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Abstract. We define strongly ideal secret sharing schemes to be ideal secret 
sharing schemes in which certain natural requirements are placed on the decoder. 
We prove an information-theoretic characterization of perfect schemes, and use it 
to determine which access structures can be encoded by strongly ideal schemes. 
We also discuss a hierarchy of secret sharing schemes that are more powerful than 
strongly ideal schemes. 
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1. Introduction 

A secret sharing scheme is a mechanism for sharing a secret among a group of 
people, so that only certain subgroups of people (given by an access structure) can 
see the secret when they pool their shares. Simmons [6] gives a comprehensive 
review of secret sharing schemes and their terminology. We consider only perfect 
schemes, in which a group of participants not in the access structure can gain no 
information about the secret by pooling their shares. Shamir [5] used the theory of 
polynomials over finite fields to construct efficient threshold schemes, in which any 
k people can see the secret, and no k - 1 people can learn anything about the secret. 
Ito et al. [4] and Benaloh and Leichter [1] have given constructions for secret 
sharing schemes that realize arbitrary access structures. 

A question that remains is to characterize access structures that can be realized 
by ideal secret sharing schemes, first defined by Brickell [2], in which the size of the 
share given to each participant is equal to the size of the secret. Shamir's threshold 
schemes are ideal. Brickell and Davenport  [3] showed a correspondence between 
ideal secret sharing schemes and matroids. 

In an ideal secret sharing scheme, the decoding mechanism can access not only 
the share given to the participants, but also the identity of the participants. We 
consider a subclass of ideal schemes, called strongly ideal secret sharing schemes, in 
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which the decoding mechanism relies only on the shares, not on the identity of the 
participants. The definition is formalized in the next section. These schemes have 
the pleasing property that when two participants swap their shares, they exchange 
their roles in the access structure. This property does not hold for all ideal schemes. 

The main result of this paper is to show that strongly idea schemes can realize 
only a small class of access structures. We also describe a hierarchy of schemes with 
greater power than strongly ideal schemes. 

2. Definitions 

We take an information-theoretic perspective, rather than a computat ional  one. In 
particular, we do not rely on the concept of computat ional  intractability for the 
security of any secret sharing scheme. 

secret A number  s with 0 < s < n for some fixed integer n. The size of the secret 
is [lg n]. 

participant (also referred to as a person) A number  in the range 1. . .  k. The set 
{ 1 . . . . .  k} of participants is denoted by P. 

access structure (denoted ~ )  A superset-closed collection of nonempty subsets 
of P. 

basis The basis for an access structure ~ is the smallest subset of ~ whose 
superset closure is the whole of d .  

bystander A person who is excluded from every set in the basis. 
secret sharing scheme (also called an SSS or a sharing scheme) A pair (~, f )  for 

allocating and decoding shares for a given access structure ,~. Share allocation 
is achieved by a distribution function ~ such that ~(s, r) e N k. Thus the ith 
component  ~(s, r)i of ~(s, r) is the share of the secret s which is distributed to 
person i when the distribution function is given a random string r. For  a set of 
participants G, define ~(s, r)~ to be the bag z of shares ~(s, r)i for all i ~ G. The 
decoder is a function f mapping  bags of integers to integers, such that if 
G = {i z . . . . .  ira} E ~ ,  then for each random string r and for each secret s, 

f (~(s ,  r)~) = s. 

The secret sharing scheme is said to be perfect if its distribution function 
has the property that if G = { i l , . . . ,  ira} ¢ ~ ,  then, for all bags [aq--.a~,,],  
Pr(~(S, R)a = [ai,, . . . .  aim]iS = s) is the same for all secrets s. Here, and in 
the following, R is a random variable drawn from the uniform distribution on 
random strings, and S is a random variable drawn from any distribution on 
secrets. Lowercase letters s and r represent specific values of the random 
variables. 

share size The share size of a sharing scheme is max[-lg D(s, r)~] over all s, r, 
and i. 

strongly ideal secret sharing scheme A perfect secret sharing scheme in which 
the set of possible shares is just the set of secrets. In particular, if we consider 

I A bag, also called a multiset, is a set that can have -epeated elements. Bags are appropriate since 
the distribution function may allocate the same share to several people. We use square brackets [ ] to 
denote bags and braces { } to denote sets. 
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secrets s satisfying 0 < s < n where n is a power of  2, this definition is equivalent  
to the share size and secret size being equal. 

