable with the distribution of x[i] over x
$← I1(1

k)

and similarly for a distinguisher D = (D1, D2).

Robustness. We define a new notion of robust hardcore functions. Intuitively,

robust hardcore functions are those that remain one-way when the min-entropy of

the input is slightly reduced. Since our reduction are concrete it is not necessary

for us to define this notion formally. However, for completeness, the following is a

possible quantitative definition.

Definition 4.2.1. Let F be a trapdoor function generator and be a hardcore function

for entropy µ. We say that hc is c-robust for entropy µ if there for every HCF adversary

A with entropy µ− c there is an HCF adversary B with entropy µ such that for every
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k ∈ N

Advhcf
F ,hc,A(k) ≤ 2O(c) ·Advhcf

F ,B(k) . (21)

Furthermore, the running-time of B depends polynomially on the running-time of A.

It is illustrative to consider just for single-input distinguishers (i.e., for |x| = 1 in

the HCF experiment). Note here for example that every bit of the input to RSA is

well-known to be hardcore assuming RSA is one-way [3]. However, they are not even

1-robust, since when we decrease the min-entropy of the input the bit may become

fixed. Indeed, no hardcore function that depends only on the input and not on the

description of the function itself can be hardcore by a similar argument.

4.2.2 The Encrypt-with-Hardcore Scheme

To gain some intuition, let us recall the Encrypt-with-Hash scheme in Section 3.3.1.

The idea there is that in the random oracle model the hash of the message looks like

independent random coins. Can we use a similar construction in the standard model?

This motivates the following construction based on hardcore functions.

Let Π = (K, E ,D) be an encryption scheme, F be a trapdoor function generator,

and hc be a hardcore function. Assume (e.g., by suitable padding) that hc has the

property hcf (x) ∈ Coinspk(|x|) for all pk output by K and all x ∈ {0, 1}∗. Define the

associated “Encrypt-with-Hardcore” deterministic encryption scheme

EwHCore[Π,F , hc] = (K, E ,DD) with plaintext-space PtSp = {0, 1}k via

Alg K(1k):

(pk, sk)
$←K(1k)

(f, f−1)
$←K(1k)

Return ((pk, f), (sk, f−1)

Alg DE((pk, f), x)

r ← hc(f, x)

c← E(pk, f(x); r)

Return c

Alg DD((sk, f−1), c):

y ← D(sk, c)

x← f−1(y)

Return x

Security analysis. Suppose hc is hardcore for F against adversaries with min-

entropy µ. One might think that DET-CPA security of EwHCore[Π,F , hc] against
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adversaries with min-entropy µ then follows by by IND-CPA security of Π. However,

this is not true. To see this, suppose hc is a physical hardcore function. Define

Π′ = (K, E ′,D′) to be like Π = (K, E ,D) except that the coins consumed by E ′ are

extended by one bit, which E ′ outputs in the clear and D′ ignores. That is, define

E ′(pk, x; r∥b) = E(pk, x; r)∥b and D′(sk, y∥b) = D(sk, y). Then IND-CPA security of

Π′ follows from that of Π, but a straightforward attack shows EwHCore[Π,F , hc] is

not DET-CPA. This is where our notion of robustness comes into play.

Theorem 4.2.2. Let D = (D1, D2) be a single-message DH-CPA adversary against

EwHash[Π] with min-entropy µ. Then there is an IND-CPA adversary A against Π,

and HCF adversaries B = (B1, B2) against F , hc with min-entropy µ, such that

Advdh-cpa
EwHCore,D(k) ≤ Advind-cpa

Π,A (k) + 2 ·Advhcf
F ,hc,B(k) . (22)

Furthermore, the running-times of A,B are the time to run D.

Proof. Let Game G1 correspond to the DH-CPA experiment withD against EwHCore,

and let Game G2 be like G1 except that the coins used to encrypt the challenge

plaintext vector are truly random. For i ∈ {0, 1} let Bi = (Bi
1, B

i
2) be the HCF

adversary against F hc defined via

Algorithm Bi
1(1

k):

x
$←D1(i)

Return x

Alg Bi
2(pk,y,h):

c← E(pk,y;h)

d
$←D2(pk, c)

Return d

Then

Pr
[
GD

1 ⇒ b
]

= Pr
[
GD

1 ⇒ b | b = 1
]
+ Pr

[
GD

1 ⇒ b | b = 0
]

= Pr
[
GD

2 ⇒ b | b = 1
]
+Advhcf

F ,hc,B1(k)

+ Pr
[
GD

2 ⇒ b | b = 0
]
+Advhcf

F ,hc,B0(k)

≤ Pr
[
GD

2 ⇒ b
]
+ 2 ·Advhcf

F ,hc,B(k)
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where we take B to be whichever of B0, B1 has the larger advantage. Now define

IND-CPA adversary A against Π via

Algorithm A1(pk):

x0
$←D1(0)

x1
$←D1(1)

Return (x0,x1)

Alg A2(pk, c):

d
$←D2(pk, c)

Return d

Then Equation 22 follows from Equation 22 from taking into account the definition

of the advantages of D,A.

By Theorem 4.1.1, we can now conclude DET-CPA security of EwHCore for plain-

texts of 2 bits greater entropy, meaning 2-robustness of the hardcore function suffices

for security of EwHCore. Using an alternative reduction from DET-CPA to DH-CPA

by Fehr [41] it is possible to improve this to 1-robustness. We have thus reduced the

search for secure deterministic encryption schemes in the standard model to hardcore

functions that are robust in the above sense.

A subtle point worth mentioning is where we have used the fact that we use DH-

CPA instead of DET-CPA security in the above proof. It is in the step that uses

security of the hardcore function. If we used DET-CPA security, in this step the

constructed HCF adversaries against F would need to test whether the output of

the DET-CPA adversary against EwHCore is equal to a “target value” representing

partial information on the input to F , which these adversaries are not given.

4.3 Instantiations

Here we provide several instantiations of robust hardcore functions and hence of the

Encrypt-with-Hardcore scheme. These instantiations are given for single inputs, i.e.,

|x| = 1 in the OWF and HCF experiments, and are based on the observations that

the Golreich-Levin hardcore function [46] is robust for any one-way function and

a universal hash function is robust for lossy trapdoor functions [68]. These robust
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hardcore functions provide instantiations of the Encrypt-with-Hardcore scheme secure

for encrypting a single message. By the results of [41] security for multiple messages

distributed according to a block-source follows.

4.3.1 Instantiations based on Exponential One-Wayness

Here we present instantiations from computational hardness of inversion. The schemes

obtained are for the single-message case (or equivalently block-sources [41]) only. The

results rely on the following lemma.

Lemma 4.3.1. [40, Lemma 4] Let X be a random variable on a set S such that

H∞(X) ≥ log |S| − ℓ. Then there is an event E such that Pr [ E ] ≥ 2−ℓ and U | E

has the same distribution as X, where U is uniform and independent on S.

By combining Lemma 4.3.1 with the Goldreich-Levin Theorem 2.3.1, we obtain

robust hardcore functions for one-way permutations and one-way functions for distri-

butions with sufficient min-entropy relative to the hardness of inversion for inversion

to still remain infeasible. Indeed, it furthermore follows that the Goldreich-Levin

hardcore function is c-robust for such min-entropy for small c. Details follow.

Instantiations from trapdoor permutations. In the case of trapdoor per-

mutations, we can use Blum-Micali-Yao [15, 78] iteration to extract many hardcore

bits. Namely, let F be a trapdoor permutation generator. For i ∈ N denote by F i

the trapdoor permutation generator that iterates F i times, i.e., (f i, f−i)
$←F i. For

f output by F define the Blum-Micali-Yao [15, 78], Goldreich-Levin [46] function

BMY i : {0, 1}k × {0, 1}k → {0, 1}i via

BMY i(r, x) = ⟨x, r⟩∥⟨f(x), r⟩∥ . . . ∥⟨f i−1(x), r⟩

By combining Theorem 2.3.1 and Theorem 4.3.1 (and noting that min-entropy is

preserved under permutation), it follows that if F is sufficiently hard to invert that

it remains one-way on distributions of entropy µ, then BMY i is a c-robust hardcore
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function of F for µ and any c = O(log k). More generally, we have the following

result.

Theorem 4.3.2. Let F be a trapdoor permutation generator. For any i ∈ N , let

D be a single-input distinguisher against BMY i with min-entropy µ = k − ℓ. Then

there is single-input inverter I with min-entropy µ = k − ℓ such that

Advhcf
F [GL],BMYi,D(k) ≤ i · 2ℓ+3 ·Advowf

F ,I(k) .

Furthermore, the running-time of I is the time for O(ε−4k3) executions of D where

ε = Advhcf
F [GL],BMYi,D(k).

