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We examine devices constructed out of multilayered sandwiches of semi-infinite metal–barrier–semi-
infinite metal, with the barrier tuned to lie near the quantum critical point of the Mott metal–insulator 
transition. By employing dynamical mean field theory, we are able to solve the many-body problem ex-
actly (within the local approximation) and determine the density of states through the nanostructure and 
the charge transport perpendicular to the planes. We introduce a generalization of the Thouless energy 
that describes the crossover from tunneling to incoherent thermally activated transport. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Many new technological developments are anticipated over the coming years in the field of nanotech-
nology. There is a current interest in trying to incorporate strongly correlated materials into nanoscale 
devices, because strongly correlated systems often have interesting bulk properties that can be tuned by 
changing the pressure, temperature, chemical doping, etc. What is less known is how the strong electron 
correlations are modified when the bulk materials are confined on the quantum scale and attached to 
other (noncorrelated) materials, like normal metallic leads. In particular, we expect there to be a reor-
ganization of the electronic states driven by a charge transfer, associated with the mismatch of the 
chemical potentials, and by the normal-state proximity effect of the metallic leads on the insulator, which 
will produce exponentially decaying states within the barrier of the Mott insulator, analogous to the su-
perconducting proximity effect in normal metals. Here we adjust our system to be overall charge neutral, 
so we do not investigate the charge transfer; we only investigate the proximity effect. 
 From a device standpoint, the simplest type of nanostructure to create is a multilayered structure, 
where stacks of planes of one material are topped by another material, and so on until a given device and 
heterostructure is made. Recent advances in pulsed laser deposition and molecular beam epitaxy have 
allowed many complex structures to be grown, with interfaces between the different materials being well 
defined up to a few atomic layers. 
 The question we will address in this contribution is how do the properties of semi-infinite metal–
barrier–semi-infinite metal multilayered heterostructures vary with the barrier thickness when the barrier 
is a Mott insulator, tuned to lie just slightly above the Mott metal–insulator transition (i.e. very close to 
the quantum-critical point, but on the insulating side). We examine both single-particle properties like 
the density of states (DOS), including a proof that the local DOS in the barrier of a single-plane barrier 
has metallic behavior at strong coupling. We also investigate transport, and discuss a generalization of 
the Thouless energy that is appropriate for Mott-insulating systems and governs the crossover from tun- 

 
 * e-mail: freericks@physics.georgetown.edu, Phone: +202 687 6179, Fax: +202 687 2087 



190 J. K. Freericks: Strongly correlated multilayered nanostructures near the Mott transition 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

SEMI-INFINITE

SEMI- 
INFINITE

N

Barrier

= 2

a=-4
a=-3

a=-2
a=-1

a=0
a=1

a=2
a=3

a=4

z–axis

a=5

Metal

Metal

N
= 4

N
= 4

b

m

m

BULK

BULK

 

Fig. 1 Schematic of the multilayered nanostructure, where we take a finite number of self-consistent 
metal planes (N

m
 = 4 in the figure, but N

m
 = 30 in our calculations), couple them on one end to a bulk 

semi-infinite metal, and on the other end to a barrier described by the Falicov–Kimball model (with N
b
 = 2 

in the figure depicted by the cross-hatched planes; in our calculations N
b
 = N varies from 1 to 30). 

 
neling to incoherent transport. We employ dynamical mean field theory (DMFT) to perform these calcu-
lations, which relies on the local approximation for the self energy to be accurate in these three-
dimensional inhomogeneous systems. 

2 Formalism 

We describe the Mott insulator by the spinless Falicov–Kimball model [1] 

 Ê ˆ Ê ˆ= - + - -Á ˜ Á ˜Ë ¯ Ë ¯Â Â† † 1 1
2 2ij i j i i i i

ij i

t c c U c c wH  (1) 

