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Abstract

Direct-recording electronic (DRE) voting systems have been used in several countries including
United States, India, and the Netherlands to name a few. In the majority of those cases, researchers
discovered several security flaws in the implementation and architecture of the voting system. A
common property of the machines inspected was that the votes were stored sequentially according to
the time they were cast, which allows an attacker to break the anonymity of the voters using some
side-channel information. Subsequent research (Molnar et al. Oakland’06, Bethencourt et al. NDSS’07,
Moran et al. ICALP’07) pointed out the connection between vote storage and history-independence, a
privacy property that guarantees that the system does not reveal the sequence of operations that led
to the current state.

There are two flavors of history-independence. In a weakly history-independent data structure,
every possible sequence of operations consistent with the current set of items is equally likely to
have occurred. In a strongly history-independent data structure, items must be stored in a canonical
way, i.e., for any set of items, there is only one possible memory representation. Strong history-
independence implies weak history-independence but considerably constrains the design choices of the
data structures.

In this work, we present and analyze an efficient hash table data structure that simultaneously
achieves the following properties:

e It is based on the classic linear probing collision-handling scheme.
o It is weakly history-independent.

e It is secure against collision-timing attacks. That is, we consider adversaries that can measure
the time for an update operation, but cannot observe data values, and we show that those
adversaries cannot learn information about the items in the table.

e All operations are significantly faster in practice (in particular, almost 2x faster for high load
factors) than those of the commonly used strongly history-independent linear probing method
proposed by Blelloch and Golovin (FOCS’07), which is not secure against collision-timing attacks.

The first property is desirable for ease of implementation. The second property is desirable for the sake
of maximizing privacy in scenarios where the memory of the hash table is exposed, such as post-election
audit of DRE voting machines or direct memory access (DMA) attacks. The third property is desirable
for maximizing privacy against adversaries who do not have access to memory but nevertheless are
capable of accurately measuring the execution times of data structure operations. To our knowledge,
our hash table construction is the first data structure that combines history-independence and
protection against a form of timing attacks.
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1 Introduction

Hashing is a classic technique [24] for implementing a dynamic dictionary of key-value items supporting
the following operations:

*A preliminary version of this work [18] appears in the 21st European Symposium on Research in Computer Security -
ESORICS’16



o insert(k,v): Insert item! (k,v).
e find(k): Return the value with key equal to k, or null if none exists.

o delete(k): Delete the item with key equal to k.

The are many applications of such a data structure and it is well-known that hashing can achieve O(1)
expected-time performance for each operation (e.g., see [19]). In such a scheme, the items are stored in
an array, T, according to a mapping derived from a hash function, hash(-), such that the item (k,v) is
ideally stored in the cell T'[hash(k)]. If multiple items map to the same cell, then we say that a collision
has occurred, and we need some way of resolving the collision. One of the classic collision resolution
methods is linear probing [24]. In this scheme, one simply incrementally searches the next cells in the
array, T'[hash(k) 4 1], T'[hash(k) + 2], and so on, modulo the size of T, until one finds an empty cell. Linear
probing achieves O(1) expected time performance if the ratio of the number of occupied cells to the total
number of cells, which is known as the load factor, is a constant strictly less than 1 (e.g., see [19, 24]).
Although this is a classic hashing scheme, its use is nevertheless ubiquitous in computing today, including
many instances where security and privacy are essential. Thus, we are interested in this paper in hash
table schemes that can provide measurable protections against various security and privacy attacks.

History-Independence: The property of history-independence was introduced by Naor and Teague [32]
by extending a related structural obliviousness property by Micciancio [28]. The goal of history-
independence is to design a data structure so that an adversary who examines the computer memory will
only discover the current contents of the data structure but will not learn anything about the sequence
of operations that led to the current state of the data structure. History-independence comes in two
flavors [32]—in weakly history-independence (WHI), the adversary can examine the memory only once,
whereas in strongly history-independence (SHI), the adversary may examine the memory multiple times.
Several history-independent data structures have been proposed. Blelloch and Golovin [8] present a SHI
hash table based on linear probing. The work of Naor et al. [31] presents a SHI Cuckoo Table that
performs insertions and deletions in O(logn) time, with high probability, where n is the current number
of elements in the table. Buchbinder et al. [9] show time complexity separation between the weak and the
strong notions of history-independent data structure. Bender et al. [5] propose a WHI cache-oblivious
B-tree and a WHI external memory skip list. The work of Goodrich et al. [17] explores a variation of
history-independence, called auditable data structures, where the data structure is aware of an observation
and has the chance to react given this information. Based on this formulation the authors propose
constructions that are orders of magnitude faster than the analogue SHI constructions. Our focus in this
paper is on the WHI framework, as we feel it is has a more realistic risk scenario. Moreover, by a lower
bound due to Hartline et al. [21], in order for a data structure to be SHI, it must have a canonical memory
representation, which is a fairly restrictive requirement that seems to conflict with protections against the
next type of attack that we consider in this paper.

Vote Storage: The DRE AccuVote-TS voting machine was used by 10% of the voters in the 2006 US
general election. Security flaws were found both in the software [25] and the hardware [14] of the device.
For example, Kohno et al. [25] found that each vote is written sequentially to the file that stores the votes,
which can break the anonymity of the system. An attacker with some side-channel information can link
the ballot to a voter based on the order that the votes are stored. The same privacy flaw was also found
in the Indian Electronic Voting Machines that have been used for national elections of India since 2004.
The work by Wolchok et al. [37] reports that votes are stored in the order cast. Later work recognized
the connection of the above privacy issue with the notion of history-independence and suggested the
use of strongly history-independent data structures [7, 29, 30]. In fact, in March 2015 the United States
Election Assistance Committee approved the next generation of Voluntary Voting System Guidelines
where they specify that ballot images must be recorded in a randomized order by the DRE for the election
(Section 2.4.4.2 in [1]). Given that the voting machines are examined usually after the election process, i.e.
post-election audits [2, 33, 35], the notion of weak history-independence seems to be more appropriate
than the stronger notion of strong history-independence (formal definitions are given in Section 2).

