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Abstract

Most of the known e�cient algorithms designed to compute the nucleolus for
special classes of balanced games are based on two facts: (i) in any balanced game,
the coalitions which actually determine the nucleolus are essential; and (ii) all essential
coalitions in any of the games in the class belong to a prespeci�ed collection of size
polynomial in the number of players.

We consider a subclass of essential coalitions, called strongly essential coalitions,
and show that in any game, the collection of strongly essential coalitions contains all
the coalitions which actually determine the core, and in case the core is not empty,
the nucleolus and the kernelcore.

As an application, we consider peer group games, and show that they admit at
most 2n − 1 strongly essential coalitions, whereas the number of essential coalitions
could be as much as 2n−1. We propose an algorithm that computes the nucleolus of
an n-player peer group game in O(n2) time directly from the data of the underlying
peer group situation.
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1 Introduction

The nucleolus is a well-established solution concept for transferable utility cooperative
games. It seemingly depends on all coalitional values, but a closer look reveals the inherent
high redundancy. Indeed, as Brune (1983), and more recently Reijnierse and Potters (1998)
have proved: in any n-player game there are at most 2n − 2 coalitions which actually
determine the nucleolus. Unfortunately, the identi�cation of these coalitions is no less
laborious as computing the nucleolus itself. On the other hand, if special properties of the
game allow us to specify a priori a collection of polynomial size that contains all nucleolus-
de�ning coalitions, then (and only then) we can compute the nucleolus in time polynomial
in the number of players.

Many classes of games for which e�cient nucleolus algorithms are available have the
following properties:
• there is a collection of polynomial size which contains all essential coalitions in any

of the games in that class, and
• the core is nonempty in any of the games in the class.
The key to the e�ciency of these algorithms is the useful result of Huberman (1980): in
balanced games all nucleolus-de�ning coalitions are essential.

We identify a subclass of essential coalitions, called strongly essential coalitions, with
an increased simpli�cation potential. We show that in any game, the collection of strongly
essential coalitions contains all the coalitions which actually determine the core, and in
case the core is nonempty, the nucleolus. Using the terminology of Granot et al. (1998): in
balanced games the collection of strongly essential coalitions is a characterization set for the
nucleolus. Compared to the concept of essentiality, the added value in strong essentiality
is that coalitions must prove to be non-redundant even against families of non-disjoint
coalitions. Bondareva and Driessen (1994) used this idea to determine exact bounds for
individual payo�s in the core.

The reduction potential of using strong essentiality in the computation of the nucleolus
can be well illustrated by the class of cyclic permutation games (Solymosi et al., 2000),
a large subclass of permutation games which contains assignment games as well as per-
mutation games whose grand coalition is essential. Indeed, it can happen in an n-player
cyclic permutation game that all the 2n coalitions survive a redundancy check with disjoint
families (not in an assignment game, of course), however, with overlapping families all but
at most n(n− 1) coalitions are �ltered out (like in an assignment game).

As another application, in the second part of this paper we consider peer group games,
and identify a collection of 2n− 1 coalitions that contains all strongly essential coalitions.
In contrast, the number of essential coalitions could be as much as 2n−1+n−1. We propose
an algorithm that computes the nucleolus of an n-player peer group game in O(n2) time.
It works directly from the data of the underlying peer group situation, so the coalition
values need not be explicitly calculated.

The outline of the rest of the paper is as follows. We recall the necessary de�nitions
in the next section. Strongly essential coalitions are introduced and their simpli�cation
possibilities for excess-based solutions in general games are discussed in section 3. We
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specialize the general results to peer group games in section 4. Section 5 contains an O(n2)
algorithm for the nucleolus of an n-player peer group game. We illustrate the algorithm
on a 9-player game in section 6.

2 Preliminaries

We start with the necessary de�nitions and notations. Let (N, v) be a transferable utility
cooperative game, where N is the nonempty, �nite set of players and v : 2N → R is the
coalitional function satisfying v(∅) = 0. We use the standard notation x(S) :=

∑
i∈N aS

i xi

for the total payo� to coalition S ⊆ N at payo� allocation x ∈ RN , where aS ∈ RN denotes
the membership vector of coalition S (i.e., aS

i = 1 if i ∈ S, aS
i = 0 if i 6∈ S).