where ijt  is a Hermitian hopping matrix, iU  is the Falicov–Kimball interaction, and iw  is a classical vari-
able that equals one if there is a localized particle at site i  and zero if there is no localized particle at site 
i  (a chemical potential m  is employed to adjust the conduction-electron concentration). Since we are 
considering multilayered heterostructures (see Fig. 1), we assume that the hopping matrix is translation-
ally invariant within each plane, as well as the Falicov–Kimball interaction. For simplicity, we will take 
the lattice sites to lie on the sites of a simple cubic lattice, with =ijt t for all nearest neighbors (we use t  
as our unit of energy), and we will take =iU U  for all lattice sites i  that lie within the barrier plane. This 
choice assumes that the bare kinetic energy is the same for the metallic leads and for the barrier, and that 
the barrier is strongly correlated via the Falicov–Kimball interaction (renormalizing its bandstructure) 
within the barrier planes. We also work at half filling, with m = 0  and · Ò = = /1 1 2iw w . In this case, the 
chemical potential has no temperature dependence, and the electronic charge remains homogeneous 
throughout the system. 
 The dynamical mean field theory for inhomogeneous systems was originally worked out by Potthoff 
and Nolting [2] and developed for these particular heterostructures in another publication [3]. Here we 
just include the relevant summarizing formulas. The starting point is to note that the system has transla-
tional invariance in the two-dimensional planar direction, so we can Fourier transform from real space to 
momentum space; all physical quantities we will be interested in here depend only on the two-
dimensional bandstructure e = - +

2 2 [cos cos ]d
x yt k k . We let a Greek letter (a , b , g ,...) denote the  
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z-component of each of the stacked planes. Then, because an electron with energy e 2d  in the perpendicu-
lar direction, decouples from electrons with different perpendicular energy, the problem for the Green’s 
function reduces to a quasi-one-dimensional problem, that can be solved with the renormalized perturba-
tion expansion [4]. The result for the local retarded Green’s function at plane a  is 

 2 2 2
2 2 2

1
( ) d ( )

( ) ( ) [ ( ) ]
d d d

d d dG
L Ra

a a a

w e r e
e w e w w m S w e

=
, + , - + - -

Ú  (2) 

with r 2d  the DOS of a two-dimensional tight-binding square lattice and 
a

S w( ) the self energy at plane 
a . The functions R  and L  are determined via recursion relations: 
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for > 0n . These recurrences are solved by starting at = ±•n  for the right or left recurrence, and then 
iterating in n . Of course, in real calculations, we must assume 

a •

=R R  and 
a -•

=L L  for all a  up to a 
finite distance away from the interfaces with the barriers; we include 30 such self-consistent planes in the 
metallic leads (on each side of the barrier) in our calculations. We determine 

•

R  (
-•

L ) by substituting 
•

R  
(

-•

L ) into both the left and right hand sides of Eq. (3) [Eq. (4)], which produces a quadratic equation that 
is solved by 
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2 2 2 2bulk
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with the sign of the square root chosen by analyticity or continuity. The bulk self energy bulk ( )S w  van-
ishes, because we are considering ballistic metallic leads here. In both Eqs. (3) and (4), we see that 
whenever the imaginary part of R  or L  is positive, it remains positive in the recursion, implying stabil-
ity; similarly, when the imaginary part is zero, we find the large root is stable, which is the physical root. 
Hence the recurrences are stable. 
 Once we have determined the local Green’s function on each plane, we can perform the DMFT calcu-
lation to determine the local self energy on each plane [5, 6]. We start with Dyson’s equation, which 
defines the effective medium for each plane 

 
a a a
w w S w

- -

= + .
1 1

0 ( ) ( ) ( )G G  (6) 

The local Green’s function for the a th plane satisfies 
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with 1w  equal to the average filling of the localized particles [note that this above form is slightly differ-
ent from the usual notation [6], because we have made the theory particle-hole symmetric by the choice 
of the interaction in Eq. (1), so that m = 0  corresponds to half filling in the barrier region and in the bal-
listic metal leads]. Finally, the self energy is found from 

 1 1
0( ) ( ) ( )G G

a a a
S w w w

- -

= - .  (8) 

The full DMFT algorithm begins by (i) making a choice for the self energy on each plane. Next, we (ii) 
use the left and right recurrences in Eqs. (3) and (4) along with the bulk values found in Eqs. (5) and the 
30 self-consistently determined planes within the metal leads to calculate the local Green’s function at 
each plane in the self-consistent region from Eq. (2). Once the local Green’s function is known for each  
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Fig. 2 (a) Local DOS for the barrier plane when N = 1 and for various U (indicated by the numerical la-
bels). The inset highlights the low-energy region, where one can see a low-weight metallic DOS form for 
large U from the interface localized states of the nanostructure. (b) The local DOS in four barrier planes 
for U = 5 and N = 5 (the first barier plane is at α = 0; the metallic lead runs from α = –1 to α = –30 on the 
left hand side). Note how the amplitude of the Friedel-like oscillations are quite small even by the time we 
hit the tenth plane from the barrier. 

 

plane, we then (iii) extract the effective medium for each plane from Eq. (6), (iv) determine the new local 
Green’s function from Eq. (7), and (v) calculate the new self energy on each plane from Eq. (8). Then we 
iterate through steps (ii)–(v) until the calculations have converged. 