Memory Attacks: Beyond voting machines, there are other cases where an adversary can obtain
access to a snapshot of the working memory and weak history-independence can be usefully applied. A
direct memory access attack [13], or DMA attack, is a side-channel attack where the adversary with
physical access to the machine bypasses all security measures of the operating system and directly accesses
the memory via the high-speed expansion ports. Tools such as “Inception” [27] allow the attacker to
mount a DMA attack over PCI interfaces and acquire a complete image of the working memory. Cold
boot attacks [20] allow the attacker to dump the image of the memory to an external medium, which can

IWe assume that keys are unique, but all of our results extend to the setting where insertion of an already allocated key
with a new value replaces the current value.



even identify and reconstruct the cryptographic keys from the acquired image and thus overcome disk
encryption. In application scenarios such as ballot storage [29] or hospital admission management [4] such
leakage might violate desired privacy.

Other History-Independent Systems: Bajaj and Sion proposed a history-independent file system
named HIFS [3] that provides history-independence across both file system and disk layers of the storage
stack. We note here that HIFS deploys the SHI hash table from [8], which is significantly slower than
our WHI construction. A direct substitution, followed by some minor changes, would significantly speed
up their design while maintaining suitable privacy guarantees for many applications. Unfortunately, the
history-independence of HIFS [3] is not guaranteed for flash storage devices. The reason is that the
block placement algorithms in flash storage devices are managed internally (in a non-history-independent
manner) in order to maximize performance and lifetime of the storage. To remedy that, Chen and
Sion proposed history-independent schemes that are tailored for flash-based block devices [11]. Another
system, Ficklebase [4], suggests the use of history-independent data structures within a relational database
architecture for the underlying database storage engine in order to avoid unwanted recovery of deleted
information through forensic analysis.

Timing Attacks: Another type of attack that can cause a data structure to leak information is a
timing attack. In such a side-channel attack, an adversary does not get direct access to the memory layout
of a data structure or to the operands of the executed operation, but he can nevertheless precisely time
the execution of data structure operations. Such attacks typically come in two forms—in the first form,
an attacker passively observes the timing of data structure operations performed by others, and in the
second form, he is allowed to directly interact with the data structure, e.g., to form malicious inputs that
cause errors or significant time delays that can reveal information put into the data structure by others.

In the first type of attack, the eavesdropping adversary gains knowledge about the private data using
the duration of an abstract-data-type operation of the data structure. An example of such a real-world
attack is presented in [15], where an attacker can measure the execution time of an insertion in a B-tree
in order to detect a node split. Using this split detection information, the attacker can recover values
from the database table that is under attack. As a means to formally characterize such attacks, Lipton
and Naughton [26] define a clocked adversary to be an eavesdropping attacker who can accurately time
operations of a data structure and who succeeds if he can distinguish whether the system is in a state s;
or state so given just the timing information.

For the second type of timing attack, an adversary utilizes the predictable time performance of known
data structure implementations to mount an active attack. For example, Crosby and Wallach [12] introduce
algorithmic complexity attacks, where an adversary provides inputs to a data structure so as to trigger its
worst case performance. In addition, Bethea and Reiter [6] introduce timing-unpredictability, which is
used to quantify the uncertainty of an attacker about the time performance of future operations.

Our Results: In Section 3, we present and analyze the first efficient hash table data structure that
defends against the above information leakage attacks. Our construction, denoted as WHI, achieves the
following properties:

o It is weakly history-independent.
e It is secure against collision-timing attacks (see Definition 3 below).

e Operations find, insert and delete are significantly faster in practice than the strongly history-
independent linear probing scheme of [8].

In Table 1, we qualitatively compare our WHI scheme to several previous linear-probing hashing
schemes that achieve some degree of history-independence or defend against collision-timing attacks,
noting that none of them achieves protection against both types of attacks. We review these other schemes
in Section 4 and we provide the results of experimental comparisons in Section 5.

History-Independence | Secure Against Collision-
Strong HI | Weak HI Timing Attacks

First-Come-First-Served (FCFS) - - v
Last-Come-First-Served (LCFS) [34] - - 4
Robin Hood, Tie-Break w. FCFS/LCFS [10] - - v
Robin Hood, Tie-Break w. Key Sort v v -
Blelloch & Golovin [8] 4 4 -
WHI (This work) - v v

Table 1: Privacy properties of hashing with linear probing



2 Security Model

2.1 History-Independence

An Abstract Data Type (ADT) is a mathematical model of a data structure that describes the type of the
data stored, the operations that can be performed on the data as well as the parameters of each operation.
In this work, a data structure is associated with a set of items that is also called the logical state of an
ADT, or simply state. An ADT operation deterministically transforms the state of the data structure.
A sequence of operations S is an ordered list of ADT operations of the data structure as defined by the
corresponding ADT. A memory representation of an ADT, or simply a representation, is a mapping of
the state of the data structure into the memory. In general, there can be multiple memory representations
for a given state. An implementation of a data structure is a function F': M x O — M, where M is the
set of all possible memory representations and O is the set of all possible ADT operations.

Following the terminology of Hartline et al. [21], let @ and b denote the memory representation of states

A and B respectively. Let S be a sequence of operations then by A 5, B we indicate that the sequence

of operations S takes state A to state B. Let also Pr[a EN b] denote the probability that starting from
memory representation a of state A, the sequence of operations S run by the corresponding implementation
yields memory representation b of state B. The initially empty memory representation is denoted as @.

Definition 1 (Hartline et al. [21]) A data structure is weakly history-independent if, for any two
sequences of operations S1 and S that take the data structure from the initialization to state A, the
distribution over the memory after sequence Sy is performed is identical to the distribution after sequence
Sy is performed. That is:

(@iA)/\(@%A)@VaEA,Pr[@ia] =Pr[®ﬁ>a].