Given a game (N, v), the excess e(S, x) := v(S) − x(S) of a coalition S at a payo�
allocation x is the usual measure of gain (or loss if negative) to S, if its members depart
from the proposed x in order to form their own coalition. Note that e(∅, x) = 0 for all
x ∈ RN . A payo� allocation x ∈ RN is called e�cient, if e(N, x) = 0; individually rational,
if e({i}, x) ≤ 0 for all i ∈ N ; and coalitionally rational, if e(S, x) ≤ 0 for all S ⊆ N . We
denote by I= the preimputation set (i.e., the set of e�cient payo�s), by I the imputation
set (i.e., the set of individually rational preimputations), and by C the core (i.e., the set of
e�cient and coalitionally rational payo�s).

The kernel, denoted here by K, was introduced by Davis and Maschler (1965). In this
paper we only consider its intersection with the core. We call it kernelcore, and denote it
by KC. It was shown by Maschler et al. (1979) that for any game, KC = K∩ C = {x ∈ C :
sij(x) = sji(x) ∀ i 6= j}, where the function sij(x) := max{e(S, x) : S ⊂ N, S 3 i, S 63 j}
measures the surplus of i against j at x.

The nucleolus, denoted here by N , was introduced by Schmeidler (1969). It is a subset
of the kernel (and in case the core is not empty, of the kernelcore) that consists of a single
payo� allocation, called the nucleolus allocation. The nucleolus is de�ned as follows. For
payo� allocation x let E(x) = [. . . ≥ e(S, x) ≥ . . . : ∅ 6= S 6= N ] denote the (2n − 2)-
component vector that is composed of the nonincreasingly arranged excesses of proper
coalitions at x. The nucleolus is the set of imputations which lexicographically minimize
the vector-valued function E(.) over the imputation set. Formally, N = {x ∈ I : E(x) �lex

E(y) ∀ y ∈ I}, where �lex denotes the lexicographic order of vectors.
One obtains generalizations of the core, the kernelcore, and the nucleolus, by specifying

a nonempty collection B ⊆ 2N \ {∅, N} of coalitions, and by requiring that only the
coalitions in B ∪ {N} determine the solution. We de�ne the B-core as CB = {x ∈ RN :
e(N, x) = 0; e(S, x) ≤ 0 ∀S ∈ B}; the B-kernelcore as KCB = {x ∈ CB : sBij(x) =
sBji(x) ∀ i 6= j}, where sBij(x) := max{e(S, x) : S ∈ B, S 3 i, S 63 j}measures the B-surplus
of i against j at x; and the B-nucleolus as N B = {x ∈ I : EB(x) �lex EB(y) ∀ y ∈ I},
where EB(x) = [. . . ≥ e(S, x) ≥ . . . : S ∈ B] is the |B|-component vector of the non-
increasingly arranged excesses of the coalitions in B at x.

Such generalizations might be useful in modeling situations where the cooperation of
the players is restricted by some external factor (e.g. by communication di�culties), and so
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it is natural to demand that only the coalitions which are capable of forming in�uence the
suggested outcome(s). For this paper, a more important reason is that the core, kernelcore,
and nucleolus are often determined by a small collection of coalitions, and hence, the
computation of the restricted solutions is signi�cantly easier. For such a collection a well-
known example is the collection of essential coalitions.

In a game (N, v), a coalition S is called inessential if it has a proper partition S =
{S1, . . . , Sr}, r ≥ 2, such that v(S) ≤

∑r
j=1 v(Sj), consequently, e(S, x) ≤

∑r
j=1 e(Sj, x)

for all x ∈ RN . Coalitions which are not inessential are called essential. Notice that
single-player coalitions are always essential. The core is obviously independent of inessen-
tial coalitions. It was noticed by Huberman (1980) that in case the core is not empty,
also the nucleolus is independent of inessential coalitions. By an analogous argument one
easily shows that in case the core is not empty, the kernelcore is independent of inessential
coalitions. More precisely, if a collection B ∪ {N} contains all essential coalitions in an
n-player game, we have
• rank{aB : B ∈ B ∪ {N}} = n;
• CB = C;
• if CB 6= ∅ then KCB = KC and N B = N .
In the following section we identify a subclass of essential coalitions with the same prop-
erties.

3 Strongly essential coalitions

In this section we consider special essential coalitions, which we call strongly essential
coalitions, and show that in any game the collection of strongly essential coalitions contains
all the coalitions which actually determine the core, and in case the core is nonempty, the
kernelcore and the nucleolus.

