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We use cluster dynamical mean-field theory to study the simplest models of correlated electrons, the Hub-

bard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and

interpret the physical properties of these models. We study various observables such as electronic lifetimes, one

electron spectra, optical conductivities, superconducting stiffness, and the spin response in both the normal and

the superconducting state in terms of correlation functions of the embedded cluster. We find that the shortest

electron lifetime occurs near optimal doping where the superconducting critical temperature is maximal. A

second critical doping connected to the change of topology of the Fermi surface is also identified. The

mean-field theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped,

and the optimally doped regime, in terms of the physics of the quantum plaquette impurity model. We compare

the plaquette dynamical mean-field theory results with earlier resonating valence bond mean-field theories,

noting the improved description of the momentum space anisotropy of the normal state properties and the

doping dependence of the coefficient of the linear temperature dependence of the superfluid density in the

superconducting state.
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I. INTRODUCTION

The origin and the nature of superconductivity in strongly

correlated materials is one of the greatest challenges in mod-

ern condensed matter theory. It received renewed attention

with the discovery of the high temperature superconductivity

in copper oxide based materials. While these materials have

been studied intensively over the past decades, there is still

no consensus as to what are the essential physical ingredients

responsible for the high temperature superconductivity phe-

nomena and how it should be modeled.1–14

Anderson proposed that the high temperature supercon-

ductivity phenomena was intimately connected with the

proximity to a parent Mott-insulating state.15,16 Developing

precise connections between the proximity to a Mott insula-

tor and high temperature superconductivity has proven to be

a difficult problem. Suggestive conclusions have been

reached using slave boson methods,17,18 variational wave

functions,19,20 and gauge theory techniques.2 However, lack

of theoretical tools has made difficult to prove that simple

models are sufficient to explain the phenomena surrounding

cuprates. For example, it is still strongly debated whether the

existence of superconductivity with a high critical tempera-

ture and a pseudogap is a genuine property of the models

studied, or an artifact of the approximations employed to

solve the model.

Over the past decade, significant progress in the field of

correlated electrons has been achieved through the develop-

ment of dynamical mean-field theory.21,22 In its single site

version, this method describes lattice models in terms of

a single site impurity problem embedded in a medium.

The method has been very successful in describing and

even predicting numerous properties of a large number of

materials.23–31 Cluster extensions of this method, cluster dy-

namical mean-field theory �CDMFT� �for reviews, see Refs.

23 and 32�, have been proposed and are currently a subject of

intensive investigations.

In this paper, we apply the cluster dynamical mean-field
approach to construct a mean-field theory of the simplest
models of strongly correlated materials, the one band Hub-
bard and t-J models, using a 2�2 cluster, namely, the
plaquette as the basic mean-field reference frame.

There are several motivations for constructing a mean-
field theory based on a plaquette embedded in a dynamical
bath of conduction electrons: �a� A plaquette embedded in a
self-consistent medium can describe the physics of singlet
formation, which is very important in the t-J and Hubbard
models. There are two roads of singlet formation, the Kondo
effect, in which a spin can form a singlet with a bath of
conduction electrons, and the superexchange mechanism,
which locks two spins on a bond in a singlet state. �b� A
plaquette in a medium is a minimal unit to describe d-wave
superconductivity and antiferromagnetism on the same foot-
ing, given that their order parameters �as well as that of other
forms of order competing with superconductivity� naturally
fit on a plaquette.

From a methodological perspective, mean-field theory al-
lows one to study the physical properties of different phases
as a function of control parameters, whether they are stable
or metastable. For example, we will study the evolution of

the superconducting state, together with the underlying nor-

mal state, which appears as a metastable phase below TC.

From a theoretical perspective, metastable states are only

defined within a mean-field theory, but they are of clear

physical relevance. Furthermore, comparison response or

correlation functions in both the normal and the supercon-

ducting state give important clues as to the mechanism of

superconductivity.

A clear understanding of the evolution of well defined

mean-field phases of the simplified model is an important

step toward constructing the phase diagram of realistic

Hamiltonians. Even if a phase is not realized as the thermo-

dynamically stable phase in a mean-field treatment of a

simplified Hamiltonian, it could be stabilized by adding

additional longer range terms in the Hamiltonian without sig-
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nificantly altering the short distance properties described by
the mean-field theory. Furthermore, a good understanding of
the different mean-field states can be useful in elucidating
the results of numerical studies in larger finite clusters, since
complicated patterns in a finite size system may be a reflec-
tion of phase separation among different competing mean-
field phases.

The study of minimal models such as the t-J model or the
Hubbard model describing a system near a Mott transition is
an important first step toward understanding real materials.
From a study of minimal models, one can learn what aspects
follow from just the proximity to a doping driven Mott tran-
sition. This is a necessary step before the importance of other
physical effects, such as the disorder or the electron-phonon
interactions certainly present in the real materials, can be
ascertained. A basic question yet to be elucidated is to which
extent a minimal model of the doping driven Mott transition,
such as the t-J model, describes at the qualitative level the

physical properties of the cuprates. If, indeed, the qualita-

tively low energy physics of the cuprates results from the

proximity to a Mott-insulating state, as described by a mini-

mal model of this phenomena, then the results can be refined

by including more realistic band structure, for example,

nearest- and next-nearest-neighbor hoppings, longer range

interactions, disorder, and coupling to the lattice, as well as

by incorporating a multiband situation which is needed to

describe the physics in a wider energy range. It is possible to

carry out these studies in the more realistic framework of the

combination of electronic structure methods with dynamical

mean-field theory �DMFT�, a subject which is left for future

studies. One should also ascertain the size of the corrections

to the mean-field theory by either expanding around mean-

field theory33 or increasing the cluster size.34

Several studies have already shown that the Hubbard

model treated within cluster DMFT on a 2�2 plaquette suc-

cessfully describes many properties of the high temperature

superconductors. For example, the competition of antiferro-

magnetism and superconductivity,35–39 the existence of a

pseudogap at low doping,40–46 and the formation of Fermi

arcs.43,44,47,48

These phenomena involve short-range nonlocal correla-

tions. In CDMFT, the approach to the Mott insulator is

characterized by the growth of the nonlocal components

of the self-energy, which is responsible for the phenomena

of momentum space differentiation and the formation of

lines of zeros in the Green’s function at zero temperature.

Surprising manifestations of strong correlations include the

transfer of optical spectral weight upon condensation,49 the

existence of an avoided quantum critical point50 underlying

the superconducting dome, and the presence of two distinct

gaps51,52 in the superconducting state of the underdoped

cuprates. The approach describes well an anomalous inco-

herent normal state45,49 which is lifted by the onset of

superconductivity.50,53

Other studies of the Hubbard model using large clusters at

values of U�8t have focused on the convergence of the

critical temperature.34 In a series of publications, it has been

shown that the d-wave superconducting state is well de-

scribed by spin fluctuation theory.34,54,55 To which extent the

physics of well defined quasiparticles interacting with spin

fluctuations responsible for the pairing can be carried over to
strong coupling regime is an important open problem, which
can be only be addressed by gaining a better understanding
of the large U limit of the Hubbard model, which is the focus
of this paper.

Hence, we focus on understanding the physical content of
the plaquette mean-field theory in the regime where the in-
teraction strength is large enough to drive a Mott transition at
half filling with a substantial Mott-Hubbard gap. We gain
insights by comparing the superconducting state with the un-
derlying normal state. For example, we study the evolution
of the Fermi arcs with temperature and trace the mechanism
of superconductivity to the optimization of the superex-
change energy. We connect the maximum critical tempera-
ture with anomalies at optimal doping, resulting from a
maximum in the inelastic scattering rate. The techniques in-
troduced in this paper provide a simple interpretation of the
cuprate phase diagram in terms of the occupations of a small

number of cluster eigenstates or pseudoparticles which de-

scribe a mean-field coarse-grained version of the important

excitations of the lattice system, and we use them to describe

different experimental probes, tunneling optics, and neutron

scattering, in both the normal and the d-wave superconduct-

ing phase. The superconducting state is characterized by two

energy scales: one increases with decreasing doping, and one

decreases with decreasing doping. The first can be identified

with the photoemission gap in the antinodal region, while the

second can be identified with the slope of the Dirac cone

along the Fermi surface. We investigate the effect of the

latter scale on the penetration depth.

The organization of the paper is the following: In Sec. II,

we summarize the formalism and introduce the models, the

cluster schemes, and the impurity solvers, i.e., the continuous

time quantum Monte Carlo56,57 �CTQMC� and a generaliza-

tion of the non crossing approximation �NCA�.58–61 Section

III describes the evolution of the cluster Green’s functions

and the self-energies as a function of doping. We identify the

existence of an anomalous scattering rate describing the

nodal region of the lattice model, which peaks at a charac-

teristic doping �2
c in the normal phase. The scattering rate is

drastically reduced in the superconducting state. We identify

a second characteristic doping �1
c at which another self-

energy diverges, and connect this phenomena to the forma-

tion of lines of zeros in the Green’s function.

One can view CDMFT in the superconducting phase as a

generalization of the Migdal-Eliashberg theory to strongly

correlated electron systems, and we present the frequency

dependence of the superconducting order parameter in Sec.

IV. An advantage of the mean-field theory is that it allows us

to study the “normal” state underlying the superconducting

state and its evolution with temperature. This is done for the

tunneling density of states in Sec. IV, for the optical conduc-

tivity in Sec. V, and for the magnetic properties in Sec. VI.

This comparison between the mean-field normal state and

the mean-field superconducting state establishes the superex-

change as the main pairing mechanism, as surmised in the

resonating valence bond �RVB� theory.

The pseudoparticles representing plaquette eigenstates are

not only technical tools to set up strong coupling impurity

solvers but provide a physical picture of the excitations of
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the system, and we use them to interpret the CDMFT results

in Sec. VII. We conclude with the connection between our

method and an earlier simpler mean-field theory, approach

based on the plaquette, the slave boson mean-field theory,

and closely related methods. For related work advancing the

RVB concepts using single site DMFT on multiorbital mod-

els, see Refs. 62 and 63.

II. FORMALISM

In this section, we summarize the methodology used for

our investigation. Two minimal models of the proximity to a

Mott transition were considered: the Hubbard model and the

t-J model. There are several different versions of dynamical

mean-field theory. For example, in addition to standard

DMFT, an extended version of DMFT23,59,60,64–68 �EDMFT�
which replaces all the nonlocal terms in the interaction

�namely, the kinetic energy and the superexchange� by a fer-

mionic and a bosonic bath has been proposed. There are also

numerous variants of cluster dynamical mean-field theory

which differ by the dynamical medium surrounding the

plaquette �hybridization function of the impurity model�. Fi-

nally, the solution of the impurity model that results from the

CDMFT mapping can be carried out with different impurity

solvers. In this work, we use two complementary solvers, the

NCA and the CTQMC method.

The goal of this paper, is to highlight physical properties

which follow generally from the proximity to a Mott-

insulating state, which are captured by a local approach,

namely, cluster DMFT. For this reason, we have focused on

physics which emerges from both Hubbard and t-J models,

and which is captured by all the different cluster schemes

�cellular DMFT,69 dynamical cluster approximation,70 and

their extended versions�. While we mention some quantita-

tive differences between these schemes, the stress is on

qualitative main conclusions that can be obtained with all

quantum cluster schemes. In order to keep the presentation

clear and the paper relatively concise, we provide only meth-

odological details which are not available in the literature. To

avoid unnecessary duplication, results for a given physical

quantity are presented with only one cluster scheme and im-

purity solver, chosen to demonstrate more clearly a physical

point.

A. Models

One of the more studied models in the field of strongly

correlated electrons is the Hubbard model defined by the

Hamiltonian

H = − �
ij�

tijci�
†

c j� + �
i

Uni↑ni↓. �1�

It consists of a hopping term and an on-site repulsion. To be

above the Mott-transition, we take an on-site repulsion U

=12t.

A second model of great interest is the t-J Hamiltonian,

H = − �
ij�

tijci�
†

c j� +
1

2
�
ij

JijSiS j . �2�

It contains two terms: the first describes the kinetic energy

which delocalizes the holes introduced by doping, and the

second represents spin-spin interaction. In this work, we take

J / t=0.3.

In the t-J model, a constraint forbidding all double occu-

pancy must be enforced, and will be treated exactly in this

work. In the spirit of understanding general features of the

proximity to the Mott state, we include only the nearest-

neighbor hopping t=1 �t�=0�.

B. Extended and standard dynamical mean-field theory

In DMFT, the nonlocal terms in the Hamiltonian coupling

are replaced by a coupling to a bath of conduction electrons.

In the Hubbard model, the only nonlocal term is the kinetic

energy, and this leads to the standard DMFT mapping which

is described in many reviews.21 In the t-J model, also the

superexchange interaction connects different sites, and ap-

plying the DMFT philosophy to that term also leads to the

extended DMFT equations.

Here, we outline the derivation of the extended version of

the cluster DMFT.59,60,64,65 We first employ Hubbard-

Stratonovich transformation to decouple the nonlocal inter-

action term of the t-J model, leading to the following action:

S = �
0

�

d���
k�

ck�
† ���� �

��
− � + 	k�ck���� + �

i

Uni↑���ni↓���

+ �
q

��
†

q���
2

Jq

�q��� + iSq	�q
†��� + 
−q���
�� . �3�

Here, � is the Hubbard-Stratonovich vector bosonic field

which decouples the spin-spin interaction.

The many-body theory described by the action above can

be summarized in a functional:

�	G,D
 = − Tr log�G0
−1 − �� − Tr	G�
 +

1

2
Tr log�D0

−1 − 
�

+
1

2
Tr	D

 + 
	G,D
 . �4�

Here, functional 
 of the exact Baym-Kadanoff functional

contains all two particle irreducible diagrams of an electron-

boson system with propagators G and D. Maximizing the

functional Eq. �4� leads to the exact Dyson equations for this

system. Cluster approximations are obtained by restricting

the functional to a subset of trial Green’s functions. In the

cellular DMFT �C-DMFT�,23,69 the 
 functional is approxi-

mated as follows: The full lattice is covered by nonoverlap-

ping clusters. The functional within each cluster is treated

exactly, i.e., if two lattice points i and j are inside the same

cluster, 
C-DMFT	Gij ,Dij
=
exact	Gij ,Dij
. If, however, i and

j are in different clusters, 
 functional is set to zero. In this

way, short-range correlations within the cluster are treated

exactly, while long-range correlations are ignored.