3 Numerical results 

The first thing we consider is the local DOS on the barrier plane for a single-plane barrier ( = 1N ) in 
Fig. 2(a). Note how the DOS looks like a Mott insulator for large U  (in the bulk, the Mott transition 
occurs at ª .4 9U ), with an upper and lower Hubbard band forming, but there is substantial low-energy 
DOS coming from the interface localized states that are actually metallic in character (negative second 
derivative of the DOS with respect to w ). In addition, we show the Friedel-like oscillations that develop 
in the metallic leads as we move away from the barrier interface (for = 5U ) in Fig. 2(b). Note how the 
oscillations have a shorter period, and a smaller amplitude as we move away from the interface. Already 
at 10 lattice spacings away from the interface, we see there is only a small difference from the bulk DOS 
(which is why 30 self-consistent planes is sufficient for this work). 
 We show that the peak value at w = 0 is easy to derive from an analysis of the Potthoff–Nolting algo-
rithm, and that it is nonvanishing for all U . To begin, we consider the non-self-consistent solution, where 
we set 

a -•

=L L  and 
a •

=R R  for all a  except a = 0 , where we have a Falicov–Kimball interaction. 
Then the local Green’s function in the barrier is 
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where the sign of the square root is chosen by either analyticity, or continuity (by convention, we choose 
the imaginary part of the square root to be nonnegative). If we assume S 0 is large (which occurs in the 
Mott insulator) then we can expand Eq. (9) in a power series in inverse powers of S  to give 
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Table 1 Comparison of the results from Eq. (12) and the exact numerical DOS for a single-plane barrier 
and various U . 

U approximate result [Eq. (12)] exact numerical result  

 6 0.0371 0.0378  
 8 0.0208 0.0211  
12 0.0093 0.0093  
16 0.0052 0.0052  
20 0.0033 0.0033  

 

with w r e w e= - -Ú
2 2( ) ( ) ( ) 4ds . Taking the value for 

a =0G  from Eq. (10), and plugging it into the 
self-consistent DMFT algorithm described above, allows us to solve for the self energy directly, with the 
result 

 S w
w w

=
±

21
4

0 ( )
2 ( )

U

s
 (11) 

which is large for � 1U , consistent with our ansatz. If we perform the integral in the definition of w( )s , 
we find it satisfies w w w= ◊ . + ◊ . +

2( ) 0 653 1 05 ( )s i O . Substituting this result into the self energy, and then 
into the Green’s function, and evaluating the DOS, finally yields 

 r w
.

= ª ;
p

0 2

4 2
( 0)

U
 (12) 

we compare this result to the exact calculated result in Table 1. One can see the agreement is excel- 
lent. 
 In Fig. 3, we plot a false color (grayscale) plot of the DOS of the nanostructure in the near critical 
region = 5U  for a moderately thick ( = 20N ) barrier. Note how the Friedel oscillations are most appar-
ent in the center of the band in the metallic leads (upper part of the graph). We only plot the 40 planes on 
the left-hand-side of the nanostructure, because the symmetry of the structure guarantees the rest of the 
nanostructure can be determined by a mirror plane reflection. Note how there are few oscillations within 
the barrier itself, and how the DOS rapidly becomes small at low energy (because it is an insulator). It is 
possible to even see some oscillations induced in the metallic lead at energies close to the band edge, and 
at positions close to the interface. 
 

 

Fig. 3 (online colour at: www.pss-b.com) False color (grayscale) plot of the local DOS for the near 
critical U = 5 nanostructure with N = 20 planes in the barrier. Note how the Friedel oscillations in the me-
tallic lead are most apparent near the center of the band, and how there are limited oscillations in the bar-
rier (the DOS decays exponentially fast with position in the barrier at low energy). 
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Fig. 4 (a) Thouless energy for the U = 5 nanostructure as a function of temperature on a log–log plot. The differ-
ent curves are for different thicknesses of the barrier. The dashed line is the curve ETh = T, and the special points that 
denote the crossover from tunneling to incoherent transport correspond to the points of intersection of the solid lines 
with the dashed line. (b) Resistance-area product plotted versus the temperature on a log–log plot. The different 
curves correspond to different barrier thickness. The solid dots and the dotted line plot the points where ETh = T. Note 
how the curves are flat at low temperature and for thin junctions indicating tunneling (but the tunneling resistance 
does not grow exponentially with the thickness when we are so close to the metal–insulator transition and at finite 
temperature – note the unequal spacing of the lines with N). At higher temperature, the resistance picks up strong 
temperature dependence, and the transport is best described by an incoherent thermally activated process. The nu-
merical labels on the figures denote the thickness of the barrier of the nanostructure and the constant satisfies  
σ 0 = 2e2/ha2. 
 