In a game (N, v), we say that a coalition S is weakly inessential if there are coalitions
{Sj}r

j=1, r ≥ 2, and numbers µ, σ ≥ 0 such that

aS =
r∑

j=1

aSj − µ aN and v(S) =
r∑

j=1

v(Sj)− µ v(N)− σ. (1)

The key feature of such a weakly inessential S is that

e(S, x) =
r∑

j=1

e(Sj, x)− σ whenever x is e�cient. (2)

Obviously, an inessential coalition is weakly inessential with µ = 0. Coalitions which
are not weakly inessential are called strongly essential. By an inductive argument it is
easily seen that any weakly inessential S has a decomposition (1) such that all Sj ∈ B
(j = 1, . . . , r) are strongly essential.

As an illustration, consider the n(≥ 3)-player symmetric game with coalitional function
v(S) = |S| − 1 for S 6= ∅. All coalitions are essential, but only the (n − 1)- and n-player
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coalitions are strongly essential. Indeed, for a coalition S with 1 ≤ |S| ≤ n − 2 and for a
proper partition of N \S = T1 ∪ T2 we have v(S) = v(S ∪ T1) + v(S ∪ T2)− v(N), showing
the weak inessentiality of S.

Next we summarize the properties of strongly essential coalitions which are useful in
the computation of excess-based solutions.

Theorem 1 Let a collection B∪{N} contain all strongly essential coalitions in an n-player
game. Then
(i) rank{aB : B ∈ B ∪ {N}} = n;
(ii) CB = C;
(iii) if CB 6= ∅ then KCB = KC;
(iv) if CB 6= ∅ then N B = N .

Proof
(i) If {i} /∈ B then {i} is weakly inessential, so its membership vector a{i} is a linear
combination of the membership vectors aB (B ∈ B ∪ {N}). Since rank{a{i} : i ∈ N} = n,
the claim follows.

(ii) Only CB ⊆ C needs explanation. Take an S 6∈ B. It has a decomposition (1) such that
Sj ∈ B for all j = 1, . . . , r. If x ∈ CB then e(Sj, x) ≤ 0 for all j = 1, . . . , r, so from (2) we
get e(S, x) ≤ 0, i.e., S is redundant for C. It follows that CB ⊆ C.

(iii) We only need to show that for any pair of players i 6= j, sBij(x) = sij(x) holds for all
x ∈ C. Obviously, sBij(x) ≤ sij(x) for all x ∈ RN .

On the other hand, at an x ∈ C, let sij(x) = e(S, x) for some coalition S. If S is in B, we
get e(S, x) ≤ sBij(x), and the claim follows. If S is not in B, there is a collection {Sk}r

k=1 and
a real number µ such that aS =

∑r
k=1 aSk − µ aN and v(S) ≤

∑r
k=1 v(Sk)− µ v(N). Since

x is e�cient, e(S, x) ≤
∑r

k=1 e(Sk, x). Clearly, we can assume without loss of generality
that Sk ∈ B for all k = 1, . . . , r. It follows from the nonpositivity of the excesses at core
allocations that e(S, x) ≤ e(Sk, x) for all k = 1, . . . , r. Moreover, there must be at least
one coalition, say Sk, in the decomposing collection which contains i but not j. We get
e(S, x) ≤ e(Sk, x) ≤ sBij(x), and the claim follows.

(iv) It follows from (i) that N B is a singleton, so we only need to show that EB(x) �lex

EB(y) implies E(x) �lex E(y) for any x, y ∈ C. Intuitively it is clear: in the excess-pro�le
E(x) of a core allocation x, the excess of a coalition S 6∈ B is behind all the excesses in its
excess-decomposition (2), so e(S, x) plays no role in the lexicographic minimization until
any of the excesses e(Sk, x) (k = 1, . . . , r) has some role, but when all of them become
�xed, so does e(S, x), and S has no chance to play a role.

A formal direct proof could be obtained by repeating verbatim the proof of Huberman
(1980). We omit any further details because the general results of Granot et al. (1998), or
of Reijnierse and Potters (1998) easily give claim (iv). �
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4 Peer group games

Tree-connected peer group situations and related peer group games were introduced by
Brânzei et al. (2002) to model economic and operations research situations in which agents
with potential individual possibilities are connected via a hierarchy within an organization.