Cluster approximations are obtained by replacing the

exact functional 
 in Eq. �4� by its cluster counterpart.
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The saddle point equations then become �cluster

=�
�Gcluster� /�Gcluster and 
cluster=−2�
�Dcluster� /�
cluster.

The fluctuating bosons �q in the extended DMFT formal-

ism allow one to keep some out-of-cluster short-range corre-

lations and describe better the spin fluctuations by allowing

the cluster spin to relax more efficiently through its direct

exchange interaction with the bath. We will see that this

leads to higher superconducting critical temperatures. Apart

from this quantitative difference, we did not find any quali-

tative difference between the extended version �which em-

ploys bosons to describe spin fluctuations between the clus-

ters� and the results of the nonextended version of DMFT.

C. Cluster schemes and impurity models

There are several cluster schemes in use in the study of

correlated electron materials. The dynamical cluster

approximation70 �DCA� can be thought of as a coarse grain-

ing in momentum space, obtained by relaxing the conserva-

tion of momentum. Rather than treating the infinite number

of lattice k points and corresponding Green’s functions Gk,

the 
 functional is approximated to depend only on the

Green’s function of a few cluster momenta, which we will

denote by K and Q. The cluster Green’s functions of the

approximate functional 
	GK ,DQ
 are obtained by course

graining the exact Green’s functions, i.e., Gk→GK

=�k�KGk and Dq→DQ=�q�QDQ, where the sum �k�K is

over those k momenta in the Brillouin zone which corre-

spond to certain cluster momenta K �see Refs. 32 and 70�.
The results of this paper were obtained with both DCA

and C-DMFT. Again, all the qualitative features to be dis-

cussed in the next sections can be seen with both methods.

Since DCA is a cluster method with a simple interpretation

in momentum space while C-DMFT has a simple interpreta-

tion in real space, the fact that the qualitative physics

emerges from both approaches suggests that the physical

properties that we discuss in this paper are genuine proper-

ties of cluster dynamical mean-field theory on a plaquette,

irrespective of the specific cluster scheme used.

We summarize the abbreviations used in the remainder of

the text:

�1� CDMFT: cluster DMFT,

�2� C-DMFT: cellular DMFT,69

�3� DCA: dynamical cluster approximation,70

�4� EC-DMFT: extended version of cellular DMFT,

�5� EDCA: extended version of dynamical cluster

approximation.70,71

A great advantage of all cluster DMFT formulations is

that the complicated functional Dyson equations for the self-

energies and cluster response functions can be written in

terms of an impurity model

Z =� D	�†�
exp�− Scluster

− �
0

�

d��
0

�

d���
K

�� K
† ����� K��,����� K����

+
1

2
�

0

�

d��
0

�

d���
Q

SQ����0
−1

Q��,���SQ����� , �5�

which is numerically tractable and where the effective Weiss

fields � and �0
−1 have to obey the following self-consistency

conditions:

G = �
k

	i� − Hk − ��i��
−1 = 	i� − Eimp − ��i�� − ��i��
−1,

�6�

� = �
k

	M�i�� + Jq
−1 = 	M�i�� + �0
−1�i��
−1, �7�

which merely express the fact that the cluster quantities,

computed from the impurity model 1 / 	i�−Eimp−��i��
−��i��
, have to coincide with the lattice local quantities

when summing over the reduced Brillouin zone. Namely, in

the C-DMFT, the lattice was divided into nonoverlapping

clusters; hence, the summations over k run over the reduced

Brillouin zone. Here, M plays the role of the spin self-energy

which is computed from the local susceptibility and Weiss

field by M=�−1−�0
−1, as evident from Eq. �7�.

A special feature of the 2�2 plaquette is worth stressing:

the cluster momentum K is a good quantum number and

therefore local quantities like Green’s function G or hybrid-

ization � take a diagonal form

G =

G� 0,0 0 0 0

0 G� �,0 0

0 0 G� 0,� 0

0 0 0 G� �,�

� . �8�

For large clusters, cellular DMFT would lead to off-diagonal

terms in the impurity action written on the basis of cluster

momenta. The hybridization function in Eq. �5� would take

the form �� K
† �� KK�

�� K�
. However, in the 2�2 case, both in

C-DMFT and DCA, the hybridization function is diagonal in

cluster momentum.

The DMFT mapping of the lattice model onto a plaquette

in a medium allows us to make a connection between this

problem and the multiorbital Hubbard models which have

been studied in connection with the orbitally selective Mott

transition.72–74 This is defined by a set of bands, each one

characterized by a local density of a states, labeled by its

cluster wave vector. Notice, however, that the interaction

among the orbitals, i.e., the Hubbard U term written in terms

of �� K
† and �� K is more complicated than what has been

treated in the literature and deserves further investigations.

The local density of states corresponding to the different

bands can be obtained by setting U=0 and evaluating the

noninteracting Green’s function G0 corresponding to each

cluster wave vector. This is plotted in Fig. 1.

The formalism is easily extended to the superconducting

state by introducing Nambu notation,

�� K = � cK↑

c−K↓
† � . �9�

Assuming singlet pairing, all the previous discussion carries

through, with the cluster Green’s functions and hybridization

functions taking the 2�2 matrix form:

KRISTJAN HAULE AND GABRIEL KOTLIAR PHYSICAL REVIEW B 76, 104509 �2007�

104509-4



G� K��� = − �T��� K����� K
† �0�� = �GK↑��� FK���

FK
† ��� − G−K↓�− ��

� .

�10�

Here, FK is the anomalous component of the Green’s func-

tion. Hybridization �� K becomes a matrix as well

�� K�i�� = ��K↑�i�� �K
an�i��

�K
an†�i�� − �−K↓�− i��

� �11�

and the impurity problem is off-diagonal in Nambu space.
In cluster momentum basis 	see Eq. �8�
, which we em-

ployed in this work on the 2�2 plaquette, DCA and
C-DMFT share the same form of the impurity model; the
only difference between the two schemes lies in the form of
the self-consistency conditions. This is dictated by the form
of the noninteracting part of the Hamiltonian H and the re-
gion of momentum summation. In the DCA scheme, the non-
interacting Hamiltonian Hk is just the tight-binding energy
	k=−2t�cos kx+cos ky�−4t� cos kx cos ky. In the self-

consistency conditions Eqs. �6� and �7�, the summation has
to be performed only in the region of the patch correspond-

ing to each cluster momentum K,32 i.e.,

G� K = �
k�K

��i� + � − 	k 0

0 i� − � + 	k

� − �� K�i���−1

.

�12�

The patches which correspond to different cluster momen-

tum K are, thus, completely decoupled in the self-

consistency condition. Their coupling is only through the

Coulomb interaction.

In the real space C-DMFT, we can still define “orbitals”

which correspond to cluster momenta K 	see the form of

local quantities in Eq. �8�
, however, these orbitals are

coupled through both the Coulomb repulsion U and the non-

interacting Hamiltonian, which takes the following form:

Hk =

	k

0 − � 0 i�k
1 0 i�k

2 0 �k
0 0

0 − 	k
0 + � 0 i�k

1 0 i�k
2 0 − �k

0

− i�k
1 0 	k

1 − � 0 − �k
0 0 i�k

4 0

0 − i�k
1 0 − 	k

1 + � 0 �k
0 0 i�k

4

− i�k
2 0 − �k

0 0 	k
2 − � 0 i�k

3 0

0 − i�k
2 0 �k

0 0 − 	k
2 + � 0 i�k

3

�k
0 0 − i�k

4 0 − i�k
3 0 	k

3 − � 0

0 − �k
0 0 − i�k

4 0 − i�k
3 0 − 	k

3 + �

� , �13�

where we defined

	k
0 = − t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� ,

	k
1 = t�cos kx − cos ky� + t��1 + cos kx cos ky� ,

	k
2 = − t�cos kx − cos ky� + t��1 + cos kx cos ky� ,

	k
3 = t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� ,

�k
0 = t� sin kx sin ky ,

�k
1 = sin kx�t + t� cos ky� ,

�k
2 = sin ky�t + t� cos kx� ,

�k
3 = sin kx�t − t� cos ky� ,

�k
4 = sin ky�t − t� cos ky� . �14�

The unit of distance chosen here is a=1/2 such that the

summation over the reduced Brillouin zone in Eqs. �6� and

�7� simply runs over kx� 	−� ,�
 and ky � 	−� ,�
. One can

-4 -2 0 2 4
ω

0

0.05

0.1

tb
-D

O
S

ω
0

0.05

0.1

0.15
tb

-D
O

S
K=(0,0)

K=(π,0)

K=(π,π)

DCA

Cellular DMFT

FIG. 1. �Color online� Tight-binding density of states �DOS� for

the three orbitals within DCA and C-DMFT. Notice that the tight-

binding Hamiltonian within C-DMFT Eq. �13� contains off-

diagonal elements, therefore DOS does not contain full information

about the noninteracting part of the Green’s function G0 �G0
−1

=G−1+��.
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readily show that this summation leads to a diagonal form of

local quantities.

In Fig. 2, we compare the local spectral function of the t-J

model in the two cluster schemes. Notice the similarities of

the results, in particular, at low energies. The spectral func-

tions in both methods have a very similar pseudogap. Hence,

in spite of quantitative differences, which will not be inves-

tigated systematically in this paper, the qualitative physics,

which is the main focus of this paper, is present in both

cluster methods. Note, however, that decoupling of orbitals

in DCA method leads to splitting of the Hubbard band into

peaks which correspond to excitations of the 2�2 cluster.

These finite size effects are strongly reduced in C-DMFT

method.

Here, we comment on some quantitative differences be-

tween the methods. The superconducting critical temperature

is highest in EDCA method and reaches the value �0.036t,

while it drops to �0.026t in EC-DMFT. When the bosonic

bath is switched off, the real space C-DMFT maximum criti-

cal temperature in both the t-J model at J=0.3 and the Hub-

bard model at U=12t is around �0.01t. Notice that this

value is close to the estimations in Ref. 34 for the critical

temperature of the Hubbard model in the thermodynamical

limit for U=4t. Namely, the Hubbard model at U=4t within

large cluster DCA has TC�0.023t.34 If we extrapolate this

value to large U=12t treating TC�J,75 TC would drop to

�0.008t, which is close to the C-DMFT result.

The existence of a finite transition temperature and the

trends of the superconducting transition temperature with

doping and with the strength of the superexchange interac-

tion are robust properties of plaquette DMFT and are com-

mon to all cluster schemes. It would be interesting to under-

stand the convergence properties with cluster size within the

different cluster schemes for the t-J model, as was done for

the Hubbard model at intermediate U in Ref. 34 and in the

classical limit in Ref. 76.

D. Impurity solvers

At the heart of the cluster DMFT is the solution of the

impurity problem Eq. �5�. In this work, we used two different

impurity solvers, both based on the expansion of the impu-

rity action with respect to hybridization strength. The first is

the NCA, which sums up all diagrams with no crossing and

is conveniently formulated in slave particle approach.61 The

second is the recently implemented CTQMC method,56,57

which numerically samples the same type of diagrams but

sums up all diagrams using Monte Carlo importance sam-

pling. Here, we assume that the weights, which correspond

to a set of all diagrams of definite perturbation order k, to be

positive.

The two impurity solvers are in good agreement with each

other on the imaginary axis, but the first method allows us to

obtain real frequency correlation functions which are un-

available in the quantum Monte Carlo �QMC� approach.

Both approaches are well suited to study the regime of inter-

mediate temperatures and dopings, close to the tip of the

superconducting dome, separating overdoped and under-

doped regions, which is not easily accessible with other tech-

niques.

Both impurity solvers used here require the introduction

of the cluster eigenstates obtained by the exact diagonaliza-

tion of the cluster, i.e., Hcluster�m�=Em
cluster�m�. To each cluster

eigenstate, a pseudoparticle am can be assigned, i.e.,

�m� � am
† �0� , �15�

to recast the cluster part of the action to a quadratic form.

The constraint

Q � �
m

am
†

am = � �m��m� = 1, �16�

which expresses the completeness of the atomic eigenbase,

has to be imposed.

The original problem can be exactly expressed in terms of

pseudoparticles am, with the only nonquadratic term of the

converted action being the hybridization between the and the

medium,

Sef f = �
0

�

�
m

am
† ���� �

��
+ Em

cluster − ��am���

+ �
0

�

d��
0

�

d�� �
mnm�n�

am
† ���an���

�Dmnn�m�
�� − ���an�

† ����am�
���� �17�

denoted here by

Dm1m2m3m4
�i�� = �

K

�FK†�m1m2
�� K�i���FK�m3m4

−
1

2
�SK�m1m2

�0
−1

K�i���SK�m3m4
, �18�

where

�FK�mn = �m��� K�n = � �m�cK↑�n�

�m�c−K↓
† �n�

� , �19�

�SQ�mn = �m�SQ�n� . �20�

Note that the effective hybridization D combines both the

fermionic ��� K� and bosonic baths ��0 K
−1 � into the total effec-
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FIG. 2. �Color online� Comparison between the local spectral

function computed in C-DMFT and in DCA with NCA used as

impurity solver.
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tive Weiss field felt by the cluster eigenstates �pseudopar-

ticles�. We used Lagrange multiplier � to enforce the con-

straint �16�.
The continuous time quantum Monte Carlo method

samples over the diagrams generated by expanding the ac-

tion �D	a†a
exp�−Scluster−�S� with respect to effective hy-

bridization �S. Here, �S stands for the second term in Eq.

�17�. The probability to visit each diagram is proportional

to its contribution to the partition function, which is

computed by explicit evaluation of the cluster trace

�D	a†a
e−Scluster�−�S�k /k!, keeping only a single pseudopar-

ticle in the system at each moment in imaginary time. In this

way, the constraint Q=1 is explicitly taken into account. For

more details, see Ref. 57.

