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STRONGLY COHEN-MACAULAY SCHEMES AND
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CRAIG HUNEKE1

Abstract. This paper studies the local properties of closed subschemes Y in
Cohen-Macaulay schemes X such that locally the defining ideal of Y in X has the
property that its Koszul homology is Cohen-Macaulay. Whenever this occurs Y is
said to be strongly Cohen-Macaulay in X. This paper proves several facts about such
embeddings, chiefly with reference to the residual intersections of Y in X. The main
result states that any residual intersection of y in A" is again Cohen-Macaulay.

Introduction. Our purpose in this paper is to investigate a property of a closed
subscheme F in a Noetherian Cohen-Macaulay scheme A", which we call strong
Cohen-Macaulayness. This is a local property which we first describe for a local ring.
Let X — Spec(£), where £ is a Cohen-Macaulay local ring, and let Y = Spec(£/7)
(7 = 7(7)). Fix any (not necessarily minimal) generating set /,,...,/„ of 7. Let
77,(/; £) denote the ith homology of the Koszul complex associated to/,,... ,/„. We
define Y to be strongly Cohen-Macaulay in X if 77,(/; £) are either zero, or
Cohen-Macaulay modules and if in addition Y is generically a complete intersection.
This last condition means that IP is generated by a regular sequence for every prime
ideal £ which is minimal over 7.

As 770(/; £) = £/7, Y is necessarily Cohen-Macaulay if it is strongly Cohen-
Macaulay in X.

If X is any Noetherian Cohen-Macaulay scheme and Y is any closed subscheme,
then we say Y is strongly Cohen-Macaulay in X if this statement is true locally for
every y E Y.

The statement "F is strongly Cohen-Macaulay in X" has several good
geometric properties. First of all, this property does not depend upon the generating
set of the defining ideal of BY<y in 6x¡y. If X= Spec(fc[Z„.. .,ZJ) and X' =
Spec(A:[£,,..., £m]) where A: is a field, and if Y is embedded in both X and X', then
Y is strongly Cohen-Macaulay in X if and only if Y is strongly Cohen-Macaulay in
X'. If Y is strongly Cohen-Macaulay in X = Spec(A:[Z,,... ,Zn]) and Y' is strongly
Cohen-Macaulay in X' = Spec(£[£,,.. -,Tm]), then Y X Y' is strongly Cohen-
Macaulay in X X X' (Corollary 1.12).

The most obvious example of a strongly Cohen-Macaulay embedding is the case
when y is a local complete intersection in X, i.e. the defining ideal of Y in X is
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740 CRAIG HUNEK.E

locally generated by a regular sequence. In this case, Y is automatically Cohen-
Macaulay (as X is assumed to be), while locally, the higher Koszul homology of the
defining ideal of Y is zero (if we choose a minimal generating set for the ideal of Y).

We are motivated by three reasons to separate this class of subschemes from the
general class of Cohen-Macaulay subschemes. First of all, strongly Cohen-Macaulay
schemes have been recently studied by Simis and Vasconcelos [S-V] who are able to
prove many properties concerning the blow-ups of these schemes and also are able
to prove isomorphisms of the "residual scheme" of Y and the blow-up of Y (under
suitable extra hypothesis). Recall the residual scheme of Y is the scheme P(7(7)).
(See Kleiman [K] for a discussion of these ideas.) In fact Simis and Vasconcelos are
able to prove isomorphisms of the homogeneous coordinate rings of these two
schemes under very general circumstances. We will discuss their work in detail in
§§4 and 5. (See also [Ku] for work concerning when the residual scheme and blow-up
are isomorphic.)

The second reason for our interest arises from the fact that a general class of such
schemes is found "in nature". To describe how these schemes are found we first
recall the definition of haison (see Peskine and Szpiro [P-S-l]).

Definition 0.1. Let X be a Cohen-Macaulay Noetherian scheme, and let F, and
V2 be two closed subschemes of X. We say F, and F2 are directly linked (written
VX^V2) if there is a complete intersection Z G Vx C\ V2 such that

(i) 7(F2)/7(Z) = Hornee^, 0Z), and
(ü)7(F1)/7(Z) = Homex(0„2,6z).

Here 7(F) is the ideal sheaf of a closed subscheme Y of X. If there exist Vx,...,Vn
such that V-^VX— ■■ ■—Vn—V, we say Fand V are linked in X (written V~ V).

The following theorem is proved in [Hu-1].

Theorem 0.2. Let X be a Gorenstein Noetherian scheme and suppose Y G X is a
closed subscheme. If Y ~ Z where Z is a complete intersection in X, then Y is strongly
Cohen-Macaulay in X.

For the benefit of those readers not conversant with haison we pause to note two
examples of such schemes.

Proposition 0.3. Let X = Spec(£) where R is a regular local ring. Suppose Y G X
is a Cohen-Macaulay subscheme. If either

(i) codim Y — 2, or
(ii) codim Y = 3 and Y is Gorenstein,

then Y is strongly Cohen-Macaulay in X.

For in either case Y ~ Z, a complete intersection in X. In the situation (i), this
latter fact was proved by Peskine and Szpiro [P-S-l], while in case (ii) this fact was
proved by J. Watanabe [W].

We will later give some more examples of the type given in Theorem 0.2.
The third reason for separating this class of subschemes is the main reason for our

interest in them. Namely, such schemes have very strong residual intersection
properties. This author was surprised that these schemes could have such strong
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STRONGLY COHEN-MACAULAY SCHEMES 741

properties. The description of the residual intersection properties enjoyed by strongly
Cohen-Macaulay schemes is the main result of this paper. We describe the main
theorem in detail here.

Let X = Spec(£), where £ is a Cohen-Macaulay local ring and let Y = F(7) C X
be a closed subscheme of X. Let Ck(Y) — Ck G X be the set of points x E X such
that vilx) > k, where d(—) denotes the least number of generators. We let

c, = cxiY) = codim(7 n CX(Y)),   c¡ = c¡(V) = codim( C,(F))   if i > 1.
The codimension of 0 is by definition infinity.

Definition 0.4 [A-N,p. 312]. We say Y satisfies condition Gs if c¡>i for
i= l,...,s.

Remark 0.5. The scheme Y G X satisfies Gs if and only if t;(7(F)v) < codim{y)
for ally E F such that codim^} < s — 1.

We prove the above statement as follows. Assume Y satisfies Gs and let y E Y,
k = codim{77< s - L_If v(Iy) > k, theny E Ck+X(Y). Since Jy) G Ck+X(Y) (this
is a closed set), codim{j>} > k + 1, contradicting our assumption.

Conversely, suppose ^(7^) < codim{y} for ally E F such that codim(^} < s — 1,
and yet c, < i for some i < s. This inequality implies there is a y E Y such that
v(I )> i but codim{y} < i, which clearly contradicts our assumption. This finishes
the proof of Remark 0.5.

In particular we observe that the following three conditions are equivalent (set
« = v(I)):

(1) F satisfies Gx.
(2) v(Iy) < codim{7} for all j' G Y.
(3) F satisfies G„.
Our main result can now be stated.

Theorem 3.1. Let Y be a strongly Cohen-Macaulay closed subscheme of a Cohen-
Macaulay local scheme X = Spec(£). Put k — codim x Y. Let I = the ideal defining
Y. Suppose s > k is an integer and let A — (ax,.. .,as) be an ideal such that Ay = Iy if
y E Y and codimjy) <s.SetJ = (A:I),Z= V(J). If Y satisfies Gs, then:

(i) Z is Cohen-Macaulay, codim Z = s.
(ii) Z U F = VÍA) ischeme-theoretically).

(iii) Z fi Y is Cohen-Macaulay of codimension s + 1.

The subscheme Z is called a residual intersection of F in X.
The interested reader should compare this result with Theorem 2.1, p. 312 of

[A-N]. In their paper, Artin and Nagata are interested in proving this theorem in the
case that F is a complete intersection in X. However, their theorem is stated too
generally. In this general form, the result is incorrect. We give a counterexample
(Example 3.3) to the statement of Theorem 2.1 of [A-N]. In fact, a subscheme F of X
which satisfies the conclusion of Theorem 3.1 is very close to being strongly
Cohen-Macaulay. In the last section we are able to prove a partial converse.

Theorem 5.1. Suppose X is a Gorenstein affine scheme and Y G X is a closed
subscheme which satisfies Gx. In addition assume c¡iY) 3= /' + 2 // i 5* codim Y + 3.
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742 craig huneke

Assume that the conclusion of Theorem 3.1 holds for any residual intersection Z of Y.
Then Y is strongly Cohen-Macaulay in X.

The proof is obtained by comparing such schemes to those whose defining ideals
are generated by ¿/-sequences (see the last section for details). The proof shows that
there are many large classes of strongly Cohen-Macaulay subschemes.

