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Canonical transformation �CT� theory describes dynamic correlation in multireference systems with
large active spaces. Here we discuss CT theory’s intruder state problem and why our previous
approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We
propose the use of strongly and weakly contracted excitation operators as alternatives for dealing
with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2,
and NiO molecules, with comparisons made to complete active space second order perturbation
theory and Davidson-corrected multireference configuration interaction theory. Finally, using a
combination of strongly contracted CT theory and orbital-optimized density matrix renormalization
group theory, we evaluate the singlet-triplet gap of free base porphin using an active space
containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this
size is currently only possible using CT theory. © 2010 American Institute of Physics.
�doi:10.1063/1.3274822�

I. INTRODUCTION

Systems containing a large number of strongly correlated
electrons represent a particular challenge for current theoret-
ical methods in quantum chemistry. Historically, these sys-
tems have been modeled in a two step process. First the
static electron correlation, which involves interactions be-
tween nearly degenerate electronic configurations and is re-
sponsible for the qualitative shape of the wave function, is
established through an active space method, usually com-
plete active space self-consistent field �CASSCF� theory.1,2

Second, the dynamic correlation, which can often be viewed
as a small perturbation to the static correlation which is nec-
essary for chemical accuracy, is treated with a method such
as complete active space second order perturbation
�CASPT2� theory,3–5 multireference Moller–Plesset theory,6

n-electron valence perturbation �NEVPT2� theory,7–9 or a
corrected configuration interaction �CI� method such as
Davidson-corrected multireference configuration interaction
�MRCI+Q� theory.10–14 While these methods have been suc-
cessful in modeling systems with a small number of strongly
correlated electrons, their formulation in terms of the expo-
nentially numerous active space CI coefficients �for uncon-
tracted methods� or the three- and four-body reduced density
matrices �for contracted methods� prevents them from treat-
ing systems with more than 16 active orbitals. This limitation
has until recently been of marginal concern, as the CASSCF
method upon which these theories rely is itself limited to 16
active orbitals. However, with the development of methods
such as density matrix renormalization group �DMRG�
theory,15–21 restricted active space �RAS� theory,22,23 and
generalized valence bond theories,24,25 it has become pos-
sible to model static correlation in systems containing more
than 16 active orbitals.

In light of these developments, it becomes necessary to
re-examine the treatment of dynamic correlation so that it too
can be modeled in systems with large active spaces. One
recent approach is RASPT2 theory, which has been used to
model dynamic correlation in restricted active spaces of up
to 32 orbitals.26 By restricting the occupations of the high-
and low-energy orbitals in the active space, the RASPT2
method greatly reduces the number of electronic configura-
tions used to treat static correlation. While this restriction
improves efficiency and marks a significant advance relative
to CASPT2 theory, it also produces a number of difficulties
�such as a loss of size extensivity� that are not present when
using a complete active space. Another recent development
is cumulant-approximated n-electron valence perturbation
theory �cu-NEVPT2�,27 which can be applied to large active
spaces but suffers from poor accuracy. This paper deals with
a third approach, canonical transformation theory, which can
be applied to complete active spaces of more than 30 orbit-
als.

Canonical transformation �CT� theory28–31 is a rigor-
ously size-extensive method for treating dynamic correlation
in multireference systems. The theory is based on a unitary
exponential ansatz similar to that of unitary coupled cluster
�CC� theory32–38 and some multireference CC theories.39–42

By employing operator29,31,43,44 and cumulant29,31,45–47 de-
compositions, CT theory produces a two-body effective
Hamiltonian through an approximate Baker–Campbell–
Hausdorff expansion. Unlike traditional multireference dy-
namic correlation methods, CT theory can be applied effi-
ciently in conjunction with complicated wave functions such
as those from DMRG theory because the only wave function
information it requires are the one- and two-body reduced
density matrices �RDMs� in the active space. Furthermore,
CT theory has a lower cost scaling �n6� than either CASPT2
theory �n8� or MRCI+Q theory �n10� when the number of
strongly correlated electrons is assumed to be proportional toa�Electronic mail: eric.neuscamman@gmail.com.
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the total number of electrons. Previous studies28,29,31 on H2O,
N2, and FeO have shown CT theory to be more accurate than
CASPT2 and competitive in accuracy with MRCI+Q.

CT theory is not without difficulties, however, the most
prominent of which are intruder states. Previous work has
demonstrated that as written, the CT equations are often too
poorly conditioned to be solved numerically. A new type of
intruder state, which arises from the cumulant and operator
decomposition approximations, is the source of this diffi-
culty. These decomposition intruder states differ from the
traditional intruder states of CASPT2 theory, which are
caused by inadequate zeroth order Hamiltonians.48 They are
also distinct from the problem of redundant states, in which a
multireference dynamic correlation theory may have a lin-
early degenerate first order interacting basis. While these
three types of problematic states have different origins, the
numeric problem that they lead to is the same; they each
produce unphysically small eigenvalues in the system’s Jaco-
bian matrix. Previously, the problem of intruder states in CT
theory was addressed by the overlap truncation
method,28,29,31 which is an aggressive truncation of the first
order interacting basis. While this approach has been suc-
cessful in small systems, it relies on two components that
become intractable in large systems. The first is the nact

9

�nact=number of active orbitals� cost of orthogonalizing the
first order interacting basis. The second is the arbitrary
choice of a truncation threshold, which in difficult systems
such as NiO can influence the CT energy.

In this work we propose the use of strongly contracted
excitation operators, first introduced by Malrieu in the con-
text of NEVPT2 theory,7,8 and the closely related weakly
contracted excitation operators as alternatives to the overlap
truncation method. These operators intelligently restrict the
first order interacting basis in a way that helps to avoid in-
truder states while retaining the excitations most important
for capturing dynamic correlation. While these operators do
not necessarily avoid all intruder states �as seen in our small
molecule results�, the simplicity they bring to the first order
interacting basis allows any intruders that remain to be effi-
ciently detected and removed. In the large active spaces ex-
plored in this paper, those of NiO and free base porphin, the
strongly contracted operators are so effective at avoiding in-
truder states that this subsequent removal becomes unneces-
sary and the potential energy surfaces are smooth. In smaller
molecules, removal of the remaining intruder states creates
discontinuities in the potential energy surface. Although
these discontinuities are likely to lead to difficulties in the
evaluation of gradients, they are small enough that they do
not affect the accuracy of energy differences. Finally and
most critically for their application to large active spaces, the
strongly contracted operators accomplish the above tasks
without the expensive orthogonalization step present in the
overlap truncation method, and thus produce a method with
an n6 cost scaling regardless of how large the active space is.