In the diagrammatic method, the constraint Q=1 is im-

posed by letting the Lagrange multiplier � approach infinity.

The physical observable can then be computed using Abri-

kosov’s trick77 �A�Q=1=lim�→�

�QA�

�Q� .

The coupling of the cluster to the medium, which simu-

lates the rest of the lattice, causes the cluster eigenstates to

decay in time. Therefore, their spectral functions carry non-

trivial frequency dependence and important information

about various physical processes such as the Ruderman-

Kittel-Kasuya-Yosida �RKKY� interactions, the Kondo ef-

fect, and d-wave superconductivity. The corresponding

pseudoparticle Green’s function can be written in the form

Ḡmn��� = �� + � − Ecluster − �̄�mn
−1 , �21�

where �Ecluster�mn= �Ecluster�m�nm is the energy of the cluster

eigenstate and � is the Lagrange multiplier which will be set

to infinity at the end of the calculation.

Although hybridization is a small quantity compared to

other scales in the problem, the perturbation is singular in the

sense that at zero temperature an infinite number of diagrams

substantially contribute to the solution of the problem. In

Ref. 57 we showed a histogram �a distribution of the pertur-

bation order� which is peaked around �Ekin� /T, where Ekin is

the average kinetic energy and T is the temperature. An in-

finite resummation of diagrams is, thus, necessary, and the

noncrossing diagrams are simplest to compute.

Just like in the single site Anderson and Kondo impurity

problem,58,60 the noncrossing approximation works well

down to some breakdown temperature, which is slightly be-

low the superconducting transition temperature. Although

NCA is not exact, this approximation has the virtue of di-

rectly yielding real frequency information. In Fig. 3, we

present a typical comparison of the two impurity solvers on

the imaginary axis for the cluster Green’s functions of the t-J

model in the normal state close to TC. This comparison illus-

trates the degree of agreement within the two solvers on the

imaginary axis. Notice that all the qualitative features of the

evolution of the Green’s functions with doping are seen in

both methods. Therefore, we will use in this work the strat-

egy of combining information from different solvers in order

to draw conclusions as to the physical picture contained in

the solution of the cluster DMFT equations of the t-J and

Hubbard models, thus, avoiding the difficult problem of ana-

lytic continuation of imaginary time QMC data.

In the noncrossing approximation, the pseudoparticle self-

energies are computed from

�̄m�m�i�� = T �
i	,nn�

Ḡn�n�i	��Dnmm�n�
�i	 − i��

− Dm�n�nm�i� − i	�� , �22�

while the physical quantities such as Green’s function and

susceptibility are obtained by the functional derivative of the

NCA Luttinger functional with respect to the hybridization

term and are given by

G� K�i�� = − T �
i	,mnm�n�

�FK�m�n�
Ḡn�n�i	�Ḡmm�

�i	 − i���FK†�nm,

�23�

�Q
���i�� = T �

i	,mnm�n�

�SQ
� �m�n�

Ḡn�n�i	�Ḡmm�
�i	 − i���S−Q

� �nm.

�24�

The above equations can be projected to the physical sub-

space Q=1 only on the real axis. In the limit �→�, they

take the form

�̄m�m��� = �
K,nn�

� d�f���Ḡn�n�� + ���D̂nmm�n�
���

+ D̂m�n�nm�− ��� , �25�

G� K��� = �
mnm�n�

�FK�m�n�
�FK†�nm

�� d�e−��	Ḡn�n�� + ��Ĝmm�
���

− Ĝn�n���Ḡ
mm�

* �� − ��
 , �26�
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FIG. 3. �Color online� Comparison of NCA and CTQMC

Green’s functions on the imaginary axis for several doping levels.

We used real space C-DMFT.
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�Q
����� = �

mnm�n�

�SQ
� �m�n�

�SQ
� �nm

�� d�e−��	Ḡn�n�� + ��Ĝmm�
���

+ Ĝn�n���Ḡ
mm�

* �� − ��
 . �27�

Here, we used the following notation:

D̂��� = −
1

2�i
	D�� + i�� − D�� − i��
 , �28�

Ĝ = −
1

2�i
	Ḡ�� + i�� − Ḡ�� − i��
 . �29�

The pseudoparticle quantities �Green’s functions Ĝ and self-

energies �̂� exponentially vanish below a certain threshold

energy �they have x-ray singularity�, which can be inter-

preted as the effective energy of the many-body state associ-

ated with the pseudoparticle. These thresholds can be re-

moved by defining new quantities without threshold,78 i.e.,

G̃�	� = Ĝ�	�/f�− 	� , �30�

�̃�	� = �̂�	�/f�− 	� . �31�

Using these quantities, we can rewrite the NCA equations as

�̃m�m��� = �
K,nn�

� d�
f�� − ��f�− ��

f�− ��
G̃n�n����D̂nmm�n�

�� − ��

+ D̂m�n�nm�� − ��� , �32�

Im G� K��� = − � �
mnm�n�

�FK�m�n�
�FK†�nm� d�

f�� − ��f�− ��
f�− ��

�G̃n�n���G̃mm�
�� − �� , �33�

Im �Q
����� = − � �

mnm�n�

�SQ
� �m�n�

�SQ
� �nm� d�

f�� − ��f�− ��
b�− ��

�G̃n�n���G̃mm�
�� − �� . �34�

At zero temperature, the combination of the Fermi functions
f�−��f��−��

f�−�� =
f���f��−��

f��� is equal to unity in the interval

	min�0,�� ,max�0,��
 and zero outside.

These equations relate physical observables, such as GK

and �Q, to the pseudoparticle spectral functions. The latter

represent coarse-grained versions of the important many-

body excitations of the system including fermionic quasipar-

ticles and bosonic collective modes. They have quantum

numbers describing their spin, number of particles �which

when divided by the cluster size gives the density�, and

coarse-grained momentum.

Relating several experimental observables such as photo-

emission spectra, tunneling spectra, and optical spectra to the

same set of pseudoparticle spectral functions gives additional

insights into the important excitations of the system.

III. CLUSTER ONE-PARTICLE GREEN’S FUNCTION,

CLUSTER SELF-ENERGY, AND SCATTERING RATE

In this section, we discuss cluster quantities. As discussed
in Sec. II, in both C-DMFT and DCA formalism, local quan-
tities, such as cluster self-energies and cluster Green’s func-

tion, are diagonal in the cluster momentum basis. Conse-

quently, the physical behavior of the system within the

cluster DMFT approach on a plaquette can be summarized in

the four cluster quantities �00, ��0, �0�, and ���, corre-

sponding to the eigenvalues of the matrix containing on-site,

nearest-neighbor, and next-nearest-neighbor cluster self-

energy introduced in Ref. 48. These cluster self-energies in

the cluster momentum basis should not be interpreted as the

lattice self-energies evaluated at four momentum points.

In the next few figures, we present low temperature self-

energies for the t-J model on the imaginary axis obtained

using the CTQMC impurity solver. Figure 4 contains the

data in the normal state, and Fig. 5 the same quantities deep

in the superconducting state.

Starting from the low temperature T=0.01t normal state

solution shown in Fig. 4, one notices large momentum dif-

ferentiation at small doping. The three orbitals evolve very

differently with changes in doping and temperature, as we

will show in the following. The �0, 0� component has Fermi-

liquid frequency dependence with relatively small scattering

rate at zero frequency and small monotonic decrease of the

real part of the self-energy with increasing doping. The two

degenerate orbitals �0,�� and �� ,0� are distinctly different

from the �0, 0� orbital. The scattering rate around optimal

doping 0.12���0.22 remains large �of order unity� even

below the transition to superconducting state T�0.01t. We

notice in passing that it becomes increasingly difficult to

converge the C-DMFT equations in the metastable normal

state around optimal doping. Critical slowing down is ob-

served, which might be a signature of local �cluster� instabil-

ity, which might occur at zero temperature and might even

preclude the continuation of a translationally invariant nor-

mal state solution down to zero temperature.

The ���� self-energy in Fig. 4 is by far the largest among

all four and, except at very small and very large doping, it

does not show any signature of coherence. At ��0.1, it has

a clear pole at zero frequency. From the above plot, we can

see that a pole is on the real axis, and it is located above the

Fermi level at small doping, crosses the Fermi level around

��0.1, and finally, becomes negative in the optimal and

overdoped regimes. A very sharp pole on the real axis de-

scribed above is, indeed, confirmed by the NCA calculation.

The consequence of the pole in self-energy is the appearance

of zeros of the Green’s function as discussed in Ref. 43.

Physically, it means that some states in momentum space are

damped and gapped even at very low temperature. Figure 5

at lower temperatures shows that this behavior persist to tem-

peratures much lower than TC. Hence, even in superconduct-

ing state, the large Luttinger Fermi surface is not recovered.

The antinodal fermions are strongly damped and gapped

even in the superconducting state. This is related to the oc-

currence of Fermi arcs and lines of zeros of the Green’s

function79 as noticed in Refs. 43, 44, and 80. This phenom-

enon was first noticed in microscopic studies of coupled
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ladders,81,82 and related proposals also appeared in recent
phenomenological models of high TC’s.83–85 However, in
these studies, the location of the lines of zeros is tied to the
umklapp surface, while in the cluster DMFT, the lines of
zeros is a dynamical object which evolves in a highly non-
trivial way with doping.

The pole in ���� self-energy crosses the Fermi level at a

critical doping �or at least becomes very large at low ener-

gies� that we denote by �1
c. The existence of a pole in the

self-energy appears also in the Hubbard model with an im-

portant difference. In the Hubbard model, the pole is always

below EF and, therefore, this “critical” doping �1
c is zero. We

also want to mention that at small U=6 �below the Mott

transition of the undoped system� in the Hubbard model, the

above mentioned pole seems to be absent or at least substan-

tially reduced. This substantiates the idea that the lines of

zeros in the Green function appear only above a critical cou-

pling.

Figure 5 shows cluster self-energies at a lower tempera-

ture, i.e., T=0.005t in the superconducting state. The �0, 0�
orbital does not change very dramatically except that it be-

comes more coherent. On the other hand, the �� ,0� orbital

does show a dramatic effect. The huge scattering rate is now

replaced by the large anomalous component of the self-

energy, while the scattering rate is severely reduced. The

peak in anomalous self-energy seems to track TC and coin-

cides with the point of maximal scattering rate in the normal

state. We will call this doping �2
c since it corresponds to the

avoided critical point identified in Ref. 50. Finally, the �� ,��
component of the self-energy sharpens with reducing tem-

perature, and the pole at �1
c �0.1 is even more apparent. This

result is quite surprising because the superconducting state is

expected to be more coherent. As we show above, coherence
is only restored in three of the four orbitals, while the ����
orbital remains gapped. Hence, the Fermi surface underlying
the normal state does not contain the Luttinger volume at
small doping.

In Figs. 6 and 7, we show the cluster Green’s functions of
the t-J model in the normal state and the superconducting
state at lower temperatures. The cluster Green’s functions
describe a coarse-grained average of the lattice Green’s func-

tion over some parts of the Brillouin zone. It is evident from

Fig. 6 that the �� ,0� orbital contains most of the spectral

weight �largest imaginary part of G�0� over the whole doping

regime considered here. The �� ,�� orbital is clearly gapped

since the real part of the self-energy is too big to pick up any

states inside the band as was previously observed in the ex-

tended DMFT study of the same model.59,60 The important

message is contained in the real part of �� ,0� cluster Green’s

function. The real part measures the particle-hole asymmetry

of the orbital. It would vanish if the orbital is perfectly

particle-hole symmetric. As one can see in Figs. 6 and 7, the

�� ,0� orbital has “more weight” below EF in the underdoped

regime and more weight above EF in the overdoped regime.

Remarkably, it becomes almost particle-hole symmetric in

the region of optimal doping. The exact point of particle-hole

symmetry is close to �0.18, which is just slightly above the

point of maximal TC and maximal anomalous self-energy.

Figure 7 demonstrates that this remarkable symmetry persists

even in the superconducting state, where the gap appears in

all the orbitals.

We now compare the previous findings with the corre-

sponding quantities in the Hubbard model displayed in Figs.

8, 9, 11, and 12. The Hubbard model at U=12t has roughly

FIG. 4. �Color online� C-DMFT cluster self-energies of the t-J model using CTQMC as the impurity solver. Temperature T=0.01t and

system is in the normal state. Notice that �00 is Fermi-liquid-like �imaginary part vanishes at zero Matsubara frequency below the coherence

temperature� in the whole range of doping, ��0 is Fermi liquid in the overdoped and underdoped regimes, while the scattering rate remains

of the order of unity in the optimally doped regime. Finally, ��� is by far the largest self-energy. Its real part is so large that the orbital is

gapped in all doping ranges considered. The scattering rate is enormous and a pole appears on the real axis around �=0.1. The pole is above

EF at very small doping, crosses EF at �=0.1, and goes below EF for optimally doped and overdoped regimes. This causes a sign change of

the real part of ���. The ���� orbital is, thus, in the Mott-insulating state in most of the doping ranges considered.
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FIG. 6. �Color online� C-DMFT cluster Green’s functions at T=0.01t in the normal state of the t-J model obtained by CTQMC. The real

part of the Green’s function vanishes for particle-hole symmetric situation, while it is positive when the spectral weight below EF has the

“largest weight” and vice versa. The �0,0� orbital does not change much with doping and remains close to half-filling. The �� ,0� orbital gives

most of the weight at the Fermi level �has largest imaginary part at zero frequency� and remarkably becomes particle-hole symmetric at the

doping level slightly larger than the optimally doped level ��=0.18�. The �� ,�� orbital is gapped for all doping levels.