In the proof, we condition on the event E given by 4.3.1, which tells us that the

challenge input for I has the right distribution. By Theorem 4.1.1 and Theorem 4.2.2,

the above implies an instantiation of the Encrypt-with-Hardcore scheme from trap-

door permutations. In the case of standard one-way trapdoor permutations, we the

instantiation can only tolerate nearly uniform messages. However, if the trapdoor

permutation is exponentially hard, in the sense that efficient adversaries have expo-

nentially small (in k) advantage against it (so that the reduction Theorem 4.3.2 is

still meaningful for large ℓ) then the instantiation can tolerate correspondingly high

min-entropy messages as well.

Instantiation from very hard trapdoor functions. Whereas in the trap-

door permutation case we can obtain DET-CPA secure encryption of a single high-

entropy message from exponential hardness, in the trapdoor function case in general

we need exponential hardness even to obtain DET-CPA secure encryption of a single

uniform message (however, any “hardness” beyond that can be used to reduce the

input entropy required). Similar to the case of trapdoor permutations, this is implied

by the following result.

Theorem 4.3.3. Let F be a trapdoor function generator. For i ∈ N, let D be a

single-input distinguisher against F [GLi],GLi with min-entropy µ = k − ℓ. Then
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there is an inverter I with min-entropy µ such that for every k ∈ N

Advhcf
F [GLi],GLi,D(k) ≤ 2ℓ+i+3 ·Advowf

F ,I(k) .

Furthermore, the running-time of I is the time for O(ε−4k3) executions of D where

ε = Advhcf
F [GLi],GLi,D(k).

As before, the proof simply combines Theorem 2.3.1 and Theorem 4.3.1. By

Theorem 4.1.1 and Theorem 4.2.2, the above implies an instantiation of the Encrypt-

with-Hardcore scheme from exponentially-hard trapdoor functions. In general, to

make sure we have enough hardcore bits for the “outer” encryption scheme, we can

expand the length of the hardcore function by using its output as a seed for a pseudo-

random generator. Note that pseudorandom generators can be constructed in theory

based on any one-way function [50], so they do not constitute an extra complexity

assumption.

4.3.2 Instantiation Based on Lossiness

Peikert and Waters [68] showed that lossy trapdoor functions admit a very simple

hardcore function, namely a universal hash function. We observe that this hardcore

function, like that of Goldreich and Levin, is in fact robust in our sense. That is, it is

hardcore if the input distribution merely has high entropy. Indeed, the following result

follows directly from the Generalized Leftover Hash Lemma (for average conditional

min-entropy) in [36].

Theorem 4.3.4. Let LTDF = (F ,F ′) be a lossy trapdoor function with residual

leakage s. Let H : K × {0, 1}k → {0, 1}n be a universal hash function. For any

ε > 0, let D be a distinguish with min-entropy s + n + 2 log(1/ε). Then there is a

distinguisher D′ with the same min-entropy such that

Advhcf
LTDF[H],H,A(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running time of D′ is the time to run D.
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By Theorem 4.1.1 and Theorem 4.2.2, the above implies an instantiation of the

Encrypt-with-Hardcore scheme from lossy TDFs, which can tolerate plaintexts with

min-entropy slightly more than the residual lossiness of the TDF plus the number of

coins consumed by the probabilistic encryption scheme. We also present improved

constructions, both in terms of efficiency and allowed distributions on the plaintexts,

of deterministic encryption from lossy trapdoor functions below.

4.4 Improved Schemes from Lossy Trapdoor Functions

It turns out that we can obtain better constructions from lossy trapdoor functions,

both in terms of efficiency and allowed distributions on the plaintexts. These im-

provements are based on a variant of the Leftover Hash Lemma introduced by Dodis

and Smith [37], called the “Crooked” Leftover Hash Lemma.

4.4.1 Crooked Leftover Hash Lemma and Extensions

We recall a variant of the Leftover Hash Lemma due to Dodis and Smith [37]. The

idea is as follows. Suppose we apply a pairwise independent function that is not

necessary compressing to a high-entropy source X. Since it is not compressing, the

output is not necessarily close to uniform. However, it looks so when composed with

any “shrinking” function.

Lemma 4.4.1. (Crooked Leftover Hash Lemma) [37] Let H : K ×D → R be a

pairwise independent function with range R, and let f : R → S be a function to a

set S. Let X be a random variable over D. Then

∆((K, f(H(K,X))), (K, f(U)) ≤ 1

2

√
|S| · 2−H∞(X)/2

where K
$←K and U is uniform over R.

For our results we extend the lemma in two ways, as well as give a simpler proof

as compared to [37]. First, we strengthen the lemma to the case of t-wise independent
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functions, inspired by [55] who give a similar strengthening to the standard leftover

hash lemma to the case of 4-wise independence. Second, we consider a relaxation to

almost t-wise independence, inspired by [35] who show a similar relaxation for the

standard leftover hash lemma. Namely, say that H is δ-almost q-wise independent if

for all distinct x1, . . . , xq ∈ D

∆((H(K,x1), . . . , H(K, xq)), (U1, . . . , Uq)) ≤ δ .

Our extensions to the crooked LHL are captured in the following.

Lemma 4.4.2. (Extended Crooked Leftover Hash Lemma) Let H : K×D → R

be a 2t-wise independent function for t > 0 with range R, and let f : R → S be a

function. Let X = (X1, . . . , Xt) where the Xi are random variables over D such that

H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and moreover Pr [Xi = Xj ] = 0 for all 1 ≤ i ̸= j ≤ t.

Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1

2

√
|S|t(t22−µ + 3δ)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and independent

over R (recall that functions operate on vectors component-wise).

Proof. Writing Ek for the expectation over the choice of k according to the distribu-

tion of K, it follows that

∆
(
(K, f(H(K,X))), (K, f(U))

)
= Ek

[
∆
(
f(H(k,X)), f(U)

)]
≤ 1

2
Ek

[√
|S|t ·D

(
f(H(k,X)), f(U)

)]
≤ 1

2

√
|S|t · Ek

[
D
(
f(H(k,X))), f(U)

)]
where the second inequality is due to Jensen’s inequality. We will show that

Ek

[
D
(
f(H(k,X)), f(U)

)]
≤ t22−µ + 3δ ,
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which completes the proof. Write Y = H(k,X) for an arbitrary but fixed k. Then

D
(
f(Y), f(U))

)
=

∑
s

(
Pf(Y)(s)− Pf(U)(s)

)2
=

∑
s

Pf(Y)(s)
2 − 2

∑
s

Pf(Y)(s)Pf(U)(s) + Col(f(U)) .

For a set Z ⊆ Rt, define δr,Z to be 1 if r ∈ Z and else 0. For s ∈ St we can write

Pf(Y)(s) =
∑

x PX(x)δH(k,x),f−1(s) and thus∑
s

Pf(Y)(s)
2 =

∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(∑
x′

PX(x
′)δH(k,x′),f−1(s)

)
=

∑
s,x,x′

PX(x)PX(x
′)δH(k,x),f−1(s)δH(k,x′),f−1(s) ,

so that

Ek

[∑
s

Pf(Y)(s)
2
]

=
∑
s

∑
x,x′

PX(x)PX(x
′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

=
∑
s

∑
∃i,j, x[i]=x′[j]

PX(x)PX(x
′)

+
∑
s

∑
∀i,j, x[i] ̸=x′[j]

PX(x)PX(x
′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

≤ t22−µ + Col(f(U)) + δ

where the first term is by a union bound over all 1 ≤ i, j ≤ t and for the remaining

terms we use the δ-almost 2t-wise independence of H and note that

Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)] = Pr [ f(H(K,x)) = f(H(K,x′)) ] .

Similarly,∑
s

Pf(Y)(s)Pf(U)(s) =
∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(
1

|R|
∑
u

δu,f−1(s)

)
=

1

|R|
∑
s

∑
u,x

PX(x)δH(k,x),f−1(s)δu,f−1(s)

so that

Ek

[∑
s

Pf(Y)(s)Pf(U)(s)
]

=
1

|R|
∑
s

∑
u,x

PX(x)Ek[δH(k,x),f−1(s)δu,f−1(s)]

≥ Col(f(U))− δ
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using δ-almost t-wise independence of H. By combining the above, it follows that

Ek

[
D
(
f(Y), f(U)

)]
≤ t22−µ + 3δ

which was to be shown.

Remark 4.4.3. For our main construction, we will need to extend Lemma 4.4.2

to the case that H is a permutation. In this case, say that H is δ-almost q-wise

independent if for all distinct x1, . . . , xq ∈ D

∆((H(K,x1), . . . , H(K, xq)), (P1, . . . , Pq)) ≤ δ

where P1 is uniform and Pi for i > 1 is uniform on the set of points not in the

outcomes of P1, . . . , Pi−1. (i.e., P1, . . . , Pq are correlated.) It is straightforward to

verify from the proof that in this case Lemma 4.4.2 holds when replacing (U1, . . . , Ut)

with (P1, . . . , Pt) in the lemma statement as defined above.

