
STRONGLY BOUNDED GROUPS AND INFINITE POWERS OF FINITE

GROUPS

YVES DE CORNULIER

Abstract. We define a group as strongly bounded if every isometric action on a metric space has
bounded orbits. This latter property is equivalent to the so-called uncountable strong cofinality,
recently initiated by Bergman.

Our main result is that GI is strongly bounded when G is a finite, perfect group and I is
any set. This strengthens a result of Koppelberg and Tits. We also prove that ω1-existentially
closed groups are strongly bounded.

1. Introduction

Let us say that a group is strongly bounded if every isometric action on a metric space has
bounded orbits.

We observe that the class of discrete, strongly bounded groups coincides with a class of groups
which has recently emerged since a preprint of Bergman [Ber04], sometimes referred as groups with
“uncountable strong cofinality”, or “groups with uncountable cofinality and Bergman’s Property”.
This class contains no countably infinite group, but contains symmetric groups over infinite sets
[Ber04], and various automorphism groups of infinite structures such as 2-transitive chains [DG05];
see [Ber04] for more references.

In Section 3, we prove that ω1-existentially closed groups are strongly bounded. This strengthens
a result of Sabbagh [Sab75], who proved that they have cofinality 6= ω.

In Section 4, we prove that if G is any finite perfect group, and I is any set, then GI , endowed
with the discrete topology, is strongly bounded. This strengthens a result of Koppelberg and Tits
[KT74], who proved that this group has Serre’s Property (FA). This group has finite exponent
and is locally finite, hence amenable. In contrast, all previously known infinite strongly bounded
groups contain a non-abelian free group.

2. Strongly bounded groups

Definition 2.1. We say that a group G is strongly bounded if every isometric action of G on a
metric space has bounded orbits.

Remark 2.2. Let G be a strongly bounded group. Then every isometric action of G on a nonempty
complete CAT(0) space has a fixed point; in particular, G has Property (FH) and Property (FA),
which mean, respectively, that every isometric action of G on a Hilbert space (resp. simplicial tree)
has a fixed point. This follows from the Bruhat-Tits fixed point lemma, which states that every
action of a group on a complete CAT(0) space which has a bounded orbit has a fixed point (see
[BH]).

It was asked in [W01] whether the equivalence between Kazhdan’s Property (T) and Property
(FH), due to Delorme and Guichardet (see [BHV]) holds for more general classes of groups than
locally compact σ-compact groups; in particular, whether it holds for general locally compact
groups.

The answer is negative, even if we restrict to discrete groups: this follows from the existence
of uncountable strongly bounded groups, combined with the fact that Kazhdan’s Property (T)
implies finite generation [BHV].
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Definition 2.3. We say that a group G is Cayley bounded1 if, for every generating subset U ⊂ G,
there exists some n (depending on U) such that every element of G is a product of n elements of
U ∪ U−1 ∪ {1}. This means every Cayley graph of G is bounded.

A group G is said to have cofinality ω if it can be expressed as the union of an increasing
sequence of proper subgroups; otherwise it is said to have cofinality 6= ω.

The combination of these two properties, sometimes referred as “uncountable strong cofinality”,
has been introduced and is extensively studied in Bergman’s preprint [Ber04]; see also [DG05].
Note that an uncountable group with cofinality 6= ω is not necessarily Cayley bounded: the free
product of two uncountable groups of cofinality 6= ω, or the direct product of an uncountable group
of cofinality 6= ω with Z, are obvious counterexamples.

The following result can be compared to Lemma 10 in [Ber04]:

Proposition 2.4. A group G is strongly bounded if and only if it is Cayley bounded and has
cofinality 6= ω.

Proof : Suppose that G is not Cayley bounded. Let U be a generating subset such that G the
corresponding Cayley graph is not bounded. Since G acts transitively on it, it has an unbounded
orbit.

Suppose that G has cofinality ω. Then G acts on a tree with unbounded orbits [Ser, Chap I,
§6.1].