Given N = {1, . . . , n}, let T be a tree with node set N . We designate node 1 as the
root of the tree, and hence, induce a partial ordering � on N . We write j � i if node j
lies on the path from root 1 to node i. For each i ∈ N , let

P (i) := {j ∈ N : j � i} Q(i) := {j ∈ N : i � j} R(i) := N \Q(i).

In particular, P (1) = {1}, Q(1) = N , and R(1) = ∅. Notice that for i ≥ 2 the set R(i)
consists of the nodes of a 1-rooted subtree whose complement Q(i) is an i-rooted subtree.

The set N and the rooted tree T together with a nonnegative vector w ∈ RN
+ describes

a peer group situation. The following example will be used throughout the paper.

���������

PPPPPPPPP

#
#

#
##

c
c

c
cc

#
#

#
##

c
c

c
cc

1 w1 = 0

2 w2 = 12 3 w3 = 56

4 w4 = 30 5 w5 = 20 6 w6 = 6

7 w7 = 40 8 w8 = 20 9 w9 = 38

A peer group situation

With peer group situation 〈N, T, w〉 we associate a transferable utility cooperative
game, a peer group game. Its set of players is N , its coalitional function v is given by

v(S) =
∑

i:P (i)⊆S

wi ∀S ⊆ N,

with the standard convention that summing over the empty set gives 0. Throughout the
paper we assume that w1 = 0, i.e., the peer group game is 0-normalized.

Given a 1-rooted tree T on node set N , let B1 denote the collection of coalitions
corresponding to the 1-rooted subtrees of T , including the tree T itself. Further, let
B0 := {{j} : j ∈ N \ {1}}, and B∗ := B1 ∪ B0. We call a partition {S1, . . . , Sr} of a
nonempty coalition S the B∗-partition of S if (i) Sk ∈ B∗ for every k = 1, . . . , r; (ii) the
partition is of minimum size among the partitions satisfying (i). Note that the B∗-partition
exists and is unique for all nonempty S ⊆ N .
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Clearly, the coalitional function v of the peer group game corresponding to the peer
group situation 〈N, T, w〉 satis�es

v(S) =


∑

i∈S wi if S ∈ B1

0 if S ∈ B0∑r
j=1 v(Sj) if S /∈ B∗ and {S1, . . . , Sr} is the B∗-partition of S.

This implies that any 0-normalized peer-group game de�ned on the tree T is a T -component
additive game, hence has a nonempty core (Le Breton et al., 1992; Potters and Reijnierse,
1995). Moreover, the collection B∗ contains all essential coalitions in any peer group game
de�ned on T . Observe that |B∗| can be as large as 2|N |−1 + |N | − 1. Indeed, if T is the
1-rooted star-graph (i.e., each edge is of the form {1, j} for j ≥ 2), then |B1| = 2|N |−1.

Let B2 be the collection of the node sets of the 1-rooted subtrees with nonempty con-
nected complement, i.e., B2 := {R(i) : i ∈ N \ {1}}. De�ne B := B2 ∪ B0. We claim that
the collection B ∪ {N} contains all strongly essential coalitions in any peer group game
de�ned on the underlying 1-rooted tree. To see this, let S ∈ B1 \ (B2 ∪ {N}). Then r ≥ 2
edges of the tree go out from S, let i1, . . . , ir ∈ N \S be the endnodes of those edges. Since
S ∪Q(i1) ∪ . . . ∪Q(ir) is a partition of N , we have aS = aR(i1) + . . . + aR(ir) − (r − 1)aN .
The coalitional function on B1 is the additive set function induced by the weight vector w,
so v(S) = v(R(i1)) + . . . + v(R(ir))− (r − 1)v(N), thus S is weakly inessential. It follows
that B ∪{N} indeed contains all strongly essential coalitions. Observe that independently
of the structure of the tree, |B| = 2|N | − 2.

For illustration, let S = {1} in our 9-player example. It has r = 2 neighbors in the
tree: i1 = 2 and i2 = 3. From a{1} = a{1,2,4,5,7} + a{1,3,6,8,9} − aN and v({1}) = 0 =
102 + 120 − 222 = v({1, 2, 4, 5, 7}) + v({1, 3, 6, 8, 9}) − v(N) we get that coalition {1} is
weakly inessential. Note that the same is true in general whenever at least two branches
start from the root. On the other hand, in case only one edge, say {1, 2}, leaves the root,
we have {1} = R(2).