4.4.2 The General Scheme

The paradigm for the construction goes back to the work of Dodis and Smith [38, 37].

Namely, they show that randomness extractors, in addition to producing a uniform

output, also hide partial information about the input. However, it is not immediately

clear how to apply this paradigm in the public-key context. To illustrate the basic

idea, we first present a simpler scheme due to Fehr [41].

A warm-up scheme. Let us call a lossy trapdoor function LTDF = (F ,F ′) universal

if F ′ implements a universal function family, meaning the function H : F ′×{0, 1}k →

R where R is the range of f ′ output by F ′ is universal. For example, it is not hard

to see that the DDH-based LTDF of Peikert and Waters [68] has this property. The

claim is then LTDF viewed as an encryption scheme is itself DET-CPA secure. That

is, define the associated deterministic encryption scheme Π[LTDF] = (K, E ,D) where

K on input 1k returns (f, f−1)
$←F(1k), E on inputs f,m returns f(m) and D on

inputs f−1, c returns f−1(c). Then we have the following.
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Theorem 4.4.4. [41] Let LTDF be a universal lossy TDF with residual leakage s.

Then for any ε and any single-message DET-CPA adversary A against Π[LTDF] with

min-entropy µ ≥ s+2 log(1/ε)+ 2 there is a distinguisher D against LTDF such that

for all k ∈ N

Advdet-cpa
Π[LTDF](k) ≤ Advltdf

LTDF,D(k) + ε ,

Furthermore, the running-time of D is the time to run A.

The proof is a simple hybrid argument that concludes using Lemma 2.2.1. It is

instructive to compare Theorem 4.4.4 with Theorem 4.3.4. Not only is the scheme

here more efficient but the bound on the required entropy of the input is much better,

as the construction tolerates plaintexts with entropy slightly more than the residual

lossiness of the lossy TDF. The price to pay is that the Theorem 4.4.4 requires the

extra condition that the lossy TDF be universal. In the general scheme below, we

show how to drop this extra requirement.

The general scheme. Intuitively, in the general construction we handle q-bounded

DET-CPA adversaries by modifying the warm-up scheme to first pre-process an input

message using a 2q-wise independent permutation, and appealing to Lemma 4.4.1 in

the security proof. The catch is that for q > 1 such a permutation is not known

to exist (in an explicit and efficiently computable sense). However, there are good

constructions of almost 2q-wise independent permutations. Namely, for any t, δ > 0,

Kaplan et al. [52] construct a t-wise δ-almost independent permutation whose key

length is O(tk + log(1/δ)).

Let LTDF = (F ,F ′) be a lossy trapdoor function and let P : K×{0, 1}k → {0, 1}k

be a family of permutations on k bits. Define the associated deterministic encryption

scheme Π[LTDF,P ] = (K,DE ,DD) with plaintext-space PtSp = {0, 1}k via
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Alg K(1k):

(f, f−1)
$←F(1k) ; K $←K

Return ((f,K), (f−1, K))

Alg DE((f,K), x)

c← f(P(K,x))

Return c

Alg DD((sk, f−1), c):

x← f−1(P−1(K, c))

Return x

We have the following theorem.

Theorem 4.4.5. Suppose LTDF has residual leakage s, and let q, ε > 0. Set δ =

2 ·ε2/(3 ·2qs) and suppose P is δ-almost 2q-wise independent. Then for any q-message

DET-CPA adversary A with min-entropy µ ≥ qs+ 2 log q + 2 log(1/ε)− 1, there is a

LTDF distinguisher D such that for all k ∈ N

Advdh-cpa
Π[LTDF,P ],A(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running-time of D is the time to run A.

As before, the proof is a simple hybrid argument. In the case that P is perfectly

pairwise independent (i.e., q = 1 and δ = 0) we can conclude by Lemma 4.4.1. This

gives a version of Theorem 4.4.4 that drops the extra universaily requirement on LTDF

(without any change in parameters). In the general case we use Lemma 4.4.2 coupled

with Remark 4.4.3. with t = 2q. Note that in this case the required entropy from the

input is worse due to the factor q on s in the assumption. As a consequence, we need

to use an LTDF with residual leakage k · o(1) residual leakage, namely less than k/q.

Fortunately, there are such constructions under standard assumptions. In particular,

the DDH-based LTDF of Peikert and Waters [68] satisfies this requirement. We also

give a more efficient Paillier-based instantiation below.

Extension to q-block-sources. We note that the security proof for the construc-

tion can actually be extended to an unbounded number of plaintexts drawn from what

we call a q-block-source, a generalization of a block-source where every q messages in-

troduces some “fresh entropy.” That is, we call (X1, . . . , Xqn) a q-block-source with

entropy µ if for all 1 ≤ i ≤ n, all 0 ≤ j ≤ q − 1, and all x1, . . . , xqi−1 in the support
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of these random variables H∞(Xqi+j | X1 = x1, . . . , Xqi−1 = xqi−1). Security for such

plaintext distributions follows from the fact that 4.4.2 extends to q-block-sources in

the same way the original Leftover Hash Lemma extends to block sources [27].

Comparison with RSA-DOAEP. Additionally, we contrast our scheme here with

the random oracle model RSA-DOAEP scheme in Subsection 3.3.2. Indeed, both

schemes first pre-process an input plaintext before applying a trapdoor function,

in the former case a t-wise (almost) independent permutation following by a lossy

trapdoor function and in the latter case a 3-round Feistel network followed by RSA

(or, more generally, a partial-domain one-way trapdoor function). In fact, Naor and

Reingold [62] show that four-round Feistel network on k-bit input where the first and

last rounds are pairwise independent and the middle rounds are t-wise independent,

is t-wise independent for any t < 2k/4−O(1) and δ ≤ t2/2k/2. While, that error-bound

is not good enough to instantiate the above construction (as for the original Leftover

Hash Lemma [35] is very sensitive to introducing such a error term, in particular in

our case the latter must be much less that 2qs where k = qs in the above bound), we

can still in some sense view our use of the RO model for deterministic encryption as

a way to achieve efficient unbounded independence.

Efficient Paillier-based LTDF. We provide an efficient Pailler-based lossy trap-

door function that we can use to instantiate the above construction, based on earlier

work by Fehr [41]. Let RSA be the RSA key-generator, i.e, that outputs (N, (p, q))

where N = pq and p, q are random k/2-bit primes. Let s ≥ 1 be polynomial in

k. Our construction is actually based on extension of Paillier’s scheme [65] to the

group ZNs+1 due to Damg̊ard and Jurik [29], with some modifications in the spirit of

Damg̊ard and Nielsen [30, 31]. Namely, define LTDFpaillier = (Fpaillier,F ′
paillier) via
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Algorithm Fpaillier:

(N, (p, q))
$←RSA(1k)

a
$← Z∗

N

g ← (1 +N)aN
s
mod N s+1

Return ((g,N), (p, q))

Alg F ′
paillier:

(N, (p, q))
$←K(1k)

a
$← Z∗

N

g ← aN
s
mod N s+1

Return (g,N)

where the evaluation of (x, y) ∈ Zs
N × Z∗

N on input (g,N) is defined as gxyN
s
mod

N s+1, and inversion of y ∈ ZNs+1 on input (p, q) uses the decryption procedure of [29]

to recover x, then uniquely recovers y as the N s-th root of c/gx mod N (which can

be computed efficiently given p, q) and returns (x, y).

Indistinguishability of the public keys in the lossy and injective modes follows

from the Decisional Composite Residuosity Assumption of [65], as in [29]. Note that

while in injective mode the range of the function is ZNs+1 , in lossy mode it consists

of N -th powers so is isomorphic to Z∗
N . Thus, the construction achieves lossiness

sk or residual leakage k bits. Moreover, as compared to the constructions of [68], it

has key-size O(k) rather than O(k2).1 We note that it is easy to extend the above

construction to an all-but-one TDF as defined in [68], which will be useful to us in

Chapter 5 where we address adaptivity or chosen-ciphertext security.

1Although Boyen and Waters [19] recently showed how to reduce the key-size for the DDH-based
construction of [68] to O(k) using bilinear maps.

74



CHAPTER V

ADAPTIVE TRAPDOOR FUNCTIONS

In this chapter, we consider a strengthening to one-wayness for trapdoor functions

along a different dimension we call adaptivity. Intuitively, adaptivity means that the

function remains one-way even in the presence of an inversion oracle that may be

queried on some points in the range. (The terminology follows [67] who consider

adaptivity for unkeyed one-way functions, without a trapdoor.) Our main result is

that adaptivity actually serves to weaken the general assumptions on which we know

how to build black-box chosen-ciphertext secure public-key encryption. It also unifies

the recent schemes of [72, 68] based on stronger assumptions.