Theorem 3.1 has several interesting applications which we discuss in §4. Let F be
an r-dimensional vector space over a field k and let IF be an s-dimensional vector
space over k. Let Dr s be the variety of maps in Hom(F, IF) of rank at most r — 1. It
is well known that

DriS = Spec(k[X^/({Tr(X))

where X — (x,y) is an r X s generic matrix. It is known that Drs is Cohen-Macaulay
and further that \JIr(X) = Ir(X). We show how the Cohen-Macaulayness of Drs
follows from the strong Cohen-Macaulayness of D +l. In fact, Drr+X is a strong
Cohen-Macaulay subscheme of A^r+I), and Dr r+x satisfies Gx. Further, the scheme
Ds_r+X T is a residual intersection of Drr+X. By Theorem 3.1, Ds_r+Xr is Cohen-
Macaulay! This example illustrates the theme of this paper; a strongly Cohen-
Macaulay scheme F in A' inherently contains a great deal of information about
schemes of lower dimension in X, namely those which are residual intersections of Y.

Another application is a new proof of the theorem of Simis and Vasconcelos [S-V]
which we have already referred to in this introduction. We review this result. Let
X = Spec(£) where £ is a Cohen-Macaulay local ring and let Y G X be a closed
subscheme, Y= V(I). By G(Y) denote the scheme Speci®n>or/I"+x). Set « =
v(I), I = (ax,...,an), and let Y = Spec(£[£,,...,£„, 5]/7) where / is the ideal
generated by 5£, — a¡, and all the polynomials 2"=16;7] such that 26,a, = 0. Of
course, Y is closely related to the scheme Spec(Sym 7). Let R(Y) be Spec(©neZ7")
where I" = £ if « < 0. It is clear that there is a closed immersion of R(Y) into Y.
An important question is when Y — R(Y). Whenever this occurs, Sym(7) = ®„ä07".
If R(Y) — Y, then it is well known that F must satisfy Gx. If Y is strongly
Cohen-Macaulay in X, Simis and Vasconcelos show the opposite also holds. (In fact
they are also able to show the symmetric algebra of 7 and the Rees algebra of 7 are
isomorphic and Cohen-Macaulay.)

Theorem 0.6 [S-V]. Let X be as above, and Y G X a strongly Cohen-Macaulay
closed subscheme of X. Suppose Y satisfies Gx. Then

(i) Y = R(Y), and
(ii) Y is Cohen-Macaulay.

Set « = «(7(F)) and let £ = Spec(£[£,,..., T„, 5]). Then £(F) C Y G T, where
these are all closed immersions. Let Y' = F((7, 5)) in £. Then Y' is strongly
Cohen-Macaulay in £ if F is so in X, and Y' also will satisfy Gx if Y does. We will
show that Y is always a residual intersection of Y'. Under these conditions, Theorem
3.1 shows F is Cohen-Macaulay. Further the condition (ii) of Theorem 3.1 in this
case is equivalent to the assertion that Y = £(F).
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One of the key ingredients of Theorem 3.1 is Proposition 1.6, which shows that
strongly Cohen-Macaulay subschemes of Cohen-Macaulay schemes have a linkage
property which in general is not held by Cohen-Macaulay ideals. Namely,

Proposition 1.6. Let R be a Cohen-Macaulay local ring and I a strongly Cohen-
Macaulay ideal of R. Suppose J is linked to I. Then R/J is Cohen-Macaulay.

This proposition is false if we only assume R/I to be Cohen-Macaulay [P-S-l].
As we mentioned above, the last section of the paper is devoted to relating strong

Cohen-Macaulayness to ¿/-sequences. We refer the reader to this section for the
relevant definitions. Of particular interest is Theorem 5.9, which gives a usable
criterion to determine if a scheme F is strongly Cohen-Macaulay.

1. Preliminaries. In this section we present the basic facts concerning Koszul
homology, and prove several basic propositions we will need in the later sections.
Our work is entirely local in nature in this section. Throughout this section we fix a
Cohen-Macaulay local ring £. If 7 = (/,,...,/„) is an ideal of £, the Koszul complex

of/, denoted £.(/; £) is the tensor product of the complexes, 0 -» £ ->£ -> 0. (This
complex is in degrees 0 and 1.)

We denote the j'th homology of this complex by 77,(/; £). Thus 770(/; £) = R/I.
If M is any £-module, by H ¡if; M) we denote the ith homology of the complex
£.(/;£) ®M.

The homology 7£(/; M) depends upon the generating set/,,... ,/„ of 7. In general,
we have the formula

(1.1) 77(/,0; M) = //,(/; M) © //,_,(/; Ai).

In addition, the Koszul homology of M with respect to any two minimal generating
sets of 7 is isomorphic. The following remark is immediate from (1.1).

Remark 1.2. The property "77,(/; M) is Cohen-Macaulay for all 0 < i*s w" is
independent of the generating set/,,... ,/„ of I. In particular the property "//,(/; M)
is Cohen-Macaulay for all i " is independent of the generating set of I.

Recall that if depth/ M = k, and (/„...,/„) = £ then 77/ /; Af ) = 0 for j > « - k.
In addition, Hn_kif; M) « Hom(Af/7Af, £/(/„... ,fk)) if /,.fk is a regular
Af-sequence. In particular if Af = £ and £ is Gorenstein, 77„_A.(/; R) =* KR/I, the
canonical module of £/7.

Remark 1.3 (see [Hu-2]). If £ is Cohen-Macaulay local and 7 is an ideal of £,
/ = (/,,... ,/„), then dim 77//; R) = dim £/7 for all/ such that 77//; £) ¥= 0.

There are two fundamental exact sequences which we will use throughout this
paper.

Lemma 1.4. Let I be an ideal of a ring R, 7 = (/,,... ,fn ).
(1) If'/, is a regular element of R, then there is an exact sequence,

0 - 7£(/; £) - 77,(/; £//,£) - //,_,(/; R) - 0.
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(2) Suppose (0 : 7) n 7 = (0). Then there is an exact sequence

0 - K-- 77//; £) - 77//; £/(0: 7)) - 0
for i > 0, where K is isomorphic to a direct sum of copies of (0 : 7).

Proof. For (1) we use the exact sequence

0^£-£^£//,£^0.

This gives a long exact sequence for the Koszul homology, and since/,77,(/; A7) = 0
for any £-module Af, this long exact sequence breaks up into the short exact
sequences of (1).

The exact sequences of (2) follow similarly from the exact sequence

0 - (0 : 7) ^R^R/ (0:7)^0.
We get a long exact sequence on Koszul homology,

• • • - 77,+,(/; £) -* 77,+ ,(/; £/(0 : 7)) - 77,(/;(0: 7))

-77,(/;£H77,(/;£/(0:7)H ••■•

Assertion (2) follows from two claims. First, since 7 annihilates (0 : 7), 77,(/; (0 : 7))
= (0 : I)°. Secondly, we claim all the maps 77//; R)^Hk(f; £/(0: 7)) are surjec-
tive.

Suppose ä is a cycle which represents a class in 77//; £/(0 : 7)). The map i is just
the restriction of a cycle in 77//; £) to 77//; £/(0 : /)). Let a be any lifting of â to
A*£, where £ is a free module on «-generators, and we have identified the Koszul
complex with A£. We denote the differential by d. Then the fact that ä is a cycle
implies da E (0: 7)(A*~'£). In addition, by definition of the differential d, da E
IiAk~xF). As A*~'£ is a free £-module and (0:7)07 = 0, da = 0 and so a
represents a class in 77//; £). It follows /' is onto.

Corollary 1.5. Let I be an ideal of the Cohen-Macaulay local ring R. Suppose
I = (x,,...,x„) with x, a regular element of R. Let "'" denote the homomorphism
from R to R/Rxx. Then I is strongly Cohen-Macaulay in R if and only if I' is strongly
Cohen-Macaulay in £'.

Proof. This corollary follows at once from the exact sequence of Lemma 1.4(1)
and from Remark 1.3.

We now prove the important proposition (see [HU-2]).

Proposition 1.6. Let R be a Cohen-Macaulay local ring and let I be an ideal of R.
Suppose I is strongly Cohen-Macaulay. Let x,,... ,xk be a maximal R-sequence inside
I, and place J = (x: I). Then R/J is Cohen-Macaulay.

Proof. Extend x,,... ,xk to a generating set x,,... ,x„ of 7. By Corollary 1.5, we
may reduce modulo xx,...,xk and assume that J = (0 : 7).

We induct on dim £ = dim £/7 to prove the proposition. If dim £ = 0, there is
nothing to prove. Otherwise, we may choose a z in £ such that z is not a zero-divisor
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on £, or on 77/x; £) for all/ such that/ < «. (Here we relabel a generating set of
7 = (x„...,x„).)

Using the long exact sequence of Koszul homology determined by the short exact
sequence 0 -» £ -> £ -* R/zR -» 0, we obtain exact sequences,

(1) 0 - 77,(x; £) ^77/x; R) -» 77/x; £/z£) - 0.