Conversely, suppose that G has has cofinality 6= ω and is Cayley bounded. Let G act isometrically
on a metric space. Let x ∈ X , let Kn = {g ∈ G, d(x, gx) < n}, and let Hn be the subgroup
generated by Kn. Then G =

⋃
Kn =

⋃
Hn. Since G has cofinality 6= ω, Hn = G for some n,

so that Kn generates G. Since G is Cayley bounded, and since Kn is symmetric, G ⊂ (Kn)m for
some m. This easily implies that G ⊂ Knm, so that the orbit of x is bounded. �

Remark 2.5. It follows that a countably infinite group Γ is not strongly bounded: indeed, either
Γ has a finite generating subset, so that the corresponding Cayley graph is unbounded, or else Γ
is not finitely generated, so is an increasing union of a sequence of finitely generated subgroups, so
has cofinality ω.

Definition 2.6. If G is a group, and X ⊂ G, define

G(X) = X ∪ {1} ∪ {x−1, x ∈ X} ∪ {xy, x, y ∈ X}.

The following proposition is immediate and is essentially contained in Lemma 10 of [Ber04].

Proposition 2.7. The group G is strongly bounded if and only if, for every increasing sequence
(Xn) of subsets such that

⋃
n Xn = G and G(Xn) ⊂ Xn+1 for all n, one has Xn = G for some n. �

Remark 2.8. The first Cayley bounded groups with uncountable cofinality have been constructed
by Shelah [She80, Theorem 2.1]. They seem to be the only known to have a uniform bound on the
diameter of Cayley graphs. They are torsion-free. These groups are highly non-explicit and their
construction, which involves small cancellation theory, rests on the Axiom of Choice.

The first explicit examples, namely, symmetric groups over infinite sets, are due to Bergman
[Ber04]. The first explicit torsion-free examples, namely, automorphism groups of double transitive
chains, are due to Droste and Göbel [DG05].

3. ω1-existentially closed groups

Recall that a group G is ω1-existentially closed is every countable set of equations and inequations
with coefficients in G which has a solution is a group containing G, has a solution in G. Sabbagh
[Sab75] proved that every ω1-existentially closed group has cofinality 6= ω. We give a stronger
result:

Theorem 3.1. Every ω1-existentially closed group G is strongly bounded.

1In the literature, Cayley bounded is sometimes referred as “Bergman’s Property”.
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Proof : Let G act isometrically on a nonempty metric space X . Fix x ∈ X , and define l(g) =
d(gx, x) for all x ∈ X . Then l is a length function, i.e. satisfies l(1) = 0 and l(gh) ≤ l(g) + l(h)
for all g, h ∈ G. Suppose by contradiction that l is not bounded. For every n, fix cn ∈ G such that
l(cn) ≥ n2. Let C be the group generated by all cn. By the proof of the HNN embedding Theorem
[LS, Theorem 3.1], C embeds naturally in the group

Γ = 〈C, a, b, t ; cn = t−1b−nabnta−nb−1an (n ∈ N)〉,

which is generated by a, b, t. Since G is ω1-existentially closed, there exist ā, b̄, t̄ in G such that
the group generated by C, ā, b̄, and t̄ is naturally isomorphic to Γ. Set M = max(l(ā), l(b̄), l(t̄)).
Then, since l is a length function and cn can be expressed by a word of length 4n + 4 in a, b, c, we
get l(cn) ≤ M(4n + 4) for all n, contradicting l(cn) ≥ n2. �

It is known [Sco51] that every group embeds in a ω1-existentially closed group. Thus, we obtain:

Corollary 3.2. Every group embeds in a strongly bounded group. �

Note that this was already a consequence of the strong boundedness of symmetric groups [Ber04],
but provides a better cardinality: if |G| = κ, we obtain a group of cardinality κℵ0 rather that 2κ.

4. Powers of finite groups

Theorem 4.1. Let G be a finite perfect group, and I a set. Then the (unrestricted) product GI is
strongly bounded.