Another interpretation of our results is that the notions of [72, 68] imply not

only chosen-ciphertext security but adaptive TDFs, which seems much stronger (for

example, it is known that semantically secure encryption does not even imply one-

way trapdoor functions, at least in a black-box way [44]). Thus, we may still be far

off from finding the weakest general assumption to imply black-box chosen-ciphertext

security.

5.1 Adaptive Trapdoor and Tag-based Trapdoor Functions

We introduce our notion of adaptivity for trapdoor functions as well as an extension

called tag-based trapdoor functions.

Adaptive one-wayness. Let F be a trapdoor function generator. To F and an

inverter I with access to an oracle we associate
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Experiment Expaowf
F ,I (k):

(f, f−1)
$←F

x
$←{0, 1}k

x′ $← If
−1(·)(f, f(x))

If x = x′ return 1 else return 0

where we require that I does not query f(x) to its oracle. Define the AOWF advantage

of I against F as

Advaowf
F ,I (k) = Pr

[
Expaowf

F ,A (k)⇒ 1
]
.

Note that chosen-ciphertext secure deterministic encryption as defined in Chap-

ter 3 can be viewed as a strengthening of adaptive one-wayness.

Tag-based adaptive one-wayness. A tag-based TDF with tag-space {0, 1}t for

t = t(k) is an algorithm Ftag that on input 1k outputs (ftag, f
−1
tag) where for every

t ∈ {0, 1}t, f(t, ·) is a function on {0, 1}k and f−1(t, ·) is its inverse. To Ftag and

inverter I = (I1, I2) (the latter with access to an oracle) we associate

Experiment Exptb-aowf
F ,I (k):

(ftag, f
−1
tag)

$←F(1k)

t
$← I1(1

k)

x
$←{0, 1}k

x′ $← If
−1
tag(·,·)(ftag, ftag(t, x))

If x = x′ return 1 else return 0

where we require I2 does not make any query f−1
tag(t, ·) to its oracle. Define the TB-

AOWF advantage of I against F as

Advtb-aowf
F ,I (k) = Pr

[
Exptb-aowf

F ,A (k)⇒ 1
]
.

Note that the ‘challenge tag” t is independent of ftag and hence it may also be

called selective-tag security (similar to selective-ID security for IBE schemes [24]).
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Stronger variants of this security notion can be obtained by allowing the adversary

choose the challenge-tag t adaptively. We note that typically one requires the size

of the tag-space to be super-polynomial. In fact, adaptive tag-based TDFs with

polynomial-size tag-space can be constructed from any OW-TDF, but are not suffi-

cient for our applications.

5.2 Chosen-Ciphertext Secure Encryption from Adaptivity

We show that adaptive trapdoor functions and tag-based trapdoor functions lead to

efficient and black-box chosen-ciphertext secure (probabilistic) encryption.

5.2.1 Constructions from Adaptive TDFs

We first show how to construct a one-bit CCA-secure public-key encryption scheme

from an adaptive TDF. By a recent result of Myers and Shelat [61], this implies a

black-box construction of a many-bit scheme as well.

Let F be a TDF generator and hc(·) be a hardcore bit. We construct PKE

scheme Π[F ] = (K, E ,D) with message-space {0, 1} as follows. Algorithm K outputs

(f, f−1)
$←F(1k) and E and D are defined via

Algorithm E(f, x):

For i = 1 up to k do

x
$←{0, 1}k ; h← hc(x)

If h = b then return f(x)∥0

Return b∥1

Algorithm D(f−1, y∥flag):

If flag = 1 then return y

Else return hc(f−1(y))

It is clear that the above construction satisfies correctness. (Note that if the

encryption algorithm happens to output the message in the clear it is still correctly

decrypted, so this is a security, not a functionality, concern.) We now turn to security.

Theorem 5.2.1. Let A = (A1, A2) be an IND-CCA adversary against Π[F ]. Then

there is a HCB adversary against F , hc such that Then there is a distinguisher D

77



such that

Advind-cca
Π[F ],A(k) ≤ k ·

(
Advhcb

F ,hc,D(k) + (k − 1)q/2(k−1)/2 + 2−k
)
. (23)

Furthermore, the running-time of D is the time to execute A plus O(k).

Optimizations. We note that our construction here can be simplified and made

much more efficient if the given adaptive TDF is a permutation or has linearly many

simultaneous hardcore bits. Namely, in this case one can use the adaptive TDF as a

key-encapsulation mechanism for an IND-CCA-secure symmetric encryption scheme.

(A key-encapsulation mechanism generates a ciphertext that encrypts a random sym-

metric key for use in hybrid encryption.) Additionally, for some specific hardcore bits

one may be able to sample uniformly from the set {x ∈ {0, 1}k | hc(x) = b} more

efficiently than by repeated sampling of the uniform distribution on {0, 1}k. (Indeed,

this is the case for the Goldreich-Levin bit [46].) This translates to a corresponding

efficiency improvement for the scheme.

Proof. As the messages space of Π[F ] is {0, 1}, we assume without loss of generality

that A1 always outputs (0, 1, ε). (That is, it chooses messages 0 and 1, and its state

is empty.) We give a multi-sample adversary D′ against hc; one can then obtain D

via a standard hybrid argument. Adversary D′ is given in Figure 10 and the games

for the proof are given in Figure 11. We claim the following sequence of inequalities:

Pr
[
GA2

1 ⇒ b
]
≤ Pr

[
GA2

2 ⇒ b
]
+ Pr[GA2

2 sets bad1 ] (24)

≤ Pr
[
GA2

2 ⇒ b
]
+

kq

2k/2
(25)

≤ Pr
[
GA2

3 ⇒ b
]
+Advhcb

F ,hc,D(k) +
kq

2k/2
(26)

= Pr
[
GA2

4 ⇒ b
]
+ Pr[GA2

3 sets bad2 ] +Advhcb
F ,hc,D(k)

+
kq

2k/2
(27)

= Pr
[
GA2

4 ⇒ b
]
+ 2−k +Advhcb

F ,hc,D(k) +
kq

2k/2
(28)

=
1

2
+

1

2k
+Advhcb

F ,hc,D(k) +
(k − 1)q

2(k−1)/2
(29)
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from which Equation 23 follows by multiplying both sides by 2 and subtracting 1, tak-

ing into account the definition of the advantage of A. Equation 24 is by Lemma 2.4.1.

To see Equation 25, first note that A does not make a decryption query such that

c1 = yi∗ by definition. For all 1 ≤ i ̸= i∗ ≤ k, let Yi be the random variable taking

the value of yi in the execution of Game G2. Then conditioned on the view of A, the

average min-entropy H̃∞(Yi) ≥ k−1 by [36, Lemma 2.2(a)]. Therefore, by lemma [36,

Lemma 2.2(b)] H∞(Yi) ≥ (k − 1)/2 with probability at least 1 − 2−(k−1)/2. By con-

ditioning on this event and taking a union bound overall i ̸= i∗ we get Equation 25.

To see Equation 26, note that

Pr
[
GA2

2 ⇒ b
]

= Pr
[
GA2

3 ⇒ b
]
+
(
Pr
[
GA2

2 ⇒ b
]
− Pr

[
GA2

3 ⇒ b
])

= Pr
[
GA2

3 ⇒ b
]
+Advhcb

F ,hc,D(k)

where the last equality is by the definition of the advantage of D. As before, Equa-

tion 27 is by Lemma 2.4.1. To see Equation 28, note that each execution of the

for-loop in the Initialize prodecure of Game G3 chooses h uniformly and indepen-

dently at random. Finally, Equation 29 is because A gets no information about b in

Game G4.

5.2.2 Constructions from Adaptive Tag-based TDFs

A basic scheme. Our construction of CCA-secure PKE from a adaptive tag-based

TDFs is much simpler. It additionally makes use of a strongly one-time unforge-

able signature scheme (see e.g. [72] for the definition). For simplicity, we give the

construction below for the case of 1-bit messages. It is easy to extend it to a many-

bit scheme, essentially by concatenating many applications of the TB-adaptive TDF

under independent inputs but the same tag.

Let Ftag be a tag-based trapdoor function generator and let hc(·) be a hardcore

bit. Let Σ = (KΣ,S,V) be a signature scheme whose verification keys are contained
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Algorithm D′f−1(·)(f, (y1, h1), . . . , (yk, hk)):

b
$←{0, 1}

Find the least 1 ≤ i∗ ≤ k such that hi∗ = b
If there is no such i∗ then c∗ ← b∥1
Else c∗ ← yi∗∥0
Run A2 on inputs f, c∗:

On decryption query c:
c1∥flag← c
If ∃i such thatc1 = yi then return ⊥
If flag = 1 then return c1
Else return hc(f−1(c1))

Let d be the output of A2

If b = d return 1 else return 0

Figure 10: Adversary D for the proof of Theorem 5.2.1.

in the tag-space of Ftag. We construct PKE scheme Π[Ftag,Σ] = (K, E ,D) with

message-space {0, 1} as follows:

Algorithm E(ftag, b):

(sk, vk)
$←KΣ(1

k)

x
$←{0, 1}k

y
$← ftag(vk, x) ; d← hc(x)⊕ b

σ
$←S(sk, y∥d)

Return y∥d∥σ∥vk

Algorithm D(f−1
tag, y∥d∥σ∥vk):

If V(vk, c, σ) = 0 then return ⊥

Else return hc(f−1
tag(vk, y))⊕ d

We have the following theorem.