FIG. 5. �Color online� Same as in Fig. 4 but at lower temperature T=0.005t in the superconducting state. The bottom row shows the

anomalous self-energy. The �0,0� orbital barely changes in the superconducting state. On the other hand, the large scattering rate in �� ,0�
orbital is severely reduced in the superconducting state and the orbital becomes Fermi-liquid-like. The large scattering rate in the normal

state is now replaced by a large anomalous component of self-energy �peaked around ��0.15, see Fig. 18�. Finally, the pole in �� ,��
self-energy sharpens and the orbital remains Mott-insulating in most of the doping ranges considered. A pole of the cluster self-energy is

accompanied by a line of zeros of the Green’s functions in certain parts of the momentum space �Refs. 43 and 44� and persists in the

superconducting state.
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the same superexchange as the one used in the previous

study of the t-J model, J�0.3t, and therefore, we expect a

similar physical behavior. We will demonstrate below that,

indeed, this is the case, and we will highlight some quanti-

tative differences between the two models, such as the nu-

merical values of the critical dopings for cluster quantities �1
c

and �2
c.

Figure 8 shows the four cluster Green’s functions at T

=0.01t in the normal state. When the off-diagonal long-range

order is allowed, the system starts to develop anomalous

components in the optimally doped regime at this tempera-

ture, just like in the t-J model at the same temperature. In the

metastable normal state, the �0, 0� orbital is again the most

coherent orbital and is not very sensitive to doping. On the

other hand, the �� ,0� orbital is clearly coherent for small and

large doping and the scattering rate around ��0.1 is of the

order unity. The point of maximum scattering rate and maxi-

mum anomalous self-energy in the Hubbard model is, how-

ever, slightly shifted toward lower doping �relative to the t-J

model�, i.e., �2
c �0.1.

The �� ,�� orbital is again the one with the largest self-

energy and scattering rate. In the Hubbard model, the pole on

the real axis crosses zero exactly at zero doping; hence, �1
c

=0. However, even at optimal doping �0.1, the real part of

the self-energy is so large that the orbital is almost com-

pletely gapped.

Figure 9 demonstrates that the pole in ��� does not dis-

appear in the superconducting state. This was also the case in

the t-J model, and it is, therefore, a robust feature of the

approach to the Mott insulator within CDMFT. The physical

interpretation is that part of the underlying Fermi surface

remains gapped even in the superconducting state. The �� ,0�
orbital becomes coherent when entering the superconducting

state. Its imaginary part, at low frequencies, is maximal

around �2
c.

The cluster self-energies in the cluster site representation

contain useful information about the range. For example, it

has been argued that near the Mott insulator, they become

long ranged, while the cluster cumulant remains short

ranged.43,44 In Fig. 10, we show the on-site, nearest-

neighbor, and next-nearest-neighbor self-energy, the actual

output of the C-DMFT scheme. These are related to the ei-

genvalues shown above through the following linear rela-

tions:

�R=�0,0� =
1

4
��00 + ��0 + �0� + ���� , �35�

�R=�1,0� =
1

4
��00 − ��0 + �0� − ���� , �36�

�R=�0,1� =
1

4
��00 + ��0 − �0� − ���� , �37�

�R=�1,1� =
1

4
��00 − ��0 − �0� + ���� . �38�

FIG. 7. �Color online� C-DMFT cluster Green’s functions of the t-J model at T=0.005t in the superconducting state obtained by

CTQMC. Superconducting gap opens, in particular, in the �� ,0� orbital. Particle-hole symmetry of this orbital is again evident from the real

part of the Green’s function being close to zero around optimal doping �blue curve with triangles pointing right�.
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On the heavily overdoped side of the Hubbard model, �
�0.16, presented in Fig. 10, it is clear that the only relevant

quantity is the on-site self-energy, which justifies the use of

the single site DMFT in the overdoped site of the system. In

the underdoped regime, however, the nearest-neighbor and

next-nearest neighbor self-energies are large and give rise to

FIG. 9. �Color online� Similar to Fig. 8 but at lower temperature T=0.005t in the superconducting state. Just like in the t-J model, the

�� ,0� orbital, which is representative of the nodal part of the self-energy, becomes coherent in the superconducting state and the anomalous

self-energy is largest around ��0.1, where the scattering rate is largest in the normal state. The �� ,�� self-energy sharpens with decreasing

temperature just like in the Hubbard model, showing that this orbital is in the Mott-insulating state in the underdoped and optimally doped

regimes.

FIG. 8. �Color online� Hubbard model cluster self-energies in C-DMFT obtained by CTQMC at T=0.01t and U=12t in the normal state.

Just like in the t-J model, the �0,0� orbital is Fermi-liquid-like in the whole doping regime, while the �� ,0� orbital is coherent only in the

underdoped and overdoped regimes. At optimal doping �in the Hubbard model, optimal doping is around ��0.1�, the scattering rate is

largest. The important difference appears in the �� ,�� orbital. The �� ,�� self-energy is the largest self-energy of the system just like in the

t-J model. Contrary to the t-J model, the pole in the �� ,�� self-energy on the real axis, which appears in the t-J model around �=0.1, is now

at zero doping. The self-energy of the �� ,�� orbital, thus, monotonically grows when approaching the Mott insulator.
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qualitatively different results than those of a single site
DMFT. They renormalize the nearest-neighbor and next-
nearest-neighbor hoppings and induce a substantial next-
nearest-neighbor hopping even for the model with vanishing
bare t�. Furthermore, they distort the Fermi surface and cause
variation of coherence across the Fermi surface as we will
show below.

Finally, the cluster Green’s functions for the Hubbard

model are shown for two temperatures T=0.01 and T

=0.005 in Figs. 11 and 12 at U=12t. Again, we notice quali-

tatively similar behavior than those found in the t-J model.

The �� ,�� orbital is gapped in both normal and supercon-

ducting states. The �� ,0� orbital contains most of the spec-
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FIG. 10. �Color online� The on-site and short-range self-energies of the Hubbard model in the superconducting state at T=0.005t. The

on-site self-energy is the largest, and its imaginary part vanishes for all finite dopings. The reason is that the pole in the �� ,�� self-energy

is now at zero doping. The nonlocal components of the self-energy vanish rather rapidly with doping.

FIG. 11. �Color online� Hubbard model Green’s function in the normal state at T=0.01t. The physics is the same as in Fig. 6 for the t-J

model. The only difference is that the particle-hole symmetric point of the �� ,0� orbital appears around ��0.12, which is again slightly

above the optimally doped level.
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tral weight and becomes particle-hole symmetric slightly
above optimal doping around, i.e., ��0.12. This particle-
hole symmetry persists in the superconducting state.

We now turn to the real frequency information. In most of
what follows, we show results for the t-J model, except
when explicitly stated otherwise.

Figure 13 shows the evolution of the CDMFT cluster

spectral functions as a function of frequency for a few dop-

ing levels. Notice that due to symmetry, �� ,0� and �0,��
spectral functions coincide. At zero doping �not shown�, all

four orbitals are half filled and the system is in Mott-

insulating state.

Upon doping the system, the �� ,�� orbital is emptied

first, but in a very unusual way. Although its occupancy be-

comes much smaller than unity and, therefore, one would

naively expect a large number of hole carriers in this band, it

remains basically gapped for arbitrary doping as we have

established above on the basis of the CTQMC results. This is

very unusual since one naively expects the orbital to be

gapped only at an integer filling. Only at very large doping,

��0.3, the self-energy of this orbital approaches the other

three self-energies so that the self-energy becomes momen-

tum independent and, therefore, local. At this large doping,

the �� ,�� orbital is essentially empty and we can think of

this orbital as an Anderson impurity model in the empty

orbital regime.

The �0, 0� orbital is also very inert in the whole doping

range. Its density of states at the Fermi level is small, while

its occupancy only slightly decreases with increasing doping.

The orbital remains close to half-filling with very small num-

ber of charge carriers induced in this band.

Finally, the �0,�� 	and �� ,0�
 components have sharp

spectral features with very strong doping dependence. In go-
ing from �=0.3 to �=0.1, we observe the narrowing of the
quasiparticle width reminiscent of the single site DMFT;
however, a qualitative feature of CDMFT is that at smaller
dopings this narrowing of the width is arrested, as a result of
the presence of exchange effects as seen in slave boson
studies86 and in the large N limit of the t-J model.87

At low doping, the spectral function develops a

pseudogap on the scale of J, with most of the coherent spec-

tral weight below the Fermi level and a small fraction of it

above the Fermi level. This is a general feature of the ap-

proach to the Mott transition in cluster DMFT, and has been

seen in earlier studies.41,42,45,59,60

The important message contained in Fig. 13 is that the

momentum differentiation at small doping is very large. The

�� ,�� orbital remains gapped at all dopings. It is in the

Mott-insulating state at low doping and becomes empty in

the overdoped regime; hence, it undergoes a band insulator

to Mott insulator transition with decreasing doping. Most of

the dynamical information of the active degrees of freedom

representing the electrons close to the Fermi surface of the

lattice model is, however, contained in the �0,�� and �� ,0�
components.

The frequency dependence of the cluster �� ,0� self-

energy and its evolution with doping on the real axis is

shown in Fig. 14. At small doping, the holelike scattering

rate ���0� is large, while the electronlike rate ���0� is

small. Around optimal doping, the self-energy is roughly lin-

ear in frequency, however, with large zero-frequency value.

In this regime, there is still a large particle-hole asymmetry

FIG. 12. �Color online� Similar to Fig. 11 but for lower temperature T=0.005t in the superconducting state.
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in the scattering rate. While the holelike part is linear with a

relatively small slope down to �=−0.5t, the electron part is

increasing only in the small region up to �=0.15t with larger

slope. Only in the strongly overdoped system does the self-

energy become roughly particle-hole symmetric at low fre-

quency. This particle-hole asymmetry in scattering rate can

be contrasted with the approximate particle-hole symmetry

in the one-particle Green’s function at optimal doping. The

combination of the real part of the self-energy and the band

structure leads to approximate recovery of this symmetry in

the local one-particle spectra at optimal doping although it is

absent in the scattering rate.

Zero-frequency quantities

Further insight into the nature of the CDMFT solution can

be obtained by examining the cluster self-energies at zero

frequency. In Fig. 15, we display the CTQMC self-energy for

the t-J model at the lowest Matsubara frequency as a func-

tion of doping. In the overdoped side, the real parts of all

four self-energies merge; therefore, the self-energy becomes

local. The single site DMFT is adequate. The coherent qua-

siparticle peak at the Fermi level is formed and arises mainly

from the �� ,0� orbital. The reason is that the noninteracting

density of states for �0, 0�, �� ,��, and �0,�� orbital extends

roughly between 	−4t ,0
, 	0,4t
, and 	−2t ,2t
, respectively

�see Fig. 1�. For the momentum independent self-energy, the

Friedel sum rule dictates that the effective chemical potential

�−��0� is at the corresponding noninteracting chemical po-

tential �0, which is slightly below zero frequency. The �� ,��
orbital is, therefore, empty, being band insulator like. At

smaller doping, this orbital acquires an enormous real part of

���0�, which pushes the effective chemical potential �
−���0� far below the band edge of the tight-binding Hamil-

tonian. This orbital is, therefore, in the Mott-insulating state

for smaller dopings. The insulating state in this orbital does

change the nature from bandlike to Mott-like insulator.

For the �0, 0� orbital, the effective chemical potential is

close to its upper band edge. The noninteracting density of

states at the band edge for this orbital is small �see Fig. 1�,
and only a very small number of charge carriers are doped

into the orbital. Therefore, it remains close to a Mott-

insulating state with small scattering rate at the Fermi level.

The �� ,0� orbital is slightly less than half filled in the

doping range considered here, and the real part of the self-

energy smoothly increases with doping �see Fig. 15� such

that the effective chemical potential �−���0� is positive in

the underdoped side �carriers are holelike� and negative in

the overdoped side �carriers are electronlike�. Close to opti-

mal doping, effective chemical potential is close to zero,
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FIG. 13. �Color online� Evolution of the EC-DMFT cluster

spectral functions of the t-J model with doping in the normal state

at T=0.025t�TC, using NCA as an impurity solver. The upper

panel shows the spectra in the interval between 	−8t ,4t
, where the

Hubbard band is clearly observed. The lower panel shows the re-
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which makes the orbital approximately particle-hole sym-

metric at low frequency �see Fig. 13�.
The �� ,�� self-energy acquires a pole on the real axis

around �1
c �10% doping, which can be identified in Fig. 15

as a divergent point of ���� �0� and zero of ���� �0�.
Figure 16 describes the low energy phase shift in each

orbital. It is defined by �K=arg(GK�i0+ �). Phase shifts are

defined mod �. Notice two important features: at very small

doping, the phase shifts in all channels are close to zero.

They confirm the picture suggested in Ref. 50, in which the

cluster degrees of freedom are weakly affected by the sur-

roundings. It is reminiscent of the RKKY phase of the two

impurity Kondo model. The system reaches the unitarity

limit, as the phase shift crosses � /2 in the �0,�� channel

near �=0.18. This is because the real part of the cluster

Green’s function at zero frequency vanishes around optimal

doping as shown in Figs. 6 and 7.

The indication for the existence of an anomaly around �2
c

is seen most clearly in the imaginary part of the real fre-

quency electron self-energy at �0,��, evaluated at zero fre-

quency. We display EDCA-NCA calculations of it in the up-

per panel of Fig. 17. At large and small doping, the scattering

rate is small as expected for a Fermi liquid. Remarkably, it
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becomes very large in the region near optimal doping when

the critical temperature is maximal. This doping point corre-

sponds to the above defined critical doping �2
c, which is in

NCA around 0.18. The transition to the superconducting

state, severely reduces the scattering rate, eliminating the

traces of the underlying critical behavior. A coherence scale,

estimated from the scattering rate, is plotted in the bottom

panel of Fig. 17 and is shown to have a tendency to vanish

close to the point of maximal superconducting transition

temperature.

Figure 18 shows the CTQMC results for the scattering

rate within CDMFT and confirms the incoherence of the op-

timally doped system. The imaginary part of the self-energy

at the first Matsubara point is small for both the underdoped

and overdoped systems, while it is peaked at optimal doping.

The peak is slightly shifted with temperature and, if the nor-

mal state is continued below the superconducting transition

temperature, the peak of scattering rate coincides with the

maximum of the anomalous self-energy, which traces the

maximum of the transition temperature �see Fig. 19�. The

scattering rate is severely reduced in the superconducting

state when off-diagonal long-range order is allowed in the

calculation.