We begin by describing the nature of intruder states in
CT theory �Sec. II A�, followed by the three methods for
dealing with them: overlap truncation �Sec. II B�, strong con-
traction �Sec. II C�, and weak contraction �Sec. II D�. These
methods are then applied to three benchmark systems to as-

sess their capabilities: H2O �Sec. III A�, N2 �Sec. III B�, and
NiO �Sec. III C�. Finally, as a demonstration of CT theory’s
ability to model large numbers of strongly correlated elec-
trons, we apply a combination of orbital-optimized DMRG
�DMRG-SCF� theory18,19 and CT theory with strongly con-
tracted operators to calculate the singlet-triplet gap in free
base porphin using a complete active space of 24 orbitals
�Sec. III D�. A more detailed discussion of the combination
of DMRG-SCF and CT is given elsewhere.49

II. THEORY

A. Intruder states in CT theory

We begin our theoretical discussion by describing the
difficulties encountered when solving the CT amplitude
equations and comparing them to intruder states in second
order perturbation �PT2� theory. In CT theory, we attempt to

find an approximate effective Hamiltonian H̄ for which the
reference wave function ��0� is an eigenstate,

H̄ = e−AHeA = H + �H,A�1,2 +
1

2!
��H,A�1,2,A�1,2 + . . . ,

�1�

H̄��0� = E��0� . �2�

Here the notation �H ,A�1,2 indicates that we have approxi-
mated the three-body operators resulting from the commuta-
tor using a combination of one- and two-body operators. This
approximation is defined by neglecting the spin free three-
body cumulant and spin free three-body extended-normal-
ordered �ENO� operator from Eq. 65c of Ref. 43. The three-
body cumulant and ENO operator can be interpreted as
irreducible three-body fluctuations from one- and two-body
behavior that CT theory neglects. The explicit form for the
approximation of three-body spin free operators is given in
the supplemental information.50 The operator A that defines

H̄ consists of a sum of antisymmetric excitation operators ôi,

A = − A† = �
i

Ciôi, �3�

which for example could include one- and two-body opera-
tors such as �Ea1

v1 −Ev1

a1� and �Ea1a2

v1v2 −Ev1v2

a1a2�. For now we will
not define the exact structure of the excitation operators ôi

except to say that they consist of one- and two-body opera-
tors that when applied to the reference wave function create
at least one hole in the core �doubly occupied� space or one
particle in the virtual �unoccupied� space. Note that the ef-

fective Hamiltonian H̄ depends on the coefficients Ci, which
can be found by solving the nonlinear projected amplitude
equations,

Ri = ��0��H̄, ôi�1,2��0� = 0, �4�

using the iterative Newton–Raphson method. This approach
requires solving the linear equation
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�
j

JijXj = − Ri, �5�

where Xj are the corrections to the current coefficients Cj and
J is the CT Jacobian matrix,

Jij =
�Ri

�Cj
= ��0���H̄, ôj�1,2, ôi�1,2��0� + O�A� . �6�

For the typical initial guess Ci=0, the Newton–Raphson
equation becomes

�
j

JijXj = �
j

��0���H, ôj�1,2, ôi�1,2��0�Xj

= − ��0��H, ôi�1,2��0� , �7�

where the effective Hamiltonian H̄ has simplified to the
original H. A connection to perturbation theory is now ap-
parent, for if we replace the Hamiltonian on the left side of
Eq. �7� with a zeroth order Hamiltonian satisfying H0��0�
=E0��0� and remove the decomposition approximations, we
obtain the defining equation for PT2 theory,

�
j

�J0�ijXj = �
j

��0�ôi
†�H0 − E0�ôj��0�Xj

= − ��0�ôi
†H��0� . �8�

Here the coefficients Xj are the weights of the first order
interacting states ôj��0� in the first order wave function of
PT2 theory. Ignoring operator decomposition, we see that the
first iteration of the Newton–Raphson method in CT theory
differs from PT2 theory by only the Hamiltonian used to
define the Jacobian matrix. In this way the relationship be-
tween Eqs. �7� and �8� resembles the relationship between
the amplitude equations of linearized CC theory and second
order Moller–Plesset theory.

In both CT and PT2 theory, we can identify intruder
states as those with large values of Xi, which result from
unphysically small eigenvalues in J and J0. It is important to
differentiate intruder states from redundancies that may oc-
cur in the first order interacting basis ôi��0�, which for a
multiconfigurational reference function is not necessarily lin-
early independent. Such redundancies create small Jacobian
eigenvalues in both CT theory and PT2 theory. These redun-
dant states aside, both PT2 theory and CT theory suffer from
true intruder states, which create small Jacobian eigenvalues
due to the methods’ approximations and have nothing to do
with an overcompleteness of the basis. To see the source of
intruders in PT2 theory, recognize that in Eq. �8� the Jaco-
bian eigenvalues are excitation energies of the zeroth order
Hamiltonian corresponding to transitions from ��0� to states
in the first order interacting basis. Thus “traditional” intruder
states are associated with a zeroth order Hamiltonian H0 that
incorrectly predicts near-degeneracy between the reference
state and states in the first order interacting basis. In CT
theory, the Jacobian is defined using the exact Hamiltonian,
and so intruder states must instead be caused by the decom-
position approximations present in Eq. �6�. �Strictly speak-

ing, the Jacobian is defined using H̄, but for the initial guess
Ci=0 this reduces to the exact electronic Hamiltonian H.� We
identify these states as “decomposition” intruder states, and

note that their origin is different from the “traditional” in-
truders found in PT2 theory. A particularly troublesome qual-
ity of these new intruder states is that they cannot be re-
moved by expanding the active space, as doing so does not
make the decomposition approximations any more accurate.
As shown by the investigation of Zgid et al. of cu-NEVPT2
theory,27 the decomposition intruder states are not unique to
CT theory. Indeed, the use of cumulant-approximations in
cu-NEVPT2 led to intruder state problems that were every
bit as severe as those encountered in CT theory.