Theorem 5.2.2. Let A be an IND-CCA adversary against Π[Ftag,Σ]. Then there is

a forger F against Σ and an HCB distinguisher D against F , hc and such that for all

k ∈ N

Advind-cca
Π[F ],A(k) ≤ Advsots

Σ,F (k) +Advhcb
F ,hc,D(k) .

Furthermore, the running-times of F,D are the time to run A.
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procedure Initialize: G1, G2

b
$←{0, 1}

(f, f−1)
$←F(1k)

For i = 1 to k do:

x
$←{0, 1}k

h← hc(x)
If h = b then
Return f, f(x)∥0

Return f, b∥1

procedure Initialize: G3, G4

b
$←{0, 1}

(f, f−1)
$←F(1k)

For i = 1 to k do:

x
$←{0, 1}k

h
$←{0, 1}

If h = b then
Return f, f(x)∥0

bad2 ← true ; return ⊥
Return f, b∥1

On decryption query c: G1, G2

c← y∥flag
If ∃i such that c = yi then

bad1 ← true ; return ⊥
If flag = 1 then return y
Else return hc(f−1(y))

procedure Finalize(d): All Games

If b = d then return 1
Else return 0

Figure 11: Games for the proof of Theorem 5.2.1.

An optimized scheme. As in the case of adaptive TDFs, our construction of CCA-

secure public-key encryption from adaptive tag-based TDFs can also be made much

more efficient if the given TB-adaptive TDF is a permutation (for every tag) or has

linearly many simultaneous hardcore bits. The idea is to first construct a selective-tag

weakly CCA-secure tag-PKE scheme in the sense of [53] by using the adaptive tag-

based TDF as a key-encapsulation mechanism for a one-time CPA-secure symmetric

encryption scheme. Then, as shown in [53], we can apply the transform of Boneh

et al. [17] to obtain a CCA-secure public-key encryption scheme, which uses only

symmetric-key primitives. For completness we outline the construction in full below.

Namely, the transform of [17] uses a message authentication code (MAC) and

an encapsulation scheme. Roughly speaking, an encapsulation scheme captures the
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properties of a one-time commitment scheme on a randomly generated message (the

hiding and binding properties). However, one only requires the binding property to

hold for honestly generated commitments. For concreteness, we use a specific instan-

tiation from [17] (with a slightly improved analysis leading to better parameters).

Let G be an adaptive tag-based TDF and let hc(·) be a hardcore function. (We

assume here for simplicity that its output length is sufficiently long.) Let SE =

(KS, ES,DS) be a symmetric encryption scheme. Let H1 : {0, 1}368 → {0, 1}80 be a

target-collision resistant hash function [13], and let H2 : K×{0, 1}368 → {0, 1}128 be a

universal hash function. LetMAC = (M,V) be a message authentication code with

128-bit keys. Then define scheme Πopt = (K, E ,D) associated to the above via

Alg K(1k):

K
$←K

(g, g−1)
$←G

Return ((g,K), g−1)

Alg E(pk,m):

x1
$←{0, 1}368 ; x2

$←{0, 1}k

c1 ← g(H(x1), x2)

c2 ← ES(hc(x2),m∥x1)

c3 ←M(H2(x1), c1∥c2)

Return H(x1)∥c1∥c2∥c3

Alg D(sk, h∥c1∥c2∥c3):

x2 ← g−1(h, c1)

m∥x1 ← DS(hc(x2), c2)

If V(H2(x1), c1∥c2), c3) = 1

Return m

Else return ⊥

In the construction, it is not hard to see that the c1 and c2 components of the

ciphertext correspond to that of a selective-tag weakly CCA-secure encryption scheme

in the sense of [53]. The proof of security then follows directly from [17], except that

we improve the parameters here by using the Generalized Leftover Hash Lemma

of [36]. Namely, we only need a hash function whose inputs are 368 = 160+ 80+ 128

bits rather than 448 as in [17].

Witness-recoverability. We note that the optimized construction above is fully

“witness-recovering” as defined in [68]; that is, via the decryption process the receiver

recovers all of the randomness used by the sender to encrypt. (The constructs of [68]

technically do not achieve this since, as the authors note, in their constructs the

receiver does not recover the coins used to generate one-time signature keys.) In
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particular, it consistutes the first such scheme we are aware of without random oracles.

5.3 Adaptivity from Stronger Trapdoor Functions

Inspired by the constructions of CCA-secure encryption in [68, 72], we show that

both adaptive TDFs and adaptive tag-based TDFs can be constructed in a black-box

manner from correlated-product TDFs as introduced by Rosen and Segev [72]. As

shown in [72, 60], lossy TDFs [68] imply correlated-product TDFs, thus by our result

above they imply adaptive TDFs and adaptive tag-based TDFs too. However, we go

on to show a much more efficient direct construction from lossy TDFs in combination

with an all-but-one TDF as defined by [68].

5.3.1 Constructions from Correlated-Product TDFs

One-wayness under correlated-product. We recall the notion of one-wayness

under correlated product [72]. Let F be a trapdoor function. To a trapdoor function

generator F , n ∈ N, and inverter I we associate

Experiment Expn-cp
F ,I (k):

For i = 1 to n do (fi, f
−1
i )

$←F

(x1, . . . , xn)
$← I1(1

k)

(x′
1, . . . , x

′
n)

$← I1(f1, . . . , fn, f1(x1), . . . , fn(xn))

If (x1, . . . , xn) = (x′
1, . . . , x

′
n) return 1 else return 0

Define the n-CP advantage of I against F as

Advn-cp
F ,I (k) = Pr

[
Expn-cp

F ,A (k)⇒ 1
]

Call a n-CP adversary I = (I1, I2) canonical if I1 on input 1k outputs (x1, . . . , xn)

where x1 is randomly chosen from {0, 1}k and x1 = . . . = xn.

We note that the above notion is weaker than the extension of one-wayness to

vectors of non-uniform inputs we gave in Section 4.2.1. This stems from the fact
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that a weaker notion is required to realize CCA-secure encryption as compared to

deterministic encryption (which encrypts each input separately).

Construction of adaptive TDFs. Let F be a TDF genertor with range {0, 1}n

for n = n(k). We construct a new TDF generator G as follows:

Algorithm G(1k):

(f, f−1)
$←F(1k)

For b ∈ {0, 1} and 1 ≤ i ≤ n do: (fb,i, f
−1
b,i )

$←F(1k)

g ← (f, (f0,1, f1,1), . . . , (f0,n, f1,n))

g−1 ← (f−1, (f−1
0,1 , f

−1
1,1 ), . . . , (f

−1
0,n, f

−1
1,n))

Return (g, g−1)

where g on input x is defined as (y, fy[1],1(x) . . . , fy[n],n(x)) where y = f(x), and g−1

on input y∥y1∥ . . . ∥yn returns x = f−1(y) if fy[i],i(x) = yi for all 1 ≤ i ≤ n and ⊥

otherwise.

Theorem 5.3.1. Let I be an inverter against G. Then there is a canonical (n+1)-CP

inverter I ′ against F such that for all k ∈ N

Advatdf
G,I (k) = Advn+1-cp

F ,I′ (k) .

Furthermore, the running-time of I ′ is the time to run I.

Improved constructions. We note that it is possible to make the scheme more

efficient by additionally using a target-collision resistant hash function [13]. Then,

the “selector” bits y[1], . . . , y[n] in the construction are replaced with the bits of the

hash of f(x). We also note that following [72] it is possible to give a construction

based on a correlated-product TDF allowing a slightly weaker correlation among the

inputs, based on error correcting codes.

Construction of adaptive tag-based TDFs. The above construction of adap-

tive TDFs can easily be modified to give a construction of adaptive tag-based TDFs
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as well. The difference is that in the “selector” bits b1, . . . , bn are replaced with the

bits t1, . . . , tn of the tag t. Notably, when we apply our construction of CCA-secure

PKE from adaptive tag-based TDFs given in Section 5.2) to the resulting adaptive

tag-based TDF, we obtain precisely the CCA-secure PKE scheme of [72].