Further if we denote the homomorphism from £ to R/zR by '"", we see from (1)
that because 7 is strongly Cohen-Macaulay in £, 7' must be strongly Cohen-Macaulay
in £'. Since dim £' = dim £ - 1 < dim £, by induction £'/(0: 7') is Cohen-
Macaulay. Lifting back to £, we see that £'/(0: 7') = R/(z: (I,z)) is Cohen-
Macaulay. Since z is not a zero-divisor in r, z is not a zero-divisor on £/(0: 7).
Consequently, £/((0: 7), z) is Cohen-Macaulay if and only if £/(0: 7) is so. We
will finish this proof by establishing the claim
(2) ((0:7),z) = (z:(7,z)).

The remarks at the beginning to this section show that 77„(x; £) = (0: 7), while
77/x; £') = 77/x'; £') = (0 : 7'). The exact sequences (1) show that (0 : 7)/z(0 : 7)
-» (0: 7') is an isomorphism. The map is the obvious one, and takes an element s of
(0:7) tos' G (0:7').

We obtain
((0:7),z) ~ (z:(7,z))

(*)        "       (*)       '
This isomorphism proves the claim, and hence proves the proposition.

We remark that the proposition is false if one only assumes £/7 to be Cohen-
Macaulay. See Example 1.8 in [P-S-l]. This proposition and the next give us the
main tools needed in the induction to prove Theorem 3.1.

Proposition 1.7 (see [Hu-2]). Let R be a Cohen-Macaulay local ring and let I be a
strongly Cohen-Macaulay ideal of R. Suppose xx,...,xk are a maximal regular
sequence contained in I, and let J = (xx,...,xk: I). If

(1)7 n 7 = (x,,... ,xk), and
(2) ht(7 + 7) > k + 1,

then I' is strongly Cohen-Macaulay in £', where " ' " denotes the homomorphism from
R to R/J.

Proof. By Corollary 1.5, we may assume k = 0, i.e. J = (0: 7). Let /,,...,/„
generate 7. By Proposition 1.6, £/7 is Cohen-Macaulay; in particular by Remark
1.3, dim 77//'; £) = dim R'/T = dim R/I + J < dim R/J by assumption (2) of
the proposition.

Set d = dim £/7 = dim R/J = dim £. It is enough to show depth 77//'; £') >
d — 1. The exact sequence 0-*7->£->£'-»0, together with Proposition Ï.6, show
that depth J = depth R = d. From Lemma 1.4(2), there are exact sequences

0-£-77//;£)-77,(/';£')-0
for every i > 0. Since K is isomorphic to a direct sum of copies of J, depth K = d.
By assumption depth 77,(/; £) = d. It easily follows that depth 77,(/'; R')>d- 1.
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We remark that assumption (2) of Proposition 1.7 follows from assumption (1)
provided £ P is Gorenstein for all prime ideals £ such that £ is minimal over 7.

Remark 1.8. We have seen that if z is a nonzero-divisor on £/7 and £
(7 = (/„...,/„)), then

77,(/,z;£)-77,(/;£)®„£/£z.

It easily follows that each of the following statements implies the other two. Let
zx,...,zkbea regular sequence on £ and on £/7.

(i) 7 is strongly Cohen-Macaulay in £.
(ii) il, zx,...,zk)is strongly Cohen-Macaulay in £.

(iii) 7' is strongly Cohen-Macaulay in £', where £' = £/(z,,. ..,zk).
Suppose Spec(£) is embedded in the spectrum of two different polynomial rings,

£, = k[Tx,...,Tn] and£2 = k[Yx,..., Ym], so that there is an isomorphism, £,/7, =
T^R2/I2.

We claim 7, is strongly Cohen-Macaulay in £, if and only if 72 is strongly
Cohen-Macaulay in £2. Denote the tensor product £, ®k R2 by 5, and let tt be the
isomorphism £,/7, -» R2/I2. It easily follows that in 5

(7,5,7,-77(7,)) = (725,Fy-v7-'(F/))

and that {7} — tt(T¡)} form a regular sequence on 5/7,5 and 5 and that Fy — tr~\Yj)
form a regular sequence on S/I2S and 5. The above equivalences now imply our
claim.

Next we wish to discuss how strong Cohen-Macaulayness behaves under products.
Our goal is to prove

Theorem 1.9. Let R be a regular local ring, and I and J two ideals of R such that
Y = Spec(£/7) and Z = Spec(£/7) are strongly Cohen-Macaulay in X = Spec(£).
Assume I D J — IJ. Then Y (~) Z is strongly Cohen-Macaulay in X.

Although this theorem is essentially the Künneth formula, there are several details
which must be checked. We separate some of these details in two lemmas.

Lemma 1.10. Suppose R is a regular local ring, and I andJ are two ideals of R such
that R/I, R/J are Cohen-Macaulay and I (1 J = IJ. If M is a finite maximal
Cohen-Macaulay R/I-module and N is a finite maximal Cohen-Macaulay R/J-
module, then Tor,Ä(Af, N) = 0 for all i > 1. Further M ®R N is a maximal Cohen-
Macaulay module of £/(7 + 7).

Proof. Our assumption reads, Torx (R/I, R/J) = 0. By rigidity [L],

Tor,*( £/7, £/7) = 0    for all i > 1.
Let

h A
F.:0->Fk^> ■■■ -> £0 -» Af -+ 0

be a free resolution for Af over £. Here k — ht 7. To show F. ®N is exact, it is
enough by the Buchsbaum-Eisenbud criterion [B-E] to prove grade/(|.> N >j, where
/(/•) is the ideal generated by the maximal non vanishing minors of the map /.
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However, as M is perfect, JI = J7(fj) for all/, 1 <j < k. Hence we must show
grade7 TV 5s k. As N is a maximal Cohen-Macaulay module for R/J, it is enough to
prove grade, £/7 > k. However, if we take a free resolution for £/7 and tensor it
with £/7, the condition Tor,(£/7, £/7) = 0, i > 1, forces grade, £/7 > k.

Next we prove the last statement of Lemma 1.10. Let £ be a free resolution of Af
over £ and let G. be a free resolution of N over £. The tensor product F.®G.
furnishes a free resolution of A7 ®R N since Tor*(Af, N) = 0 by the above argu-
ment. The length of this resolution is ht 7 + ht J — ht(7 + J) (by the assumption
Tor*(£/7, £//) = 0). This proves depth A7 ®R N = dim £ - ht(7 + J) =
dim £/7 + J.

Lemma 1.11. Let £ be a finite free complex over a Cohen-Macaulay local ring R and
suppose M is an R-module with Tor,(A7, 77/£)) = 0 for all i > 1 and all j > 0. Let
Zn = nth cycles of £ and Bn = nth boundaries. Then Tor,(Af, Zn) = 0 = Tor,( Af, £„)
for all i > 1 and all n.

Proof. Z„ = ker(£„ -» £„_,), and Bn — im(£„+, -» £„). There are exact sequences

(1) 0 -> Bn - Z„ - 77„ - 0,       n>0,

(2) 0-»Z;-»FB-»*„_,-><),       n>l,

where H„ = Hn(F.).
We induct on « to show Tor,( A7, Zn) = Tor,( A7, £„) = 0 for all i. If « = 0, there

is an exact sequence as in (1), 0 -> £0 -» Z0 -> 770 -» 0. Since Z0 = £0 and
Tor/A/, £0) = Tor,(A/, 770) = 0 for all i > 1, it easily follows Tor,(A7, £0) = 0 for
all i > 1.

Assume « > 0 and we have shown our claim for « — 1. Then the vanishing of Tor
for Bn_x and £„ implies Tor,(Af, Zn) = 0 for all i s= 1 from the exact sequence (2):
now the vanishing for 77„ and Z„ give Tor,(Af, £„) = 0 for all i > I by the exact
sequence (1).

We are now able to prove Theorem 1.9. We just copy the proof of the Künneth
formula found in [M, pp. 166-168]; however the assumptions are too strong in the
above theorem for our case so we must make some modifications. Rather than
repeat the proof we simply note the salient points. First of all, our assumption that
Torf(£/££/7) = 0 forces Tor,Ä(£/7, £//) = 0 for all i>l by rigidity. By
hypothesis, £/7 and R/J are strongly Cohen-Macaulay in £; hence 77,(7; £) and
77,(7; £) are maximal Cohen-Macaulay modules (or zero) for £/7 and £// respec-
tively. (Here by 77,(7; £) we mean fix some (any) generating set for 7 and take
Koszul homology.) Lemma 1.10 now implies Tor,RiHjiI; R), 77/7; £)) = 0 for all
i > 1,/ > 0, k > 0.