Remark 4.2. Conversely, if I is infinite and G is not perfect, then GI maps onto the direct sum
Z/pZ(N) for some prime p, so has cofinality ω and is not Cayley bounded, as we see by taking as
generating subset the canonical basis of Z/pZ(N).

Remark 4.3. By Theorem 4.1, every Cayley graph of GI is bounded. If I is infinite and G 6= 1,
one can ask whether we can choose a bound which does not depend on the choice of the Cayley
graph. The answer is negative: indeed, for all n ∈ N, observe that the Cayley graph of Gn has
diameter exactly n if we choose the union of all factors as generating set. By taking a morphism
of GI onto Gn and taking the preimage of this generating set, we obtain a Cayley graph for GI

whose diameter is exactly n.

Our remaining task is to prove Theorem 4.1. The proof is a adequate modification of the original
proof of the (weaker) result of Koppelberg and Tits [KT74], which states that GI has cofinality
6= ω.

If A is a ring with unity, and X ⊂ A, define

R(X) = X ∪ {−1, 0, 1} ∪ {x + y, x, y ∈ X} ∪ {xy, x, y ∈ X}.

It is clear that
⋃

n∈N
Rn(X) is the subring generated by X .

Recall that a Boolean algebra is an associative ring with unity which satisfies x2 = x for all
x. Such a ring has characteristic 2 (since 2 = 22 − 2) and is commutative (since xy − yx =
(x+ y)2 − (x+ y)). The ring Z/2Z is a Boolean algebra, and so are all its powers Z/2ZE = P(E),
for any set E.

Proposition 4.4. Let E be a set, and (Xi)i∈N an increasing sequence of subsets of P(E). Suppose
that R(Xi) ⊂ Xi+1 for all i. Suppose that P(E) =

⋃
i∈N

Xi. Then P(E) = Xi for some i.

Remark 4.5. 1) We could have defined, in analogy of Definition 2.3, the notion of strongly
bounded ring (although the terminology “uncountable strong cofinality” seems more appropriate
in this context). Then Proposition 4.4 can be stated as: if E is infinite, the ring P(E) = Z/2ZE

is strongly bounded. If E is infinite, note that, as a additive group, it maps onto Z/2Z(N), so has
cofinality ω and is not Cayley bounded.

Proof of Proposition 4.4. Suppose the contrary. If X ⊆ E, denote by P(X) the power set of X ,
and view it as a subset of P(E). Define L = {X ∈ P(E), ∀i, P(X) * Xi}. The assumption is
then: E ∈ L .

Observation: if X ∈ L and X ′ ⊂ X , then either X ′ or X−X ′ belongs to L . Indeed, otherwise,
some Xi would contain P(X ′) and P(X − X ′), and then Xi+1 would contain P(X).



4 YVES DE CORNULIER

We define inductively a decreasing sequence of subsets Bi ∈ L , and a non-decreasing sequence
of integers (ni) by:

B0 = E;

ni = inf{t, Bi ∈ Xt};

B′
i+1 ⊂ Bi and B′

i+1 /∈ Xni+1;

Bi+1 =

{
B′

i+1, if B′
i+1 ∈ L ,

Bi − B′
i+1, otherwise.

Define also Ci = Bi − Bi+1. The sets Ci are pairwise disjoint.

Fact 4.6. For all i, Bi+1 /∈ Xni
and Ci /∈ Xni

.