5.3.2 Constructions from Lossy and All-but-One TDFs

Construction of adaptive TDFs. Let LTDF = (F1,F ′
1) be a lossy trapdoor

function and let ABO = (F2,F ′
2) be an all-but-one trapdoor function; wlog we assume

its branch-space is {0, 1}n for n = n(k). Let T : {0, 1}∗ →→ ({0, 1}n \ {0n}) be a

hash function. We construct a new trapdoor function generator G as follows.

Algorithm G(1k):

(f1, f
−1
1 )

$←F1(1
k)

(f2, f
−1
2 )

$←F2(1
k, 0n)

Return (f1, f2), (f
−1
1 , f−1

2 )

where g on input x is defined as f1(x), f2(h, x) where h = T (f1(x)), and g−1 on input

y1∥y2 returns x = f−1
1 (y1) if f2(h, x) = y2 where h = T (y1) and ⊥ otherwise.

Theorem 5.3.2. Let I be an inverter against G. Then there are distinguishersD1, D2

against LTDF,ABO respectively and an adversary A against T such that for all k ∈ N

Advatdf
G,I (k) ≤ Advltdf

LTDF,D1
(k) +Advabo

ABO,D2
(k) +Advtcr

T,A(k) + 2−n+s1+s2

where s1, s2 are the residual leakages of LTDF,ABO respectively. Furthermore, the

running-times of D1, D2, A are the time to run I.

Proof. The games for the proof, which follows [68], are given in Figure 12. We omit to

give the code for the constructed adversaries, since they mostly just repeat the code
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of the relevant games. Equation 30 follows from the following sequence of inequalities:

AdvadaptiveTDF
G,I (k) = Pr

[
GI

1⇒ x
]

≤ Pr
[
GI

2⇒ x
]
+Advabo

ABO,D2
(k)

≤ Pr
[
GI

3⇒ x
]
+ Pr[GA2

2 sets bad ] +Advabo
ABO,D2

(k)

≤ Pr
[
GI

4⇒ x
]
+Advtcr

T,A(k) +Advabo
ABO,D2

(k)

≤ Pr
[
GI

5⇒ x
]
+Advtcr

T,A(k) +Advabo
ABO,D2

(k)

+Advltdf
LTDF,D1

(k)

≤ 2−n+s1+s2 +Advtcr
T,A(k) +Advabo

ABO,D2
(k) +

+Advltdf
LTDF,D1

(k) .

In fact, as we show in Section 5.5, the construction actually achieves a stronger

security property that we call “adaptive lossiness.” This is in particular useful for

construction CCA-secure deterministic encryption in the standard model.

Construction of adaptive tag-based TDFs. Similarly to our construction of

adaptive TDF from correlated-product TDF, the above construction can be adapted

to construct a tag-based adaptive TDF instead. The difference is that in the eval-

uation algorithm, instead of evaluating the all-but-one TDF at branch T (y1), it is

evaluated at branch t, where the latter is the input tag. As before, when we apply

our general construction of CCA-secure PKE from TB-ADTFs given in Section 5.2 to

the resulting adaptive tag-based TDF, we obtain precisely the CCA-secure encryption

scheme of [68].

5.4 On the Complexity of Adaptive Trapoor Functions

In this section, we further study the complexity of adaptive TDFs. First, we show

that adaptive TDFs and adaptive tag-based TDFs are strictly weaker than correlated-

product TDFs, in a black-box sense. Combined with the above results, this means
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procedure InitializeG1

(f1, f
−1
1 )

$←F1(1
k)

(f2, f
−1
2 )

$←F2(1
k, 0n)

x
$←{0, 1}k

y1 ← f(x) ; h∗ ← T (y1) y2 ← f2(h
∗, x)

Return (f1, f2), y1∥y2

procedure InitializeG2 – G4

(f1, f
−1
1 )

$←F1(1
k)

x
$←{0, 1}k

y1 ← f(x)

(f2, f
−1
2 )

$←F2(1
k, y1)

h∗ ← T (y1)
y2 ← f2(h

∗, x)
Return (f1, f2), y1∥y2

procedure InitializeG2 – G4

f1
$←F ′

1(1
k)

x
$←{0, 1}k

y1 ← f(x)

(f2, f
−1
2 )

$←F2(1
k, y1)

y2 ← f2(T (y1), x)
Return (f1, f2), y1∥y2

On inversion query y G1, G2

y1∥y2 ← y
If T (y1) = h∗ then

bad← true ; Return ⊥
x← f−1(y1)
If f2(T (y1), x) = y2 then return x
Else return ⊥

On inversion query y G1, G2

y1∥y2 ← y
If T (y1) = h∗ then return ⊥
x← f−1

2 (T (y1), y2)
If f1(x) = y1 then return x
Else return ⊥

procedure Finalize(x′) All Games

Return x′

Figure 12: Games for the proof of Theorem 4.3.4.

that adaptivity is currently the weakest security property of TDFs known to imply

black-box chosen-ciphertext security. We then show that adaptive tag-based TDFs

can be realized from an assumption on RSA inversion not known to imply correlated-

product TDFs. This further demonstrates the usefulness of our notions and leads to a

very efficient chosen-ciphertext secure RSA-based encryption scheme without random

oracles (though based on a non-standard assumption).
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5.4.1 A Black-Box Separation from Correlated-Product TDFs

Informally, we call a construction of a primitive P1 from another primitive P2 is black-

box if (1) the algorithms of P1 only access those of P2 as oracles, and (2) there is an

adversary A such that for every adversary B breaking P2 then A given oracle access

to B. See [70, Definition 3] for the formal definition, which will not be important here

(the latter calls this “fully black-box,” which is the only notion we will be concerned

with here).

Very recently, Vahlis [76] showed that there is no black-box construction of CP-

TDFs from OW-TDFs. We observe here that his proof in fact extends to rule out a

black-box construction of CP-TDFs from adaptive TDFs or adaptive tag-based TDFs

as well.

Theorem 5.4.1. There is no black-box construction of correlated-product TDFs

from adaptive TDFs or adaptive tag-based TDFs.

The theorem actually follows by extending Vahlis’s proof to rule out a black-box

construction of correlated-product TDFs from exponentially-hard adaptive TDFs. As

shown in Section 5.4.2, adaptive tag-based TDFs are implied by exponentially-hard

TDFs, so this rules out a black-box construction of correlated-product TDFs from

adaptive tag-based TDFs as well. Since Vahlis’s proof is rather technical we avoid

explaining its details here. Instead, we describe the high-level ideas and point out a

minor change needed to give our claimed result.

Similar to most black-box separation results, in order to show that there is no

black-box construction of primitive P1 from primitive P2, the proof starts by defining

an ideal oracle O (the ideal version of P2), and a break oracle B. One then shows

that (1) there exist an adversary A that breaks any construction of P1, with the help

of a polynomial number of queries to B and (2) P2 can be securely realized using the

ideal oracle O, even when the adversary is given access to B.
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Oracle O. Roughly speaking, O is defined as a triple of functions (g, e, d) sampled

uniformly at random from the set of all functions with the following property: g maps

trapdoors to public keys; e(pk, ·) is an independent permutation for every public key

pk, and d(sk, ·) inverts e(pk, ·) if sk is the trapdoor corresponding to pk.

It is easy to see that oracle O constitutes an adaptive TDF; in fact, it is an

exponentially-hard adaptive TDF. However, as pointed out in [76], O is also corre-

lation secure as the permutations for every public key is chosen independently and

uniformly at random.

oracle B. Oracle B is specially designed to break the security of a correlated-

product TDF. It takes as input a triple of circuits (GO, EO, DO) which are candidates

for a correlation secure TDF, two public keys pk1, pk2 and the values E(pk1, x) and

E(pk2, x). The naive solution would be to let oracle B return x. However, this would

make oracle B too powerful and would allow an adversary to break the security of

any ideal TDF by letting the two public keys be pk1 = pk2. This problem is solved

by requiring that the public keys of O encoded in pk1 are distinct from those encoded

in pk2. An additional problem is caused by the fact that the adversary can make

queries that contain invalid public keys, while detecting invalid keys by oracle B can

render it too powerful. This issue is resolved by requiring the adversary to provide a

partial oracle O′ = (g′, e′, d′) that is defined on a small part of the domain of (g, e, d)

such that relative to O′, pk1 and pk2 are valid public keys.

We refer the reader to [76] for a more formal description of oracles O and B. The

following (informal) claims proven in [76] complete the argument.

Claim 5.4.2. There exists an adversary that making a small number of queries to

oracles O and B that breaks the security of any correlated-product TDF.

Claim 5.4.3. Let F be the trapdoor function that simply forwards its inputs to O.

For any adversary A that makes a small number of queries to oracles B and O, A
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does not break security of F .