Let K. be the Koszul complex for 7 (with respect to a fixed generating set) and let
L. be the Koszul complex for 7. Let C„ = C„(£.) be the cycles of K. and Dn =
£„_,(£) be the boundaries of K. By Lemma 1.11, Tor,(C„, 77/7; £)) =
Tor,(£„, 77^(7; £)) for alli>l,k>0, and « > 0.
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There is a short exact sequence of complexes, 0 -> C. -* K. -> D. -» 0, which remain
exact after tensoring with £.. To continue the proof as in [M], we need to show
Tor,(Cm, 77/L.)) = 0, which we have shown, and we need to observe that

H„iL.)®Dm = H„iL.®Dm).
The «th homology of £. is described by the commutative diagram

0 0
Î I

0     -      B„       -       C„       -    77„     -    0
Î I

L„+\     ~*       £„
I

(see [M, Lemma 10.3, p. 167]).
Tensor this diagram with Dm. Since Tor,(£m, 77/L.)) = 0 by above, the middle

row stays exact. Ln+X ® Dm^> Bn® Dm remains onto since tensor is right exact.
Finally the middle column exact sequence gives a short exact sequence 0 -» C„ -» £„
-> £„_, -» 0. If Tor,(7)m, £„_,) = 0 then the sequence

0->C®D^L®D^L    ,® Dv ^n n n m n — 1 m

will remain exact. Since we have shown Tor,(£»m, 77/£.)) = 0, we may apply
Lemma 1.11 to conclude Tor,(7)m, £„_,) = 0. This finishes the outline of the proof
of the Künneth formula. We conclude,

(3) 2    77m(7;£)®77/7;£) = 77/7 + 7;£).
m + q=n

Here note the homology of K. ®L. is precisely 77/7 + 7; £) while we have shown
Tor«(77m(£.),77/£.)) = 0.

However by Lemma 1.10, 77m(7; £) ® 77/7; £) are maximal Cohen-Macaulay
modules for £/7 + 7. It now follows that Spec{£/7 + J) is strongly Cohen-
Macaulay in Spec(£).

Corollary 1.12. Let X = Spec(A:[^„...,Arn])a«i/A" = Spec(k[£,,...,Tm]). Sup-
pose Y G X and Y' G X' are strongly Cohen-Macaulay closed subschemes of X and X'
respectively. Then Y X Y' is strongly Cohen-Macaulay in X X X'.

Proof. Let 7 = 7(F), J = 7(F'). Then 7(F X Y') is given by the ideal generated
by 7 + J in k[Xx,... ,Xn, £„...,£J = 5. If we show 75 n 75 = 775, then we may
apply Theorem 1.9. (As by definition we need only check strong Cohen-Macaulay-
ness locally.) However, 75 D 75 = 7 • 75 is clear.

2. Examples and remarks. In this section we present some known examples of
strongly Cohen-Macaulay schemes and further give a simple criterion to decide if a
scheme is not strongly Cohen-Macaulay. We also give some remarks concerning the
duality of Koszul homology which we will later need. Finally we show that a
conjecture of Vasconcelos is true for strongly Cohen-Macaulay schemes. Much of
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the first part of this section appears in [Hu-1]; therefore we do not give proofs for
these results.

The largest known class of strongly Cohen-Macaulay subschemes comes from
liaison as we noted in the introduction. As we stated there, this class includes perfect
subschemes of codimension two in Cohen-Macaulay schemes and perfect Gorenstein
schemes of codimension three in Gorenstein schemes. We list another such example
here.

Example 2.1. Let X be a generic « by « + 1 matrix and F an « + 1 by 1 matrix.
J. Herzog [He-2] gave a resolution for the ideal 7,(AT) + 7/A-) = 7 in the poly-
nomial ring k[X, Y] = £. In fact £/7 is Gorenstein of height « + 1. It was shown
in [Hu-1] that 7 is in the linkage class of a complete intersection. Consequently £/7
is strongly Cohen-Macaulay in £.

Two other classes of examples are also known to be strongly Cohen-Macaulay.

Proposition 2.2. Let R be a Cohen-Macaulay local ring, and I an ideal of R such
that:

(i) £/7 is Cohen-Macaulay.
(ii) 7 is generically a complete intersection.

(iii) u(7) = ht7+l, where in general v(M ) is the least number of generators of the
R-module M.

Then R/I is strongly Cohen-Macaulay in R.

Proof. Let 7 = (ax,...,ak, ak+x) where ax,...,ak is a regular sequence which
generically generates 7. From §1, we see that 77,(a; £) = 0 for / > 1, while 770(a; £)
= £/7 is Cohen-Macaulay. Hence it remains to show 77,(a; £) is Cohen-Macaulay.
This module is isomorphic to iax,...,ak: ak+x)/iax,...,ak). Consider the exact
sequence,

(1) 0 ^ ((ax,...,ak): ak+x)/ (ax,...,ak) -» £/ (ax,.. .,ak)

-*R/(ax,...,ak:ak+x) -> 0.
To show the left-hand module of (1) is Cohen-Macaulay, it suffices to show the
right-hand module is Cohen-Macaulay. (All these modules have the same dimension.)
This fact, however, follows from the exact sequence

0^R/((ax,...,ak):ak+x)^R/(ax,...,ak)-,R/(ax,...,ak+x)^0.

Example 2.3. If £ is Gorenstein local and if I is an ideal satisfying
(1) o(7) = ht 7 + 2,
(2) £/7 is Cohen-Macaulay,

then Avramov and Herzog [A-H] showed £/7 is strongly Cohen-Macaulay in £. In
particular, if dim £/7 = 2 and £/7 is normal, then 7 is strongly Cohen-Macaulay if
v(I) < dim £. For example, the defining ideal 7 of the surface
k[s\ s5t3, s4t\ s3t5, i8] is generated by Z2 - XV, YU - XV, F3 - ZUX, XU2 -
ZY2, and £/3 - ZYV If £ = k[X, Y, Z, U, V], then £/7 is two dimensional normal
and v(I) = 5 < dim £. Hence £/7 is strongly Cohen-Macaulay in £.

In [Hu-1] a criterion involving the module £2 was given which gives a strong
necessary condition for a scheme to be strongly Cohen-Macaulay. Let £ be as usual,
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and set 7 = (/„... ,/„). There is an exact sequence, 77,(/; £) ->(£/7)n ^7/72 -> 0.
The maps a and ß are defined as follows: If (r,,... ,rn) E (R/I)n, a((rx,.. .,fn)) =
2>,/ mod 72. If (s,,... ,s„) represents the class of an element in 77,(/; £) (that is,
2mt=M = 0), then ßüsx,...,s„)) = (5„... ,s„).

The kernel of ß is by definition T2X/Y = £2 ( X = Spec(£), F = Spec(£/7)).
The following proposition can be found in [Hu-2].

Proposition 2.4. Suppose Y is strongly Cohen-Macaulay in X. Then T2/Y — 0.

Simis and Vasconcelos showed in [S-V] that £2 also is equal to ker(Sym2 7 -> 72).
From this remark and from Proposition 2.4, the following example was given in
[Hu-1].

Example 2.5. Let A be a generic r X s matrix (r < s). Then 7,( A") is not strongly
Cohen-Macaulay if

(i) 1 < t < r, or
(ii) / - r<s - 1.
In other cases, 7,( A) is strongly Cohen-Macaulay.
Finally we wish to show how a conjecture of Vasconcelos is verified for strongly

Cohen-Macaulay varieties (see [V]).

Proposition 2.6. Suppose R is a local ring and I an ideal such that 77,(/; £) are
Cohen-Macaulay for all i ifor some if) = I). If pdR / < oo and pdR/II/I2 < oo,
then I is generated by a regular sequence.

Proof. Notice that we do not need to assume 7 is generically a complete
intersection. In fact, if £ D 7 is a minimal prime of I, then all our assumptions still
hold for IP. In this case, since dim(£/7)P = 0, and pd IP/Ip < oo, IP/Ip is free.
Now Vasconcelos has proved that IP is generated by a regular sequence. By
Proposition 2.4, £2 = 0. Hence we have an exact sequence,

0-77,(/;£)-(£/7)"-7/72-0.

We conclude that pdR//77,(/; £) < oo. As 77,(/; £) is by assumption Cohen-
Macaulay, 77,(/; £) is free. Now a result of Gulliksen [G-L] shows 7 is generated by
a regular sequence.

Applying this proposition to the examples of this section recovers many of the
results of [V].

Next we wish to investigate some duality which holds on the Koszul complex. In
[He-1] the following remark was essentially proved: Suppose £ is a Gorenstein local
ring and 7 an ideal of £, 7 = iax,...,an). Set

c/( 7 ) = d — deviation of 7 = « — ht 7.
If 770(a; £),. . . ,77/a; £) are Cohen-Macaulay modules, then so are Hdiq; £),
...,Hd_jiq;R) and

Hä_j(q; R) - Hom(77,(a; £), 77/a; £)).

There is always a pairing 77,(a; £) X Hd_¡(q; R) -> Hd(q; R) given by the exterior
product on the Koszul homology. If £ is Gorenstein, 77/a; £) =s KR/I, the canoni-
cal module of £/7.
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Proposition 2.7. Suppose 77,(a; £) are reflexive modules for every i, 0 < i < d.
Then the pairing above is perfect, that is,

77,(a; £) = Hom(77d_,(a; £), Hdiq; £))

and

Há_tia; R) = Hom(77,(a; £), 77/a; £)).
Proof. We denote 77 (a; £) by 77 for simplicity, and we only show the first

fequality. From the pairing, there is a map, 77, ̂ Hom(77(/_,, Hd). By assumption,
both of these modules are reflexive and so it is enough to show / is an isomorphism
in codimension at most one. In this case the modules (77,)   are Cohen-Macaulay
modules and we may apply the result of [He-1] to conclude/is an isomorphism.