Definition 2 (Hartline et al. [21]) A data structure is strongly history-independent if, for any
two (possibly empty) sequences of operations S1 and Sy that take a data structure from state A to state B,
the distribution over the memory representations of B after sequence S1 is performed on representation a
1s identical to the distribution after sequence So is performed on representation a. That is:

(AZ5B) A (A2 B) = Va € A, Vb € B, Prla>5b] = Prla22b).

2.2 Collision-Timing Attack

For an adversary with timing capabilities, the duration of an insert/delete operation in a hash table can
reveal significant information. In our motivating scenario for this security notion, the attacker cannot
read the data transferred in the communication channel between the user and the cloud provider (i.e., the
encrypted channel) but he can accurately time the interaction between the two entities. We model the
desired security property by introducing a game where the adversary picks two input items that collide
in the hash table, the cloud provider inserts/deletes only one of them. The goal of the adversary is to
distinguish which of the two items was processed relying solely only the execution time of the operation.
We consider a hash table secure against collision-timing attacks if the adversary succeeds in the above
game with negligible probability.

Our model only deals with the timing of colliding items. In order not to leak whether a collision occurs,
one would have to deploy a hash table for which the execution time is not affected by collisions. Notice
that it is particularly challenging to decouple the time performance of a hash table from the occurrence of
collisions. One may think that in order not to leak whether collision occurs it is enough to have constant
worst-case time performance for updates. This is not necessarily true since there can be maintenance
actions in the hash table, that take constant time but reveal whether a collision took place.

Finding Colliding Items: As shown in the work of Lipton and Naughton [26], there is a straightfor-
ward process for an adversary to generate a pair of colliding items, i.e., a collision-discovery attack, even
if the hash function is not known. As a first step, we describe a process from [26] that checks whether two
items collide. Let ¢y be the time it takes to insert item uy to an empty hash table, similarly let ¢; be the
time it takes to insert u; to an empty table. Now we insert u; in a hash table that already contains ug
and check whether the time for insertion is larger? than t1, if yes then the items ug,u; collide. In order to
find which pair of items to test for a collision, we can simply generate (y/m) random items, where m is
the table size. Indeed, assuming that the hash function distributes the items to the m bins uniformly

2In the work of [26] the authors define a clocked adversary that has access to a clock that is accurate to within € and can
discover the difference between two measurements to and ¢; with O(e/|t1 — to|) repetitions of the corresponding operations.
For the ease of exposition we assume that our measurements are always accurate (i.e. € = 0) therefore no repetitions are
required.



at random, we can use the birthday-paradox and show that within this set of items there is a pair of
colliding items with probability roughly 1/2. Given that collision-discovery attacks for hash tables are
difficult to avoid in practice, we focus on preventing information leakage from the eviction strategy, i.e., a
collision-timing attack.

Security Definition: We indicate with A\ the security parameter and with Op an update operation
of the hash table, Op € {insert, delete}. We indicate with a € A a memory representation of the state A
of the hash table and with ug, u; two items from the universe of input keys, K. With the term HT we
denote an implementation of the hash table that has access to a pseudorandom generator G. A memory
representation is called admissible with respect to the implementation HT and the hash function hash(), if
it can be reached with non-zero probability. We define an evidence of admissibility of a, denoted as evd,,
a pair consisting of (1) a sequence of operations S, and (2) random seed rnd such that if S, is applied
to an empty hash table using G(rnd), then the hash table reaches memory representation a. We use a
game-based definition to describe the security of our setup. The game is denoted with PRV—CTA“;}T()\) and
is shown in Figure 1, where CTA stands for collision-timing attack. The game begins with an algorithm
run by adversary A. When A finishes executing, the game performs further steps with A’s output to
produce the challenge for A. The adversary processes the challenge and outputs a bit, which is returned
by the game.

PRV-CTA%,(\):

(a, hash, evd,,, Op, ug,u1) + A(11), where hash(ug) = hash(u;)

if evd, is not an evidence of admissibility return 0

Initialize the implementation HT with memory representation a and G(\)
Choose at random a bit b € {0,1}

Execute operation Op according to HT with input argument wu; and
record the execution time in ¢,

b+~ Altp)

return (b=1V")

CU @ =

N

Figure 1: Indistinguishability game for the security of a hash table against collision-timing attacks.

Indistinguishability game PRV-CTA assumes a powerful adversary that is allowed to choose the memory
representation of the hash table, i.e. the state, the allocation of the items to the cells of the table as well
as its hash function hash(). We denote as advantage of A the quantity 2 - Pr (PRV-CTA7#,(A) = 1) — 1.

Definition 3 Let A be the security parameter and let HT be an implementation of a hash table. We
say that implementation HT is secure against collision-timing attacks if for all PPT adversaries A, the
advantage A in game PRV-CTA%()\) is negligible.

3 Weakly History-Independent Linear Probing

In this section, we describe a weakly history-independent dictionary that is based on an open addressing
hash table.

Notation: Let T be a hash table of size m and let K be the universe of keys. We hash the set of
keys U C K into T using hash function hash() and handle collisions with linear probing. In the following,
the symbol L indicates an empty cell and arithmetic over cell indices is modulo m. A cluster of T is a
maximal contiguous sequence of nonempty cells of T.

Profile of a Set: Following the terminology of [23], we define the following sets and values for a cell
tof T:

e H;: set of items of U that hash to cell T'[i], of size h; = |H;|;
o P;: set of items of U that probed cell T'[i], of size p; = |F;|.

The above quantities are a function of the set U and of hash(), but for succinctness we do not denote
that explicitly. Clearly, we have H; C P;. Also, if p; > 1, then exactly one of the items in P; ends up in
cell T'[i] while the remaining p; — 1 items probe the next cell T'[i + 1]. This observation yields the following
recurrence relation (same relation as in [23] but different notation):



Pip1 = Hip1 U(P; — {vi}) (1)
Pit1 = hit1 + maz(p; — 1,0), (2)

where v; indicates the item allocated in T'[i]. Sequence (pg,...,pm—1) is called the profile of set U.