IV. SUPERCONDUCTIVITY, TUNNELING DENSITY OF

STATES, FERMI ARCS, AND NODAL

QUASIPARTICLES

The superconducting state is characterized by an order

parameter �ck↑c−k↓�=Fk��=0� and by the presence of a fre-

quency dependent anomalous component to the self-energy.

In Nambu notation, the self-energy in �� ,0� and �0,�� or-

bitals takes the following form:
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�� K�i�� = ��K↑�i�� �K
an�i��

�K
an�i�� − �−K↓�− i��

� �39�

and the corresponding Green’s function is

G� K�i�� = �GK↑�i�� FK�i��

FK
† �i�� − G−K↓�− i��

� . �40�

The sign of the anomalous components chosen by the system

is ��0
an =−�0�

an . Within C-DMFT, this is precisely the nearest-

neighbor self-energy and its lattice analog �using the original

C-DMFT periodization69� takes the form �k=
1

2
�cos kx

−cos ky��0�
an .

The anomalous self-energy ��0
an is plotted in Fig. 19. The

upper part of the figure shows the CTQMC results within

C-DMFT, while the lower part shows the NCA results within

EDCA. In both cases, the function is monotonically decreas-

ing with imaginary frequency and is largest at optimal dop-

ing. Furthermore, at the low values of the Matsubara fre-

quency, the anomalous self-energy exhibits a fast upturn and

sublinear frequency behavior that becomes less pronounced

as the doping is reduced. This trend is likely due to the

reduction of density of states in the pseudogap region.

The anomalous self-energy obeys a spectral representa-

tion

�k
an�i�n� = �k

an��� −� d�

�

Im �k
an���

i�n − �
.

The infinite frequency value of the self-energy vanishes in

the Hubbard model but is nonzero in the t-J model, and is

related to the order parameter of the system Fq��=0�
through the following exact relation:

�k
an��� = −

3

�1 + ��2�
q

Jk−qFq�� = 0� , �41�

where Fq��=0�= �cq↑c−q↓�.
Notice that simpler mean-field theories of the t-J model

such as the slave boson mean-field theory88 assume only the

static, frequency independent anomalous self-energy. Other

approaches based on the equation of motion for the Hubbard

operators89 capture a frequency dependent order parameter
but neglect the static infinite frequency component. A similar
analysis of the pairing interaction has recently been carried
out for the ladders in Ref. 90.

The existence of a finite value of the anomalous self-
energy of the t-J model at infinite frequency should be inter-
preted as the existence of a nonzero value for anomalous
self-energy in the Hubbard model at a scale of the order U.

The value of the anomalous self-energy at zero frequency
and low temperature, and the gap �defined as the distance
between the positive and negative energy peaks in the tun-
neling density of states divided by 2� are similar in all ver-
sions of the cluster DMFT. For the parameters used in our
study �J / t=0.3, near optimal doping�, the anomalous self-
energy is of the order of unity at low temperature �see the
upper panel of Fig. 19�.

On the other hand, TC, the superconducting order param-
eter, and the value of anomalous �an��� are more sensitive

quantities and differ between the various cluster schemes.
The schemes with higher TC �extended versions of CDMFT�
show slower decrease of the anomalous self-energy, larger
infinite frequency component of the anomalous self-energy,
and larger value of the superconducting order parameter. In
C-DMFT, the maximum value of the order parameter is
around 0.02 �see Fig. 20�, which is approximately eight
times smaller than the maximum achieved in EDCA. Conse-
quently, the static pairing in C-DMFT is very small, while it
reaches almost 1 /3 in extended versions of the cluster
DMFT �both in EDCA and in EC-DMFT�, i.e., the magni-
tude of the anomalous self-energy at infinity as compared to
the value at zero shown in Fig. 19.

From the anomalous Green’s function, we can extract the
order parameter, i.e., the anomalous Green’s function at

equal time F�0��=0�. The order parameter versus doping as

obtained by the CTQMC and C-DMFT is shown in Fig. 20.

It has a domelike shape and tracks the value of the critical

temperature, just like in BCS theory. In the same figure, we

also display critical temperature TC at optimal doping. Due

to a critical slowing down in the region of transition, many

DMFT iterations are needed to determine the critical tem-

perature.

The temperature dependence of the related quantity, the

anomalous self-energy at infinity, computed with NCA is

0.00 0.05 0.10 0.15 0.20 0.25

δ

0.005

0.010

0.015

0.020

↑
� k

↓
� k

−
�

c
c�

CT

cT5.0=T

FIG. 20. �Color online� Order

parameter in C-DMFT computed

with CTQMC at T=0.5Tcmax. The

critical temperature �in units of t�
for a few doping values is also

displayed.
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shown in Fig. 21. It has a clear BCS-like temperature depen-

dence, saturating to a value of the order of �0.3, which is

around 1/3 of the zero-frequency value.

Using NCA, we can examine directly ����� and ����� on

the real axis. There are several features in the frequency

dependence of the anomalous self-energies depicted in Fig.

22 which exhibit noticeable departures from the standard

Migdal-Eliashberg theory of superconductivity. First, the real

part of the self-energy does not change sign. This indicates
that the interaction is attractive over the whole frequency
range. There is no characteristic energy corresponding to
�Debye, where the interaction turns from attractive to repul-
sive. Furthermore, the spectral function displays significant
spectral weight not only at a scale of order J but also at the
scale of order t, extending all the way to very high frequen-
cies. Several scales can be clearly identified in the anomalous
self-energy: the size of the superconducting �SC� gap in one-

particle spectra �0.1t �see Fig. 25 and the discussion of the

figure later in this section�, the spin exchange J, the hopping

t, and a scale of the order of half the bandwidth �3t.

It is useful to momentum resolve the one-particle spectra

at low energies to understand the origin of the low energy

quasiparticle excitations in the system. This requires the

choice of a periodization scheme. For simplicity, we use the

cumulant periodization scheme introduced in Refs. 23, 43,

and 44. A more detailed discussion of the periodization prob-

lem will be given elsewhere.91 Here, we focus on the tem-

perature dependence, which requires the finite temperature

techniques described in this paper.

The results are shown in Fig. 23. As shown in earlier

works,47,48 C-DMFT is able to produce Fermi arcs in the

nodal region. The advantage of the CTQMC technique rela-

tive to other solvers is that it allows one to investigate,

within CDMFT, the temperature dependence of the arcs. As

shown in Fig. 23, the Fermi arcs shrink with decreasing tem-

perature, reminiscent of recent experiments92 on cuprates.

The physical mechanism for the formation of the arcs, and

their shrinking with decreasing temperature, is the shift in

the real part of the momentum dependent self-energy, which

is enhanced in the cumulant periodization. While the validity

of this periodization down to zero temperature, with the con-

sequent formation of lines of zeros and Fermi pockets, is at

this point a conjecture that deserves further study, there is no

question that the formation of the arc and their temperature

dependence, at finite temperatures, are robust properties of

the cellular DMFT treatment and are visible in other peri-

odizations. Therefore, the results of this paper together with

the earlier zero temperature results of Ref. 43 are consistent,

at the qualitative level, with both the recent De Haas–Van

Alven measurements93 and photoemission measurements.92
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With decreasing temperature, the Fermi arcs evolve into a
small pocket at a finite distance from a line of zeros, which
darkens one side

The arcs are increased with doping and they develop into
a banana shape structure. The Fermi surface at optimal dop-
ing in the superconducting state is displayed in Fig. 24. No-
tice the sharp quasiparticles in the nodal region and a gap in
the antinodal region.

We now turn to another observable, the superconducting
tunneling density of states and its doping dependence dis-
played in Fig. 25. This quantity has been extensively inves-
tigated experimentally.4 On a broad energy scale, there is
considerable particle-hole asymmetry in those curves, and

the positive frequency part decreases as we underdope. This

is expected on very general grounds for a doped Mott

insulator.94–98

Remarkably, around optimal doping, ��0.18, the curves

are more particle-hole symmetric at low frequencies. The

asymmetry in the superconducting state evolves from the

asymmetry of the underlying normal state. To confirm this,

we plot the density of states of the underlying normal state

with dashed lines in the lower panel of Fig. 25. It is clear

from Fig. 25 that the same magnitude of the asymmetry in

the superconducting tunneling density of states is present in

the normal state local density of states.

The low energy slope of the tunneling density of states is

only weakly doping dependent, as was shown in the CDMFT

exact diagonalization study of the Hubbard model.51

Besides the considerable particle-hole asymmetry at low

doping, there are several features in Fig. 25 which are in

qualitative agreement with experiments,9 for example, the

dip-hump feature in the tunneling density of states in the

unoccupied part of the spectra.

Another surprising aspect of the tunneling is that the in-

crease in the gap with decreasing doping is correlated with a

decrease in the intensity of the coherence peaks. This is the

opposite of what is expected for a BCS superconductor,

where the growth in coherence peaks correlates with an in-

crease in the superconducting gap. This observation can also

be understood in terms of the two gap picture. The gap in the

tunneling density of states �maximum between the coherence

peaks� is controlled by the gap originating from the normal

component of the self-energy. This gap increases with de-

creasing doping. On the other hand, the degree of coherence

is controlled by the anomalous self-energy, which decreases

with decreasing doping as shown in Fig. 25.

The two gap picture of the cuprates has recently emerged

from the analysis of numerous experiments.99–101 It is also

part of various phenomenological pictures of cuprate

superconductors.81,82,102 This picture has been recently

placed on a microscopic basis by variational cluster approach

studies52 and C-DMFT studies of the Hubbard model.51

In the optimally doped regime, the gap value is of the

order of ��0.09t. This value was obtained from Fig. 25, but

similar values result from analytic continuation of CTQMC

data to real axis. As discussed above, the critical temperature

TC strongly depends on the cluster scheme employed. Using

the maximum TC of each scheme, we can determine the ratio

2� /TC at optimal doping. In EDCA, TC
EDCA�0.036t and

2� /TC�5; in EC-DMFT, TC
EC-DMFT�0.026t and 2� /TC�7,

and TC
C-DMFT�0.01t, therefore 2� /TC�18. In conventional

superconductors described by BCS theory, this ratio is uni-

versally equal to 2� /TC=3.5, but increases in the strong cou-

pling Eliashberg theory. The cluster DMFT superconductiv-

ity is, thus in the very strong coupling limit when compared

to conventional superconductors. Recent experiments on
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Bi2212 �Ref. 103� seem to suggest that the ratio 2� /TC is

close to 8.0, being somewhere between the two limits of

extended and nonextended versions of the CDMFT schemes.

In Figs. 27 and 26, we present some insights into the

nodal quasiparticles of the Hubbard model as obtained from

the CTQMC results shown in Figs. 9 and 12. The self-energy

in the nodal region is obtained from the self-energy

periodization,69 i.e.,

��k� =
1

4
	�R=�0,0� + �R=�1,0� cos kx + �R=�0,1� cos ky

+ cos�kx�cos�ky��R=�1,1�
 . �42�

This allows us to determine the position of the Fermi mo-

mentum �−	kF
−�kF

��=0�=0 and quasiparticle renormal-

ization amplitude Z=1/ 	1−d��kF� /d�
. In Fig. 26, we plot

Znodal and kF along the nodal direction in the superconduct-

ing state, where the coherence is established and quasiparti-

cles are well formed. Fermi surface is close to �� /2 ,� /2�.
The renormalization amplitude Z is very slowly increasing

with doping in the underdoped and optimally doped regimes,

but has a fast upturn once the normal state becomes more

Fermi-liquid-like.

The evolution of the nodal velocities at very low tempera-

tures and its consequences for the superconducting gap in the

nodal and antinodal regions were recently studied in Ref. 51

using exact diagonalization as the impurity solver. Here, we

confirm all the qualitative trends in the doping dependence of

these quantities using the CTQMC solver.

In Fig. 27, we plot the quasiparticle Fermi velocity per-

pendicular to the Fermi surface and the anomalous velocity

parallel to the Fermi surface in the nodal region. The veloci-

ties are defined by

�nodal = Znodal� d	k

dk�

+
d�k

dk�

� , �43�

�� = Znodal

�k
anomal

dk�

. �44�

It is clear from Fig. 27 that the nodal velocity is almost

constant in the underdoped, optimally doped, and lightly

overdoped regimes, compatible with the observation in Ref.

104. The anomalous velocity, however, is domelike shaped
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and tracks the critical temperature. The anomalous velocity

measures the slope of the superconducting gap at the node,

and its downturn in the underdoped regime suggests that the

superconducting gap at the node decreases with decreasing

doping. This surprising result is in accordance with recent

Raman experiments100 and angle-resolved photoemission

measurements,101 showing that the superconducting gap at

the node in the deeply underdoped regime indeed decreases.

V. OPTICAL CONDUCTIVITY

We now turn to the optical conductivity, which we display

in Fig. 28 for the t-J model. This quantity has been investi-

gated both theoretically and experimentally over the past

20 years. For reviews, see Refs. 3, 8, and 10. The integrated

spectral weight is a measure of the number of carriers, and its

evolution with doping has attracted considerable

attention.49,105–112

The starting point of a theory of the optical conductivity is

the Kubo formula,

��i�n� =
1

�n
��p

2��� − e2 �
k�k���

�k
��

k�

�

��
0

�

ei�n��T�ck,�
† ���ck,����c

k�,��

†
ck�,��

�� ,

�45�

where the plasma frequency is evaluated from the expecta-

tion value of the projected kinetic energy, and the operators c

and c† are projected fermions of the t-J model.