In order for CT theory to be tractable, these decomposi-
tion intruder states must be avoided. The following three
sections discuss how we attempt to do so using special defi-
nitions for the excitation operators ôi. These definitions seek
to restrict the first order interacting basis in such a way as to
avoid intruder states while retaining sufficient freedom to
accurately describe the system’s dynamic correlation. The
degree to which this balance can be achieved is difficult to
predict in advance and can only be satisfactorily determined
through applications of these operator definitions to real sys-
tems. Such applications will be presented in Sec. III, in
which we will analyze the definitions’ results in three bench-
mark systems.

B. Overlap matrix truncation

In previous presentations of CT theory, the problem of
small Jacobian eigenvalues �intruder states and redundant
states� was circumvented by defining operators ôi that were
orthonormalized and truncated with respect to the first order
interacting basis ôi��0�. For an arbitrary choice of excitation
operators p̂i, the basis p̂i��0� is not orthonormal and there is
a dense overlap matrix Sij = ��0�p̂i

†p̂j��0�. In this case, the
eigenvalues of J are defined by the generalized eigenvalue
equation,

�
j

JijBjk = �k�
l

SilBlk, �9�

where B is the matrix of Jacobian eigenvectors and �k is the
kth eigenvalue. If we instead work in the orthonormal basis
ôi=� j�S−1/2�ijp̂j��0�, we obtain a simple eigenvalue equation

in terms of the orthonormalized matrices J̃=S−1/2JS−1/2 and

B̃=S1/2B,

�
j

J̃ijB̃jk = �kB̃ik. �10�

Assuming that the Jacobian is similar to that of PT2 theory
as discussed in Sec. II A, the eigenvalues �k should be no
smaller than the energy cost to excite from the reference state
to the lowest lying state in the first order interacting basis.
This condition requires that the small eigenvalues present in
S and J cancel in the product S−1/2JS−1/2. Error in either of
these matrices can prevent this cancellation and produce un-
physically small values of �k. In CT theory, operator decom-
position essentially guarantees that such errors will be
present. We therefore define our excitation operators as ôi

=� j�S−1/2�ijp̂j��0�, where S has been truncated by removing
its eigenvalues below some threshold �. This choice avoids
the miscancellation of small eigenvalues and produces an
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orthonormal Jacobian without intruder states or redundant
states. In practice, two different thresholds are used: �1 for
the overlap matrices of single and semi-internal excitation
operators and �2 for the overlap matrices of double excitation
operators. �Semi-internal excitations are double excitations
in which one electron is excited from one active orbital to
another while the other electron is excited into a virtual or-
bital and/or out of a core orbital.�

Although the overlap truncation method has proven suc-
cessful in systems such as N2, H2O, and FeO,29 it possesses
significant disadvantages. One problem is that the choice of �
is arbitrary, and indeed for some systems the choice is not
obvious �see Sec. III C�. A second problem is that the set of
excitation operators ôi may change discontinuously with sys-
tem geometry as overlap eigenvalues pass above or below
the truncation threshold, which can produce discontinuous
potential energy surfaces �see Sec. III�. Finally, with regard
to large active spaces, there is the challenge of computing
and diagonalizing the three-body RDM. While the cumulant
decomposition can be used to avoid computing the true
three-body RDM, this produces errors in S which make it
more difficult to select good values for �1 and �2. With or
without the exact three-body RDM, diagonalizing the semi-
internal overlap matrices has an nact

9 cost scaling. For small
active spaces this diagonalization is trivial, but for the large
active spaces common to DMRG wave functions it becomes
unaffordable. In an attempt to address these difficulties, we
turn to strongly contracted excitation operators.

C. Strong contraction

Strongly contracted excitation operators7,8 are a compact
yet powerful organization of a multireference system’s exci-
tation degrees of freedom. The basic idea is to group together
all excitation operators sharing the same external �nonactive�
indices into a single excitation operator, in which each indi-
vidual excitation is given some weight. Formally, they are
defined by projecting the Hamiltonian onto subspaces corre-
sponding to different sets of external orbitals. The number
and type �core or virtual� of external orbitals determine the
type of excitation, while the specific orbitals chosen identify
the unique strongly contracted operator. For example, the
external orbital set �v1 ,v2� defines a strongly contracted
double excitation operator that promotes two electrons from
the active space to occupy the virtual orbitals v1 and v2. The
explicit form of this operator in CT theory is

ôv1v2 = �
a1a2

ga1a2

v1v2�Ea1a2

v1v2 − Ev1v2

a1a2� , �11�

an antisymmetrized projection of the Hamiltonian onto a
space of operators that promote from active orbitals into v1

and v2. Here g is the tensor of two-electron integrals appear-
ing in the Hamiltonian,

H = �
p1q1

tq1

p1Eq1

p1 +
1

2 �
p2p3

q2q3

gq2q3

p2p3Eq2q3

p2p3, �12�

and E is a spin-free excitation operator,

Eq1

p1 = �
�=�

�

ap1�
† aq1�, �13�

Eq1q2

p1p2 = �
�,�=�

�

ap1�
† ap2�

† aq2�aq1�. �14�

In this paper we use the indices c, a, and v to represent core
�doubly occupied�, active, and virtual �unoccupied� orbitals,
respectively, while p and q represent general orbitals. For
single and double excitations, there are a total of eight types
of strongly contracted operators, the precise definitions of
which are given in the Appendix.

As seen in Eq. �11�, strongly contracted operators com-
bine many excitations out of �or into� the active space with
regard to a certain set of external orbitals. This grouping of
excitations would be exactly justified if the energies of states
in the first order interacting basis depended only on their
external indices, which is approximately true if the energy
gaps between the core, active, and virtual spaces are large
relative to the energy spread within the active space. We
therefore expect strongly contracted operators to be most ef-
fective in systems for which such an active space can be
chosen, such as the �-orbital active spaces commonly used
in polyenes. For ground state calculations, the use of strongly
contracted operators can also be justified by considering a
Krylov expansion of the reference wave function,
	H��0� ,H2��0� ,H3��0� , . . .
. This expansion is commonly
used as a basis in which to solve the eigenvalue problem
H���=E��� for the extremal eigenvalue because each vector
in the series is increasingly similar to the desired eigenvec-
tor. It is this preference toward the ground state that makes
strong contraction effective. If we were to formulate a theory
in which only a single excitation operator was used, then by
a Krylov argument H itself would be an excellent choice.
Strong contraction restores some flexibility by separating the
components of H in each external subspace. Certainly this
description is more limited than if we did not group excita-
tion operators together, and we will show in our results that
CT theory’s accuracy can suffer as a result. As discussed
earlier, however, intruder states prevent the use of the com-
plete set of single and double excitations. From this perspec-
tive, strong contraction can be viewed as a practical formu-
lation of CT theory that seeks to restrict the first order
interacting basis in a way that avoids intruder states but re-
tains the excitations important for describing dynamic corre-
lation.