Note that set P; depends on both the performed sequence of operations and on the eviction strategy
between colliding items. In contrast, the profile of U does not depend on the eviction strategy [23], since
it only counts the number of items that probed a cell. Using the above fact one can easily show that the
profile is also independent of the order of the sequence of operations.

Intuition: In our insertion algorithm, we use a randomized eviction strategy. Suppose p; > 1 items
have probed the i-th cell so far . When a new item u probes the i-th cell, it evicts the current item with
probability 1/(p; + 1). Hence, each cell is a reservoir sample [36] of size 1, so that every item probing that
cell has an equal likelihood of being stored there.

We show that this technique gives a weakly history-independent insertion process. The challenge is
that, to delete an item u from a cell 7, we must construct a memory representation that is consistent
with u never having been inserted. Illustrations of the insertion and deletion processes are presented in
Figure 2. Note that algorithm find(u) simply performs a linear forward scan starting from hash(u) until
we either find v or an empty cell.

Buct it Insert(u) Delete(x)
Evict with Evict with Evict with Evict with Cover gap with the rightmost item that probed T[1]
prob. 1/4 prob. 1/3 prob. 1/2 prob. 1/2 and repeat recursively

YA O
 Lalalalull] Gl

indexx-: o0 1 2 3 4 5 index: o 1 3 4 5
P [T s T 2T1 1 To] P13 2]T1[17]o]

Figure 2: Insertion and deletion process of the proposed WHI linear probing scheme. Black squares show
the hash value of the item. Table P keeps track of the profile of the state.

3.1 Insertion

We use an auxiliary table, PJ], to keep track of the profile, where P[i] = p; . All entries in P[] are initially
set to 0. We assume that the hash table can access random values on the fly as we need them by means
of method getRand(s), which returns a random integer in the range {1,...,s}.

Algorithm: The insertion method is given in Algorithm 1.

Algorithm 1: WHLl.insert(u)

Input :an item u to be inserted

1 i < hash(u)
2 while T[i] # L do
P[i] + P[i] +1
// Item u is stored in T[i] with probability 1/p;
r <+ getRand(P[i])
if r=1 then

| Swap the content of T'[i] and u
end
14 1+1
end
10 Pli] + 1
11 T[] < u

w

© 00 N o T

Analysis: Let T be a hash table with linear probing where insertions are performed with Algorithm 1.
As defined before, a memory representation is called admissible if it can be reached with non-zero
probability.

Lemma 1 Let U be a set of items and let R be the random variable over the set of admissible representa-
tions of U in table T. Let S be a sequence of insert operations, according to Algorithm 1, that insert the



items of U. Then the probability that R takes value p given that we follow S is given by:

[

Pr(R=p) =[] —

e max(p;, 1)

Proof Notice that only the clusters of T' contribute to the above product. A cell T'[i] that does not belong
to a cluster is empty and it is essentially a multiplication with 1/max(p;, 1) = 1. Clusters are determined
by the set U and are independent from sequence S. Thus, we focus on a single cluster.

Without loss of generality, assume we have a cluster with cells (0, ...,n—1), where n is the size of set U.
We label as ug, ..., u,—1 the items of U that are allocated at the corresponding cells T'[0],...,T[n — 1]
according to the memory representation p. Then we have

Pr(R=p) = Pr(T[0] =uo, T[] =uy,...,T[n—1] = up_1)
= Pr(T[0] =wo) - Pr(T[1] = uy | T[0] = uo) -

Pr(T[n—1] = up—1 | T[0] = ug,...,T[n — 2] = up—_2).

Since the content of cells T'[0],...,T[i — 1] is fixed in the expression Pr(T[i| = u; | T[0] = uo,...,T[i —
1] = u;—1), the set P; of items that probe T'[i] is known. Because of the reservoir sampling process that is
followed by T'[i] each of these p; items has the same probability 1/p; to be allocated in T'[i]. Thus, the
i-th term of the above product is equal to 1/p;, which completes the proof. O

The next lemma follows immediately from Lemma 1.

Lemma 2 A hash table with linear probing where only insertions are performed, according to Algorithm 1,
1is weakly history-independent.

We note here that since the notion of history-independence was originally formed under an information-
theoretic security framework, for consistency with previous work, our lemmas above assume the availability
of true randomness.

It is straightforward to relax both strong and weak history-independence definitions to a semantically
secure framework and extend our results accordingly. In this case, denoting with A the security parameter,
getRand would be derived from the output of a cryptographic pseudorandom generator with security
parameter A [16] to which the hash table, but not the adversary, has oracle access. In practice, we
implement getRand by means of the secure hardware random number generator provided by modern
microprocessors.

3.2 Deletion

To delete an item w from the hash table we must change the memory representation, with the right
probability, so that it is as though u was never inserted.

Algorithm: The deletion method is shown in Algorithms 2-3. Given that item w is allocated in cell
T[i] and that it hashes to cell hash(u) we have to: (1) decrease by one the values of Plhash(u)], P[hash(u)+
1],..., P[i] and (2) cover the gap at T'[i] by picking an item uniformly at random among the items that
probed T'[i]. The above two steps are repeated, in case we create an additional gap by covering the first
one.

Algorithm 2: WHI.delete(u)
Input :an item wu to be deleted

1 i <+ hash(u)

while T/i] # L do

N

// Reverse the effect of u on table P
3 P[i]+ P[i] -1
4 if T/i] = u then
5 Tl «+ L

// Fill the gap at cell TVi]

6 CoverGap()
7 return
8 end
9 141+ 1
10 end




An interesting question is how to pick an item to cover the gap. One approach is to scan the cells
from T[i + 1] until the end of the cluster and choose one of the items of P; uniformly at random. The
above randomized approach is correct but requires additional randomness and can potentially lead to a
significant number of moves between the allocated items. Our technique takes advantage of the fact that
in an admissible memory representation of U, the relative order of the items that probed T'[é] is a random
permutation. Therefore, by picking the item of T'[¢] placed furthest from T[¢] in the cluster, the “rightmost”
item or else the p;-th eligible item to cover the gap, is equivalent to sampling uniformly at random among
the items of set P;. Besides maintaining the weak history-independence of our construction, the benefit of
this technique is twofold in terms of performance. By recursively choosing items as far to the right as
possible from the gap we reduce the number of moves between the allocated items, and we do not require
any randomness for the deletion process.