In principle, the evaluation of the optical conductivity

within CDMFT requires the evaluation of the vertex func-

tion, since current vertex corrections are nonvanishing in

plaquette C-DMFT. However, for DCA in a plaquette, we

have shown that these corrections vanish.49 This suggests

that as a first step in investigating optical conductivity, we

can neglect current vertex corrections and evaluate the con-

ductivity from a convolution of the Green’s functions,
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FIG. 26. �Color online� Upper panel: doping versus the chemical potential for the Hubbard model at T=0.005t. It shows linear

dependence and downturn at small doping. This could point to a divergence of the compressibility zero doping. Middle panel: The nodal

quasiparticle residue Z versus doping. It is slowly increasing in the underdoped and optimally doped systems and increases rather rapidly in

the overdoped system. Lower panel: Fermi momentum along the nodal direction versus doping.
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���� =
i�p

2

�
−

ie2

�
�
k�

�k
2 � dx

�
f�x�	Gk�x + � + i��Gk��x�

+ Gk��x�Gk�x − � − i�� + Fk
†�x + � + i��Fk��x�

+ Fk
†��x�Fk�x − � − i��
 . �46�

Within C-DMFT, in the regime where the NCA solvers can
be used, the f-sum rule

�
0

�

���x�dx =
�e2

4
�

k,�,�=�x,y�
�d2�k

dk�
2 �nk� �47�

is obeyed within a few percent, suggesting that even for

C-DMFT, where the vertex corrections are nonvanishing, the

corrections introduced by this effect are small. Notice that

the right-hand side of Eq. �47� is proportional to the kinetic

energy of the low energy model if this model contains

nearest-neighbor hopping only.

Formula �46� depends on the momentum dependent

Green’s function and, therefore, on the periodization scheme

used and the cluster method employed. The qualitative fea-

tures discussed in this paper and the behavior of the inte-

grated quantities are common to all methods.

The optical conductivity has been modeled as either a one

component or a two component system via an extended

Drude analysis.113,114 The two component parametrization

consists of a Drude peak and a midinfrared feature.

The cluster DMFT results for the optical conductivity of

the t-J model are shown in Fig. 28. We show the evolution of

the optical conductivity with doping at various temperatures.

In the very underdoped regime, there are clearly two compo-

nents to the optical conductivity with an optical pseudogap,

opening as a function of temperature. On the other hand,

beyond �=0.1, one can describe the optics in terms of one

broad feature which narrows as the temperature is reduced.

It is customary to parametrize the optical conductivity in

terms of a generalized Drude model

���� =
�p

2

4�

1

1

����
+ i�

m*���
m

. �48�

This parametrization relates the real and imaginary parts of

the optical conductivity in a given energy range to two func-

tions
1

�����p
2 and

m*���

m�p
2 via
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1

�����p
2

=
1

4�

��

��
2 + ��

2
, �49�

m*���

m�p
2

=
1

4�

1

�

��

��
2 + ��

2
. �50�

The quantity �p
2 is determined from a requirement involving

the energy range in which the parametrization is used,

namely,

�p
2

8
= �

0

�

�����d� , �51�

where � is the high energy cutoff.

Figure 29 describes the evolution of the plasma frequency

and effective mass versus doping in the t-J model. The

plasma frequency vanishes at half-filling and linearly in-

creases at low doping. The optical mass is weakly doping

dependent and changes from approximately 3 in the over-

doped regime to 5 in the underdoped regime, with the largest

slope at optimal doping. Weak doping dependence of the

effective mass of the same magnitude was pointed out in

Ref. 114.

Given a parametrization of the optical conductivity as a

sum of a few poles, the optical mass measures the ratio of the

total spectral weight compared to the weight in the zero en-

ergy pole, representing the Drude peak. If the transitions be-

tween the upper and lower Hubbard bands of the Hubbard

model are included in �p, i.e., ��U, then �p is finite on

approaching the Mott transition and, consequently, the opti-

cal mass diverges. On the other hand, excluding transitions

between the Hubbard bands results in �p vanishing as the

Mott transition is approached. In the t-J model, the upper

Hubbard band is projected out, therefore the optical mass is

always finite. As long as the transitions into the upper Hub-

bard band are excluded, the plasma frequencies �p of cluster

DMFT and single site DMFT are not too different. Notice,

however, that m* /m is enhanced in cluster DMFT relative to

single site DMFT �not shown� because superexchange trans-

fers optical weight from the low energy to the intermediate

energy range �J.

The optical spectral weight �p
2 is, in general, a function of

temperature and cutoff �, i.e.,

�p
2

8
= W��,T� . �52�
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a function of doping. Obtained from optical conductivity of Fig. 28.
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In experiment, the cutoff is usually chosen such that the in-

terband transitions are absent ���1 eV�. The interband

transitions or transitions into the upper Hubbard band are

absent in the t-J model, therefore this requirement is taken

into account automatically.

The optical pseudogap which separates the two compo-

nents of spectra and is seen as a dip at the scale of J in Fig.

28 is quite large in the underdoped system, ��0.05. One

could expect that the integral spectral weight W��� for small

enough ��J might start to decrease below a certain charac-

teristic temperature of a pseudogap. However, as shown in

Fig. 30 there is no sign of such a decrease for any cutoff

frequency � or any temperature. Although the pseudogap

gap clearly increases with temperature, the Drude peak more

than compensates for this spectral weight loss and W in-

creases as T decreases.

Near optimal doping, the optical conductivity displays re-

markable power laws in an intermediate asymptotic regime.

These power laws were first pointed out by El Azrak et al. in

Ref. 115. The power laws, and the possibility of a connection

with an underlying quantum criticality, have been a subject

of several recent experimental papers.116 CDMFT provides a

natural explanation for these anomalies.49 These power laws

were seen in exact diagonalization of much larger systems,117

indicating again the power of the cluster DMFT when it can

be compared with available exact results. The power of the

optical conductivity is very close to 2/3 as seen in Fig. 31,

but an analytic derivation of this result is not available.

A surprising aspect of the physics of strongly correlated

materials is that low energy phenomena affect the spectra of

the material over a very large energy scale. This general
phenomenon is illustrated in Fig. 32, which shows the inte-
gral of optical spectral weight W��� in the normal and the

superconducting state. Low energy phenomena, like the on-
set of superconductivity which involves a scale of a fraction

of J, involves redistribution of optical weight of the order of

4t�1 eV, which is 40 times more than the gap value. A

theoretical insight from our calculation is that the high fre-

quency redistribution of weight comes from the anomalous

Green’s function F*F in Eq. �46� and, hence, cannot be

observed in the density of states or angle-resolved photoelec-

tron spectroscopy measurements. The large range of redistri-

bution of spectral weight has also been measured on cuprates

and pointed out in Refs. 105 and 108.

It is useful to compare the results for the temperature

dependence of the integrated spectral weight of cluster

DMFT with those of single site DMFT as reported by Toschi

et al.118 These are displayed in Fig. 33. There are two impor-

tant observations: first, the sign and the order of magnitude

of the effect are similar in single site and in cluster DMFT.

This indicates that local quantities can be reliably computed

in this framework and do not change dramatically as the

sizes of the cluster is increased. Second, the doping depen-

dence of this low energy kinetic energy difference W�0�
−W�300 K� has a slope in cluster DMFT opposite to that in

single site DMFT. An interesting question is whether the

existing experimental data agree better with the single site or

cluster DMFT. It seems that the results in Refs. 119–121 are

in better agreement with the plaquette DMFT, but a more

detailed comparison between theory and experiment is left

for future studies using the more realistic band structure of

each compound and a more precise periodization scheme.

We can also compute the temperature dependent resistiv-

ity using EDCA, in which the vertex correction vanish,

1

��T�
= e2�

k�

�k
2 � dx

�
�−

df�x�
dx

�	Gk�� �x�2 + Fk�� �x�2
 .

�53�

Notice that while the scattering rates at zero frequency

tend to saturate at high temperature �see Fig. 17�, the resis-

tivities do not, as seen in Fig. 34.
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FIG. 31. �Color online� The optical conductivity ���� of the t-J

model is proportional to �−2/3 in the intermediate frequency region

for the optimally doped system.
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FIG. 32. �Color online� Super-

conducting and normal integrated

spectral weights �Nef f� as a func-

tion of cutoff frequency. Optical

spectral weight which collapses to

delta function in the supercon-

ducting state comes from a very

extended energy interval ��3t�.
We employed EDCA and NCA.
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Notice that the scaling of the resistivity with the number

of holes is approximately obeyed, and that the maximum

amount of linearity is obtained near optimal doping. More

detailed comparison with experiments will require a more

realistic modeling of the band structure and a detailed inves-

tigation of the dependence of this quantity on the periodiza-

tion scheme used.

Finally, since we have access to both the real and imagi-

nary parts of the optical conductivity, we can compute the

superconducting stiffness, defined as the strength of the delta

function peak in the superconducting state. Its temperature

and doping dependence close to TC is displayed in Fig. 35. In

optimally doped and overdoped regimes, stiffness is a linear

function of temperature close to the transition, while it is

substantially reduced in the underdoped regime due to the

opening of the pseudogap. A similar trend was found in cu-

prates as pointed out in Ref. 122.

With NCA, we are not able to reach sufficiently low tem-

peratures to address the crucial issue of the doping depen-

dence of the linear term of the superfluid stiffness. Instead,

we use the techniques in Sec. IV to evaluate the low tem-

perature behavior of this quantity,

�s�0� − �s�T� =
b

�
T = e2

2 log 2

�2
kBT

Zn
2�0

2

�F��

, �54�

where Zn, v�, and vF were evaluated in Sec. IV, and v0 is the

band Fermi velocity. The coefficient b can be evaluated di-
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DMFT: A. Toschi et al., PRL 95, 097002 (2005)

CDMFT

FIG. 33. �Color online� Difference between the low temperature

and 300 K optical spectral weights integrated up to �=6t. The clus-

ter data are computed within EDCA, and the single site DMFT

results are reproduced from Ref. 123. The error bars are due to the

extrapolation of spectral weight to zero temperature from finite tem-

perature results �Tmin�0.5TC�.
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FIG. 34. �Color online� Resistivity versus temperature in EDCA

using NCA as the impurity solver.
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FIG. 35. �Color online� Superconducting stiffness versus temperature as obtained from optical conductivity using NCA and EDCA.
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rectly from the imaginary axis data of CTQMC and is plotted

in Fig. 36.

CDMF captures the weak dependence of b on doping,

which was a subject of intensive experimental

investigations.123,124 More detailed studies of this quantity in

C-DMFT, including vertex corrections, and more detailed in-

vestigations of the periodization dependence of this quantity,

as well as the related B1g slope of the Raman scattering,104

are certainly warranted.

VI. MAGNETISM SUPERCONDUCTIVITY AND SPIN

RESONANCE

In this section, we turn to the magnetic properties, starting

from the cluster magnetic quantities.8,125,126 As in the rest of

the paper, we confine ourselves to the study of minimal mod-

els; in this section, the t-J model with t�=0. Notice, however,

that it is known from numerous studies that the presence of a

next-nearest-neighbor hopping t� affects significantly the re-

gion of stability of the magnetism and can suppress it

altogether.48

The static cluster susceptibilities are displayed in Fig. 37.

These are coarse-grained versions of the momentum depen-

dent magnetic susceptibility, over the different regions of the

Brillouin zone of the size of one-quarter of the first Brillouin

zone. While the cluster susceptibilities are relatively smooth

functions of doping, they clearly demonstrate that the spin

fluctuations in different regions of the Brillouin zone have

dramatically different behaviors with doping and tempera-

ture. The �� ,�� component, dominated by the ��� suscepti-

bility, strongly increases as we approach half-filling. In con-

trast, the uniform component �00 decreases as doping is

reduced, a signal of the opening of the pseudogap. The same

is true of ��0. Hence, an interesting property of the

pseudogap state is the increase of staggered magnetic fluc-

tuations with the opening of the pseudogap. A similar con-

trast between the staggered and uniform responses is seen in

their temperature dependence. We see that while the uniform

response decreases with temperature in the underdoped re-

gime, the staggered response increases.

We now proceed to uniform spin susceptibility shown in

Fig. 38. The q=0 susceptibility at zero doping displays the

characteristic behavior of the Heisenberg model, with a

Curie-like behavior at high temperatures and a broad maxi-

mum at a scale of the order of J as the spins begin to form

singlets. The main effect of doping is to reduce the effective

exchange. Experimentally, the shift of the minima in the sus-

ceptibility is seen,127,128 but it occurs faster than in Fig. 38.

The effective spin exchange will be reduced by the addition

of a negative next-nearest-neighbor hopping t� to the model.

We now turn to the frequency dependence of the imagi-

nary part of the �� ,�� susceptibility probed in neutron scat-
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FIG. 37. �Color online� The cluster spin susceptibilities of the

t-J model versus temperature at two different dopings obtained by

EDCA and NCA.
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FIG. 36. Coefficient of the linear term of the superconducting

stiffness �	�s�0�−�s�T�
 /T versus doping for the Hubbard model

using CTMQC.
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dopings for the t-J model within
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tering experiments. As shown in Fig. 39, a pronounced peak

in the �� ,�� spin response at frequency 0.16t in the opti-

mally doped regime can be observed when entering the su-

perconducting state. The position of the peak is temperature

independent, but depends weakly on doping, tracking the

critical temperature. Our results are in qualitative agreement

with experiment; for example, the resonance energy scales

with doping like 5TC and its position does not depend on

temperature.125 In addition, we see a broader peak around

�0.35–0.45�t extending to very high frequencies of order of

t�300 meV, which also gains some weight when entering

the superconducting state.

Cluster methods coarse grain the momentum dependence.

In the plaquette case, the coarse graining is done over 1 /4 of

the Brillouin zone, centered at �� ,��; therefore, it is reason-

able to compare our results with the q integrated susceptibil-

ity from Ref. 129, where the two features, present in the

mean-field theory, 35 meV resonant peak as well as broader

peak around 75 meV extending up to 220 meV, were ob-

served.

The exchange energy of the t-J model can be expressed as

an integral of the spin susceptibility,130

Exc =
3J

�
� d2qd�b���Im	��q,��
�cos qx + cos qy� .

�55�

Using this equation, one can elucidate the origin of the su-

perconducting condensation energy and the relative contribu-

tion of the different features of the spectral function.

Clearly, an important contribution to superconducting

condensation energy arises from the incoherent features of

the spin spectral function 	around the frequency �0.4–0.5�t

rather than from the spin resonance.