The definition of  perfect given above suggests informally that a perfect scheme is 
one in which any set of  participants not  in the access structure cannot  extract  any 
information about  the secret from their shares. We formalize this character izat ion 
of  perfect schemes, and prove it equivalent to the original definition. We then derive 
a useful test for nonperfectness that  we use in later proofs. 

Lemma 1. Let the secret sharing scheme (~, f )  be perfect. For any probability 
distribution on the set of secrets, i f  G is not in the access structure and the bag B can 
be distributed to G, then Pr(S = sIN(S, R)o = B) = Pr(S = s) for all secrets s. In other 
words, the random variables S and ~(S, R)o are independent. Conversely, i f  the last 
statement holds for some probability distribution that assigns nonzero probabilfty to 
each secret, then the secret sharin 9 scheme is perfect. 

Proof. Fo r  any  set G of participants, any secret s and any bag B that  can be 
distributed to G, 

Pr(~(S,  R)~ = BIS = s) x Pr(S = s) 

= Pr(N(S, R) G = B and S = s) 

= Pr(S = siN(S, R)~ = B) x Pr(N(S, R)o = B). 

If  the scheme is perfect and G ¢ ~ ,  then from the first and third lines above, 
Pr(S = sIN(S, R)~ = B) and Pr(S = s) can differ only by a factor that is independent  
of  s - - i n  fact this factor  must  be 1 as can be seen by summing over all s. 

Conversely, if for some probabil i ty distribution on secrets, we have 

Pr(S = sIN(S, R)o = B) = Pr(S = s) ~ 0 

for each secret s, each G ¢ d ,  and each bag B that  can be distributed to G, then from 
the first and third lines above, Pr(N(s, R)a = B) is the same for all s, so the scheme 
is perfect. [ ]  

L e m m a  2. A secret sharing scheme is perfect iff it has the followin9 property: if  
G = {i x . . . . .  i,,} ~ sl, then, for any randomized or deterministic function g with range 
contained in 0 " " n -  1, Pr(g(N(S, R ) ~ ) =  S ) =  1/n, where the probability is over 
independent and uniform choices of R, S, and any random bits R' used by g. 

Proof. If  g is randomized and Pr(g(N(S, R)o) = S) > l/n, then there is a set- 
ting of  O'S r a n d o m  bits that  preserves the inequality. In o the r 'words ,  if g,, is 
the function g with r andom bits r', then there is an assignment to r '  such that  
Pr(g,,(N(S, R)~) = S) > i/n, so we can assume from here on that  g is deterministic. 

If  we invoke L e m m a  1 with the uniform distribution on secrets, we have that  the 
scheme is perfect iff for all G not  in the access structure and for all B that  can be 
distributed to G, Pr(S = sl~(S, R)~ = B) = 1/n for each secret s. 

Finally, 

Pr(S = sl~(S, R)G = B) = 1/n for all s and B (1) 

.~  Pr(g(N(S, R)o ) = S) = 1/n for all g with range contained in 0-- .  n - 1. 
(2) 
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(1) =~ (2) follows from 

Pr(g(~(S, R)o) = S) = Pr(g(~(S, R)~) = S and ~(S, R)~ = B) 
B 

= ~ Pr(g(~(S, R)o) = S]~(S, R)o = B) x Pr(~(S, R)o = B) 
B 

1 
= ~, - x Pr(~(S, R) o = B) if (1) holds. "g n 

To see (2) ~ (1), assume that the bag B' and the secret s' satisfy 

Pr(S = s'[~(S, R)~ = B') > 1/n. 

Define a function g, by g(B') = s', and for any bag B v~ B', let g(B) be a secret s 
satisfying Pr(S = sl~(S, R)o = B) >_ 1In. Then Pr(g(~(S, R)~) = S) > 1In. [] 

The above definition of a secret sharing scheme is a strong one. It provides 
complete information-theoretic security. It does not rely on keeping the distribution 
and decoding functions and the access structure hidden. Some additional security 
might be obtained by keeping one or more of these secret or by using identity checks, 
but that is outside the present notion of a secret sharing scheme. The people sharing 
a secret need not prove their identity, since the decoder uses only their share values. 
In particular, if two people swap their shares, their roles in the access structure are 
also swapped. Participants need to know only their own role in the access structure, 
namely who they need with them to see the secret, to use the scheme. 