An important property of strongly contracted operators
is that they are orthogonal by construction, as each operator
corresponds to a different set of external orbitals �e.g.,
��0�ôc1

† ôc2
��0�=0 if c1�c2.� This property has two key con-

sequences. First, no redundant states will be present in the
strongly contracted first order interacting basis. Second, no
diagonalization of the basis’ overlap matrix is necessary, re-
moving what for large active spaces is the most expensive
step in the overlap truncation method. We must still evaluate
the operators’ norms, which formally require the three-body
RDM for the semi-internal operators ôv1 and ôc1

. However,
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we have found that the cumulant approximation produces
sufficiently accurate norms in most cases. These approximate
operator norms,

�ôi�2 � ��0�ôi
†ôi��0�1,2, �15�

can be evaluated in n6 time using only the one- and two-body
RDMs because the three-body spin free cumulant has been
neglected �as indicated by the 1,2 subscript�.

In some systems, particularly NiO and free base porphin,
we have observed that the use of strongly contracted excita-
tion operators produces a first order interacting basis free of
intruder states. This likely arises due to both the orthogonal-
ity of the strongly contracted operators and the fact that they
severely restrict the basis’ freedom, making it more difficult
to form a linear combination of excited states with intruder
character. However, in some systems, particularly those with
smaller active spaces in which strong contraction is a less
drastic constraint on the basis’ freedom, the use of strongly
contracted operators does not by itself remove all intruder
states. To detect and remove from the basis any remaining
intruders, we recall that intruder states are eigenstates of the
Jacobian with unphysically small eigenvalues. Thus if we
knew the eigenvalues, we could identify and remove the in-
truders directly. Unfortunately, evaluating these eigenvalues
exactly is too expensive, so we instead approximate them by
replacing the Hamiltonian present in the Jacobian’s definition
with Dyall’s zeroth order Hamiltonian,51

H0 = C + �
c1

t̄c1

c1Ec1

c1 + �
v1

t̄v1

v1Ev1

v1 + �
a1a2

t̄a2

a1Ea2

a1

+
1

2 �
a1a2

a3a4

ga3a4

a1a2Ea3a4

a1a2, �16�

in which C is a constant, t̄ is a set of effective one-body
integrals, and g is the usual two-body integral tensor. Note
that C and t̄ are defined such that H0��0�=E0��0�. The rea-
son we choose this form for H0 is that it makes the Jacobian
matrix diagonal in the strongly contracted operators, as H0

cannot connect operators with different sets of external or-
bital indices. This simplification gives us a set of approxi-
mate Jacobian eigenvalues �i that may be evaluated in n6

time,

�i =
1

�ôi�2 ��0���H0, ôi�1,2, ôi�1,2��0� . �17�

Note that Dyall’s zeroth order Hamiltonian is also used in
NEVPT2 theory, and that our approximate Jacobian eigen-
values can be seen as operator-decomposed approximations
of the NEVPT2 denominators.

As discussed in Sec. II A, the eigenvalues �i should be at
least as large as the Dyall Hamiltonian’s lowest excitation
energy between the reference function and the first order
interacting basis. Thus for an active space large enough to
prevent traditional intruder states �which could arise from the
use of H0�, we can use Eq. �17� to measure how severe the
decomposition error is for a given strongly contracted opera-
tor. If an approximate eigenvalue �i is unphysically small, the
decomposition error for the corresponding operator ôi is

large and a decomposition intruder state may occur. We
therefore remove from our excitation operator basis all op-
erators ôi for which �i is below some threshold ��. Unlike the
truncation thresholds employed in the overlap truncation
method, �� is not arbitrary but rather is chosen to be a rea-
sonable value for the excitation energy between the reference
function and the lowest state in the first order interacting
basis. It is important at this point to note that because we
formulate the semi-internal operator norms approximately, it
is possible that for some operators �ôi�2 will be negative.
These operators are also excluded from our excitation basis,
as they are clearly affected adversely by the cumulant ap-
proximation. Together, Eqs. �15� and �17� are used to remove
any remaining intruder states from the strongly contracted
first order interacting basis. The explicit tensor contractions
required by these equations for the various types of strongly
contracted operators have been derived automatically31 and
are included in the supplemental material.50 To summarize,
the strongly contracted operator basis is constructed via the
following steps:

�1� construct strongly contracted operators using Eqs.
�A1�–�A8�,

�2� remove operators with negative approximate norms,
Eq. �15�, and

�3� remove operators with approximate Jacobian eigenval-
ues below ��, Eq. �17�.

In conclusion, strongly contracted CT theory �SC-
CTSD� requires only the one- and two-body RDMs of the
reference wave function, can be evaluated in n6 time, and
should have no intruder states when a sufficiently large ac-
tive space is used.

D. Weak contraction

There exists a simple extension of strong contraction in
the semi-internal subspaces �containing double excitations
with one active-to-active excitation and one external excita-
tion� which we term weak contraction �WC-CTSD�. Rather
than summing over all the active indices in these subspaces,
we can fix one index, creating the following weakly con-
tracted excitation operators,

ôa1

v1 = 
ta1

v1 + �
c2

�2ga1c2

v1c2 − ga1c2

c2v1���Ea1

v1 − Ev1

a1�

+ �
a2a3

ga1a2

v1a3�Ea1a2

v1a3 − Ev1a3

a1a2� , �18�

ôc1

a1 = 
tc1

a1 + �
c2

�2gc1c2

a1c2 − gc1c2

c2a1���Ec1

a1 − Ea1

c1�

+ �
a2a3

gc1a3

a1a2�Ec1a3

a1a2 − Ea1a2

c1a3� . �19�

An important property of this partitioning of the Hamilto-
nian’s operators is that each bare excitation operator �e.g.,
Ec1

a1 or Ec1a3

a1a2� appears exactly once among the weakly con-
tracted excitation operators. This ensures that all of the
Hamiltonian’s semi-internal excitations are included while
preventing explicit redundancies between the components of
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the different weakly contracted excitation operators. These
operators are related to their strongly contracted counterparts
by the fact that Eqs. �A7� and �A8� can be recovered by
summing over the a1 index in Eqs. �18� and �19�. Thus we
recognize that weakly contracted operators are simply a fur-
ther partitioning of the Hamiltonian to increase flexibility in
the semi-internal subspaces.