Proof : Observe that {Bi+1, Ci} = {B′
i+1, Bi−B′

i+1}. We already know B′
i+1 /∈ Xni+1, so it suffices

to check Bi−B′
i+1 /∈ Xni

. Otherwise, B′
i+1 = Bi− (Bi−B′

i+1) ∈ R({Bi, Bi−B′
i+1}) ⊂ R(Xni

) ⊂
Xni+1; this is a contradiction. �

This fact implies that the sequence (ni) is strictly increasing. We now use a diagonal argument.
Let (Nj)j∈N be a partition of N into infinite subsets. Set Dj =

⊔
i∈Nj

Ci and mj = inf{t, Dj ∈

Xt}, and let lj be an element of Nj such that lj > max(mj , j).
Set X =

⊔
j Clj . For all j, Dj ∩ X = Clj /∈ Xlj . On the other hand, Dj ∈ Xmj

⊂ Xlj−1 since

lj ≥ mj + 1. This implies X /∈ Xlj−1 ⊃ Xj for all j, contradicting P(E) =
⋃

i∈N
Xi. �

The following corollary, of independent interest, was suggested to me by Romain Tessera.

Corollary 4.7. Let A be a finite ring with unity (but not necessarily associative or commutative).
Let E be a set, and (Xi)i∈N an increasing sequence of subsets of AE . Suppose that R(Xi) ⊂ Xi+1

for all i. Suppose that AE =
⋃

i∈N
Xi. Then AE = Xi for some i.

Proof : Upon extracting, we can suppose that X0 contains the constants. Write Yi = {J ⊂
E, 1J ∈ X3i}. If J, K ∈ Yi, 1J∩K = 1J1K ∈ X3i+1 ⊂ X3i+3, so that J ∩ K ∈ Yi+1, and
1J△K = 1J + 1K − 2.1J1K ∈ X3i+3, so that J △ K ∈ Yi+1. By Proposition 4.4, Ym = P(E) for
some m. It is then clear that AE = Xn for some n (say, n = 3m + 1 + ⌈log2 |A|⌉). �

If A is a Boolean algebra, and X ⊂ A, we define

D(X) = X ∪ {0, 1} ∪ {x + y, x, y ∈ X such that xy = 0} ∪ {xy, x, y ∈ X}.

Ik(X) = {x1x2 . . . xk, x1, . . . , xk ∈ X}.

Vk(X) = {x1 + x2 + . . . xk, x1, . . . , xk ∈ X such that xixj = 0 ∀i 6= j}.

The following lemma contains some immediate facts which will be useful in the proof of the
main result.

Lemma 4.8. Let A be a Boolean algebra, and X ⊂ A a symmetric subset (i.e. closed under
x 7→ 1 − x) such that 0 ∈ X. Then, for all n ≥ 0,

1) Rn(X) ⊂ D2n(X), and
2) Dn(X) ⊂ V22n (I2n(X)).

Proof : 1) It suffices to prove R(X) ⊂ D2(X). Then the statement of the lemma follows by
induction. Let u ∈ R(X). If u /∈ D(X), then u = x + y for some x, y ∈ X . Then u = (1 − x)y +
(1 − y)x ∈ D2(X).

2) Is an immediate induction. �

Definition 4.9 ([KT74]). Take n ∈ N, and let G be a group. Consider the set of functions
Gn → G; this is a group for pointwise multiplication. The elements m(g1, . . . , gn) in the subgroup
generated by the constants and the canonical projections are called monomials. Such a monomial
is homogeneous if m(g1, . . . , gn) = 1 as soon as at least one gi is equal to 1.

Lemma 4.10 ([KT74]). Let G be a finite group which is not nilpotent. Then there exist a ∈ G,
b ∈ G − {1}, and a homogeneous monomial f : G2 → G, such that f(a, b) = b.

The proof can be found in [KT74], but, for the convenience of the reader, we have included the
proof from [KT74] in the (provisional) Appendix below.
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Remark 4.11. If G is a group, and f(x1, . . . , xn) is a homogeneous monomial with n ≥ 2,
then m(g1, . . . , gn) = 1 as soon as at least one gi is central: indeed, we can then write, for all
x1, . . . , xn with xi central, m(x1, . . . , xi, . . . , xn) = m′(x1, . . . , x̂i, . . . , xn)xk

i . By homogeneity in
xi, m′(x1, . . . , x̂i, . . . , xn) = 1, and we conclude by homogeneity in xj for any j 6= i.