3. Access Structures with Strongly Ideal Sharing Schemes 

We study strongly ideal secret sharing schemes, in which the set of possible shares 
is just the set of secrets. It turns out that the number of access structures with 
strongly ideal sharing schemes depends heavily on the details in the definition of a 
secret sharing scheme. We first show that very few access structures have strongly 
ideal sharing schemes. We then show that easing the requirements on the decoder 
greatly increases the number of access structures that can be realized. 

3.1. Characterizing Strongly Ideal Sharing Schemes 

Lemma 3. I f  (9, f )  is a strongly ideal sharing scheme for an access structure with 
a basis set B, then the range of  ~ projected onto the set B is {0... n - 1} FBf. 

Proof. Each share is in the range 0--- n - 1, as the sharing scheme is strongly ideal. 
Now assume that the distribution function has given shares to everyone in B except 
person i. If i cannot be given some share in the range 0 " "  n - 1 while the rest of the 
shares in B remain fixed, then the people in B\{i}  can conspire to guess the secret 
by choosing a share for i that can be given by the distribution function, and give 
this guess and their own shares to the decoder. Their guess has probability at least 
1/(n - 1) of being correct, so by Lemma 2, the scheme is not perfect. 

Thus starting from a vector of shares for B we can change each person's share, 
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one by one, till the shares are any vector in {0-.-n - 1} laP, while remaining in the 
image of the distribution function. [ ]  

Theorem 1. An access structure has a strongly ideal sharing scheme if  and only if its 
basis is of one of the following types: 

1. {X} for some X ~_ P. 
2. { {x}: x ~ X} for some X ~_ P. 
3. { {x, y}: x E X, y e Y} for disjoint subsets X and Y of P. 

Proof. Let ~ be the basis for an access structure ~ ,  and let (~, f )  be a strongly 
ideal sharing scheme for d ,  in other words, the set of possible shares is just the set 
{0,'-- n - 1 } of secrets. 

Let C and D be distinct basic sets: there must be c and d in C\D and D\C 
respectively, since ~ is a basis. Let F -- C u Dk{c}k{d}. d must contain both 
F u {c} and F u {d}, since the first is a superset of C and the second is a superset 
of D. We now have one of two cases. 

1. F ~ d ,  so there is an E E ~ such that E _ F. In this case there must be e ~ EkC, 
and we can repeat the argument above with E in the place of D. Since 
[E\CI < ]DkC] we must eventually get: 

2. F ¢ d .  Both F w {c} and F u {d} are in ~¢, and since the secret sharing scheme 
is perfect, applying Lemma 2 gives us that d's share uniquely determines the 
value o f f  on the shares of F u {d}, and the share of c uniquely determines the 
value o f f  on the shares of F u {c}. By assumption there are exactly as many  
possible values for c and d as for the secret s, so we must have that c and d 
receive the same shares. Since this is true for any value of the random variable 
r used by the share distribution function, and the sharing scheme is perfect, c 
and d must  be equivalent in d ,  in the sense that any occurrence of c could be 
replaced by d, and vice versa. Hence we can consider a reduced access structure 
in which the roles of c and d are combined, by replacing all occurrences of d 
by c. 

We can continue shrinking the access structure until we reach an access structure 
d '  that has the basis ~ '  with only one element, say { 1 . . . . .  t}. Consider the previous 
access structure ~¢" involving one more person t + 1: t + 1 must have been com- 
bined with some person, say t. d "  must therefore have the basis {{1, . . . ,  t}, 
{1 . . . . .  t - 1, t + 1}}. We wish to show that t < 2. First we require some notation: 
let us use a subscript to denote the owner of a share. As an example, x i means "the 
number  x, which is the share that was given to person i." 

Assume that t > 2: then we have f([11,  12, 0 3 . . . . .  0t, 0,+1] ) (middle arguments 
all 0) is always f ( [01 ,02  . . . . .  0,-1 lt, i,+1]) since the bags are identical and in the 
range of the distribution function (by Lemma 3, and since t and t + 1 are equivalent). 
Therefore f ( [01,  02 . . . . .  0,-11,]) = f ( [ l l ,  12, 03 . . . . .  0,]) since {1 . . . . .  t} ~ ~ ;  re- 
ordering shares in the bag gives us 

f([01,  12, 03 . . . . .  0,-1, 0,3) = f([01,  12, 03 , . . . ,  0,_ 1, 1,]). 