The same general procedures for avoiding intruder states
in strong contraction are followed when using weakly con-
tracted excitation operators, except that the overlap and ap-
proximate Jacobian matrices of Eqs. �20� and �21� are now
block diagonal with respect to the virtual or core index, with
block dimension equal to the number of active orbitals,

Sa1a2

v1 � ��0��ôa1

v1�†ôa2

v1��0�1,2, �20�

Ja1a2

v1 = ��0���H0, ôa2

v1�1,2, ôa1

v1�1,2��0� . �21�

Building and diagonalizing these matrices has a cost that is
at most n7. We do not expect this step to be the bottleneck in
CT theory, however, as it is performed once while the n6 cost
commutator and residual evaluations must be performed re-
peatedly during the iterative solution of the amplitude equa-
tions. The explicit tensor contractions required to build these
matrices have been derived automatically31 and are available
in the supplemental information.50 Note that when using
weak contraction we only apply it to the core-to-active and
active-to-virtual semi-internal subspaces. The other six sub-
spaces are treated with strong contraction.

III. RESULTS

Here we present results for H2O, N2, NiO, and free base
porphin. For CASSCF, CASPT2, complete active space third
order perturbation theory �CASPT3� and MRCI+Q calcula-
tions we have used the MOLPRO program package.52 Before
getting into the details of the results, it is important to ex-
plain the origin and consequences of discontinuities in the
potential energy surfaces produced by CT theory. Unlike
CASPT2 and other perturbation theories, which use a level
shift to remove intruder states, the decomposition intruder
states in CT theory are removed by ejecting states with ei-
genvalues below some threshold from the first order interac-
tion basis. In the case of overlap truncation �CTSD�, this
ejection is based on the eigenvalues of the basis’ overlap
matrix, while in strong contraction �SC-CTSD� and weak
contraction �WC-CTSD� it is based on the eigenvalues of the
approximate Jacobian matrix. In either case, smoothly vary-
ing the geometry of a molecule may cause an eigenvalue to
cross the truncation threshold, which produces a discontinu-
ous change in the first order interacting basis and thus the CT
energy. The size of this energy discontinuity is controlled by
the importance of the state in question in describing the sys-
tem’s dynamic correlation. As we shall see, the size of these
discontinuities is small for SC-CTSD when compared to the
energy scale of the potential energy surface �see Figs. 2 and
4� and will therefore not affect properties based on energy
differences, such as dissociation energies, reaction barriers,
and vibrational frequencies. Nonetheless, any discontinuity
can cause difficulties when performing a geometry optimiza-

tion, especially when numeric derivatives are employed. Sig-
nificantly, in the larger active spaces of NiO and free base
porphin, the strongly contracted operator basis is restrictive
enough that intruder states are avoided entirely without the
need for any thresholds or basis set truncation. Thus in these
systems, SC-CTSD produces completely smooth potential
energy surfaces. The WC-CTSD method �and CTSD in the
case of NiO� has more difficulty with intruder states and is
therefore less capable of producing smooth potential energy
surfaces.

A. Water

We have computed the energy curve for the symmetric
stretch of H2O in the Dunning cc-pVDZ basis set53 with
spherical d orbitals. The active space consists of five orbitals:
the oxygen 2p orbitals and the hydrogen 1s orbitals. All or-
bitals were correlated. The results are shown in Figs. 1 and 2
and Table I, in which MRCI+Q is used as a benchmark.

The CTSD method shows a relative error of 1.5 mEh

when the semi-internal overlap matrix Sint is evaluated ex-
actly using the three-body RDM. �Note that other than for
the truncation of Sint, all other terms in CTSD use only the
one- and two-body RDMs. This is the standard CTSD
method with overlap truncation introduced in Ref. 29 and
identified as LCTSD in Ref. 31.� However, when Sint is ap-
proximated with the cumulant decomposition, CTSD has a
significantly larger relative error of 5.0 mEh. The accuracy
suffers because the truncation thresholds �1 and �2 must be
increased to prevent the cumulant decomposition approxima-
tions in Sint from creating intruder states. This more aggres-
sive truncation results in a more limited first order interacting
basis which reduces accuracy. The SC-CTSD and WC-CTSD
methods, which do not require the three-body RDM, show
relative errors of 4.9 and 3.5 mEh, respectively. All of the
CT methods are more accurate than CASPT2, whose relative
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FIG. 1. Ground state energy errors relative to MRCI+Q for the symmetric
stretch of H2O in the cc-pVDZ basis set. Req=0.9929 Å. Bond angle
=109.57°. CTSD employed truncation thresholds of ��1=0.2, �2=0.1� and
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overlap matrices, respectively. Both SC-CTSD and WC-CTSD used an en-
ergy threshold of ��=0.1 Eh.
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error is 5.1 mEh. The discontinuity problem discussed above
is more severe for SC-CTSD and WC-CTSD than for CTSD,
although this is a somewhat unfair comparison as the latter
uses the exact three-body RDM to evaluate its overlap ma-
trix. Indeed, the SC-CTSD and WC-CTSD discontinuities
are less severe than those that occur in CTSD when the
cumulant-approximated overlap matrix is used. Fortunately,
as shown in Fig. 2, the discontinuities present in SC-CTSD
are small enough that they do not affect the shape of the
potential energy curve.

B. Nitrogen

We have computed the energy curve for the bond break-
ing of N2 in the cc-pVDZ basis set with spherical d orbitals.
The results, shown in Figs. 3 and 4 and Table II, are based on
a 6-orbital active space consisting of the 2p orbitals. All or-
bitals were correlated.

The standard CTSD method with exact overlap was
again the closest to MRCI+Q, with a relative error of
1.4 mEh. Also as in H2O, CTSD is less accurate when Sint is
approximated via the cumulant decomposition, showing a
relative error of 7.2 mEh. In the SC-CTSD method, the 2s�

→3s� excitation operator caused an intruder state at a bond
distance of 1.3 Å that was not detected using the approxi-
mate Jacobian eigenvalues. After manually disabling this op-
erator at all geometries, SC-CTSD produces a potential en-
ergy curve with a relative error of 3.9 mEh. This result
shows that SC-CTSD can be more accurate than CTSD when
the exact three-body RDM is not available. WC-CTSD, on
the other hand, encounters multiple intruder states that are
not easily removed and consequently has an accuracy infe-
rior to SC-CTSD, with a relative error of 8.0 mEh. All of the

TABLE I. Results for H2O in the cc-pVDZ basis. MRCI+Q is reported in Eh, with other methods reported as the difference from MRCI+Q in mEh. All
methods use a �6e,5o� active space. All orbitals were correlated. The H–O–H bond angle was fixed at 109.57°.