Algorithm 3: CoverGap
Input :the index i, of the gap in T
1 if Plig] =0 then
2 ‘ return
3 end
// There are p; items that probed TT[ig]. Cover with the rightmost.
ent < Plig) \
14y + 1
while T/i/ # 1 do
Pli] + P[i] -1
if the item in T'[i] probed cell T'[iy) then
ent < cnt — 1
10 if cnt = 0 then
// Cover the gap at T[i4], recurse for the new gap at 7'[f]
11 Tig] < Ti]
12 T+ L
13 CoverGap(i)
14 return

© N o oA

15 end
16 end

17 11+ 1
18 end

In Algorithm 2, we locate and delete the item u; an action that creates a gap. Let T'[i4] be the cell
where u was allocated before the deletion. Algorithm 3 covers the gap in T'[i,] with the rightmost item
that probed cell T[iy]. Line 8 of Algorithm 3 checks whether the item in cell T[é] probed cell T'[i,] on
its way to cell T'[i]. This can be implemented as follows, if the distance of the hashed location hash(T[i])
from the start of the cluster is less than or equal to the distance of cell T[iy] from the start of the cluster,
then the item in T'[¢] probed cell T'[iy].

Analysis: We build our WHI proof based on two lemmas. Given a sequence of insertions S, we first
prove that the relative order of H; in the resulting memory representation is a random permutation.
Using this, we prove the more general statement that the relative order of P; in the resulting memory
representation is a random permutation. Thus, by picking the rightmost item of P; in the memory
representation, we cover the gap with a randomly chosen item from P;. Finally, by recursively covering
the gaps in this manner, we create the same probability distribution over the memory representation as if
the deleted item was never inserted.

Lemma 3 Let U be a set of items, let my,my be two permutations of H; C U and let S be a sequence of
insertions of U according to Algorithm 1. For a location i in the hash table, let R; be the random variable
that represents the relative order of set H; associated with cell T[i] in the resulting memory representation
p- Then, by inserting the items of U into T according to S, we have:

PI‘(RZ' = 71'1) = PI‘(RZ‘ = 7'('2) (3)

Proof Let ¢ be the size of the cluster where T[i] belongs after executing sequence S. Then there are
(Cf}:fl) subsequences that can host the items of H;. Let L; be a random variable that takes as a value the
subsequence of cells of T" where the items of H; are allocated. From the law of total probability, equation
(3) can be expressed as:

> Pr(Li=0Pr(Ri=m | Li=1)=Y Pr(L;=1)Pr(Ri=m | L; =1). (4)
l l



We denote the subsequence of cells [ as I = (I1,...,1,) and the subsequence of items m; as m; =
(u1,...,up,;). Then the term Pr(R; = m; | L =1) can be written as:

PI‘(RZ :7T1|Li :l) = PI‘(T[ll] :ul,...,T[lhi] = Up,; ‘ Lz :l)
= PI‘(T[ll] = U1 | Li = l) . PI‘(T[ZQ] = Uy | Li = Z,T[h] = ul) .

PI‘(T[lhi] = Up | Ll = l,T[ll] = Uy, " 7T[lhi — ].] = uhi,l)
hi
_ ][:[1 o
where in the last equality we used the fact that each cell performs reservoir sampling. Following the
same reasoning we get Pr(R; = m| L; = 1) = H?Zl i Thus for a fixed value [ of L;, we have
PI'(RI = 7T1|Li = l) = PI‘(]%Z = 7T2|Li = l) O

Lemma 4 Let U be a set of items, let w1, be two permutations of P; C U and let S be a sequence of
insertions of U according to Algorithm 1. For a location i in the hash table, let R, be the random variable
that represents the relative order of set P; associated with cell T[i] in the resulting memory representation
p. Then, by inserting the items of U into T according to S, we have:

Pr(R; = m) = Pr(R, = )

Proof (Sketch) Let L} be a random variable that takes as a value the subsequence of cells of 7' where the
items of P; are allocated. Let v; be the item that is allocated in cell T[] according to p. Let s be the
index of the start of the cluster where T'[i] belongs after executing sequence S. Set P; is the union of the
set of items of H;, and the set of items of P;_; that probed cell T'[i — 1] but were not allocated there after
all, thus P, = H; U (P,—1 — {v;—1}). Applying the recursive formula (1) we can express P;_; as a union
of subsets of H;, where j € {s,...,i — 1}. The order of each of those subsets individually is a random
permutation, but this does not necessarily imply that the order of P; is a random permutation. This can
be proved with an induction on the number k of subsets. In the base case we have k = 0, that is P; = H;,
which is true from Lemma 3. a

The next theorem summarizes the history-independence of our construction.

Theorem 1 The linear probing hash table implementation described by Algorithms 1-8 is a weakly
history-independent data structure that performs searches, insertions and deletions in O(1) expected time.

Proof (Sketch) A sequence that follows only insertions results in a weakly history-independent memory
representation due to Lemma 2. As for sequences with deletions, we need to show that the following two
sequences (that bring the data structure to the same state) have the same distribution over the memory
representations: A) sequence S; with no deletions and B) sequence Sy with one deletion. Using this we
make an inductive argument about a sequence with an arbitrary number of deletions.

One-deletion case: We assume without loss of generality that the operation delete(u') is the last
operation to be performed by Sy. Let the size of U be |[U| = n and that «’ ¢ U. For simplicity we assume
that we have one cluster, thus V j : p; > 0. Let also S[1,4] be the subsequence of S that contains the first
i update operations. Sequences Si[1,n] and S3[1,n + 2] bring the hash table to the same content. Since
from Lemma 1 we know that Pr(R = p|S1) = [}, p%_, it is enough to show that Pr(R = p|Ss) = [[_, p%_.
Let p' be the memory representation after executing Sa[1,n + 1]. Therefore p’ contains the items from
U U {u'}. We analyze the probability to get p from memory representation p’ after performing the
operation delete(u’).