Using the duality and a multiplicities argument as in [Hu-5] one may show

Proposition 2.8. Let R be a local Gorenstein ring, I = (a,,...,a„) an ideal with
dil) — d < 4. If 77,(a; £) and 770(a; £) are Cohen-Macaulay, then 77/a; £) are
Cohen-Macaulay for all j > 0.

Corollary 2.9. Suppose R is local Gorenstein and I is an ideal generically a
complete intersection with R/I Cohen-Macaulay. Set A'=Spec(£), F= F(7). If
T2X/Y = 0, and dil) < 4, then Y is strongly Cohen-Macaulay in X if and only if the
conormal module, I/I2, satisfies Serre's condition 5 where j = dim Y — I.

Proof. By the proposition above it is enough to prove 77, is Cohen-Macaulay.
Since T2/Y = 0, there is an exact sequence,

0^77, ^(£/7)"^7/72^0.

The result easily follows from standard depth considerations.

3. Main result. We refer the reader to the introduction for the definition of
condition Gs. The purpose of this section is to prove

Theorem 3.1. Let X = Spec(£), where R is a Cohen-Macaulay local ring, and let
Y = Vil) be a strongly Cohen-Macaulay closed subscheme of X. Assume Y satisfies
Gs. Let a,,... ,as be in I such that (a,,... ,as)P — IP if ht £ < s and £ G F. Set
Z = F(7) where J — (a,,... ,as: I), and we assume codim Z > s. Let W =
F(a,,. ..,as). Then:

(i) Z is Cohen-Macaulay and codim Z = s.
(ii) IF = Z U F.

(iii) Z n F is strongly Cohen-Macaulay in Z; in particular, Z O Y is Cohen-
Macaulay.

(iv) depth£/(a,,...,aJ)>dim£ - s.

We make a few remarks before beginning the proof of Theorem 3.1. The ideals 7
arising in this fashion are called residual intersections by Artin and Nagata in their
paper [A-N]. In that paper, Theorem 3.1 is stated [A-N, Theorem 2.1, p. 312] more
generally; however this more general statement is incorrect as we shall show by a
counterexample (Example 3.3). The statement (iii) of the theorem is necessary for the
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induction. Statements (i) and (iii) may be thought of as generalizations of Proposi-
tions 1.6 and 1.7 respectively. These propositions only dealt with the case s = ht 7,
in which case 7 is linked to 7.

We will prove the theorem by induction on s, beginning with the case s = k — ht 7.
In this case, (i) follows immediately from Proposition 1.6, while (iv) is also im-
mediate as in this case ax,...,ak is a regular sequence. (Notice ht(a,,.. .,ak) = ht 7
as (a,,.. -,ak)p = IP for all primes £ minimal over 7.) We show (ii). Let (a,,... ,ak)
= a, n • • • r\qm be a primary decomposition of (a,,... ,ak), and put Qk = Jq^. To
show 7 n 7 = (a,,... ,ak) it suffices to prove 7 n 7 C a, for each Ki<m. As
77 G (a,,... ,ak), it is enough to prove 7 + 7 <J Q¡. However, if 7 C Q¡, then by
assumption 7ß = (a,,... ,ak)Q ; so that 7ß = ((a,,... ,ak)Q : IQ ) <£ {?,. This shows
both (ii) and the fact that ht(7 + 7) s= k + I. The assertion (iii) now follows from
Proposition 1.7.

Henceforth we assume s > k and assume the theorem is true for all values strictly
less than s. We use a lemma which is a general position argument and is found in
[A-N, Lemma 2.3, p. 312].

Lemma 3.2. Suppose s > k. The generators ax,...,as may be chosen in such a way
that (a,,.. .,as_x)P = IP for all prime ideals £ D 7 such that ht £ < i — 1. Further,
height(a,,.. -,as_x: I) is at least s — I.

We now suppose we have chosen a,,... ,as as in Lemma 3.2. Set

7, = (a,,....a,.,:/).

By induction we may assume:
(1) £/7, is Cohen-Macaulay, ht 7, = s — 1,
(2)7, n7 = (a„...,aí_,),
(3) 7 + 7,/7, is strongly Cohen-Macaulay, and
(4) depth £/(<!,,...,as_,)>/i - s + 1.
Let " ' " denote the map from £ to £/7,, and set 7* = ((7,, as): I). We first claim

that 7* = 7. It is clear that J G J* since 77 C (a,,... ,as) G (7,, as). To show the
converse we need to prove 7*7 G (a,,... ,as). By definition, 7*7 G (7,, as) and so
7*7 Ç (7,, as) n 7. Let w E 7, be such that w + ras E I. Then w E I n 7, =
(a,,. .. ,as_x). It follows that (7,, as) fl I = (a,,. .. ,as). Therefore, 7*7 G
(a1,...,aJ) and7 = 7*.

We next prove that ht(7,, as) = s. If not, there is a prime Q D (7,, as), ht Q =
s — 1. Then, as 77 G (a,,... ,aj) G (7,, as) C £?, either I G Q or J G Q. However,
as iax,...,as_x)p = Ip at every prime of height < s — I, I (£ Q. Hence J G Q.
However ht J ^ s. Thus ht(7,, as) = 5. Since ht 7, = í — 1 and £/7, is Cohen-
Macaulay, a's is not a zero-divisor in £/7,.

By the induction hypothesis, 7' is strongly Cohen-Macaulay in £'. By Proposition
1.6 it follows that (7*)' = ia's: I') satisfies the condition £'/(7*)' is Cohen-Macaulay.
As R'/iJ*)' = R/J* = R/J, we have shown (i).

We next show (ii). First, we will show ht(7 + 7) > s + 1. This is clear from our
assumption that (a,,... ,as)P = IP for every prime ideal £ D 7 such that ht £ < s.
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Since (7,,as) n 7 = (a,,...,aJ), to show 7 D 7 = (a,,...,ai), it suffices to prove
7 n 7 Ç (7,, as). As ht(7 + 7) > s + 1 and (7,, a5) is a height s ideal such that
£/(7,, as) is Cohen-Macaulay, it is enough to prove 7-7C(7,,aJ). However,
7 = 7* = ((7„aJ:7).

To prove (iii) we use Proposition 1.7. We apply this proposition to the ideals £
and (7*)' = 7' = (a's: T) in £'. We need to verify

(1)7'D 7' = «), and
(2)ht(7' + I')>2.
However, we have shown both of these conditions in the preceding argument. We

conclude 7' + 7'/7' is strongly Cohen-Macaulay in £/7'. Since 7, C 7, this says
7 + 7/7 is strongly Cohen-Macaulay in £/7, which proves (iii).

To prove (iv) we emulate [A-N]. Consider the exact sequences,

(3) 0-»(ö„...,af_,) -*(fl,,...,öj -*ia,)/ia,) n (c„...,af_,) -» 0,

(4) 0-»(fl„...,a,_,)-»A-ll/(a„...,o,_,)-0.
As depth £/(a,,.. -,aJ„,) > « — s + I, where« = dim £, from (4) we obtain

depth(a,,...,aJ_1) > n — s + 2.

We next evaluate ias)/ias) n iax,...,as_x). Mapping £ onto this module we
obtain

R/iax,...,as_x:as) ^ias)/ias) n (fl„.„,a,_,).

Notice iax,...,as_x: 7) = 7, Ç iax,...,as_x: a5). In fact we claim these two ideals
are equal. As asiax,...,as_x: as)GJx and as is not a zero-divisor on £/7,,
(a,,.. .,as_x: as) G 7,. We know depth £/7, = « - s + 1. It now follows from (3)
that depth(a,,...,af) > « - s + 1. Consequently, depth £/(a,,... ,as) s* « — s.
This completes the proof of Theorem 3.1.

Finally, in this section we wish to give an example to show that the hypothesis of
"strongly Cohen-Macaulay" is needed. This example provides a counterexample to
Theorem 2.1 of [A-N]; however we note that the Corollary 2.2 in [A-N] is correct
since in this case the ideal in question is a complete intersection.

Example 3.3. Let A and F be generic two by two matrices over a field k; set
R = k[X, Y]. (We adjoin the entries of X and F to k.) Let 7 = 7,(AT) + 7/ A) +
7/F). It is known that £/7 is Cohen-Macaulay of codimension 3. However, it is
also known,

7n7,(A)n7,(F) = 7,(AT).

The ideal 7,(AT) is generated by four equations, and of course, ht(7,(A") n 7,(F))
= 4. In addition 7 satisfies Gx. If we could apply Theorem 3.1 to 7, we could
conclude £/(7,(A") n 7,(F)) is Cohen-Macaulay. As this conclusion is obviously
false, we have obtained the desired counterexample.

