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STRONGLY  DISSIPATIVE  OPERATORS  AND NONLINEAR

EQUATIONS. IN  A  FRÉCHET  SPACE

R.   H.   MARTIN,  JR.

Abstract. Suppose that X is a Fréchet space, y is a Banach

subspace of X, and A is a function from Y into X. Sufficient con-

ditions are determined to insure that the equation Ax=y (yEY)

has a unique solution xy which depends continuously on y. The

techniques of this paper use the theory of dissipative operators in a

Banach space, and the results are associated with the idea of ad-

missibility of the space Y. Also, the equation Ax=Cx+y is

considered where C is completely continuous.

Let A be a Fréchet space over the real or complex field (i.e., A is a

locally convex, complete, metrizable topological vector space—see e.g.,

[10, p. 85]). In this paper we assume the following:

(XI) (qn)y is an increasing family of continuous seminorms on X

which defines the topology of X (i.e., qn^qn+1 and X— lim^«, xk=x if

and only if lirm.^ qn(xk—x)=0 for each «).

(X2) Y={xeX:supn{qn(x)}<co) and |x|=sup„{^n(x)} for each x in Y.

Note that a sequence of seminorms satisfying (XI) always exists, and

the space Tin (X2) is a complete normed space with norm |-|. However,

the members of Y depend on how the sequence (qn)y is chosen.

In this paper, some results on strongly dissipative operators in a Banach

space are used to establish analogous results for a class of operators which

map Y into X. Recently, some fixed point theorems for completely

continuous perturbations of Lipschitz continuous functions in locally

convex spaces have been obtained by Cain and Nashed [1], In this paper,

a class of functions A from Tinto Ais considered which can be "approxi-

mated" by functions which are defined on X. Sufficient conditions are

established to insure that the equation Ax=y has a unique solution xy

for each y in Y, and the function B defined by By=xy for each y in Y has

certain continuity properties. This result is closely associated with the

notion of admissibility introduced by Massera and Schäffer [6]. Recently,

admissibility has been used in studying existence and stability of solutions

to Volterra integral equations—see Corduneanu [2], [3] and Miller [8].
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We also consider the solvability of the equation Ax=Cx+y where C is

a function from Y into Y which has certain compact properties and

growth properties. Finally, two examples of integral equations on the

half-line are given to illustrate when these techniques may be applied.

Definition 1. If A is a function from X into X, then A is said to be

compatible with qn if whenever x is in X and (xk)i is a sequence in X

such that lim^oo q„(xk—x)=0, it follows that lim^«, qn(Axk—Ax) = 0.

For each positive integer n let Mn={xEX:qn(x)=0} and let X/Mn=

{<J)(x):xeXand <p(x)—x+Mn}. If qfl(^(x))=qn(x) for each <f>(x) in X/M„,

then q* is well defined and is a norm on the quotient space X\Mn. If ^4

is a function from X into X which is compatible with qn, then define

A*(f>(x)=<f>(Ax) for each <f>(x) in X\Mn. It is easy to see that A* is well

defined and continuous on X\Mn.

Definition 2. Suppose that X/Mn, A and A* are as in the above

paragraph and let En denote the completion of the normed space X¡Mn

with the norm on E„ denoted by q'n. Then A is said to be strongly dissipa-

tive with respect to qn if there is a continuous function ocB from [0, oo)

into [0, oo) and a continuous function A' from En into E„ such that

<x„(0)=0, a„(j)>0 if s>0, A*<f>(x)=A'<p(x) if <f>(x) is in X\Mn, and

lim [q'n(x - y + /i(/Tx - A'y)) - q'n(x - y)]/h ^ -o.n(q'„(x - y))
?!-»0+

for all x and y in F„.

Remark. In many cases the quotient spaces X/Mn are complete—

for example, the spaces considered in Examples 1 and 2 below have this

property. If X/Mn is complete and A is compatible with qn, note that A

is strongly dissipative with respect to qn only in case

lim [qn(x - y + h(Ax - Ay)) - qn(x - y)]jh 5? -ccn(qn(x - j»))
»1-0+

for all x and y in X. Also, if the function A* is uniformly continuous on

bounded subsets of X\Mn, then A* can be extended to a continuous

function A' on £„, and it can be shown that A is strongly dissipative with

respect to qn.

Lemma 1. Suppose that A is a function from X into X which is strongly

dissipative with respect to qn. Then, for each z in X and each e>0, there

is a x\ in X such that qn(Ax\—z)^c.