Let ¢ be the index of the cell where u’ is allocated according to p’. In this case the Algorithm 3 does
not change the allocation of cells 0 — (¢ — 1). Therefore in order for reach the representation p from p’,
all the keys in locations 0 — (¢ — 1) should already be in place. The probability of this event is:

1
I I — (5)
j<(i—1) P;

Algorithm 3 covers the gap from the deletion of ' with the rightmost (with respect to p’) item of
P;. Since Lemma 4 shows that the order of P; is a random permutation, its last item is a random item



from P;. Therefore the equation 5 becomes || j<il /pj. The same reasoning can be applied recursively for

covering the new gap that is created and reach the final expression Pr(R = p|Ss) = H?Zl i

Multiple-deletions case: Let Sy now be a sequence with multiple deletions from the set U' = {uf, u}, ...},
that brings the hash table to same content U. The induction is on the size of the set U’. The base case
|[U’'| = 1 is proved in the “one-deletion” case, so assuming that our hypothesis holds for |U’| = n we
want to show that S7,.S; bring the data structure to a distribution over memory representations as if the
deleted keys were never inserted. From the inductive hypothesis we can reduce the subsequence of S that
contains the first n deletions of U’, into a subsequence that performs only insertions. From this reduction
we get a shorter version of Sy (the insertion-deletion operations of U’ are removed) that contains only one
deletion. By applying once again the “one-deletion” analysis we conclude the proof.

Therefore we reach the conclusion that sequences with deletions bring the data structure to a distribution
over memory representations as if the deleted keys were never inserted. O

3.3 Protection Against Collision-Timing Attacks

Section 2.2 gives the definition of security against collision-timing attacks for the case of general hash
table implementation. We consider now the case where the hash table follows a linear probing approach.

When using linear probing, the execution time of a find, insert, or delete operation of the hash table
depends on two factors, (1) whether the input item collides with an item that is already in the hash table
and (2) on the eviction strategy in case there is a collision. The work of Lipton et al. [26] addresses the
first timing factor for hash tables with chaining as well as for hash tables with open addressing. The
authors propose attacking strategies that only use the execution time to discover if two given items collide
in a hash table as well as a method to generate a pair of colliding items for a given hash table. In the
same spirit, the adversary of PRV-CTA chooses two items that hash to the same cell. In case the items
were allowed to hash to different cells, then it would be trivial for the adversary to win game PRV-CTA.
Specifically, it would be enough for the adversary to pick a memory representation in which uy hashes to
an empty cell while u; hashes to the beginning of a long cluster of consecutive items. Thus we turn our
attention to the second timing factor, that is on the eviction policy.

Due to the nature of linear probing, the insertion/deletion process will probe the same cells regardless
of whether ug or u; is chosen in PRV-CTA. Therefore, what can potentially make a hash table insecure
with respect to PRV-CTA is the eviction policy. Hash tables that are secure according to Definition 3
should follow an eviction policy that is oblivious to the value of the items. The SHI linear probing scheme
proposed in [8] is not secure against collision-timing attacks since a priority function that takes the values
of the two items as an input (See [32] for a thorough treatment of the subject) is necessary to decide
which item to evict.

We note here that the definition of security against collision-timing attacks is formed under a
semantically-secure framework, thus we use the notion of a cryptographic PRG G with a given security
parameter \ in our analysis.

Theorem 2 Let WHI be the implementation of a hash table where the insertion and deletion methods
follow Algorithms 1, 2 and 3. If G is a pseudorandom generator then the implementation WHI is secure
against collision-timing attacks according to Definition 3.

Proof (Sketch) It is enough to show that if there exists a probabilistic polynomial-time adversary A
for which Theorem 2 does not hold, then we can construct a PPT algorithm that distinguishes the
output of PRG G()) from a truly random number. The intuition behind this claim is that in case our
construction used a truly random number in place of the pseudorandom number that getRand() returns,
then the resulting distribution over memory representation would be identical for items ug and w;. Thus
A would be unable to correctly guess which item was chosen with probability better than 1/2. In case our
construction is not secure against collision-timing attacks then A must be able to distinguish the output
of G from a random number. O

3.4 Analysis of Individual Displacement

In a hash table with linear probing, the individual displacement of an item is the distance between (a) the
location where the item hashes to and (b) the location where the item is placed.

In this section, we describe how to derive the asymptotic performance of the individual displacement in
the case of our WHI linear probing variation. In case the individual displacement is large the algorithm find
has to scan a large number of cells in order to locate the requested item which lows down the performance
of the operation.
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We note that the techniques we use are standard but the analysis appears novel. In particular, we
focus on the distribution of the individual displacement in the case n/m — « for 0 < o < 1. We note
that the total displacement is independent of the insertion policy (as long as the policy falls within the
standard class of policies; see e.g. [23] ); hence the average displacement is the same for all policies, but the
distribution of displacements is not. Our starting point is the equation (2): p;+1 = hiy1 + max(h; — 1,0).
Given a table with load «, it is helpful to start by obtaining a distribution on the entries of the profile.
That is, let n, be the fraction of bins with a count of k in the asymptotic regime as the number of bins
grows to infinity. Thus, we have

#{i:pi =k}

m

e =

Asymptotically, we can use the standard Poissonization approach of letting the h; be distributed as
independent Poisson random variables with parameter «. In this case, the p; form a simple Markov
chain, and we can consider its stationary distribution; this gives us the asymptotic distribution for 7. In
particular, a cell ¢ has p; = 0 only if the previous cell has p;_1 = 0 or p;_; = 1 and no items hash to i,
hence:

o = (o +m1) Pr(h; = 0) = no = (no +m)e*
More generally, for k > 1, we find

1—e % oF AL ak—t+1
7)k+1:77ke_7a*770H*Z77lm~ (6)
=1

From these equations, we can numerically derive the distribution using the fact that ZZ:o nr = 1. For
the individual displacement, we work with a random item u, and compute the limiting distribution of its
displacement. Let X, be a random variable that takes value 0 with probability 1/¢ and value 1 otherwise.
Let also Zj; be the random variable that takes as a value the displacement of u given that ppaen) = k-
For a given k > 1 we have the following recursive function:

n—k+1 j

QO
=X | 1+ Z L—14j€ ? . (7)
Jj=0 '

That is, with probability 1/k there is no displacement because u is stored in the cell it hashed to; otherwise,
1 is added to the displacement and it moves to the next cell, which has Z;_;,; items that probed it,
where j is the number of items that hash to that cell.