The exchange energy as a function of temperature is

shown in Fig. 40. At high temperature, spins are disordered

and the exchange energy is negligible. At temperature below

J, the singlets are formed and the exchange energy notice-

ably decreases, especially in the underdoped regime. At TC,

the exchange energy decreases further and gives, by far, the

largest contribution to the condensation energy of the t-J

model, as shown in Ref. 49. The exchange energy mecha-

nism, observed in cluster DMFT study, is thus in agreement

with the strong coupling magnetic mechanism for the super-

conductivity.

The spin resonance has been viewed from two different

perspectives �see Ref. 125 and references therein�: �i� start-

ing from electronic quasiparticles and their residual interac-

tions in a d-wave superconductor, residual interactions form

a particle-hole bound state with spin 1, which is identified as

the spin resonance. �ii� Alternatively, starting from a disor-

dered quantum spin system, one can identify the spin reso-

nance as a massive spin 1 excitation, which becomes mass-

less as one approaches the magnetically ordered phase.

The cluster EDMFT Eq. �7� reconciles both points of

view in a unified approach, since the equations for the spin

susceptibility contain both the exchange interaction charac-

teristic of the insulator J�q� and the quasiparticle contribu-

tion described by the spin cumulant M 	Eq. �7�
.
The appearance of the spin resonance requires the dra-

matic decrease of the anomalously large scattering rate in the

normal state, which is strongly reduced when the electrons

condense to form d-wave pairs, avoiding criticality at low

temperatures. The resonance, however, appears only in the

superconducting state and is not present in the normal state.

VII. PSEUDOPARTICLE INTERPRETATION:

CONNECTION WITH OTHER MEAN-FIELD THEORIES

In this section, we give an interpretation of physical ob-

servables in terms of pseudoparticle �eigenstates of the clus-

ter� spectral functions. This is an alternative insight into a

rich physics contained in the solution of cluster DMFT equa-

tions on a plaquette.

Pseudoparticle creation and annihilation operators were

introduced as mathematical entities representing the atomic

eigenstates of the plaquette immersed in the cluster DMFT

medium. We have found that out of the large number �34� of

pseudoparticles that we introduced, very few of them are

important for reproducing the low energy part of physical

observables. For example, more than 95% of the one-particle

spectral function at the Fermi level comes from a few con-

volutions of pseudoparticles in Eq. �33�, within NCA ap-

proach. This constraint is, however, not present for the high

energy part of the spectra such as Hubbard bands, where the

contribution of most of the pseudoparticles can be identified.

The ground state and the low lying excitations are much

more restricted and are a superposition of only a few atomic

states. In the plaquette, these important states are
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FIG. 39. �Color online� The dynamical spin susceptibility at q

= �� ,�� for a few different doping levels and three different tem-

peratures: superconducting state and normal state at the transition

temperature and at room temperature. The pronounced peak is

formed in the SC state at 0.16t�48 meV, and a broad peak in the

normal state is around 100–140 meV. Susceptibility at normal tem-

perature is much smaller, and the peak moves to higher frequencies.

The resonance is strongest at the optimally doped system. It disap-

pears quickly in the overdoped side and somewhat more slowly in

the underdoped side. Results are obtained with EDCA and NCA.
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�4 = �N = 4,S = 0,K = 0� , �56�

�4�
= �N = 4,S = 1,K = ����� , �57�

�3���0� = �N = 3,S = 1/2,Sz = �,K = ��,0�� , �58�

�3��0�� = �N = 3,S = 1/2,Sz = ��,K = �0��� , �59�

�2 = �N = 2,S = 0,K = 0� , �60�

where N is the number of electrons in the cluster eigenstate,

S and Sz are the total spin and its z component of the cluster

eigenstate, and K is the momentum of the cluster eigenstate.

Notice that although only a few cluster eigenstates con-

tribute to the ground state, the wave function is still highly

nontrivial since it is a product state of an infinite number of

states in the bath and the few atomic eigenstates of the im-

purity. This surprising result of restriction to a few cluster

eigenstates could be beneficial to devise useful approxima-

tions while extending C-DMFT to larger clusters in the fu-

ture. In this paper, we exploit this fact to give a simple in-
terpretation of the different doping regimes of the t-J model.

Figure 41 �left� shows the evolution of the three most
important pseudoparticle spectral functions from the under-
doped to the overdoped regime.

At small doping, the cluster is mostly occupied by the
singlet state with one particle per site and zero momentum
�4= �N=4,S=0,K=0� �half-filled singlet�. This pseudopar-
ticle has the largest occupancy as shown in Fig. 41. It de-
scribes a system locked in a short-range singlet state as a
consequence of the strong superexchange interaction.

The cluster electron spectral function describes the pro-
cess of addition and removal of an electron from the cluster
at frequency �. Within NCA, it is constructed from the con-
volution of two pseudoparticles with different cluster occu-
pations N and N+1, or N−1, with the frequency restricted
between zero and � as described by Eq. �33�. The necessary
condition for a peak of the one-particle spectral function at
the Fermi level is that at least two pseudoparticle spectral
functions share a common threshold and are strongly peaked
at the same threshold.
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FIG. 40. �Color online� The

exchange energy versus tempera-

ture for a few doping levels ob-

tained by the NCA in EDCA. The

lower panel is a blowup of the low

temperature regime. The dotted

lines correspond to the metastable

normal state below TC, while the

full lines continue into the super-

conducting state.
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In the underdoped regime, the thresholds of all other

pseudoparticles except �4 are significantly shifted with ref-

erence to the half-filled singlet; a pseudogap results in the

one-particle spectra in the underdoped regime. This gap in

threshold energies severely limits the possible decay pro-

cesses of the electron, resulting in a low electronic scattering

rate. This is the plaquette-impurity model of a few holes

propagating in a sea of singlets.

At large doping, i.e., in the overdoped regime, where the

Kondo scale is dominant, we obtain the standard DMFT de-

scription of a strongly correlated Fermi liquid. As is well

known from the study of the Fermi-liquid regime of the

single impurity Anderson model, all pseudoparticles develop

thresholds �x-ray singularity� at the same frequency which is

related to the Kondo temperature of the problem. In our

plaquette DMFT, all three important pseudoparticles �half-

filled singlet, doublet with one hole per plaquette �3�K, and

singlet with two holes per plaquette �2� have a power law

divergence at the same threshold frequency at zero tempera-

ture �Fig. 41�, which is a standard signature of the Kondo

effect. Hence, the one-particle spectral function begins to

develop the Kondo-Suhl resonance at the Fermi level since

the convolution between the doublet �3�K and half-filled sin-

glet �4 �or �2 singlet� states is large at low frequency. The

one-particle spectral function is peaked slightly above the

Fermi level. Notice that while we cannot follow the forma-

tion of the Kondo resonance to very low temperatures due to

the well known NCA pathologies, we can clearly see the

onset of the Fermi-liquid behavior in Fig. 13. The overdoped

regime characterized by the common threshold of pseudopar-

ticles is distinctively different from the underdoped regime,

where the only important states are the half-filled singlet �4

and the �3�K doublet. The latter has a very little spectral

weight in the region of the singlet peak.

Transition region: Normal state. In the optimally doped

regime, the Kondo scale and the superexchange compete,

giving rise to a regime with very large scattering rate and,

consequently, a small coherence scale.

Surprisingly, the evolution of the spectral function with

doping is such that the optimally doped regime is approxi-

mately particle-hole symmetric. As shown in Fig. 41 �right,

top�, the thresholds of the N=2 cluster ground state and N

=3 cluster ground state �doublet� merge first, resulting in a

Kondo-like contribution to the electron spectral function.

This contribution is peaked above the Fermi level in a one

band model below half-filling in a Fermi-liquid regime. The

half-filled singlet, however, remains the lowest state in en-

ergy and still gives a significant contribution to the electron

spectral function. The latter contribution is peaked below the

Fermi level and keeps a pseudo-gap-like shape. Adding the

two contributions to the electron spectral function restores

the particle-hole symmetry in the density of states both in
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FIG. 41. �Color online� Left: Pseudoparticle spectral functions for the three most important pseudoparticles: ground states for N=4, N

=3, and N=2 sectors. Right, top: Sketch of pseudoparticle threshold energies which can be interpreted as the effective many-body levels in

the normal and superconducting states. Right, bottom: Pseudoparticle occupancies versus doping for the most important pseudoparticles. The

full lines correspond to the normal state, while the dashed lines correspond to the superconducting state.
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normal and superconducting states at optimal doping 	see
Figs. 13�g� and 25
. The approximate restoration is impor-
tant, because it is known that clusters of impurities such as
the two impurity Kondo model131 have a critical point only
in the particle-hole symmetric case.132

Notice that the point of maximum scattering rate in Fig.
17 coincides with the merging of the thresholds of the
pseudoparticles �see Fig. 41�. Around the same doping level,
an approximate particle-hole symmetry is restored in one-
particle Green’s function �see Figs. 6 and 13�. Hence, the
term avoided cluster quantum multicriticality describes bet-
ter the phenomena observed in this study since, to reach the
quantum critical point, both the particle-hole symmetry and
the ratio of Kondo to RKKY coupling need to be varied.

Transition into the superconducting state. The degeneracy
responsible for the strongly incoherent metal with large scat-
tering rate at the Fermi level is lifted by the superconductiv-
ity, avoiding the critical point. This dramatic reduction of
scattering rate in going from the normal to the superconduct-
ing phase, depicted in Figs. 17 and 18, highlights how
anomalously incoherent the normal state at optimal doping is
and how those anomalies are removed by superconductivity.

This fact also has a natural interpretation in terms of
pseudoparticles. Figure 41 �left� shows that both important
singlet pseudoparticles �for �4 and �2� develop a very sharp
peak at the same threshold frequency and, at the same time,
their occupancy increases �see Fig. 41, bottom� upon con-
densation, indicating that electrons are locked into singlets

with zero momentum. A gap opens between the singlets and

doublets, which gives the gap in the one-particle density of

states. Because of this gap in the pseudoparticle thresholds,

the large imaginary part of the electron self-energy does not

persist in the superconducting state �see also Fig. 17�. No-

tice, however, that in the superconducting state the

pseudoparticles are strongly mixed and the off-diagonal

spectral function A�4�2
also develops a pole at the same

threshold as A�4
and A�2

. The off-diagonal spectral function

A�4�2
describes the creation of a Cooper pair on the cluster

G�4�2
= �0�a�4

† ���a�2
�0� and, therefore, diverges at low tem-

perature at the same threshold frequency.

Since the density of states is composed of two almost

equally important contributions, i.e., the convolution of the

doublet with both singlets ��4 and �2�, the superconducting

gap is almost particle-hole symmetric in the optimally doped

regime with half-width of the order of 0.1t. When the doping

value is changed from its critical value, the asymmetry in the

superconducting density of states appears. The magnitude of

the asymmetry is the same as the asymmetry of the corre-

sponding normal state spectra and comes from the fact that

the occupancy and, therefore, the importance of the �4 sin-

glet exceed the importance of the �2 singlet �see Fig. 41,

bottom�.
Finally, we comment on the role of the triplet pseudopar-

ticle. The spin susceptibility comes almost entirely from the

convolution of the half-filled singlet with the half-filled trip-

let ��4 with �4�
�. The latter develops a peak at an energy

0.16t upon condensation, which results in the resonance in

the spin susceptibility shown in Fig. 39.

It is interesting to derive the form of a low energy Hamil-

tonian involving the pseudoparticles in question. The conser-

vation of charge, spin, and cluster momentum considerably

restricts the form of this Hamiltonian. If we assume that it is

of the Kondo form, it takes the following form:

H = �
�

	�a�
†
a� + �

kQ�

	kQckQ�
†

ckQ�

+ J1a�4

†
a�2

�
kk�Q���

	�,��
ckQ�ckQ��

+ H.c.

+ J2 �
k�k���,K,K��	�0,��,��,0�


a�3�K

†
a�3��K�

c
k�K���

†
ckK� + H.c.

+ ��
�

�a�
†
a� − 1� , �61�

where � runs over the relevant low energy pseudoparticles.

	�,��
is an antisymmetric tensor and the Q runs over cluster

momenta. Here, ckQ�
† operators create electrons in the bath

with cluster momenta Q and spin �. The operators a�
† create

a pseudoparticle on the cluster 	see Eq. �15�
.
This Hamiltonian contains the competition of the particle-

hole and particle-particle channels for pairing with the baths

of conduction electrons, and the approach to criticality is

controlled by the variation of the on-site energy 	�, which

should be identified with the pseudoparticle thresholds. It

would be very interesting to investigate this impurity model

with the tools and the perspective of Ref. 133. It is clear that

superconductivity will add magnetic field like terms propor-

tional to �a�4

† a�2
� �kk�Q���	�,��

ckQ�ckQ��
. These terms should

be strongly relevant and move the system away from criti-

cality.

Within CDMFT, the cluster of few sites �2�2 in our

case� hybridizes with the Weiss field �, defined in Eq. �6�. In

single site DMFT, this effective medium drives the Mott

transition. On the Bethe lattice within single site DMFT, it is

proportional to the local Green’s function �= t2G and, there-

fore, becomes gapped in the Mott-insulating state, while it

remains gapless in the metallic phase. Hence, due to the

DMFT self-consistency condition, this quantity shows a very

strong doping dependence.

Within cluster DMFT, the effective medium is only

weakly doping dependent, and the evolution with doping is

smooth �see Fig. 42� in the doping range considered here.

Moreover, this quantity shows very mild momentum depen-

dence as opposed to strong momentum dependence of self-

energy shown in Fig. 5. For example, the �0,0� and �� ,��
Green’s functions show almost no spectra at low frequency

�are almost gapped�, while the hybridization functions of

these two orbitals are very similar to �0,�� hybridization

function, which contains most of the low frequency spectral

weight. The mild and smooth doping dependences of hybrid-

ization functions lead us to believe that the proximity to

quantum cluster criticality, which manifests itself in large

scattering rate and vanishing coherence scale, is driven by

the impurity model itself rather than the self-consistency

condition.