Indication of Proof. If the function A' is as in Definition 2, it is easy

to see that A! satisfies each of the suppositions of Theorem 2 in [7], and

so there is a unique y in E„ such that q'n(A'y' — <f>(z))=0. Since X/Mn is

dense in En and A' is continuous, there is an x\ in X such that
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q'n(A'<p(xï)-<p(z))£e. Thus, qn(Axx-z)=q*n(A*<l>(xl)-cf>(z))^e and the

lemma is true.

We now prove our main result.

Theorem 1. Suppose that conditions (XI)—(X2) are fulfilled, a. is a

continuous, increasing function from [0, co) into [0, co) such that a(0)=0

and lims_œ a(s)= co, A is a function from Y into X, and (A^f is a sequence

of functions from X into X such that

(i) An is strongly dissipative with respect to qnfor each n;

(ii) hm^o+lq^x-y+^A^-A^-q^x-y^lh^-^q^x-y)) for
each x and y in X and each «;

(iii) there is a number L^.0 such that qn(An0)^Lfor each «;

(iv) for each pair of positive numbers K and ô there is a positive integer

N(K, ô) such that if j"^.i^N(K, ô) and x is a member of X such that

q¡(x)^K, then q^AfX—AjX)^; and

(v) if K is a positive number, then limi^0Oqi(Aix—Ax)=0, uniformly

for x in Y with \x\ ̂ K.

Then, for each z in Y, there is a unique xz in Y such that Axz=z. Further-

more, if the function B from Y into Y is defined by Bz=xzfor each z in Y,

then \Bz—Bw\^or1(\z—w\) for all z and w in Y.

Remark. Note that the function A in Theorem 1 need not be defined

on all of X and does not necessarily map Tinto Y. Furthermore, by sup-

position (ii) if the quotient spaces X\Mn are complete for each «, then we

need only assume that An is compatible with qn in supposition (i)—see

remark following Definition 2.

Proof of Theorem 1.    Note that supposition (ii) implies that

(1) <!n(x - y) = oT\qn(Anx - Any))

for all x and y in X. By Lemma 1 and suppositions (i) and (ii), there is an

xnz in Xsuch that qn(Anxnz — z)^n~l for each z in Fand positive integer n.

Since a-1 is increasing, we have from (1) and supposition (iii) that

(2) qn(xnz) ^ cT\qn(Anxnz ~ An0)) ^ <T%\z\ + Í + L)

for each «. Let e be a positive number and let ó>0 be such that <x-1(i)^e

whenever 0^s^2ô. If Ais as in (iv) and j^.i'^N(a.-1(\z\ + \ + L), ô), then

q^x'^^dzl + l+L), so

qlAiX\ - Atxi) = qt(z - AfX'g) + i_1

(3) = q& - Asi) + qlA^i - AiXz) + r1

^ 2,-1 + qi(AjX'z - Aje*) = 2Í-1 + Ó.
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Now let w be a positive integer such that

m ^ maxLViorHlzl + l+L), ô), 2/<5}.

If j^.i^m, then by (1), (3), and the choice of ô,

(4) qi(xÍ - xi) ^ ^(q^Aixl - Atxi)) ̂  oT\2d) ^ e.

It now follows easily from (4) and (XI) that (x*)™ is a Cauchy sequence

in X. Since X is complete, there is an xz in X such that X— lim^^ x\=xz.

By (2),

9B(x,) = lim gn(x*) ^ lim sup qk(xk) ̂  a^flzl + 1 + L)
»C-*O0 fc~*00

for each «, so x2 is in Y with |x2|^a_1(|z| + l+/..). Letting y-^-oo in the

term on the left side of (3) shows that lim,^^ qi(Aixtz—Aixz)=0. Thus,

from supposition (v), if n is a positive integer,

qn(Axz — z) 5s lim <7¿(,4x2 - z) = lim ^04,-x, - z)
¿-►oo ¿-►oo

^ lim q¿(A¿x2 - ^x') + r1 = 0.

Hence Axz=z. If y- is in Fand Ay=z, then by (1) and supposition (v),

aniy - xz) ^ lim qf(j» - xz) ^ lim a_1(íí(Xí>' - 4,-xJ)
i -* oo » -* 00

^ lim cT1^^ - z) + qt(z - Atxz)) = a^O) = 0
i -»00

for each n. Consequently j=xz and the function B defined in the statement

of the theorem is well defined. Furthermore, if z and w are in Y and

(xz)i and (xlw)î are as constructed above, then by (1) and the fact that

qi(AiXz-Aixlm)-^qi(z-w)+2i-1,

qn(xz - x J = lim qn(xz - x*w) = lim sup qt(x\ - x'„)
¿-►oo t-»oo

= lim sup crl(qi(AiXz - ^¿x'j)
¿-»■CO

<| lim sup aT\qi(z - w) + 2F"1) ̂  a-1(|z - w|).
¿-»■oo

Thus,

|Bz - Bw\ = sup{gn(x2 - x„):n = 1, 2, • • •} <; «_1(|z - w|)

and the proof of Theorem 1 is complete.