Therefore, Theorem 1 applied to peer group games immediately gives

Corollary 1 Given a 1-rooted tree T on node set N = {1, . . . , n}, let B := {{i} : i ≥
2} ∪ {R(i) : i ≥ 2}. Then
(i) B ∪ {N} contains all strongly essential coalitions in any peer group game on T ;
(ii) CB = C 6= ∅;
(iii) KCB = KC;
(iv) N B = N .

In what follows we will be mainly concerned with how to utilize the last equivalence.
Since our collection B consists of (in the number of players) linearly many coalitions,

we know from Theorem 4.8 of Granot et al. (1998) that the B-nucleolus can be calculated
in strongly polynomial time. More explicitly, due to the connectedness of each member of
B in the underlying tree and the balancedness of the game, we can invoke the algorithm
of Kuipers et al. (2000) and compute the B-nucleolus in O(n3|B|) = O(n4) time. To input
that algorithm, �rst we would need to calculate the values of the coalitions in B from the
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peer group situation. Thanks to the additive nature of the required coalitional values, such
preparation would take only O(n2) time.

We can do better, if we exploit the fact that player 1 is a veto player in any peer group
game de�ned on any 1-rooted tree. Indeed, the streamlined version of the algorithm of
Kuipers et al. (2000, p. 557) would compute the B-nucleolus in O(n2|B|) = O(n3) time
(after the coalitional values are derived in O(n2) time). That variant however assumes the
underlying tree to be a star-graph whose root is the veto-player, so the hierarchy among
the other players as described by the peer group situation would not be utilized.

Alternatively, the nucleolus allocation of a peer group game can be determined as the
unique kernel element. Since 0-normalized peer group games are tree-component additive
games, the results of Potters and Reijnierse (1995) imply that the kernel consists only
of the nucleolus allocation, that is the unique payo� vector satisfying e�ciency and the
n − 1 kernel conditions corresponding to the pairs of players connected by an edge of
the underlying tree. Brânzei et al. (2000) compute the nucleolus of line-graph peer group
games by solving that system of n equations. It is possible to e�ciently solve that nonlinear
system even for general peer group games, in fact, the algorithm in the next section can
be interpreted as doing just that.

For veto-rich games (i.e., nonnegative games with a veto player) Arin and Feltkamp
(1997) proves that the nucleolus allocation can be calculated as the unique kernel element,
and presents an algorithm that sequentially determines (even if the game is not balanced)
the unique payo� vector satisfying e�ciency and the n−1 kernel conditions corresponding
to the veto�nonveto pairs. Since peer group games are monotonic (hence balanced) veto-
rich games, in light of Corollary 1(iii) a specialized variant of that algorithm could be
relevant for us. Indeed, if we streamline the algorithm of Arin and Feltkamp (1997) in a
straightforward way for monotonic and B-restricted veto-rich games, we basically get the
specialized algorithm of Kuipers et al. (2000, p. 557). Thus, applied to peer group games
we would obtain the same O(n3) algorithm with the mentioned imperfection.

In the next section we propose a re�nement of these algorithms that also exploits the
additive nature of the coalitional values in the collection B. This enables us to work directly
on the tree and with the weights of the underlying peer group situation, and compute the
nucleolus allocation in O(n2) time.

5 An algorithm for the nucleolus

We present an algorithm that computes the nucleolus of a peer group game directly from
the data of the underlying peer group situation.

Algorithm
INPUT: a peer group situation 〈N, T, w〉 with 1-rooted tree T and w1 = 0
Initially,

(I1) set α := 0, A := N \ {1}
(I2) compute pi := w(Q(i)) ∀ i ∈ A

8



While A 6= ∅
(L0) compute qi := 1 + |Q(i) ∩ A| ∀ i ∈ A

(L1) compute β := min{pi

qi

: i ∈ A}, B := arg min{pi

qi

: i ∈ A}

(L2) �nd B := A ∩Q(B) where Q(B) = ∪j∈BQ(j)
(L3) set α := α + β, A := A \B
(L4) update pj := α ∀ j ∈ B, pi := pi − βqi ∀ i ∈ A