Observe that t>(7) = 6 = ht 7 + 3. Hence Proposition 2.2 and Example 2.3 can-
not be extended any further.
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4. Applications. We apply Theorem 3.1 to two different situations. The results of
this section were already known. However the use of Theorem 3.1 gives very simple
proofs, and what this author felt were very appealing proofs. These applications
demonstrate some of the remarkable information which can be found in a strongly
Cohen-Macaulay scheme. Furthermore Theorem 3.1 and the results here can be seen
as a generalization of liaison.

We begin by recovering a classical result on determinantal varieties. We adopt the
notation of the introduction, so that Drs is the (affine) scheme whose closed points
give maps from an /--dimensional space to an s-dimensional space having rank at
most r — 1. (Here r < s.) As noted before Dr s embeds in A" and it is easily seen that
Drs = Spec(*:[*,.// {TriX)). We wish to prove

Theorem 4.1. The scheme Dr s is Cohen-Macaulay.

Proof. It is well known that it suffices to prove this statement at the origin.
Accordingly, let X = Spec(/c[A,/(A- ,), and F Ç A" be the closed subscheme with
7(F) = ///A"). We must prove Fis Cohen-Macaulay.

We first extend the base X. Let X' be A^i+1) localized at the origin. We think of
the coordinates of A^i+l) as an j X (i + 1) matrix A = (z¿ ), with the right-most r
colums of A giving the map of X -» X'. (We set £ = right-most r columns.) In A" we
let Z be the subscheme given by the ideal 7(Z) = 7//I). As codimension Z = 2, and
Z is perfect, by Proposition 0.3, Z is strongly Cohen-Macaulay in X'. Further Z
satisfies Gx.

Let Y' = /(F) where i: X -* A"'. As / is a faithfully flat morphism, it is enough to
prove Y' is Cohen-Macaulay. In fact we show Y' is a residual intersection of Z.

Let a, = the s X s matrix of A determined by deleting the /th column, and
consider the ideal (a„... ,as_r+x: 7(Z)) = 7. Let £ = F(7). We will show £ = F'.

By elementary linear algebra one can observe that 7(Z)-7r(£) G iax,...,as_r+x).
Hence, 7r(£) G J. On the other hand, since 7(Z) contains a nonzero-divisor modulo
the ideal {TriB) (which is prime and = 7(F')), we see that J G {TriB). Therefore,
Y' = £, as topological spaces.

In particular, codim £ = codim Y' — s — r + 1. It follows that £ is a residual
intersection of Z and consequently £ is Cohen-Macaulay. It remains to show Y' = T
as schemes, i.e. that {TriB) = (a,,.. .,as_r+x: IsiA)). Since £is Cohen-Macaulay, it
has no embedded components. We only need to show £ is an integral scheme, and it
suffices to do this at its unique generic point, £ = {TriB). However after localizing
at £, iUB))P = iax,...,as_r+x)p = PP. Hence, 7,(£) = (a„...,as_r+l: I,{A)) and
so Y' = £ is Cohen-Macaulay.

Next we wish to give an alternate proof of the theorem below of Simis and
Vasconcelos by viewing the Rees algebra of an ideal 7 as a residual intersection of

R/I.

Theorem 4.2 [S-V]. Let Rbe a Cohen-Macaulay local ring and let I be an ideal of R
such that Spec(£/7) = F is strongly Cohen-Macaulay in X= Spec(£). Suppose Y
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satisfies Gx. Then:
(1) Sym(7) - en>07".
(2) (B„~.0I" 's Cohen-Macaulay.
(3) Sym(7/72) = ©B>0/-//-+1.
(4) ©„s,07"/7', + 1 « Cohen-Macaulay.

In general, (1) holds if and only if (3) holds [Va], while (2) implies (4) [Hu-3].
We will actually only recover (1), (3) and (4). We wish to fix some notation. We let

£= Spec(£[7i, r1]) where £[7?, r1] is viewed as a subring of the ring £[i, r'].
(The variable t is algebraically independent over £.) This ring is called the Rees
algebra of £. If G = Spec(®n>0I"/In+x), the associated "canonical" scheme of F,
then G = V(rx) G T.

We also let 5 = Spec(Sym(7)), the scheme associated to the symmetric algebra of
7, and let IF = Spec(£[£,,. ..,£„, U]) where « = t>(7). 5 is a closed subscheme of IF
defined by the vanishing of the equations U, and 2"=,6,£, where 1"=xbiai — 0 (where
7 = (a,,...,a„) is a minimal generating set of 7). Set £' = Spec(£[£,,...,£„, U]/J)
where 7 is the ideal generated by the equations E"= xb¡T¡ (2"=,/>,a, = 0), and the
equations (/£, — a,. There is an obvious surjection

by sending £, to a,i and Utot~x.
This gives a closed immersion of £ into £'. Set

F' = Spec(£[£,,...,£„,«7]/£[£,,...,£„,i7](7,[/)).
We will show that in general £' is a residual intersection of Y'. Further, under the

conditions of Theorem 3.1, T — T and is Cohen-Macaulay. Finally, we interpret the
equalityT = £' as equivalent to the equality Sym(7) = ®n>0I".

We proceed to show

Proposition 4.3. T is a residual intersection of Y' if codim F > 1, and if Y satisfies

Set b¡ = UT¡ - a¡. We will prove that ((/>,,... ,b„): (7, U)) = 7. First we prove 7 is
contained in the ideal on the left-hand side. This follows from the equations

(1) f 2c¡t]u= ïcXW-a,)
and

(2) 2 c,Ti \aj= 2 c,(T,aj - a?j),
\i=\      I i=i

both of which are valid as "Z"=xc¡a¡ = 0. Furthermore, Tfij — a¡Tj — (UT¡ — a¡)Tj —
(UTj - aj)T¡. Conversely, suppose £ = £(£„..., £„, U) E (b: (I, U)). Then there is
an equation,

(3) FU=2Gibi=ÍGt(UTi-ai).
i=i i=i
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Therefore,

(4) u[f- Íg,t] =-Ía,G,.
\ ¿=1 / ;=1    .

Write G, = G¡ + UG" where G'¡ E £[£„..., £„]. Equation (4) becomes

u[f- Ígí+ iaft' = ¿«A'.
\ i=I 1=1 / (=1

Since S"=,a,G,' G £[£„.. .,£„], we see that

(5) 2 a,G¡ = 0,
i=i

and

(6) £=i ox - 2 «,g;' = 2 (trç - «/)<?" + 2 G,'£,-
(=1 1=1 1=1 1=1

Therefore modulo 7, £ = 2"=,G,'£r From equation (5), 2"=1a,G,' = 0. As the map
from £ to £[£,,..., T„] is faithfully flat, there exist relations (1 </ < N), 2"=,a,c,y
= 0 in £, and polynomials 77y in £[£,,...,£„] so that G[ = 2*L xc¡jHj. Then

F=2 T, 2 c,,777= 2 «,-( 2 c,yi;) =0   (mod 7),
1=1      j=\ 7=1 \l=l /

since ZCjjüi = 0.
It follows that J = (bx,...,b„: (I, U)). Therefore £' is a residual intersection of Y'

provided codim £' = «. This follows from the lemma below.

Lemma 4.4. Suppose I satisfies Gx, and ht 7 > 0. Then

dimSym(7) = dim0 7" = dim £ + 1.
M»0

Proof. The latter equality is well known. Let 7 = (a,,... ,a„). There are surjec-
tions:

£[£„...,rj      f-   >Sym(7)^0

^ 07"
n>0

1
0

Set A = kerf, P — ker(/° g). P is a prime ideal. We need to show ht ,4 = ht £.
Choose any minimal prime over i A : P) n £, and localize at it. It is enough to prove
ht A = ht £ in this localized ring. Thus we may assume £ is local with maximal
ideal m, and mNP G A, for some N. It follows that ht A = min(ht £, ht m); however
ht m = dim £, while ht £ = dim £ + t>(7) - (dim £ + 1) = u(7) - 1. Since
dim R> vil) because 7 satisfies Gx, we obtain ht A = ht £ as we required.
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It now easily follows that ht 7 = « and consequently £' is a residual intersection
of Y'.

We are now able to give an alternate proof of Theorem 4.2(1), (3) and (4).
Suppose our notations and assumptions are as in the statement of this theorem. By
Proposition 4.3, £' is a residual intersection of F'. Since Y' is strongly Cohen-
Macauiay and satisfies Gx, by Theorem 3.1 we conclude T is Cohen-Macaulay.
Further (7, U) = 7(F') is not contained in the zero-divisors of 7(£') = 7. Therefore,
7: (£[/) = 7.

Let A = 7(£), A G £[£,,...,£„, U]. It is easily observed that A is generated by
the equations UT¡ — a,, plus all homogeneous polynomials £(£,,...,£„) with coeffi-
cients in £ such that £(a,,... ,a„) = 0. In particular, if deg F = d, then

(*) {I,U)dF{Tx,...,Tn)GiUTi-ai).