In [76], latter claim is proven for the case when “security of F” is interpreted as

one-wayness. However, the proof easily extends to the case of adaptivity. Particularly,

the bulk of the proof consists of describing a simulator S that simulates the answers

for queries made to oracle B. For consistency purposes, S keeps a list O∗ of all

the query/answers made to the challenge function e(pk∗, ·) where pk∗ is the challenge

public key. In case of adaptive TDFs, S needs to do the same for any query e−1(pk∗, ·)

made to the inversion oracle. The rest of the proof stays the same.

5.4.2 Adaptivity versus Tag-Based Adaptivity

Note that tag-based TDFs can be viewed as a specific type of TDF in which the first

part of the input is output in the clear. Based on this observation we show that adap-

tive TDFs and tag-based adaptive TDFs are equivalent under exponential hardness,

meaning that if we start with an exponentially-hard version of one primitive it im-

plies an exponentially-hard version of the other. Whether the notions are equivalent

in general remains open.

Adaptive TDFs from tag-based adaptive TDFs. Let G be a tag-based adap-

tive TDF generator with tag-space {0, 1}ℓ for ℓ = ℓ(k). Let T : {0, 1}k → {0, 1}ℓ

be a (compressing) TCR hash function. We construct an adaptive TDF genera-

tor G[T ] that on input 1k outputs g, g−1)
$←G(1k). Evaluation g(x) is defined as

(T (x), g(T (x), x)), and inversion g−1(h, y) is defined as g−1(h, y).

Theorem 5.4.4. Let I be an inverter against G[T ] defined above. Then there is an

adversary A against T and an inverter I ′ against G such that for all k ∈ N

Advaowf
G[T ],I(k) ≤ 2ℓ ·Advtb-aowf

I′ (k) +Advtcr
T,A(k) .

Furthermore, the running-times of I ′, A are the time to run I.

90



The idea for the proof is that the inverter can just “guess” the hash value T (x)

since G is exponentially hard.

Tag-based adaptive TDFs from adaptive TDFs. Give an adaptive TDF F ,

we construct a tag-based adaptive TDF G with with domain {0, 1}k−ℓ and {0, 1}ℓ,

where G on input 1k returns (g = f, g−1 = f−1) where (f, f−1)
$←F(1k). Evaluation

g(t, x) is defined as f(t∥x) and inversion g−1(t, y) computes z ← f−1(y), parses t∥x←

z, and returns x if t = t′ and otherwise ⊥.

Theorem 5.4.5. Let I be an inverter against G defined above. an inverter I ′ against

F such that for all k ∈ N

Advtb-aowf
G,I (k) ≤ 2ℓ ·Advaowf

I′ (k) .

Furthermore, the running-time of I ′ is the time to run I.

Note that it is not hard to see that in the above construction if ℓ = O(log k), we

no longer need the assumption that the underlying adaptive TDF is exponentially

hard. In other words adaptive TDFs imply tag-based adaptive TDFs with (log k)-bit

tags. However, (log k)-bit tag-based adaptive TDFs seem to be a significantly weaker

primitive. Indeed, they can be based on any one-way TDF.1

5.4.3 Adaptivity from an Assumption on RSA Inversion

To further demonstrate the usefulness of our new notions, we show that adaptive

tag-based TDFs are realizable from an assumption on RSA inversion not known to

imply a correlated-product TDF.

Instance-independent RSA. The instance-independent RSA assumption, intro-

duced by Pallier and Villar [66], asserts the difficulty of solving the RSA problem —

1To see this, consider the construction where k functions f1, . . . , fk are sampled from a family
of one-way TDFs. The tag-based adaptive TDF is defined such that on input x and tag t, ft(x) is
returned; inversion is defined naturally.
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that is, computing e-th roots modulo N = pq — even if given access to an oracle

that computes e′-th roots modulo N for e′ ̸= e. Of course, due to the homomorphic

property of RSA some additional restriction on the exponents is necessary for this to

hold; in what follows we require that e ̸= e′ are primes. Let primesn denote the set

of all n-bit primes and To an inverter I with access to an oracle and n = n(k) we

associate

Experiment Expii-rsa-n
I (k):

p, q
$← primesk/2 ; N

$← pq

e
$← primesn

x
$← ZN ; y ← xe mod N

x′ $← IOp,q(·,·)(N, y)

If x = x′ return 1 else return 0

where oracle Op,q on inputs y′, e′ returns y′d
′
modN where e′d′ = 1 mod ϕ(N) if e ̸=

e′ ∈ primesn and ⊥ otherwise. Define the II-RSA advantage of I for n as

Advii-rsa-n
I (k) = Pr

[
Expii-rsa-n

I (k)⇒ 1
]
.

We note that Paillier and Villar [66] used this assumption to show that RSA-based

schemes cannot be proven secure in the standard model. More recently, Chevallier-

Mames and Joye [26] observed that II-RSA can be used to prove security of encryption

schemes as well. We note that [66] actually considered the assumption parameterized

by a fixed “challenge” e (e.g., e = 3). We follow the formulation of [26] and choose e

at random from the set of all primes of a given length.

Prime Sequence Generator. Our construction uses the “prime sequence gener-

ator” of [20], which for any n ∈ N with k ≥ (n + 1)/2 probabilistically constructs

an efficiently computable, (with high probability) injective map phashn : {0, 1}k →

primesn. Namley, one first chooses a random 2(n + 1)2-wise-independent function

Q : {0, 1}k × {1, . . . , 2(n + 1)2} → {0, 1}n using the standard polynomial evaluation
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construct over F2κ+1 . Then for t ∈ {0, 1}k, we define phashn(t) to be the first prime

in the sequence Q(t, 1), . . . , Q(t, 2(n+ 1)2).

Tag-based adaptive TDF from II-RSA. Let phashn be as defined above for k ≥

(n+ 1)/2. We construct a tag-based adaptive TDF F [phashn] with tag-space {0, 1}k

that on input 1k outputs RSA parameters (N, (p, q). Evaluation on tag t ∈ {0, 1}k

input x ∈ ZN is defined as xphasht mod N and inversion is defined accordingly.

Theorem 5.4.6. Let I be an inverter against F [phashn]. Then there is an inverter

I ′ such that for all k ∈ N

Advtb-aowf
F [phashn],I

(k) ≤ Advii-rsa-n
I (k) + 2−Ω(n) .

Furthermore, the running-time of I ′ is the time to run I.

We stress that the use of the “prime sequence generator” in the construction does

not introduce any unproven assumption.

Proof. (Sketch.) We consider two games, which we call G1 and G2. Game G1 is just

the adaptive tag-based TDF experiment with I against F [phashn]. For Game G2, we

modify the inversion oracle to return ⊥ whenever I makes an inversion query on a

tag t′ such that phashn(t
′) = phashn(t), where t is the challenge tag.

First, we claim that Pr
[
IG1 ⇒ x

]
− Pr

[
IG2 ⇒ x

]
≤ 2−Ω(k). This follows from

the analysis of the prime sequence generator in [20], who show that with probability

at least 1 − 2−Ω(n) over the choice of Q in its construction, the set {phashn(t) : t ∈

{0, 1}k} contains 2k random and distinct n-bit primes.

Next, we claim that we can construct an inverter I ′ such that Advii-rsa-n
I′ =

Pr
[
IG2 ⇒ x

]
, which completes the proof. Note that I ′ receives its challenge ex-

ponent e “from the outside,” so we need a way of “programming” the prime sequence

generator at a given point. For this we can use the ideas of [58], who show that for

any t∗ ∈ {0, 1}n and random e∗ ∈ primesn, it is possible to construct the polynomial
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Q = Qt∗,e∗ for the prime sequence generator in such a way that phashn(t
∗) = e∗ and

that for every t∗0, t
∗
1, the distribution of these Q’s are 2−Ω(n)-close.

An efficient CCA-secure RSA-based encryption scheme. The above con-

struction of adaptive tag-based TDP leads to a very efficient CCA-secure RSA-based

encryption scheme in the standard model. Namely, we apply the “optimized” con-

struction of CCA-secure encryption from adaptive tag-based TDFs given in Sec-

tion 5.2, based on the transform of [17]. We note that to extract enough hardcore bits

from only one application of RSA in the construction we can combine II-RSA with

the “small-solutions” RSA problem of [75]. Furthermore, by strengthening II-RSA

to allow e, e′ to be composites such that gcd(e, e′) = 1 and quantifying over all e in

the assumption, we can “heuristically” use a cryptographic hash function with 512-

bit output in place of the prime sequence generator for 80-bit security. The resulting

scheme has ciphertexts containing only one group element and, assuming the strength-

ening to II-RSA discussed above, its encryption time is dominated by one 512-bit

exponentiation. In terms of applicability, however, it is unclear if such a standard-

model scheme secure based on an interactive assumption about RSA is preferable to

a random-oracle scheme based on its one-wayness (such as RSA-OAEP [12]).

5.5 Chosen-Ciphertext Secure Deterministic Encryption

In this section, we show how to build on our previous results to achieve chosen-

ciphertext secure deterministic encryption. The latter is a strong notion for trapdoor

functions that combines all the strengthenings to one-wayness considered in this the-

sis.