Finally, set p1 :=
n∑

i=1

wi −
n∑

j=2

pj

OUTPUT: (p1, . . . , pn) = the nucleolus allocation of the associated peer group game

In light of Corollary 1(iv), the validity of the algorithm is justi�ed if we show that the
output vector is the B-nucleolus allocation x∗ of the induced peer group game. It follows
from the general Kohlberg-type characterization of B-nucleolus allocations (Maschler et
al., 1992, Theorem 7.2) that the collection Bt(x

∗) = {S ∈ B : e(S, x) ≥ t} is balanced
or empty for any number t. It is easily checked (or implied by Proposition 3.1 of Le
Breton et al., 1992) that in the setting of Corollary 1, each balanced B-collection (i.e.,
all members are in B) that is minimal (for inclusion) is a B-partition of N , hence of the
form Pi := {R(i)} ∪ {{j} : j ∈ Q(i)} for some i ≥ 2. We obtain that at the B-nucleolus
allocation x∗, any nonempty collection Bt(x

∗) is the union of some of the partitions Pi,
i ≥ 2.

We can sequentially determine the inclusively increasing sequence of the nonempty
balanced collections Bt(x

∗) by reason of the following general fact: the sum of the excesses of
coalitions in any balanced collection is the same constant for all e�cient payo� allocations.
Stated in our setting for minimal balanced collections, we have that for each partition Pi

(i ≥ 2) and for all e�cient x,∑
S∈Pi

e(S, x) = v(R(i))− x(R(i)) +
∑

j∈Q(i)

(0− xj) = w(R(i))− x(N) = −w(Q(i)).

Thus, after the initial phase of the algorithm, for each i ≥ 2, the value −pi equals the
constant total excess of Pi. Each node i ≥ 2 is considered active, because in the associated
partition Pi at least one (initially each) coalition is active (i.e., its excess at x∗ is not
yet found). Notice that node (player) 1 is ignored, because coalition {1} is either weakly
inessential (when more than one edges leave the root), or {1} = R(2) (when {1, 2} is the
only edge incident to the root). Since the core is not empty, an excess of at most −α = 0
can be guaranteed to all (active) coalitions in B. Equivalently, by e({i}, x) = −xi, a payo�
of at least α can be secured for all (active) players.

In the �rst round of the iterative phase of the algorithm, the value −β equals the highest
excess at x∗. Indeed, B is the union of the partitions Pi (i ≥ 2), and in each partition Pi

the maximum excess is minimized, if its total −pi = −w(Q(i)) excess is distributed equally
among its qi = 1 + |Q(i)| active members. The collection of the highest-excess coalitions
at x∗ is the union of the partitions Pi associated with the nodes i ∈ B as found in step
(L1) of the loop. Step (L2) formalizes the fact that �xing the excesses in one partition
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might also determine the excesses in another partition. Indeed, if i ∈ B and j ∈ Q(i) then
it follows from Q(j) ⊆ Q(i) that node j too becomes settled, because each coalition in the
associated partition becomes settled (i.e., its excess at x∗ has been found). In step (L3)
the active�settled status of the nodes (players) and the guaranteed payo� to the active
players are adjusted. After (L3), −α is the smallest excess level that can be guaranteed to
all coalitions which entered the round as active. The p values of these nodes are updated
in step (L4). The nodes in B have just become settled, they get the current guaranteed
level α, the nucleolus payo� to the associated players. The nodes in A remain active,
their updated p value is the negative of what is left from the total excess of the associated
partition after each active coalition in that round received the increment β found in that
round.

Any subsequent round starts with counting the number of still active coalitions in each
active partition. Thus, after step (L0) we always have that

• the nodes (players) in A are the active ones;
• for each i ∈ A, the value −pi is the total excess available for distribution among the

qi active coalitions in Pi;
• the excess of each currently active coalition at x∗ is at most −α, or equivalently, the
nucleolus payo� to each active player is at least α.

The discussion above of what happens in the �rst round can therefore be repeated, mutatis
mutandis.

The iterative phase ends when all non-root nodes become settled. Then for all i ≥ 2,
the �nal value of pi is the nucleolus payo� to player i. Thus, p1 as computed by e�ciency
in the �nal step of the algorithm is the nucleolus payo� to player 1. Therefore, the output
vector (p1, . . . , pn) is indeed the nucleolus allocation.