As Z}, is conditioned on the event that for cell hash(u) we have that phash(u) = k, the displacement of
u is a random variable D,, given by:

n—1
Dy =Y Zriam (8)
k=0

Using equations (6) and (7) one can numerically derive the distribution of the individual displacement
of u for a fixed a. In Section 5 we show the sample variance of the individual displacement for various
load factors and compare it to the variance of other linear probing schemes.

4 Previous Linear Probing Schemes

The standard linear probing scheme is a first-come-first-served (FCFS) policy, since previously allocated
items do not move during an insertion. Alternatively, Poblete and Munro [34] propose a last-come-
first-served (LCFS) policy, where an incoming item has higher priority than those previously allocated.
These two policies are easily seen not to be weakly history-independent, since the resulting memory
representation depends on the order of updates. For instance, suppose two items, v and v, map to the
same cell, T'[¢], in a hash table, T', but now T'[i]] = u and T[i + 1] = v. Under FCFS, u came before v, and
under LCFS, u came after v.

Consider, instead, an alternative scheme inspired by the well-known Fisher-Yates random shuffling
algorithm. That is, in the case of collision occurring in the insertion of an item, u, place the item u in the
first available cell found by linear probing under the FCFS rule. Then swap u with a uniformly randomly
chosen item from range of cells T'[hash(u)] to the last cell of the cluster (wrapping around the beginning
of T if needed). Let us call this eviction technique,“Random-Swap” it is easy to see that this variation is
not weakly history-independent either.
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In Robin Hood hashing [10], when we probe an occupied cell T'[i] during the insertion of an item u,
we swap u into T'[i] if u is further from its desired cell than the current occupant (and we then probe
T[i + 1] for the remaining item). Ties occur when u and T'[i] are equidistant from their desired cell.
Different tie-breaking techniques give different security properties to the resulting construction. If we
break ties based on the arrival time (“Robin Hood, Tie-Break w. FCFS/LCFS” in Table 1) then the
scheme is secure against collision-timing attacks since the evictions do not depend on the value but it is
not history-independent. Suppose, instead, that we break ties fairly, by randomly choosing between the
two items with probability 1/2; to split the “arrow” in half, using the Robin Hood metaphor. One might
think that this fair-split strategy allows Robin Hood hashing to be weakly history-independent, but that
is not the case.

Lemma 5 FCFS, LCFS, Random-Swap, Robin Hood where ties break with FCFS, Robin Hood where ties
break with LCFS, and Robin Hood where ties break with fair-split are (1) secure against collision-timing
attacks but (2) not weakly history-independent, even in an insertion-only scenario.

Proof (Sketch) For the case of “FCFS”, “LCFS”, “Robin Hood where ties break with FCFS” and “Robin
Hood where ties break with LCFS” it is straight-forward to show that the constructions are secure against
collision-timing attacks. The proof is based on the fact that the insertion is deterministic and independent
of the value of ug,u;. Thus, two colliding item will have the same execution time. In order to prove that
“Random-Swap” and “Robin Hood where ties break with fair-split” are secure against collision-timing
attacks one has to use a cryptographic PRG with security parameter A and form the straightforward
hybrid games. As for the history-independence of the above schemes, we have:

Random-Swap. Let uy, uz, us be items with hash values, hash(u;) = hash(uz) = 0 and hash(ug) = 1.
Then the insertion sequences S1 = (uq,us, us) and Sy = (u1, u2, us) output the memory representation
p = (T[0] = uy, T[1] = ug, T[2] = u3) with a different probability. Specifically, the first two operations of
S7 do not require any swaps since no collision takes place. For the insert(us) operation a swap is required
and gives p with probability 1/3. Similar reasoning shows that Sy gives p with probability 1/6. Therefore,
the Random-Swap linear probing technique is not weakly history-independent.

Robin Hood where ties break with fair-split. Consider three items, uq, uz, and wug, that all map to T[0].
If they are inserted in the order (uq,ug,us), then the ordering p = (ug, u1, u2) occurs with probability 1/4
in (T'[0], T[1], T[2]); whereas p occurs with probability 1/8 in (T'[0], T'[1], T'[2]) if the items are inserted in
the order (usz,u1,us). Therefore, the Robin Hood where ties break with fair-split linear probing technique
is not weakly history-independent.

It is straightforward to show that “FCFS”, “LCFS”, “Robin Hood where ties break with FCFS” and
“Robin Hood where ties break with LCFS” are not weakly history-independent. a

If we follow a Robin Hood hashing and break ties by choosing the larger/smaller value (“Robin Hood,
Tie-Break w. Key Sort” in Table 1, also addressed as “age-rules” in [32]), then the scheme becomes
strongly history-independent but it is not secure against collision-timing attacks. Note that one has to
design a new appropriate deletion process that respects the SHI property of the above RH variation,
in this work we only consider the insertion process of this scheme (see Section 5). Finally the strongly
history-independent linear probing technique from [8] is also not secure against collision-timing attacks.

Lemma 6 Robin Hood hashing where ties break with key-sort as well as the SHI scheme of [8] are (1)
strongly history-independent but (2) not secure against collision-timing attacks.