Lemma 2. Le/ the suppositions of Theorem 1 be fulfilled and for each

R>0 let Qr={xeY:\x\^R}. Then, considering QR with the topology

induced by X, the function B defined in Theorem 1 is continuous from QR

into X.
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Indication of Proof. Let x be in QR and let (xk)x be a sequence in

QR such that lim^«, qn(xk—x)=0 for each «. Let « be a positive integer,

let £>0, and let <5>0 be such that tx.~1(s)^e whenever O^s^ô. Note that

if j is in QR, then \By\^\By-BO\ + \BO\^or1(R)+\BO\. By supposition

(v) of Theorem 1, let the integer m^n be such that qm(Amy—Ay)^öß for

all y in Y with \y\^ar1(R) + \BO\. Let p be a positive integer such that

1m(xk~ *)=<V3 whenever/:^/?. If A:^/?, we have from (1), the choice of ô,

and the fact that a-1 is increasing, that

qn(Bxk - Bx) <: qm(Bxk - Bx) <: oCl(q„/AmBxk - AmBx))

= ar\qn(AnBxk - ABxk) + qm(ABxk - ABx)

+ qm(ABx - AmBx))

^ oT\eß + qm(xk -x) + ,5/3) ^ oT\ó) ^ s.

Thus \imk^coqn(Bxk—Bx)=0 for each «, and the assertion of the lemma

follows.

Theorem 2. Let the suppositions of Theorem 1 be fulfilled and suppose

that C is a function from Y into Y such that

Hmsupa-^ICxD/lxl = ß < 1.

Suppose further that at least one of the following is satisfied:

(i) C is continuous from the Banach space Y into itself and maps bounded

subsets of Y into relatively compact subsets of Y; or

(ii) if QR is as in Lemma 2 (with the topology induced by X), then, for

each R>0, C is continuous from QR into X and the image of QR under C

is relatively compact in X.

Then, for each z in Y, there is a yz in Y such that Ayz — Cyz=z.

Indication of Proof. Note that we need only show that there is an

x0 in Y such that Ax0—Cx0=0, or equivalently, B-Cx0=x0 where B is

as defined in Theorem 1. Since limsupM_m\B-Cx\l\x\<l, let r1>0 be

such that |2?-Cx|5!|x| whenever |oc|jEri ar|d let r2=sup{\B-Cx\:\x\^rx}.

If R=max{rx, r2}, then BC maps QR into QR. If (i) holds the theorem

follows from the Schauder fixed point theorem, and if (ii) holds the theo-

rem follows from Lemma 2 and the Tychonov fixed point theorem (see

e.g. [5, Theorem 5, p. 456]).

Example 1. Let Abe the space LL2[0, co) of all measurable functions

x from [0, co) into the real numbers such that qn(x)=($ \x(s)\2 ds)1/2<oo

for each positive integer «. Note that Y is the space L2[0, oo) and

1*1= (Jo0 \x(s)\2 ds)112 for each x in Y. Let a and b be symmetric, measur-

able, locally integrable functions defined on [0, oo)2 such that the operator
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Tx(t)=j'o a(t, s)x(s) ds maps LL2[0, oo) continuously into LL2[0, oo) and

the operator Sx(t)=jo b(t, s)x(s) maps L2[0, oo) into L2(0, co). Assume

further that (a) fjfj a(t, s)x(s)x(t) ds dt^O for each x in LL2[0, oo) and

each h; (b) j^io b(t, s)x(s)x(t) ds dt^O for each x in LL2[0, oo) and each

n; and (c) j^Jo00 \b(t, s)\2ds dt<oo. Define Ax= -x-Tx-Sx for each x in

L2[0, oo). Then the suppositions of Theorem 1 are fulfilled with ol(s)=—s

for all s^.0 and Anx=— x— Tx—Snx where 5„x(i)=Jo b(t, s)x(s) ds for

each x in LL2[0, oo). Suppositions (i) and (iii) of Theorem 1 are easily

seen to be true. Supposition (ii) is immediate from (a) and (b) above and

the fact that

fnr f ~i fB f "
2 a(t, s)x(s) ds x(t) dt = a(t, s)x(s)x(t) ds dt,

Jo \_Jo J Jo Jo

which follows from the symmetry of a. Since condition (c) above implies

limj,..^ f£fp \b(t, s)\2 ds dt=0, it is easy to see that suppositions (iv)

and (v) are fulfilled. Thus, for each z in L2[0, oo), there is a unique x2 in

L2[0, oo) such that

(5) xz(t) +    a(t, s)xz(s) ds +      b(t, s)xz(s) ds = z(t)
Jo Jo

for almost all t in [0, oo). Also, JJ |x2(s)|2 ds^Sô kWI1 äs. Note the

operator defined by the left side of (5) is not necessarily defined on all of

LL2(0, oo) and need not map L2[0, oo) into itself.