Accordingly, if (Cα) denotes the (transfinite) ascending central series of G, an immediate induc-
tion on α shows that if f(a, b) = b for some homogeneous monomial f , a ∈ G and b ∈ Cα, then
b = 1. In particular, if G is nilpotent (or even residually nilpotent), then the conclusion of Lemma
4.10 is always false.

Lemma 4.12. Let G be a finite group, I a set, and H = GI . Suppose that f(a, b) = b for some
a, b ∈ G, and some homogeneous monomial f , and let N be the normal subgroup of G generated by
b. Let (Xm) be an increasing sequence of subsets of H such that G(Xm) ⊂ Xm+1 (see Definition
2.6), and

⋃
Xm = H. Then N I ⊂ Xm for m big enough.

Proof : Suppose the contrary. If x ∈ G and J ⊂ I, denote by xJ the element of GI defined by
xJ (i) = x if i ∈ J and xJ (i) = 1 if i /∈ J .

Denote by f̄ = f I the corresponding homogeneous monomial: H2 → H . Upon extracting, we
can suppose that all cI , c ∈ G, are contained in X0. In particular, the “constants” which appear
in f̄ are all contained in X0.

Hence we have, for all m, f̄(Xm, Xm) ⊂ Xm+d, where d depends only on the length of f . For
J, K ⊂ I, we have the following relations:

(4.1) aI .a
−1
J = aI−J ,

(4.2) f̄(aJ , bK) = bJ∩K ,

(4.3) f̄(aJ , bI) = bJ ,

(4.4) If J ∩ K = ∅, bJ . bK = bJ⊔K .

For all m, write Wm = {J ∈ P(I), aJ ∈ Xm}, and let Am be the Boolean algebra generated
by Wm. Then

⋃
m Am = P(I). By Proposition 4.4, there exists some M such that AM = P(I).

Set Xn = Rn(WM ). Then, since AM = P(I),
⋃

n Xn = P(I). Again by Proposition 4.4, there
exists some N such that XN = P(I). So, by 1) of Lemma 4.8, we get

(4.5) D2N (WM ) = P(I).

Define, for all m, Ym = {J ∈ P(I), bJ ∈ Xm}. Then from (4.3) we get: Wm ⊂ Ym+d; from
(4.2) we get: if J ∈ Wm and K ∈ Ym, then J ∩ K ∈ Ym+d; and from (4.4) we get: if J, K ∈ Ym+1

and J ∩ K = ∅, then J ⊔ K ∈ Ym+1.
By induction, we deduce Ik(Wm) ⊂ Ym+kd for all k, and Vk(Ym) ⊂ Ym+k for all k. Compos-

ing, we obtain Vk(Il(Wm)) ⊂ Vk(Ym+ld) ⊂ Ym+ld+k. By 2) of Lemma 4.8, we get Dn(Wm) ⊂

Ym+2nd+22n . Hence, using (4.5), we obtain P(I) = YD, where D = M + 4Nd + 24N

.
Let B denote the subgroup generated by b, so that N is the normal subgroup generated by B.

Let r be the order of b. Then BI is contained in XD+r. Moreover, there exists R such that every
element of N is the product of R conjugates of elements of B. Then, using that cI ∈ X0 for all
c ∈ G, N I is contained in XD+r+3R. �

Theorem 4.13. Let G be a finite group, and let N the last term of its descending central series
(so that [G, N ] = N). Let I be any set, and set H = GI . Let (Xm) be an increasing sequence of
subsets of H such that G(Xm) ⊂ Xm+1 and

⋃
Xm = H. Then N I ⊂ Xm for m big enough.

Proof : Let G be a counterexample with |G| minimal. Let W be a normal subgroup of G such
that W I is contained in Xm for large m, and which is maximal for this property. Since G is a
counterexample, N * W . Hence G/W is not nilpotent, and is another counterexample, so that, by
minimality, W = {1}. Since G is not nilpotent, there exists, by Lemma 4.10, a ∈ G, b ∈ G − {1},
and a homogeneous monomial f : G2 → G, such that f(a, b) = b. So, if M is the normal subgroup
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generated by b, M I is contained, by Lemma 4.12, in Xi for large i. This contradicts the maximality
of W (= {1}). �

In view of Proposition 2.7, Theorem 4.1 immediately follows from Theorem 4.13.