Proof (Sketch) For the strong history-independence of schemes “Robin Hood hashing where ties break
with key-sort” and SHI linear probing, we refer the reader to the age-rules discussion in [32] and [§]
respectively. In order to show that the two schemes are not secure against collision-timing attacks it is
enough to propose (1) a memory representation (2) a hash function and (3) a pair of items ug, u; that
can break the security of the definition.

We give the following very simple example. Let a,b,c,d, e be items such that they all hash to cell
0, that is hash(a) = hash(b) = hash(c) = hash(d) = hash(e) = 0. We choose the memory representation
(T'[0],T[1],T[2],T[3]) = (b,c,d,—) and up = a and u; = e.

SHI scheme [8]. The scheme of [8] uses a priority function where each cell prefers a key with a higher
(lexicographical) value. If u, = wo then the resulting memory representation will be (b, ¢, d,a) which
means that the hash table performs only one write in memory. If u, = u; then the resulting memory
representation will be (e, b, ¢, d) which means that the hash table performs four writes in memory. The
second scenario will give a noticeable time delay which makes the advantage of the adversary non-negligible.

Robin Hood hashing where ties break with key-sort. Similar is the behavior of “Robin Hood hashing
where ties break with key-sort” since all the items hash to the same cell and thus they have the same
displacement. The eviction policy is forced to break ties with sorting and therefore give a non-negligible
advantage to the adversary. a
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The above observations are summarized in Table 1. The proposed linear probing scheme of this work
is the first that satisfies both privacy properties.

5 Evaluation

We have implemented the strongly history independent linear probing scheme of [8], denoted as SHI, and
our WHI linear probing scheme in C++ and conducted experiments to compare the performance of the
two history independent techniques. The values in the (key, value) pairs consist of 10-character strings.
All experiments were performed in the same machine running OSX 10.10.5 with Quad Core “Ivy Bridge”
2.6 GHz Intel Core i7 processor and 8GB RAM. We used Intel’s on-chip hardware random generator,
instruction RdRand, that is available in Ivy Bridge processors [22].

Method find. The first set of experiments, depicted in Figure 3, addresses the performance of method
find. We focus on the displacement, i.e., the distance of an item from its hashed location, which affects
the performance of find. For completeness, we also show the results for Robin-Hood hashing, which is
known to minimize the variance of the displacements among all linear probing algorithms.

We use a table of size m = 107 and we initialize the data structures up to a fixed load factor
a =0.6,0.7,0.8, 0.9 by inserting the same set of unique randomly generated items in the same randomly
chosen order to all hash tables. After the initialization, we record the displacement of each item and
compute the sample variance as well as the maximum displacement. The above process was repeated
for 100 distinct initializations. The box-plot of the maximum displacement, Figure 3(a), shows that the
average maximum displacement of WHI is much smaller than that of SHI. As another data point, in a
similar experiment with a table of size m = 107, for load o = 0.9 the maximum recorded displacement for
WHI is 476 whereas for SHI it is 2228. Finally, in the plot of Figure 3(b) shows that the variance of the
individual displacement for WHI is much lower than that for SHI.

Distribution of Maximum Displacement, m=10" Variance of Individual Displacement, m=10’
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Figure 3: Comparison of the displacement of items in Robin Hood (where ties-break with FCFS), SHI [§]
and WHI (our scheme). The plot summarize results from experiments run 100 times on a table of size
m = 107 with varying load factors: (a) maximum displacement; (b) variance of individual displacement.

Methods insert and delete. The second set of experiments, depicted in Figure 4, addresses the
performance of methods insert and delete. In this experiment we use a table of size m = 10° and initialize
the data structures up to a fixed load factor, i.e. a = 0.6 — 0.9 by inserting the same set of unique
randomly generated items in the same randomly chosen order. After the initialization we perform 10> find
calls that take as an input a randomly chosen item among those that are already in the table in order to
warm-up the cache. Then we perform an insertion (resp. deletion) of a randomly generated (resp. chosen)
item and record the number of cycles executed by the method. We obtain the number of cycles as the
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Figure 4: Comparison of the performance of methods insert and delete in Robin Hood (where ties-break
with FCFS), SHI [8] and WHI (our scheme). Plot (a) summarizes the results from experiments conducted
10® times on a table of size m = 10° with varying load factors. In each experiment, we measured the
number of CPU cycles executed by a single call of method insert or delete. Plot (b) depicts the ratio
between the performance of SHI to WHI.

difference between processor time stamps by means of instruction rdtsc. The above process was repeated
103 times for various values of a.

Figure 4(a) presents the sample mean of the number of cycles, showing that our WHI scheme is
significantly faster than SHI. For comparison, we also include the performance of the variation of Robin
Hood linear probing where ties break in a FCFS fashion. This variation gives the fastest insertion process
over all Robin Hood variations since we don’t move items in case of a tie.

Overall Comparison. As an overall comparison Figure 4(b) shows the ratio of SHI’s performance
to WHI's performance for each of the above operations. Each line represents an operation (i.e. find,
insert, delete) and each data point of the line represents the ratio of SHI performance (in terms of average
maximum displacement or number of cycles) to WHI’s performance. It is clear that the average maximum
displacement of WHI is significantly smaller compared to SHI, which translates to a faster worst-case time
performance for find method. Specifically, the average maximum displacement of an item for the SHI
eviction strategy is almost 4 times higher than the average maximum displacement of WHI, for high load
factors. As for the update operations, WHI performs almost 2x faster than SHI for high load factors.

6 Conclusion & Discussion

In this paper, we have presented a linear probing hashing scheme that is weakly history-independent and
secure against collision-timing attacks. Furthermore, being a linear probing scheme, our data structure
is efficient and cache-oblivious in the external-memory model. According to our evaluation, all three
methods of the proposed hash table (find, insert, delete) are much faster than those of the strongly
history-independent analogue proposed by Blelloch and Golovin [8]. Our results suggest that weakly
history-independent data structures can be more efficient than strongly history-independent ones in
real-world privacy-preserving applications such as ballot storage and hospital admissions management.
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