From (*) it follows that there exists an Af > 0 such that A = (((/£, - a,): (7, U)M).
However, in this case A = (7: (7, U)M~X) = 7. Hence £= £' is Cohen-Macaulay.
Since Spec(Sym(7/72)) = F(<7) in £' and Spec(e7"/7"+1) = F(f7) in £, we
obtain statements (3) and (4) of Theorem 4.2. As we observed, Valla [Va] has shown
that (3) implies statement (1). In general we do not know if statements (3) and (4)
also imply (2); however we do not know of any counterexample either.

Finally, note that the applications in §§3 and 4 of the paper of Artin and Nagata
[A-N] now are valid with the hypothesis of strongly Cohen-Macaulay. We do not list
these here, but refer the reader to the above paper.

5. A partial converse. Our purpose in this section is twofold. First we relate the
residual intersection properties of Theorem 3.1 to the theory of ¿-sequences and
approximation complexes, and secondly we use the latter theories to prove a
converse to Theorem 3.1. An important ingredient is the use of the duality of the
Koszul homology as we outlined in Proposition 2.7.

Suppose now that X = Spec( £ ), where £ is a Gorenstein local ring and assume
F Ç A' is a closed subscheme satisfying Gx. We will say F is residually Cohen-
Macaulay in X whenever a,,.. . ,a„ G 7(F) such that codim(a,,... ,an: IiY))^n,
then Z = Spec(£/(a,,... ,a„: 7(F))) is Cohen-Macaulay of codimension «,
F(a,,...,an) = Z U F, and Z D F is Cohen-Macaulay of codimension « + 1.

The main question of this section is the following: when is a residually Cohen-
Macaulay scheme strongly Cohen-Macaulay? We will prove

Theorem 5.1. Let X = Spec(£), where R is a Gorenstein local ring and suppose
Y G X is a closed subscheme satisfying Gx which is residually Cohen-Macaulay.
Assume c^Y) >■ i + 2 if i > codim F + 3. Then Y is strongly Cohen-Macaulay in X.

Our first step in proving Theorem 5.1 is to relate the condition of being residually
Cohen-Macaulay to the property of being generated by a d-sequence.

Definition [Hu-4]. Let x,,... ,x„ be elements of a ring £. x,,... ,x„ are said to be
a d-sequence if

(l)x, G(x,,...,x,,...,x„), and
(2) x, is not a zero-divisor on £/(x0,... ,x,_,: xk) for all / > 0, and all k 3= i.

(Here we set x0 = 0.)
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An ideal 7 is said to be related to the ¿/-sequence x,,... ,x„ if 7 is either of the form
7 = (x0,...,x,_,: x,) or 7 = (x0,. ..,x,_,: x,) + (x,,...,x„), where 1 < i < n. The
d-sequence is said to be a Cohen-Macaulay d-sequence (or a C-M d-sequence for
short) if £/7 is Cohen-Macaulay for every related ideal 7.

D-sequences were studied originally in [Hu-4] to study the properties of powers of
an ideal. It is known that if an ideal 7 is generated by a d-sequence, then
Sym(7) - (&nS,0I". Further, if 7 is generated by a Cohen-Macaulay d-sequence then
Sym(7) is Cohen-Macaulay. An equivalent definition of a d-sequence is the condi-
tion (1) + the condition (2'),

(x0,... ,x/_, : x,) n 7 = (x0,... ,x,_,)

for all 1 </<«(7 = (x,,...,x„)).
The following proposition is now apparent.

Proposition 5.2. Suppose X = Spec(£), where R is a Cohen-Macaulay local ring
and let Y G Xbea closed subscheme satisfying Gx which is residually Cohen-Macaulay.
Then 7(F) = 7 can be generated by a Cohen-Macaulay d-sequence.

Proof. Since F satisfies Gx, we may choose minimal generators a,,... ,an of 7(F)
in such a way that (a,,... ,as)P = IP for all prime ideals £ G F such that ht £ « s
(see Lemma 3.2). Then the assumption that F is residually Cohen-Macaulay forces
(a0,...,<!,_,: 7) n 7 = (a0,...,a,_,), and £/(a0,.. .,a,_,: 7) to be Cohen-
Macaulay. Further, a, is not a zero-divisor modulo (a0,...,a,_, : 7). Since

(a0,...,a,_,) G (a0,...,a,_,:7) G (a0,.. .,a,_,: a,),

it follows that (a0,...,a,_,: 7) = (a0,.. .,a,_,: a,). By definition, a,,...,a„ are a
Cohen-Macaulay d-sequence.

We need to make some remarks concerning d-sequences (see [Hu-4] for proofs).
Remark 5.3. If 0 < /' =s « — 1, and a,,... ,a„ form a d-sequence, then the image of

ai+x,.. .,a„ in £/((a0,... ,a,): 7) form a d-sequence (7 = (a,,... ,a„)).
Remark 5.4. Any d-sequence satisfies Gx. In fact, any d-sequence is analytically

independent. In particular, if a,,... ,a„ is a d-sequence in £, « *£ dim £.
Remark 5.5. If 7 = (a,,... ,a„) where a,,... ,a„ is a d-sequence and grade7 = k,

then ax,...,ak form an £-sequence.
D-sequences are intimately connected with the study of the <Dlt-complex of [S-V],

which played an essential role in the proofs in [S-V] of Theorem 4.2. Part of the
relation between d-sequences and the 91t-complex was studied in [Hu-2], but in the
works [HSV-1 and HSV-2], Herzog, Simis, and Vasconcelos brought to light the full
connection.

In fact d-sequences play a role for the <31L-complex similar to the role regular
sequences play for the Koszul complex. We recall the definition of the 'Sit-complex:
let x = x,,... ,x„ be a sequence of elements of £, and Lrs = Kr ®RSS be the double
complex with differentials 3, 3' where Kr = AT = rth exterior power of £, a free
module with basis ex,...,en, and 5S = Sym/£). The differentials 3 and 3' are
respectively obtained by viewing Lr s as either £(x; £) ® Sym(£), the Koszul maps
determining 3, or viewing the complex as the Koszul complex associated to the
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images of ex,...,en in Sym,(£). The two differentials commute, and the double
complex gives rise to a complex 91l=<31o(x;£) = {77. ®rS, 3'}, where 77.=
homology of the Koszul complex of x,,... ,x„, and where 5 = Sym(£).

One of the main results of [HSV-2] is the following theorem.

Theorem. Let (£, m) be a local ring with infinite residue class field, and let I be an
ideal. Then the following are equivalent:

(1)911(7; £) is acyclic,
(2) 7 is generated by a d-sequence.

We should remark that the homology of 911 is independent of the generating set of
7. Moreover, in [HSV-2] the same results are shown to hold if we replace £ by an
arbitrary finitely generated module Af. Herzog, Simis, and Vasconcelos go on to
relate the acyclicity of 911 with the property of having a linear resolution. We refer
the reader to [HSV-2] for details.

The key result in proving the converse of Theorem 3.1 is the next proposition
which was almost proved in [Hu-2, Theorem 2.1].

Proposition 5.6. Let R be a Cohen-Macaulay local ring and let x,,...,xn be a
Cohen-Macaulay d-sequence. Then,

depth 77,(x; £) > dim R- n + i

for all i, 1 « i *í n - k, k = ht 7.

Proof. We induct on «. Let 7 = (x,,... ,x„).
Case 1. grade 7 > 0. We show in this case that we may always reduce to a smaller

«. Set k = grade7 = ht 7. We are assuming k > 1. By Remark 5.5, x,,... ,xk form
an £-sequence. Let " —" denote the map from £ to R/Rxx. By Lemma 1.4(1), there
are exact sequences,

0 - 77,(7; £) - 77,(7; £ ) -> 77,_,(7; £) - 0

where the middle homology is taken with respect to 0, x2,...,x„. By (1.1), the
middle homology is isomorphic to

77,(x2,...,x„;£)©77,_,(x2,...,x„;£).

By induction on «, we may assume the depth of this module to be at least
dim £ — « + /— 1. We now induct on/ to show depth 77n_/7 : £) > dim £ — « +
(« — j). The first nonzero homology is when y = k, and in this case, 77„_/7; £) =
((x,,... ,xk): 7)/(X|,... ,xk). By assumption, £/((x,,... ,xk): 7)is Cohen-Macaulay,
clearly of depth £/7 = dim £ — k. It follows from the exact sequence

0-((x,,...,xJ:7)/(x„...,xJ-£/(x,,...,xJ->£/((x,,...,xJ:7)-0
that depth 77„_/7; £) > depth £ — k. However, £ is Cohen-Macaulay so that
depth £ = dim £. Thus our assertion is verified for/ = k.