Question 4.14. Let G be a finite group, and N a subgroup of G which satisfies the conclusion of
Theorem 4.13 (I being infinite). Is it true that, conversely, N must be contained in the last term
of the descending central series of G? We conjecture that the answer is positive, but the only thing
we know is that N must be contained in the derived subgroup of G.

Remark 4.15. We could have defined relative definitions: if G is a group and N a normal subgroup,
we say that (G, N) has cofinality 6= ω if for every increasing sequence of subgroups (Hn) such that⋃

Hn = G, then Hn ⊃ N for large n. We say that (G, N) is Cayley bounded if N is bounded in
every Cayley graph of G. We say that the pair (G, N) is strongly bounded if, for every isometric
action of G on any metric space, then N has bounded orbits. We can show, as in the non-relative
case (Proposition 2.4), that (G, N) is strongly bounded if and only if (G, N) has cofinality 6= ω
and is Cayley bounded. The proof uses the fact that if (G, N) has cofinality ω, then there exists
an action of G on a tree such that N has no fixed point; the construction is the same as in the
non-relative case ([Ser], p. 82): if T is the tree associated to the family (Hn), then N has a fixed
point on T if and only if N is contained in a conjugate of Hn for large n (this is why we suppose
N normal).

Theorem 4.13 has a consequence which is stronger than Theorem 4.1: if G is a finite group and
N is the last term of its descending central series, and if I is any set, then the pair (GI , N I) is
strongly bounded. In particular, it has relative Property (FH): for every isometric action of GI on
a affine Hilbert space, N I has a fixed point. This shows that a solvable group can have have an
infinite subgroup with relative Property (FH). We do not know if this can happen in a nilpotent
group (see also Question 4.14). Note that an infinite solvable group cannot have Property (FH):
indeed, it has a finite index subgroup with infinite abelianization, and Property (FH) is inherited
by finite index subgroups ([BHV], Section 2.6).

Question 4.16. Does there exist a strongly bounded group with cardinality ℵ1?

It seems likely that a variation of the argument in [She80] might provide examples.

Appendix A. Proof of Lemma 4.10

This Appendix is added for the convenience of the reader. It should be dropped in case of
publication.

Lemma A.1 ([KT74]). Let G be a group, g ∈ G, and g′ an element of the subgroup generated by
the conjugates of g. Then there exists a homogeneous monomial f : G → G such that f(g) = g′.

Proof : Write g′ =
∏

cig
αic−1

i . Then x 7→
∏

cix
αic−1

i is a homogeneous monomial and f(g) = g′. �

The following assertion is considered as “clear” in [KT74]. I did not see a more straightforward
argument than the following proof, which uses Lemma A.3.

Lemma A.2. Let G be a finite group. Suppose that G is not nilpotent. Then there exists a ∈ G
such that the normal subgroup of G generated by a is not nilpotent.

Proof : Let C be the class of finite groups which do not contain such an element. The class C is
clearly closed under taking subgroups, quotients, and contains nilpotent groups. It clearly contains
no non-abelian simple group; hence every G in C is solvable. Let G be a minimal non-nilpotent
group in C. By Lemma A.3, G is the normal closure of a single element and cannot be in C,
contradiction. �

Lemma A.3. Let G be a finite solvable group. Suppose that G is not nilpotent, but that G is
minimal for this property, namely: every proper subgroup or quotient of G is nilpotent. Then
G ≃ Cp ⋉ V , where V is some vector space of dimension at least two over Fq, q is prime, and the
cyclic group Cp acts irreducibly and non-trivially on V . In particular, G is the normal closure of
a single element.
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Proof : Since G is solvable, it has a proper normal subgroup H of prime index p, which must be
nilpotent, so has nontrivial centre. Let n be the exponent of Z(H) and write n = qr, with r prime.
Let V be a minimal nonzero G-invariant subspace of the Fq-vector space rZ(H). By minimality,
G/V is also nilpotent, so that the action of G on H/V is nilpotent. This implies that the action
of G on the Fq-vector space V is not nilpotent; by minimality, it is irreducible. Let g ∈ G be the
lift of a generator of G/H . The cyclic subgroup generated by g cannot intersect V : otherwise, it
would provide an invariant vector for the action of G on V . So, by minimality, G is the semidirect
product of 〈g〉 by V . Since the subgroup generated by gp is normal, and even central (noting that
gp ∈ H), it is trivial, by minimality. Finally, note that the normal subgroup of G generated by g
is all of G. �

Proof of Lemma 4.10. Let G be a finite group which is not nilpotent. We must show that there
exist a ∈ G, b ∈ G − {1}, and a homogeneous monomial f : G2 → G, such that f(a, b) = b.

Take a as in Lemma A.2, and A the normal subgroup generated by a. Let A1 be the upper term
of the ascending central series of A. We define inductively the sequences (ai)i∈N and (bi)i∈N such
that

bi ∈ A − A1, ai ∈ A and bi+1 = [ai, bi] ∈ A − A1.

Since G is finite, there exist integers m, m′ such that m < m′ and bm = bm′ . Set b = bm, and
for all i, choose, using Lemma A.1, a homogeneous monomial fi such that fi(a) = ai. Then the
monomial

f : (x, y) 7→ [fm′−1(x), [fm′−2(x), . . . , [fm(x), y], . . . ]]

satisfies f(a, b) = b. �

Appendix B. Groups with cardinality ℵ1 and Property (FH)

This appendix should be dropped in case of publication.

Proposition B.1. Let G be a countable group. Then G embeds in a group of cardinality ℵ1 with
Property (FH).

The proof rests on two ingredients.

Theorem B.2 (Delzant). If G is any countable group, then G can be embedded in a group with
Property (T).

Sketch of proof: this is a corollary of the following result, independently proved by Delzant2

and Olshanskii3: if H is any non-elementary word hyperbolic group, then H is SQ-universal, that
is, every countable group embeds in a quotient of H . Thus, the result follows from the stability
of Property (T) by quotients, and the existence of non-elementary word hyperbolic groups with
Property (T); for instance, uniform lattices in Sp(n, 1), n ≥ 2 (see [HV]). �

Let C be any class of metric spaces, let G be a group. Say that G has Property (FC) if for every
isometric action of G on a space X ∈ C, all orbits are bounded. For instance, if C is the class of all
Hilbert spaces, then we get Property (FH).

Proposition B.3. Let G be a group in which every countable subset is contained in a subgroup
with Property (FC). Then G has Property (FC).

Proof : Let us take an affine isometric action of G on a metric space X in C, and let us show
that it has bounded orbits. Otherwise, there exists x ∈ X , and a sequence (gn) in G such that
d(gn x, x) → ∞. Let H be a subgroup of G with Property (FC) containing all gn. Since Hx is not
bounded, we have a contradiction. �

Proof of Proposition B.1. We make a standard transfinite induction on ω1 (as in [Sab75]), using
Theorem B.2. For every countable group Γ, choose a proper embedding of Γ into a group F (Γ)
with Property (T) (necessarily finitely generated). Fix G0 = G, Gα+1 = F (Gα) for every α < ω1,
and Gλ = lim−→β<λGλ for every limit ordinal λ ≤ ω1. It follows from Proposition B.3 that Gω1

has Property (FH). Since all embeddings Gα → Gα+1 are proper, Gω1
is not countable, hence has

cardinality ℵ1. �

2Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J., 83, Vol. 3, 661-682, 1996.
3SQ-universality of hyperbolic groups, Sbornik Math. 186, no. 8, 1199-1211, 1995.
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