 We examine transport properties in Fig. 4. The resistance of a junction is calculated in the linear-
response regime via a Kubo-based formalism [7] with the current–current correlation function [8, 3]. 
The formalism requires us to employ a conductivity matrix in real space, with matrix components corre-
sponding to the z-axis label of the different planes in the system. The resistance-area product can be 
calculated for any temperature. 
 We extract an energy scale from the resistance, which we call the Thouless energy [9, 10], since it 
reduces to the well-known diffusive and ballistic limits, but it also defines an energy scale when the 
barrier is a Mott insulator. In the insulating phase, it is a function of temperature, and the point where 

ThE Tª  defines an important energy scale for the dynamics of the transport in a nanostructure – it signi-
fies when the transport crosses over from tunneling behavior at low T  to incoherent “ohmic” transport at 
high T  [see Fig. 4(a)]. On the other hand, the Thouless energy is inversely proportional to L , the thick-
ness of the barrier for ballistic transport and inversely proportional to 2L  for diffusive transport [this can 
be seen from taking the low-temperature limit of Eq. (13) and noting that the DOS is nearly constant near 
the Fermi energy at low temperature and recalling the µnR L  for diffusive transport and nR  is independ-
ent of L  for ballistic transport]. 
 The generalized formula for the Thouless energy is [11, 3] 

 Th 2 2
bulk2 d [ d d ] ( )n

E
R a e f Lw w r w

= ,
- /Ú
�

 (13) 

where a is the lattice spacing, e is the electrical charge, �  is Planck’s constant, nR  is the junction resis-
tance, w w= / + /( ) 1 [1 exp ( )]f T  is the Fermi–Dirac distribution, rbulk  is the interacting bulk DOS of the 
barrier material, and = NaL  is the thickness of the barrier. 
 The resistance–area product versus temperature is plotted in Fig. 4(b). Note the flat regions for low T  
and thin junctions. This is a signal that the transport is dominated by tunneling, but because the gap is so 
small in this system, we do not see an exponential increase in the resistance-area product with the thick-
ness of the junction. Instead, it increases with a functional behavior in between that of an exponential 
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increase and of a linear increase. We also include a plot of the points where the Thouless energy is equal 
to the temperature. In this case, they are close to, but not exactly at the point where the tunneling behav-
ior crosses over to incoherent transport (which has a strong temperature dependence). As U  is increased 
further, this separation becomes more readily apparent [3]. We believe this anomalous behavior occurs 
because the system is so close to the critical point of the metal–insulator transition, 

4 Conclusions 

In this contribution we examined properties of a nanostructure composed of metallic leads and a barrier 
that could be tuned through the metal–insulator transition (described by the Falicov–Kimball model). We 
concentrated on general properties of the thin barrier (where we showed it always has a metallic DOS 
generated by the normal proximity effect with the metallic leads, although the weight within this metallic 
“subband” can be quite small). We also investigated the DOS and transport properties of a near critical 
Mott insulating barrier with = 5U  (the critical value of the transition on a simple cubic lattice is 

ª .4 9cU  within DMFT). We found the system shows behavior that looks like tunneling, but it also has a 
number of anomalies, the most important being that the resistance does not grow exponentially with the 
junction thickness in the tunneling regime. We also defined a generalization of the Thouless energy that 
reduces to the ballistic and diffusive limits, but can also describe strongly correlated insulators. We 
found the Thouless energy picks up strong temperature dependence in this regime and the point where 

=ThE T  determines an approximate crossover from tunneling to incoherent transport, where the resis-
tance is proportional to the bulk resistivity of the barrier multiplied by some geometrical factors (and the 
resistivity has strong exponentially activated behavior in T  for a correlated insulator). 
 There are a number of future directions that are important to consider as one tries to examine models 
closer to experimental systems. First, there will be a charge transfer (electronic charge reconstruc-
tion) [12, 13] when the chemical potentials do not match, which can have strong effects on correlated 
systems, especially correlated insulators, second, it is useful to consider capacitive effects for these de-
vices, since the junction capacitance will play a role in the switching speed, and third, it would be inter-
esting to extend this analysis from equilibrium/linear response to nonequilibrium/nonlinear response, 
where one could directly calculate the current–voltage characteristic of the device, and determine the 
origins of its nonlinearities. 
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