Suppose/ > k. Consider the exact sequence

0 - 77„_,+ ,(7; £) - 77„_7+1(7; £ ) - 77„_/7; £) - 0.
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By our induction on «, depth 77 +1(7; £) > dim R — j + 1. By our induction
on j, depth 77„_y+,(7; £) > dim £ -/ + 1. It now follows depth 77„„/7; £) >
dim £ — j.

Case 2. grade 7 = 0. Let " —" denote the homomorphism from £ to £/(0 : 7). We
know (0 : 7 ) n 7 = (0). By Lemma 1.4(2) there are exact sequences

0 - © (0: 7) - 77,(7; R) - 77,(7, £ ) - 0.

Since we are assuming £/(0: 7) is Cohen-Macaulay (since (0:7) is a related
ideal), it follows that (0 : 7) is also Cohen-Macaulay. As (0 : 7) = (0 : x,) = (0 : x2),
grade 7 > 1, and we may apply Case 1 to conclude depth 77,(7, £) > dim £ — « + /.
Since depth(0 : 7 ) = depth £/7 = depth 7, it easily follows from the exact sequence
above that depth 77,(7; £) > dim £ — « + /. (Note that the images of x,,... ,x„
form a d-sequence in £/(0: 7) by Remark 5.3.)

Corollary 5.7. Let R be a Gorenstein local ring and let x,,..., x„ be a C-M
d-sequence. Set I = (x,,... ,xn), set Y = Spec(£/7). Suppose c¡iY) 3* i + 1 if i >
codim F + 2. Then 77,(x; £) are reflexive for all 0 < / < d(7).

Proof. First observe that the condition, "77,(x; £) is reflexive for all i, 0 < / <
d(7)" is independent of the generating set chosen. We need to prove 77,(x; £)P is
isomorphic to 77,(x; £)*,* if ht £/7 < 1, and further show depth(77,(x; R))P > 2 if
ht £/7 > 2. Suppose ht £/7 =£ 1. In this case since F satisfies Gx, d(7p) < ht 7 + 1.
As we may choose whatever generating set we want to show that 77,(x; R)P are
reflexive, we choose a minimal generating set of x' of IP. Then, 77,(x'; RP) = 0 for
/ S* 2 while 77,(x'; RP) = 0, or is the canonical module of £/7. It follows that
(77,(x; R))p is reflexive if ht £/7 =£ 1.

Assume ht £/7 ^ 2, and localize at £. We assume £ is local with maximal ideal £.
We need to show depth 77,(x; £) > 2 for all 1 =s / =£ d(7). We use Proposition 5.6.
If / > 2, then since

depth 77,(x; £) > dim £ - u(7) + /' > 2
there is nothing to show. If i = 1, it suffices to show dim£>u(7). If not,
vil) = dim £. Set « = vil), and consider cniY). Since dim £ s* dim £/7 + 2, our
assumption tells us that cn(Y)> n + 1. As « = dim£, this is a contradiction.
Therefore dim £ > vil), and depth 77,(x; £) > 2.

In particular, under the conditions of Corollary 5.7, there is a pairing,

77,(x; £) X 77, ,(x; £) - 77/x; £) = KR/1.

Here d = d(7) (see Proposition 2.7).
We will use this duality of the Koszul homology along with Proposition 5.6 to

prove under fairly weak conditions that the Koszul homology must be Cohen-
Macaulay.

The key to this attempt is the following lemma. Although it is essentially found in
[H-0 and FFGR, Corollary 2.6], it does not seem to be well known in the form below.
However it is extremely useful.
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Lemma 5.8. Let R be a local Cohen-Macaulay ring with canonical module KR. Let
" " denote Hom(—, KR). Suppose Mp is Cohen-Macaulay if ht p ^2 and assume

(*) depth Mp + depth(M")p > dim Rp + 2

for all prime ideals p of R of height at least three with Mp ¥" 0. Then M is a maximal
Cohen-Macaulay module.

The proof is a straightforward use of duality, but for completeness we give the
proof here.

Since Hom/Af, KR)p = Hom(Mp,(KR)p) = HomR(Mp, KR ), the assumptions
and statement of the lemma remain valid under localization. We may therefore
assume that Af is Cohen-Macaulay if p ¥= m, the maximal ideal of £. Further we
may assume dim £ > 3 and M ¥= 0.

Let £ be a free resolution of Af, and consider the complex F.. The cohomology of
£ is Ext'/Af, KR), which in turn is dual to 77^"'(Af), if d = dim £.

We wish to prove 77,/Af ) = 0 for i < d. Set k = depth Af. Then 77,/A7) = 0 for
i < k. We have assumed

depth Af"s*d + 2- k.
In addition Ext'/Af, KR) has finite length if i > 1, since Mp is Cohen-Macaulay if
p ¥= m (or M = 0). Consider the complex
(1) 0-A/v-£0% £,%•■■-£;- ■••.

We are in a position to apply the lemma of acychcity of Peskine and Szpiro [P-S-2].
As depth Af > d + 2 — k, and depth F, > d for all i, we may conclude the complex
(1) is exact up toj = d - k + 1, i.e. that Ext'(Af, KR) = 0 if 1 < / < d - k. In this
case, Hi/\M) = 0 for 1 < / < d - k, so that 77¿(Af ) = 0 for k <j < d. It follows
that Af is Cohen-Macaulay.

We observe that the well-known criterion of Hartshorne and Ogus follows at once
from this lemma.

Proposition [H-O]. Let R be a local ring, quotient of a Gorenstein ring and assume
R is factorial. If

depth Rp > {(dim Rp) + 1
for all p E Spec( £ ), then R is Cohen-Macaulay.

Proof. We may assume £ is a quotient of a Gorenstein local ring 5 with
dim 5 = dim £. By Lemma 5.8 if

(2) depth £^ + depth( KR )p > dim Rp + 2

for all p E Spec(£) of height at least 3, then £ is Cohen-Macaulay. Since £ is
factorial, it is well known that KR = R. Therefore (2) reads

(3) depÛiRp>\idimRp) + l.

Theorem 5.9. Let R be a Gorenstein local ring, and let x,,...,x„ be a Cohen-
Macaulay d-sequence. Set I — (x,,... ,xn), Y = Spec(£/7). Suppose c¡iY) > i + 2 if
i > codim F + 3. Then Y is strongly Cohen-Macaulay in X — Spec(£).
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Proof. We induct on dim £. We may assume that 77,(x; R)p is Cohen-Macaulay
if p =£ m, the maximal ideal of £. Furthermore we may assume dim £/7 > 3, since
if dim £/7 < 2, then Example 2.3 and Proposition 2.2 show that F will be strongly
Cohen-Macaulay. By Corollary 5.7, we may assume (with d = d(7))

77/x; £) = Hom(77d_,(x; £), 77/x; £)),

Hd_Xx; R) = Hom(77,(x; £), 77/x; £)).

By using Lemma 5.8, it is enough to prove

depth 77,(x; £) + depth 77d„,(x; £) > dim £/7 + 2
since Hd(x; R) = KR/I. However, applying Proposition 5.6 shows that

depth 77,(x; £) + depth Hd_¡(x; R)

> dim £ - v(l) + i + dim £ - v(I) + d- i
= 2dim£ - 2v(I) + d.

It remains to show

2dim £ - 2v(l) + (v(l) - ht 7) > dim £ - ht 7 + 2,

i.e. that dim £ > v(I) + 2. Set « = v(I). As we may assume d > 3, by assumption
cn(Y) > « + 2. In particular, dim £ > « -I- 2 which finishes the proof of the theo-
rem.

We may now prove (and restate)

Theorem 5.1 (Partial Converse to Theorem 3.1). Let X = Spec(£), where R is
a Gorenstein local ring and suppose Y G X is a closed subscheme satisfying Gx which is
residually Cohen-Macaulay. Assume c¡iY) > i + 2 // i > codim F 4- 3. Then Y is
strongly Cohen-Macaulay in X.

Proof. By Proposition 5.2, 7 = 7(F) can be generated by a Cohen-Macaulay d-
sequence. We now simply apply Theorem 5.9.

We close with an example to point out the Gorenstein condition on the base ring
is necessary.

Example 5.10. Let £ = k[ X¡j]/I2( X), where X = ( XtJ) is a 2 X 3 matrix. Denote
the image of X¡¡ in £ by xtJ, and let 7 = (x,,, x,2, x,3). It is easily observed that 7 is
generated by a Cohen-Macaulay d-sequence. Further, C2(£/7) = {m}, where m =
ix¡j). Thus,

c/£/7) = c/£/7) = 4,   c,(£/7) = oo    for i > 3.

In particular, c¡iY) > i + 2 if i > codim F + 3 = 4. Also £/7 satisfies Gx (as it
must since 7 is generated by a d-sequence). However, one can compute that
depth 77,(x,,, x,2, x,3; £) = 2.

Therefore 77,(x,,, x,2, x,3; £) is not Cohen-Macaulay. However, £ is not Goren-
stein. This example also shows that Example 2.3 cannot be improved by removing
the assumption that £ be Gorenstein. Notice u(7) = 3 = ht 7 + 2.
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