R /Req
a MRCI+Q CASSCF CASPT2 CASPT3 CTSDb CTSDc SC-CTSDd WC-CTSDd

1.0 �76.241 466 165.601 13.674 4.321 0.866 0.034 4.326 4.110
1.2 �76.182 723 161.881 13.487 5.038 1.638 0.145 5.505 5.558
1.4 �76.101 419 155.832 12.442 5.336 1.900 �0.187 8.753 7.309
1.6 �76.031 316 148.035 10.874 5.278 3.741 �0.541 8.937 7.236
1.8 �75.980 391 140.359 9.514 4.945 2.477 �0.620 7.796 6.831
2.0 �75.947 828 134.194 8.774 4.350 2.402 �0.643 6.150 5.840
2.2 �75.929 506 130.039 8.606 3.646 �0.633 �0.549 4.475 5.216
2.4 �75.920 239 127.638 8.697 3.071 �0.869 �0.824 4.165 5.074
2.6 �75.915 748 126.371 8.820 2.705 �1.007 �1.064 5.641 5.483
2.8 �75.913 526 125.713 8.908 2.499 �1.065 �1.102 6.185 5.454
3.0 �75.912 381 125.364 8.959 2.387 �1.088 �1.109 6.960 No convergence

Relative error 40.237 5.068 2.956 4.988 1.458 4.855 3.548

aReq=0.9929 Å.
b�1=0.2, �2=0.1, approximate Sint.
c�1=0.1, �2=0.01, exact Sint.
d��=0.1 Eh.
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CT methods are more accurate than CASPT2, whose relative
error is 8.7 mEh. As for H2O, the discontinuity problem was
more severe for SC-CTSD than for CTSD with exact over-
lap, but the discontinuities were small enough that the shape
of the potential energy curve was unaffected, as shown in
Fig. 4.

If the 2s orbitals are added to the active space for the
CASPT2 calculation, the relative error improves to 5.3 mEh,
which is still larger than the error of SC-CTSD using six
active orbitals. Curiously, the relative error of SC-CTSD gets
worse �7.9 mEh� when the 2s orbitals are included in the
active space. This unusual behavior can be explained by the
structure of the strongly contracted excitations. When the 2s
orbitals are in the core, they have individual excitations into
each virtual orbital. When they are included in the active
space, however, their excitations to the virtuals are strongly
contracted with those of the 2p orbitals, reducing the degrees
of freedom available for treating excitations from the 2s to 3s
and 3p orbitals.

C. Nickel oxide

The potential energy curve of NiO was computed near
the equilibrium geometry using various methods. All calcu-
lations employed an ANO basis set54,55 using spherical d and
f orbitals, with �4s,4p,2d� and �6s,5p,4d,2f� contractions for
O and Ni, respectively. All orbitals were optimized during
CASSCF calculations. For dynamic correlation calculations,
the Ni 1s, 2s, and 2p and the O 1s orbitals were not corre-
lated. An active space of 12 orbitals �Ni 4s,3d,4p and O 2p�
was employed unless stated otherwise. It is critical to include
the Ni 4p orbitals in the active space, as demonstrated by the
improvement in the CASPT2 energy shown in Fig. 5 and
Table III. In this analysis we use MRCI+Q as our bench-
mark method, although we note that in NiO there are a suf-
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FIG. 4. Ground state potential energy curves for N2 in the cc-pVDZ basis
set. SC-CTSD used an energy threshold of ��=0.1 Eh.

TABLE II. Results for N2 in the cc-pVDZ basis. MRCI+Q is reported in Eh, with other methods reported as the
difference from MRCI+Q in mEh. All methods use a �6e,6o� active space. All orbitals were correlated.

Ra MRCI+Q CASSCF CASPT2 CASPT3 CTSDb CTSDc SC-CTSDd WC-CTSDd

1.0 �109.233 082 188.680 22.082 6.943 2.474 0.558 6.476 5.631
1.2 �109.269 517 194.453 23.372 8.037 3.127 0.609 6.691 5.116
1.4 �109.179 349 199.244 23.278 8.780 6.414 1.004 6.679 7.834
1.6 �109.085 632 202.348 21.104 9.092 6.779 1.133 5.610 11.096
1.8 �109.020 859 201.686 17.460 8.932 3.419 1.839 5.280 3.524
2.0 �108.986 923 197.262 15.220 7.762 0.997 0.979 6.821 5.423
2.2 �108.972 848 192.612 14.880 6.203 1.175 0.440 7.919 7.581
2.4 �108.967 470 189.554 15.186 5.033 1.156 0.543 8.982 8.963
2.6 �108.965 211 187.813 15.500 4.325 1.109 0.716 9.151 9.926
2.8 �108.964 093 186.826 15.704 3.925 1.090 0.855 9.178 10.349
3.0 �108.963 464 186.249 15.822 3.700 1.083 0.951 9.206 9.855

Relative error 16.367 8.688 5.411 7.181 1.400 3.927 7.977

aRadius in angstroms.
b�1=0.3, �2=0.1, approximate Sint.
c�1=0.1, �2=0.01, exact Sint.
d��=0.1 Eh.
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ficient number of electrons to cast doubt on the accuracy of
MRCI+Q’s size extensivity correction, which is only exact
for noninteracting electron pairs.

The CTSD method with exact overlap produces a curve
whose relative error with respect to MRCI+Q is smaller than
that of SC-CTSD �5.9 mEh� or WC-CTSD �5.8 mEh� and
comparable to that of CASPT2 �2.9 mEh�. However, unlike
for H2O and N2, there is no obviously correct value for �1 in
NiO, making a precise definition of the CTSD energy diffi-
cult. As seen in Table III, varying �1 between 0.2 and 0.4
changes CTSD’s relative error from 3.1 mEh to 1.1 mEh.
Additionally, Fig. 6 shows that the CTSD potential energy
curve has unphysical characteristics for any of these values
for �1. These results indicate that some important excitation
operators’ overlap eigenvalues are crossing the truncation
threshold as the bond is stretched. These crossings create
discontinuous changes in the energy that produce features
such as the one seen at 1.7 Å in Figs. 5 and 6.