Put in words, when persons 1 and 2 are given the shares 0 and 1, the secret 
is the same whether person t is given share 0 or 1. Therefore when persons 1 
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and 2 are given these values, they can (in combination with persons 3 - ' .  t - 1) guess 
the secret correctly with probabili ty at least 1/(n - 1), so by Lemma 2 the scheme 
is not perfect. Hence we must have t < 2. 

Thus the original access structure ~¢ falls into one of three categories: 

1. No shrinking is possible, as ~ = {X} for some X _ P. ~t  has the following 
strongly ideal sharing scheme: the bystanders are given a fixed value, say 0. 
All but one element of X is given a random value, the last is given the x-or of 
the others with the secret. Decoding is done by the x-or of the bag of shares. 
The bystanders '  zero shares do not affect the value of the x-or. 

2. t = 1 and shrinking is possible. The access structure d has the basis 
{ {x}: x ~ X} for some X c p. This access structure has a strongly ideal shar- 
ing scheme: give each bystander the share 0, and give each x e X the secret. 
The decoder returns any nonzero share, or zero if each share given to it is zero. 

3. t = 2 and shrinking is possible. ~¢ must have the basis 

{ { x , y } : x ~ X , y ~  Y} 

for disjoint subsets X and Y of P. A strongly ideal sharing scheme for this 
access structure gives 0 to each bystander, the same random value to each 
x ~ X, and the x-or of the random value and the secret to each member  of Y. 
The decoder returns 0 if all shares given to it are the same, otherwise it returns 
the x-or of the two largest distinct share values given to it. [ ]  

The theorem can be more simply stated if the access structure has no bystanders. 
In this case, there is a strongly ideal sharing scheme iff the access structure has one 
of the following bases: 

1. {e}, 
2. {{x}: x ~ n}, 
3. { {x, y}: x ~ X, y ~ Y} for some partition (X, Y) of P. 

3.2. Relaxin9 the Definitions 

The characterization given in the last section depends heavily on the fine details in 
the definitions associated with secret sharing schemes. We describe how relaxing 
the definitions slightly would allow many  more access structures to have strongly 
ideal sharing schemes. 

3.2.1. A Hierarchy of Almost Strongly Ideal Sharing Schemes. The strictness of 
the definition of strong ideality is crucial to the characterization given in Section 
3.1. If we allow each share to contain m extra bits, then we can easily get sharing 
schemes for access structures with bases of the form X1 x X 2 x .-- × Xz,, for 
disjoint sets Xi, by giving each share a "group identifier." In particular, if each share 
has lg k extra bits, where k is the number  of participants, then we can realize any 
access structure realizable by a sharing scheme which is ideal in the sense of [3]. 

3.2.2. Correctness only on a Basis. Since participants in a secret sharing scheme 
should know with whom they need to collaborate to learn the secret, it is reasonable 
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to ask that the decoder only be correct when given the shares of a group of  people 
in the basis. In this case the number of access structures with strongly ideal sharing 
schemes is much greater. For  example, any access structure with a basis of disjoint 
sets will have a strongly ideal sharing scheme that is correct only on the basis. 

Acknowledgments 

We would like to thank Robert Kennedy, Rajeev Motwani, Walter Wallis, and 
E. F. Brickell for helpful suggestions. 

References 

[1] J. C. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, Advances in 
Cryptology--Crypto '88 Proceedings, Springer-Verlag, Berlin, 1988, pp. 27-35. 

[2] E. F. Brickell, Some ideal secret sharing schemes, Journal of Combinatorial Mathematics and 
Combinatorial Computing, vol. 6 (1989), pp. 105-113. 

[3] E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, Advances 
in Cryptolooy--Crypto '89 Proceedings, Springer-Verlag, Berlin, 1989, pp. 278-285. 

[4] M. Ito, A. Saito, and T. Nishizeki, Secret sharing scheme realizing general access structure, 
Proceedings of the IEEE Global Telecommunications Conference GIobecom '87, Tokyo, IEEE 
Communications Society Press, Washington, DC, 1987, pp. 99-102. 

[5] A. Shamir, How to share a secret, Communications of the ACM vol. 22 (1979), no. 11, pp. 612-613. 
[6] G. Simmons, An introduction to shared secret and/or shared control schemes and their applications, 

in Contemporary Cryptology: the Science of Information (ed. G. J. Simmons), IEEE Press, New York, 
1992. 