5.5.1 Constructions in the Random Oracle Model

In the random oracle model, one-way TDFs and adaptive TDFs are equivalent. In

fact, we can construct DET-CCA secure deterministic encryption from any IND-CPA
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randomized encryption scheme that meets a minor extra condition. Namely, the

Encrypt-with-Hash deterministic encryption scheme EwHash from Subsection 3.3.1

is DET-CCA secure even if the starting encryption scheme is only IND-CPA and

morover no ciphertext occurs with too high a probability. More precisely, the max-

ciphertext probability mcΠ(·) of encryption scheme Π = (K, E ,D) is defined as follows:

for all k ∈ N we let mcΠ(k) be the maximum taken over all y ∈ {0, 1}∗ and all

x ∈ PtSp(k) of the quantity

Pr
[
(pk, sk)

$←K(1k) ; c $←E(pk, x) : c = y
]
.

Then Theorem 3.3.1 extends as follows.

Theorem 5.5.1. Let A = (A1, A2) be a PRIV-CCA against EwHash[Π] with min-

entropy µ, which outputs vectors of size v with messages of length n and makes at

most qh queries to its hash oracle and at most qd queries to its decryption oracle.

Then there exists an IND-CPA adversary B against Π such that for every k ∈ N

Advdet-cca
EwHash[Π],A(k) ≤ Advind-cpa

Π,B (k) +
2qhv

2µ
+ 2qdmcΠ(k) . (30)

Furthermore, the running-time of B is at most that of A plus O(vn + qhTE), where

TE is the time for a computation of E on messages of length n.

The requirement that mcΠ(·) be small is quite mild. Most practical encryption

schemes have negligible max-ciphertext probability.

Proof. The proof is an extension of the proof of Theorem 3.3.1. In particular, we

extend the game-chain there and add an extra proedure to the games and to the code

of the constructed IND-CPA adversary B to respond to A’s decryption queries. The

games for the proof are given in Figure 14 and adversary B is given in Figure 13.

Equation (30) follows from the following sequence of inequalities, which we will justify
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below:

Pr
[
GA2

1 ⇒ b
]
≤ Pr

[
GA2

5 ⇒ b
]
+

vq

2−µ
(31)

≤ Pr
[
GA2

6 ⇒ b
]
+

vq

2−µ
+ Pr

[
GA2

5 sets bad
]

(32)

≤ Pr
[
GA2

6 ⇒ b
]
+

vq

2−µ
+ qdmcΠ(k) . (33)

Above, Equation 32 is justify exactly as in the proof of Theorem 3.3.1. Then,

Lemma 2.4.1 applies to justify (33). Note that when executed in Game G5, the

probability that a decryption query c made by A2 is a valid ciphertext (i.e., that does

not decrypt to ⊥) for some message x such that A2 has not queried x to its hash oracle

is at most mcΠ. This is because, without any information about H[x], H[x] and the

coins used by E(pk, x) have the same distribution from the perspective of A2 (namely

uniformly random). This implies (33). Now Equation 30 follows by multiplying by 2

and subtracting 1, taking into account the definition of the advantages of A,B.

Finally, to justify the claim about the running-time of B, recall the convention to

include in the running-time of A that of its overlying experiment. So, in addition to

the time to run A, B’s time-complexity is dominated by the time needed to create a

hash table containing the elements of x0,x1, which is O(vn), as well a for encrypting

each hash query. So its additional overhead is O(vn+ qhTE) as desired.

5.5.2 Constructions without Random Oracles

We build on the construction of adaptive TDFs in Section 5.3.2 to construct CCA-

secure deterministic encryption without random oracles. Recall from Section 3.1 that

CCA-secure deterministic encryption can be viewed as a strengthening to adaptive

TDFs that also hides partial information about high-entropy inputs. Towards acheiv-

ing this notion we show the construction in Section 5.3.2 actually achieves a stronger

notion we may call “adaptive lossiness.”
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Adversary B1(pk):

(x0, t0), (x1, t1)
$← A1(1

k)
state ← x0∥t0∥x1∥t1
Return (x0,x1, state)

Adversary B2(pk, c, state):
x0∥t0∥x1∥t1 ← state
Run A2 on inputs pk, c:

On hash query pk∥x do:

If H[x] is undefined then

H[x]
$← Coinspk(|x|)

E[x]← E(pk, x;H[x])
If x ∈ x0 then

If one = false then zer← true
If x ∈ x1 then

If zer = false then one← true
Return H[x]

Let g be the output of A2

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 13: IND-CPA adversary B for proof of Theorem 5.5.1.

Adaptive lossiness. An adaptive lossy TDF generator ALTDF = (F ,F ′) is a pair

of algorithms. Algorithm F outputs a tuple (f, f−1) where f is the (description of)

a function with domain {0, 1}k and f−1 is the inversion of f . On input of some aux-

iliary information x∗ ∈ {0, 1}k, algorithm F ′(x∗) outputs a tuple (f, f−1) where f is

the (description of) a function with domain {0, 1}k, and f−1 is another function (not

necessarily the inverse of f). We require that for all x∗ ∈ {0, 1}k, given f it is com-

putationally hard for an adversary to distinguish whether (f, f−1) was sampled from

F or from F ′(x∗), even given an inversion oracle for f−1. Formally, to a distinguisher

D against ALTDF we associate its ALTDF advantage Advaltdf
ALTDF(D) defined as the

maximum over x∗ ∈ {0, 1}k of

Pr
[
Df−1

(f, x∗)⇒ 1 : (f, f−1)
$←F

]
−Pr

[
Df−1

(f, x∗)⇒ 1 : (f, f−1)
$←F ′(x∗)

]
.

We say ALTDF has residual leakage s if for all coins c of F ′ the function g defined

on {0, 1}k as g(x) := f(x) where (f, f−1) ← F ′(x; c) has |R(g)| ≤ 2s, where R(g)
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On H query pk∥x: G1–G4 ,G5

If H[x] is undefined then

H[x]
$← Coinspk(|x|)

E[x]← E(pk, x;H[x])
If ∃i such that x = x0[i] then

If one = false then zer← true

H[x]← R0,i

If ∃i such that x = x1[i] then
If zer = false then one← true

H[x]← R1,i

Return H[x]

On Decryption query y

G1 −G5 , G6

If ∃z such that E[z] = y then return z
x← D(sk, y)
If x = ⊥ then return ⊥
If H[x] is undefined then

H[x]
$← Coinspk(|x|)

E[x]← E(pk, x;H[x])
If E[x] = y then

bad← true ; Return x
Return ⊥

Figure 14: Games for the proof of Theorem 5.5.1. Only differences as compared to
the games in Figure 4 are shown.

denotes the range of g. The lossiness of ALTDF is k − s. We say that F is adaptive

lossy if it is overlain by ALTDF.

CCA-Secure deterministic encryption from ALTDFs. It is not too hard to

see that the constructions of DET-CPA determinsitic encryption in Section 4.2 based

on LTDFs can be “upgraded” to CCA security by swapping the LTDFs for ALTDFs.

The analogous theorem statements hold in these cases.

Construction of ALTDFs. Define ALTDF = (G,G ′) where G is as defined in

Section 5.3.2 and

Algorithm G ′(1k, x∗):

(f1, f
−1
1 )

$←F ′
1(1

k)

(f2, f
−1
2 )

$←F2(1
k,∗ )

Return (f1, f2), (f
−1
1 , f−1

2 )

Theorem 5.5.2. Let D be an ALTDF distinguisher against ALTDF defined above.
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Then there are distinguishers D1, D2 against LTDF,ABO respectively and an adver-

sary A against T such that for all k ∈ N

Advaltdf
G,D (k) ≤ Advltdf

LTDF,D1
(k) +Advabo

ABO,D2
(k) +Advtcr

T,A(k) . (34)

Furthermore, the running-times of D1, D2, A are the time to run I, and the residual

leakage of ALTDF is sLTDF + sABO.

Proof. Equation 34 follows from essentially the same analysis as in the proof of The-

orem 5.3.2. It remains to show that for all coins c of G ′ the function g defined on

{0, 1}k as g′(x) = g(x) where (g, g−1) ← G ′(x; c) has range bounded by 2sLTDF+sABO .

Let c = (cLTDF, cABO) be fixed but arbitrary such coins. Then the size of the range

of f ′
LTDF output by F ′

LTDF on coins cLTDF is bounded by 2sLTDF by assumption. Now,

every fixed yLTDF = f ′
LTDF(x) uniquely determines t = T (yLTDF), and the range of the

function fABO(t, ·) for fABO output by F ′
ABO on input x and coins cABO is bounded

by 2sABO by assumption. Therefore the total range of g′ is bounded by 2sLTDF+sABO as

desired.
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