Example 2. Let Cc[0, oo) denote the Fréchet space of all continuous

functions x from [0, oo) into the m dimensional space Rm (with ||-||

denoting an appropriate norm on Rm) with the topology generated by

uniform convergence on compact subsets of [0, oo). Define qn(x)=

max{||x(i)||:0^(^«} for each x in Cc[0, oo) and each positive integer n.

Then Y is the space BC[0, oo) of all x in Cc[0, oo) such that |x| =

sup{||x(i)||:i^0}<oo. Now let / and g be continuous functions from

[0, oo)2xRm into Rm such that (a)/(r, s, 0)=g(t, s, 0)=0 for all (t, s) in

[0, oo)2; (b)f(t,s, £)=0 for all (t, s, |) in [0, ao)2xRm with s>t; and

there are continuous functions 0 and <p from [0, oo)2 into [0, oo) such that

(c) sup{Sod(t,s)ds:t^0}=X<l; (d) supfj? <b(t, s) ds:t^0}=y<l-X;

(e) ||/(f, s, ÇJ-fd, s, lù\\^d(t, ^Hà-f.ll for all (f, s, fj and (t, s, f.)
in [0, oD)2xRm; and (f) \\g(t, s, |)||=^(/, s) ||f|| for all (/,j,É) in

[0, oo)2xRm. If S is the integral operator defined on CJ0, oo) by Sx(t)=

Jo /(', s, x(s)) ds, then the suppositions of Theorem 1 are easily seen to be

fulfilled with A = — x+Sx for each x in BC[0, oo), Anx=— x+Sx for

each x in Cc[0, oo), and ol(s) = (1— X)s for each s^.0. Let Fbe the integral

operator defined in BC[0, oo) by Tx(t) = jo g(t, s, x(s)) ds and suppose

that T maps BC[0, oo) into jBC[0, oo). Note that conditions (d) and (f)
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above imply that 17jc[_?y|jc| for all x in BC[0, co). Now let z be in

i?C[0, co) and let Cx= Tx+z for each x in i?C[0, oo). If B is as in Theorem

1 (i.e., ABx—x for all x in i?C[0, co)), then BO=0 and we have that

\Bx\^(\— ¿)_1|x| for all x in BC[0, oo). It now follows easily that the

operator BC maps the ball Q={xeBC[0, oo):\x\^\z\(l-y—X)-1} into

itself. Thus, if C is completely continuous for the BC[0, oo) topology on Q

or if C is completely continuous for the Cc [0, oo) topology on Q (note that

this is the case if

lim C°cf>(t,s)ds:0^ t <;/>} = 0,

where <j> is as in (d)), then there is an xz in 2?C[0, oo) with

l*.l = M (1 - y - XT1
such that

(6) xz(t) -   f(t, s, xz(s)) ds =     g(t, s, xz(s)) ds + z(t)
Jo Jo

for all t in [0, oo). Furthermore, since |5-Cjc|<|x| if |x|>|z|(l— y—A)-1,

all solutions xz to (6) satisfy |xz|^|z|(l— y—Xy~x, In particular |jcz|-»0

as |z|-»-0, so we have a type of stability criteria for the zero solution of

equation (6) when z(f)=0 for all t^.0.

Remark. In Example 2, we need only assume that the inequalities (e)

and (f) hold in some neighborhood of the origin in Rm. This follows

from the fact that if r>0 and « is a function from Qr={ÇeRm: |[£||=/-}

into Rm such that ||A(fi)-A(fi)ll^i*ll£i-f«D for a11 fi and f2 in Qr, then
there is a function h* from Rm into Rm such that h*(Ç)=h(Ç) for all f in

Qr and |**(f,)-A*(fi)||á**|f1-fi|| for all f, and f, in Ä™ where
k^k*^2k (take A*(f)=A(rf/||f||) if ||f||>r). Note that k*=k if ||-|| is
the Euclidean norm on Rm. Thus the stability and existence criteria

established in Example 2 give some improvements to those of Miller,

Nohel and Wong [9].
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