For SC-CTSD, the smallest approximate semi-internal
Jacobian eigenvalue for any geometry was 1.1 Eh �see Eq.
�17��. We typically use ��=0.1 Eh as our cutoff threshold to

prevent intruder states, so in NiO none of the strongly con-
tracted excitation operators showed any intruder state char-
acter. Furthermore, the smallest eigenvalue was large enough
that the SC-CTSD result was insensitive to our choice of ��,
in contrast to CTSD’s strong dependence on �1. An important
result of this insensitivity is that the SC-CTSD potential en-
ergy curve is completely smooth for NiO, in contrast to the
results for H2O and N2. The situation for WC-CTSD is not as
fortunate, with an intruder state appearing at 1.625 Å for ��

=0.1 Eh. This intruder state can be removed by raising �� to
0.5 Eh, but this reduces WC-CTSD’s accuracy at bond dis-
tances above 1.7 Å.

In terms of overall relative accuracy when compared to
MRCI+Q, the tested methods rank as follows: CASPT2
�CTSD	SC-CTSD	WC-CTSD. We note that while
CASPT2 is more accurate than SC-CTSD when the Ni 4p
orbitals are included in the active space, its accuracy suffers
severely if the active space is restricted to the Ni 3d and 4s
and the O 2p orbitals. This limitation will be important in
compounds with two transition metals, where SC-CTSD can
afford to keep the 4p orbitals in the active space while
CASPT2 cannot.

D. Free base porphin

We have evaluated the singlet-triplet gap of free base
porphin �C20H14N4� in two basis sets: 6–31G56 and an ANO
basis54,55 with spherical d orbitals and contractions of
�3s,2p,1d� for C and N and �2s� for H. The active space was
taken as the 24 out-of-plane 2p orbitals of C and N. For the
DMRG-SCF calculations, a Pipek–Mezey57 localization was
applied to the out-of-plane 2p orbitals obtained from a
Hartree–Fock calculation in PSI3,58 which were then ar-
ranged on the orbital lattice as shown in Fig. 7. The orbitals
were then optimized using 1200 DMRG states, after which
the final energies and one- and two-body RDMs were evalu-
ated using 2400 states. In the SC-CTSD calculations, the C
and N 1s orbitals were not correlated, and the strongly con-
tracted excitation operators were defined using the Hamil-
tonian in the DMRG-SCF natural orbital basis. A threshold
of ��=0.1 Eh was employed, although it proved unnecessary
as none of the strongly contracted excitation operators dis-
played intruder state character �their approximate Jacobian

TABLE III. Results for the NiO potential energy curve. MRCI+Q is reported in Eh, with other methods reported as the difference from MRCI+Q in mEh.
Unless stated otherwise, a �14e,12o� active space is used.

Ra MRCI+Q CASSCF CASPT2b CASPT2 CTSDc CTSDd CTSDe SC-CTSDf WC-CTSDf �cmax�2
g

1.5 �1582.540 991 751.290 �89.379 �74.859 �6.571 �3.105 �1.722 12.703 0.991 0.829
1.6 �1582.556 108 746.607 �84.500 �73.253 �6.418 �2.907 �0.653 10.831 �0.842 0.806
1.7 �1582.554 764 742.195 �78.515 �72.334 �6.177 �2.792 �0.830 9.264 �2.737 0.776
1.8 �1582.542 605 736.472 �73.218 �71.976 �9.286 �5.195 �1.629 6.830 �4.842 0.728

Relative error 14.818 16.162 2.882 3.109 2.403 1.069 5.874 5.834 N/A

aRadius in angstroms.
bThe Ni 4p orbitals were excluded to create a �14e,9o� active space.
c�1=0.2, �2=0.1, exact Sint.
d�1=0.3, �2=0.1, exact Sint.
e�1=0.4, �2=0.1, exact Sint.
f��=0.1 Eh.
gWeight of the leading determinant in the CASSCF CI expansion using natural orbitals.
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eigenvalues were all larger than the threshold�. Thus, as for
NiO, we expect the SC-CTSD potential energy surface to be
smooth near the equilibrium geometry. In both the SC-CTSD
and CASPT2 results discussed, the lowest lying triplet state
was of B2u symmetry.

The DMRG and SC-CTSD calculations were performed
using the geometry optimized by Haeser et al.59 through den-
sity functional theory. These calculations, like the CASPT2
results of Roos et al.,60 correspond to a vertical excitation in
which the triplet state’s geometry is not allowed to relax.
However, the measurement of the experimental gap was per-
formed by observing phosphorescence emission,61 which,
due to the millisecond time scale separating excitation and
emission, measures the nonvertical gap �the gap after the
triplet geometry has relaxed�. Therefore, to compare to ex-
periment, it would have been more appropriate to calculate
the nonvertical singlet-triplet gap. To approximately correct
for this disparity, we optimized the geometry of both the
singlet and triplet states with spin-unrestricted B3LYP den-
sity functional theory62 in the 6-31G� basis set63 using the
GAUSSIAN03 program package.64 The change in the B3LYP
singlet-triplet gap due to geometry relaxations was then com-
bined with the vertical gaps of the other methods to produce
approximate nonvertical gaps, which can be more appropri-
ately compared with experiment. The results of these calcu-
lations are shown in Table IV, while the geometries involved
can be found in the supplemental information.50

The approximate nonvertical SC-CTSD singlet-triplet
gaps were 1.65 and 1.73 eV for the 6–31G and ANO basis
sets, respectively. These gaps are both within 0.15 eV of the
1.58 eV experimental value. After accounting for geometry
relaxation, the CASPT2 gap is 1.30 eV, which has an error of
0.28 eV when compared to experiment. Finally, B3LYP den-
sity functional theory produced a 1.53 eV nonvertical gap, in
error by only 0.05 eV. Note that none of the theoretical meth-
ods account for solvent effects, which should be kept in mind
when comparing to the experiment.

An important difference between the SC-CTSD and
CASPT2 results is found in the role of intruder states. Lim-
ited to a 14-orbital active space, the CASPT2 calculation
required a 0.4 Hartree level shift in order to avoid intruder

states, which the authors cautioned could produce up to 0.2
eV of error in the excitation energy.60 In contrast, the
strongly contracted operators used in CT theory showed no
intruder state characteristics, allowing an unambiguous
singlet-triplet gap to be obtained.