We recommend to follow the worked out 9-player example in the next section. It is
crafted so that all subtleties of the algorithm could be demonstrated.

Now let us see how long it takes to actually perform the steps of the algorithm. We
assume that the peer group situation is given by two arrays of size n, both indexed by the
node labels. The �rst array contains for each non-root node the other endpoint of the edge
toward the root, the second array speci�es the node weights. We assume that the edges are
{i, t(i)}, i ≥ 2, and the nodes are labeled (e.g. by breadth-�rst search) so that t(i) < i for
each edge. For example, our 9-player peer group situation would be given by the arrays:

i 1 2 3 4 5 6 7 8 9

t(i) − 1 1 2 2 3 4 6 6
w(i) 0 12 56 30 20 6 40 20 38

The initialization is performed only once. Step (I1) is done in O(n) elementary opera-
tions, if, for example, the active-settled status of the nodes are represented by a third array
of size n. Step (I2) can also be done in O(n) elementary operations, for example with the
following backward tracking routine:
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(I2) for i:=n to 2
p(i) := w(i)

for i:=n to 2
p(t(i)) := p(t(i)) + p(i)

Therefore, the initialization phase of the algorithm can be performed in O(n) time.
The iterative phase consists of at most n − 1 rounds, because in each round at least

one of the non-root nodes becomes settled.
Step (L0) of the loop can be done in O(n) elementary operations, for example with the
following backward tracking routine:
(L0) for i:=n to 2

q(i) := 1
for i:=n to 2

if i ∈ A then q(t(i)) := q(t(i)) + q(i), q(i) := 1 + q(i)

Step (L1) can be done in O(n) elementary operations with the following forward tracking
routine (M is a su�ciently large real number):
(L1) set β := M , B := ∅

for i:=1 to n
if i ∈ A and pi

qi
≤ β then β := pi

qi
, B := B ∪ {i}

Step (L2) can also be done in O(n) time with the following routine:
(L2) for i:=2 to n

if i ∈ A and t(i) ∈ B then B := B ∪ {i}
Step (L3) requires O(n) time. Step (L4) can also be done in O(n) time, for example with
the following routine:
(L4) for i:=2 to n

if i ∈ A then pi := pi − βqi

if i ∈ B then pi := α

Therefore, one round of the loop takes O(n) time, so the iterative phase can be performed
in O(n2) time.

The �nal step requires O(n) time. It follows that the algorithm itself can be performed
in O(n2) time.

The space requirement of the algorithm is O(n). More explicitly, only an array of n
records (indexed by the node labels) are needed, each record consisting of three types of
information: the father node, the weight, and the active-settled status of the given node.

6 An example

We illustrate the algorithm on our 9-player peer group situation.
The algorithm starts with α = 0 and A = {2, . . . , 9}. After the initialization the p-value

of a node shows the total weight of the subtree stemming from that node. After step (L0)
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of the �rst round the q-value gives the number of coalitions in the partition associated with
that node.
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Iteration 1 (α = 0)

In this iteration the minimum ratio β = 10 is attained at nodes B = {5, 8} (indicated by
dashed boxes). Since both of them are leaves, B remains unchanged in step (L2). Thus,
nodes 5 and 8 become settled (indicated by double-lined boxes) with the increased value
of α = 10.

Iteration 2 starts with the updated tree with active nodes A = {2, 3, 4, 6, 7, 9}.
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Iteration 2 (α = 10)

In step (L1) we �nd β = 8 and B = {6}. Since node 9 is an active node in the subtree
stemming from node 6, it also gets settled with the increased α = 18, so after step (L2)
we have B = {6, 9}.
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In iteration 3 only A = {2, 3, 4, 7} are the active nodes.
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Iteration 3 (α = 18)

In this round we get β = 2 and B = {7}.

Iteration 4 starts with active nodes A = {2, 3, 4}.
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Iteration 4 (α = 20)

In step (L1) we �nd β = 4 and B = {2}. Node 4 is also an active node in the subtree
stemming from node 2, both gets settled with the increased α = 24, so after step (L2) we
have B = {2, 4}.
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For iteration 5 we are left with only one active node A = {3}.
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Iteration 5 (α = 24)

In this round β = 13 and B = {3}, so the iterative phase ends after the updating steps.

Finally, after computing p1 from e�ciency, the algorithm stops with the nucleolus
allocation values in variables p.
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The nucleolus allocation
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