The picture here is based entirely on a finite temperature

analysis and is in the spirit of the DMFT approach, where we

approach the strong correlation problem starting from high

temperatures.
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FIG. 42. �Color online� First panel: Imaginary

parts of the cluster hybridization functions for

various dopings in the normal state at T=0.01t

using C-DMFT and CTQMC. Second panel: Real

parts of the same hybridization functions in the

normal state at T=0.01t. Third panel: Imaginary

parts of the same hybridization functions in the

superconducting state at T=0.005t. Fourth panel:

Real part of the same hybridization functions in

the superconducting state at T=0.005t. The self-

energies of the cluster show strong momentum

dependence, while hybridizations are only

weakly momentum dependent. Furthermore,

there seems to be no indication of any criticality

in the hybridization functions such as the forma-

tion of a gap.
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It is important to continue the normal solutions of the

plaquette DMFT equations to very low temperature to clarify

the mathematical source of the criticality that we observe at

higher temperatures. The critical point could occur exactly at

T=0, as proposed by Capone et al.62 in the context of the

two band Hubbard model with inverted Hund rule exchange

and by us in Ref. 50. The quantum critical point may exist in

an impurity model with a fixed bath or might require the

DMFT self-consistency condition. Alternatively, there may

be a finite second order endpoint of a first order line, as

found in DMFT lattice models related to the two impurity

model.134 Notice also that power laws in an intermediate

asymptotic regime, without an obvious underlying quantum

critical impurity model, have also been found in an impurity

model related to frustrated magnets.68

Still, the precise nature of the low temperature normal

state phase below TC is not essential for the validity of the

CDMFT description. What matters is that at very high tem-

perature, T�J, single site DMFT is a good description of the

system, and as we lower the temperature, we find a broad

region of temperatures where the plaquette reference frame

correctly captures the physics of the problem with its appar-

ent criticality, even though at much lower temperatures a

more nonlocal description will be needed. It is even possible

that the zero temperature solution of the DMFT equations

does not exist, in which case, unlike the standard BCS theory

where the superconductivity is viewed as an instability of a

normal phase, we would have a superconducting state that

exists without an underlying normal state.

There is an important distinction between our views and

those of local quantum critical scenario based on single site

EDMFT scenario.135 In the latter case, the locality of the

quantum critical theory of the lattice is asserted to be reliable

at T=0, while the results of the EDMFT equations in two

dimensions are known to be less reliable as temperature is

raised.136 On the other hand, the results of plaquette DMFT

are expected to become more accurate as the temperature is

raised.

VIII. CONCLUSION AND DISCUSSION

In this paper, we developed and applied a plaquette dy-

namical mean-field theory to understand the nature of the

superconductivity near the Mott transition. In relation to ear-

lier works, we focused on low but finite temperatures to al-

low a comparison with the underlying normal phase. For this

purpose, advanced impurity solvers were brought to bear on

the solution of the CDMFT equations.

The idea of using a plaquette in a self-consistent medium

as a reference frame to reconstruct physical correlation func-

tions on a lattice, while appealing, has several different

implementations through different cluster schemes. Here, we

stressed the numerous qualitative features which are com-

mon to all methods while pointing out the few significant

quantitative discrepancies that we found among the different

cluster methods in the course of our investigations.

The low temperature landscape of strongly correlated

electron systems can have many competing phases, for ex-

ample, commensurate and incommensurate condensates of

charge spin and current. A first step toward understanding
this landscape is to follow the evolution of well defined
phases as a function of control parameters. In this paper, we
focused on the superconducting and normal phases. Other
phases and the competition with superconductivity can be
studied with CDMFT techniques, as was done, for example,
in Ref. 37 for the commensurate antiferromagnetism.

We find that the normal state in the mean-field theory has
two distinct regimes, which are naturally characterized in
terms of the regimes of the impurity model. At low doping,
in the immediate proximity of the Mott-insulating state, we
have a realization of the RVB picture of holes propagating in
a sea of spins with strong singlet correlations. In the impurity
model language, that corresponds to the RKKY phase of the
two impurity model and its generalization to a plaquette. At
high doping, we have a regime with well formed quasiparti-
cles, with a Fermi surface containing 1−� electrons. In the
impurity model language, this corresponds to the Kondo re-
gime of the one impurity model, and single site DMFT pro-
vides an adequate description of its properties.

Plaquette CDMFT has three independent cluster self-
energies. For very large doping, only the local cluster self-
energy is nonzero, indicating the validity of single site
DMFT. As doping is reduced, ����i�� acquires large real

and imaginary parts. This is controlled by the existence of a
pole which approaches zero frequency at certain doping �1

c �
�1

c �0.1 in the t-J model and �1
c =0 in the Hubbard model�.

When combined with the cumulant periodization, this
anomalous growth gives rise to a topological transition asso-
ciated with the formation of line of zeros in the Green’s
function �line of poles in the self-energy� at zero temperature
discussed in Ref. 43. We call the doping at which the topo-
logical transition of the Fermi surface happens as �3

c. Notice,
however, that from a CDMFT perspective which focuses on
the finite temperature description, an infinite self-energy is
not necessary, and all that is required to generate the
pseudogap regime with its concomitant formation of Fermi
arcs is a self-energy which exceeds the bandwidth.

We identified another critical doping �2
c associated with a

maximum in the scattering rate of the third cluster degree of
freedom �0�. This is an example of cluster quantum multi-
criticality. Namely, a mapping of a lattice model onto a quan-
tum impurity model with a critical point. This critical point
satisfies the following conditions: �a� it requires a cluster of

impurities for its existence, hence it has no analogy in single

site DMFT, and �b� has at least two unstable �relevant� di-

rections �for example, the ratio JKondo /JRKKY and particle-

hole symmetry breaking in the two impurity model Jones-

Varma critical point131�.
At a critical doping �2

c, there is an avoided critical point in

the normal phase, which is near the doping level with the

highest superconducting transition temperature. Since �2
c

��1
c, �2

c may lie very close to �3
c if one adopts a periodization

scheme along the lines of the cumulant periodization, but

this issue is left for future studies since it strongly depends

on the periodization scheme. Looking at the scattering rate

and coherence temperature in the normal state solution of

CDMFT equations, we thus identified a critical doping �2
c

which could be related to the hidden quantum critical point,

which has been hypothesized by many authors based on a

large body of experimental data.131,137
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We have not analyzed the properties of the CDMFT quan-
tum impurity model describing the normal state at zero tem-
perature. It is even possible that the normal state solution
simply does not exist at T=0. These points are largely aca-
demic from the point of view of the finite temperature phys-
ics which we want to describe with CDMFT. The manifesta-
tions of the possible quantum criticality are rapidly removed
by the onset of superconductivity. The electronic lifetime on
the Fermi surface controlled by Im ��0,�� is dramatically

reduced as the system becomes superconducting.
One then arrives at a superconducting state, which inher-

its the normal state gap, largely caused by ���, but with
coherent nodal quasiparticles characterized by a weakly dop-
ing dependent velocity perpendicular to the Fermi surface.
The velocity along the Fermi surface v� has a domelike
shape and decreases in the underdoped regime, providing
further support to the two gap picture of the superconducting
state of the underdoped cuprates.51,52,99–101

The superconducting phase is stabilized by the gain of
superexchange energy, namely, improved spin-spin singlet
correlations. We resolved the frequency dependence of the

anomalous Green’s function and the anomalous self-energy,

and found them to have a structure very different from con-

ventional phonon mediated superconductivity in the Migdal-

Eliashberg theory. Since the superconducting state restores

coherence, long lived sharp excitations, Bogoliubov quasi-

particles, and a sharp spin mode which resembles the neutron

“40 meV resonance” emerge below TC.

We extracted different observables such as tunneling den-

sity of states, optical conductivity, optical mass and plasma

frequencies, integrated optical spectral weight superfluid

stiffness, and spin susceptibility which compare well at a

qualitative level with experimental data on copper oxide ma-

terials.

We have shown that at �2
c �which occurs very near the

maximum in TC�, the coherence energy vanishes and the

scattering rate is maximal. At this doping, an approximate

particle-hole symmetry in the one electron spectra is recov-

ered, and approximate power laws in physical quantities ��
��−2/3� emerge in an intermediate frequency range.

Upon periodization, the large value of the nonlocal self-

energies turn Fermi surface into Fermi arcs,43 and we studied

the evolution of the Fermi arcs with temperature. We showed

that within C-DMFT, Fermi arcs shrink with decreasing tem-

perature.

Our solution of the CDMFT on a plaquette has many

similarities with the earlier studies of Anderson’s resonating

valence bond theory of high temperature superconductivity

in the slave boson mean-field theory formulation. This ap-

proach correctly predicted the d-wave symmetry of the su-

perconducting order parameter and the presence of a

pseudogap with the same symmetry well above TC.18

The similarity between the results of the CDMFT and

slave boson approaches is not accidental. Both methods are

mean-field techniques based on order parameters that can be

defined within a plaquette, and capture the effects of the

proximity to a Mott-insulating state using a small set of

short-range degrees of freedom.

Compared with slave boson mean-field theory, CDMFT

has additional flexibility both in the frequency of the one

electron spectral function as well as in its momentum depen-
dence. One crucial difference is a much more pronounced
momentum space differentiation with very different elec-
tronic properties at the nodes and at the antinodes. This an-
isotropy, with the concomitant existence of two energy scales
in the superconductor, resolves the earlier problems of the
RVB theory related to the doping dependence of the linear
term of the penetration depth.138 The need for the introduc-
tion of more anisotropy in the microscopic theory had been
anticipated by experiments and by the phenomenological
analysis of Ioffe and Millis.139–141 Recent phenomenological
models83,84 have also generated a more pronounced momen-
tum dependence of the one-particle spectra and incorporated
in their approach a v� that decreases with decreasing doping.
The main differences between these phenomenological ap-
proaches and the more microscopic C-DMFT reside in the
location of the lines of zeros of the Green function. While in
Refs. 83 and 84 the lines of zero lie on the umklapp surface,
in C-DMFT the lines of zeros are dynamical entities with a
location that evolves with doping.

CDMFT is an extension of single site DMFT, an approach
that has been very successful in describing many aspects of
the finite temperature Mott transition. By using a single im-

purity in a medium, this method has been able to describe

several regimes near a Mott transition: a Fermi-liquid regime

at small U and temperature, a bad metal at temperature larger

than a characteristic temperature Tcoh�U�, a Mott insulator at

large U and low temperature, and a bad insulator when the

temperature is high enough that the Hubbard bands begin to

merge.

By construction, single site DMFT assigns the same self-

energy to the electronic states on the whole Fermi surface.

Hence, at a given energy and temperature, either all the states

at all k points are coherent or they are all incoherent. This is

not a good description of the high temperature superconduct-

ors, which therefore cannot be described with single site

DMFT.

On the other hand, CDMFT allows the states in the nodal

region to be coherent quasiparticles, while, at the same time,

the states in the antinodal region are highly incoherent and

have a pseudogap, i.e., Tcoh�nodal��Tcoh�antinodal�. The

self-energy in the nodal region could be compared to a single

site DMFT in the Fermi-liquid regime with U�Uc2 and Tc

�Tcoh�U�, while the antinodal self-energy is more of a single

site DMFT in the bad insulator regime, U�Uc2 and Tc

�Tcoh�U�. Plaquette DMFT offers a mean-field picture of the

lattice problem, whereby the different cluster self-energies

and cumulants describe different regions of momentum

space with distinct physical properties: a nodal region which

is closest to a Fermi liquid, an antinodal region which exhib-

its a pseudogap, and an intermediate region between the two,

described by the �0,�� self-energy, which exhibits the maxi-

mum scattering rate at criticality.

This qualitative picture is only a crude caricature of the

full CDMFT solution, but it is a useful qualitative guide to

understand how the Fermi arcs originate from the proximity

to the Mott insulator, and above all, highlights why single

site DMFT is inadequate in this situation.

The objective of this work was to advance our under-

standing of the t-J and Hubbard models as a “bare bones”
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model of the density driven Mott transition. An important
open problem is to incorporate and understand how other
effects, such as the effects of more realistic band structure in
the multiband model, the disorder, and the electron-phonon
interaction, which play an important role in cuprates, can
affect the solution of the model,

We presented a qualitative comparison with several ex-
periments in the copper oxide based materials and gave the
limitations of the model and of the methodology used; this
comparison is very encouraging and warrants future studies
including more accurate modeling and further methodologi-
cal improvements.

Future studies should include a realistic band structure of

the copper-oxygen planes and additional Coulomb terms be-

yond the local Hubbard U that can be accommodated on the

plaquette. In addition to dx2−y2 copper band, it would be de-

sirable to include another copper band, namely, dz2 band

which is coupled to apical oxygen. Although the latter band

is filled in the band structure calculation, it comes close to

the Fermi level.

Another important direction is to better momentum re-

solve one particle and two particle quantities. The latter will

require advances in the analytic continuation techniques of

QMC data as well as a better understanding of how to con-

vert cluster quantities into lattice observables in C-DMFT.

Furthermore, within a cluster size, it is important to imple-

ment an optimal choice of orbitals in CDMFT, describing

different momentum patches in the Brillouin zone. Func-

tional approaches23,142 as well as CDMFT inspired modeling

of experimental data along the lines of Ref. 143 can provide

useful guidance in this direction.

Mean-field approaches clearly separates the short distance

effects contained in the theory from long distance effects,

which will require the introduction of fluctuations due to

vortices and pair fluctuations. The TC vs � line in CDMFT

should be interpreted as being close to the Nerst line in the

cuprate phase diagram.144 On the other hand, the true super-

conducting critical temperature line is strongly reduced rela-

tive to the CDMFT on the underdoped side of the phase

diagram to the effects of long wavelength fluctuations of the

order parameter, which require long wavelength field theo-

retical techniques along the lines of Ref. 145

Finally, other inhomogeneous phases, such as stripes,

charge, bond, pair density waves, and other broken symme-

tries, can appear as secondary instabilities and can be studied

with our methods by inserting relatively local �restricted to a

plaquette� but site dependent self-energies into the CDMFT

functional.
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