TABLE V. Orbital occupations for the active space natural orbitals of free
base porphin when using 2400 DMRG states and the ANO basis set. See
Sec. III D.

Orbital Singlet occupation Triplet occupation

1 1.9859 1.9877
2 1.9854 1.9876
3 1.9636 1.9567
4 1.9612 1.9548
5 1.9488 1.9427
6 1.9456 1.9393
7 1.9405 1.9369
8 1.9301 1.9238
9 1.9167 1.9069
10 1.9149 1.8933
11 1.9147 1.8754
12 1.8197 1.7229
13 1.7955 1.1608
14 0.2286 0.8502
15 0.2069 0.3104
16 0.1075 0.1436
17 0.0779 0.1013
18 0.0649 0.0724
19 0.0620 0.0719
20 0.0591 0.0625
21 0.0444 0.0504
22 0.0429 0.0498
23 0.0424 0.0497
24 0.0407 0.0490
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FIG. 7. Ordering of the out-of-plane 2p active orbitals on the DMRG orbital
lattice for free base porphin.

TABLE IV. Singlet-triplet gaps for free base porphin. See Sec. III D.

Method DMRG states Basis set Gap �eV�

Vertical gaps

DMRG-SCF 1200 6–31G 1.56
SC-CTSD 1200 6–31G 1.85
DMRG-SCF 2400 6–31G 1.57
SC-CTSD 2400 6–31G 1.87
DMRG-SCF 1200 ANO 1.63
DMRG-SCF 2400 ANO 1.65
SC-CTSD 2400 ANO 1.95
CASPT2a

¯ ANO 1.52
B3LYP ¯ 6-31G� 1.74

Nonvertical gaps

SC-CTSDb 2400 6–31G 1.65
SC-CTSDb 2400 ANO 1.73
CASPT2a,b

¯ ANO 1.30
B3LYP ¯ 6-31G� 1.53
Experimentc

¯ ¯ 1.58

aReference 60.
bApproximated using the B3LYP geometry relaxation.
cReference 61.
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We have included in Table V the singlet and triplet natu-
ral orbital occupations for the 2400 state DMRG solutions in
the ANO basis set. All orbitals of the singlet and triplet states
had occupations differing from single reference behavior by
more than 0.01, while 16 of the singlet and 17 of the triplet
orbitals had occupations differing by more than 0.05. Isosur-
face plots of eight of the singlet state’s orbitals are shown in
Fig. 8. As a final note, we observe that the contribution of
correlations between the active �out-of-plane 2p� and exter-
nal �everything else� orbitals to the SC-CTSD singlet-triplet
gap was not sensitive to either the number of DMRG states
retained or the presence of polarization functions in the basis
set. This can be seen by recognizing that the difference be-
tween the DMRG-SCF and SC-CTSD vertical energy gaps
�0.30 eV� changes by less than 0.01 eV across the three
SC-CTSD calculations that were performed. Future work
should investigate the performance of both WC-CTSD and
�when the DMRG three-body RDM becomes available�
CTSD in order to assess the effects of excitation operator
contraction.

IV. CONCLUSIONS

CT theory is a new and promising method for modeling
dynamic correlation in multireference systems with large ac-
tive spaces. It is rigorously size extensive, produces a two-
body effective Hamiltonian, and has a lower cost scaling

than either CASPT2 or MRCI+Q. Like many other multiref-
erence dynamic correlation methods, however, the theory
must overcome the challenge of intruder states, which in CT
theory are caused by the operator and cumulant decomposi-
tion approximations. Previously, these intruder states were
circumvented using a truncated, orthonormal excitation op-
erator basis. This approach requires diagonalizing the first
order interacting basis’ overlap matrix, which has an nact

9 cost
and requires the reference wave function’s three-body RDM
in order to be accurate. As a result, the standard CTSD
method becomes intractable in systems with sufficiently
large active spaces. In this work, we have proposed using
strongly and weakly contracted excitation operators as alter-
natives for addressing the intruder state problem and have
introduced the SC-CTSD and WC-CTSD methods. Strongly
contracted operators are orthogonal by construction, and
their approximate Jacobian eigenvalues �which are used to
detect and avoid intruder states� can be evaluated without
changing the overall n6 cost scaling of CT theory.

Tests on H2O, N2, and NiO show that SC-CTSD is at
least as accurate as CASPT2. Furthermore, when the exact
three-body RDM of the reference wave function is unavail-
able, SC-CTSD is more accurate than even overlap trunca-
tion based CTSD, making it the most accurate method avail-
able for treating dynamic correlation with a DMRG reference
wave function. In the large active spaces of NiO �12 orbitals�

FIG. 8. Isosurface plots of the eight natural orbitals of free base porphin surrounding the dominant singlet configuration’s highest occupied and lowest
unoccupied molecular orbitals. The orbitals plotted are the singlet natural orbitals for the 2400 state DMRG solution in the ANO basis. The triplet orbitals have
the same qualitative shapes. The numbers represent the singlet/triplet natural orbital occupations.
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and free base porphin �24 orbitals�, SC-CTSD managed to
avoid intruder states without the use of a truncation thresh-
old, making its potential energy surfaces completely smooth.
This is especially significant in porphin, for which CASPT2
calculations in smaller active spaces require level shifts as
large as 0.4 Hartrees. WC-CTSD was less successful at re-
moving intruder states, and as a result was less reliable and
less accurate in most systems tested. In summary, we recom-
mend that CTSD with overlap truncation be attempted in
systems for which the exact three-body RDM can be diago-
nalized, while SC-CTSD should be used when the three-
body RDM is unavailable or when overlap truncation has
difficulty removing intruder states. For non-experts, SC-
CTSD is recommended for all systems because it is less sen-
sitive to the choice of truncation threshold than the overlap
truncation method.

We have demonstrated that SC-CTSD is both accurate
and reliable, and that in combination with the DMRG-SCF
method it can be applied to systems with complete active
spaces of unprecedented size. Future work should focus on
further applications of these methods in order to better un-
derstand their strengths and weaknesses.
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APPENDIX: SC OPERATOR DEFINITIONS

Here we present precise definitions for the eight types of
strongly contracted excitation operators. See Sec. II C for a
description of how we arrive at these definitions,

ôv1v2 = �
a1a2

ga1a2

v1v2�Ea1a2

v1v2 − Ev1v2

a1a2� , �A1�

ôc1c2
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