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Abstract: Polarons are quasiparticles relevant across many fields in physics: from condensed matter
to atomic physics. Here, we study the quasiparticle properties of two-dimensional strongly interacting
Bose polarons in atomic Bose–Einstein condensates and polariton gases. Our studies are based on the
non-self consistent T-matrix approximation adapted to these physical systems. For the atomic case, we
study the spectral and quasiparticle properties of the polaron in the presence of a magnetic Feshbach
resonance. We show the presence of two polaron branches: an attractive polaron, a low-lying state
that appears as a well-defined quasiparticle for weak attractive interactions, and a repulsive polaron,
a metastable state that becomes the dominant branch at weak repulsive interactions. In addition, we
study a polaron arising from the dressing of a single itinerant electron by a quantum fluid of polaritons
in a semiconductor microcavity. We demonstrate the persistence of the two polaron branches whose
properties can be controlled over a wide range of parameters by tuning the cavity mode.

Keywords: polaron; exciton–polariton; Feshbach resonance

1. Introduction

The concept of the polaron initially introduced by Landau and Pekar to describe the
motion of an electron in a solid [1,2] has been used in many fields in physics. The quan-
tum motion of an impurity renewed interest in the context of cold atomic gases and
allowed for the study of the polaron in uncharted territories. The experimental realization
of the so-called Fermi polaron [3–14] in two- and three-dimensions, followed by their
three-dimensional counterpart, Bose gas, dramatically improved our understanding of the
polaron far beyond the regimes accessible in previous solid-state platforms. These studies
include the experimental realization of the Bose polaron in the presence of a Feshbach
resonance [15–17], the dynamical formation of the polaron [18], and critical aspects of the
polaron [19]. The nature of the strongly interacting polaron unveiled a plethora of phenom-
ena [20–34], paving the way for the study of the Bose polaron beyond the single impurity
limit [35–46], dipolar polarons [47], and charged polarons in the atomic context [48–52],
among others.

The arrival of semi-conductor microcavities provided new opportunities to explore
many-body physics in the quantum degenerate regime. These systems exploit the strong
coupling between cavity photons and excitons, in which a new quasi-particle coined polari-
ton may emerge [53]. The study of polaritons has produced spectacular results in physics
including the observation of Bose–Einstein condensation [54–56], quantum vortices [57–60],
polaritonic Feshbach resonances [61], and stands as a promising field for the control and
manipulation of strongly interacting photons. In semiconductor microcavities, new classes
of polarons may arise, where the role of the polaron is played by an individual optical
excitation dressed by its bath. These aforementioned polarons have received attention
allowing for the development of polaron-based lasers [62] and the study of polariton–
polariton interactions [63–66]. The polaron-polariton, a quasiparticle resulting from the
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dressing of a polariton by its surroundings, has been experimentally realised in the context
of the Fermi [67] and Bose polaron-polariton [61]. Despite the intrinsic interest in two-
dimensional polaron-polaritons, most theoretical efforts have been devoted to research
concerning Fermi polaron excitons [68–74], and Fermi exciton–polaritons [75–78]. Fewer
efforts have been directed to the Bose polaron-polariton [79–85].

In the context of ultracold quantum gases, the three-dimensional Bose polaron has
received the most theoretical attention, and only a few studies within a mean-field ap-
proach [86] and the Fröhlich Hamiltonian for weak interactions [87,88] have addressed
the two-dimensional Bose polaron. Only recently, the two-dimensional Bose polaron for
strong interactions has been studied using quantum Monte Carlo techniques, unveiling
the role of strong correlations in the formation of the Bose polaron [89]. Beyond homo-
geneous polarons, a new class of strongly interacting two-dimensional polarons arises in
the presence of lattice confinement [90]. Nevertheless, many aspects and features of the
two-dimensional polaron remain to be understood. Furthermore, in the field of semicon-
ductor microcavities, intriguing predictions of polariton-mediated superconductivity hinge
on our ability to understand and enhance the coupling between free carriers (electrons) to
polariton condensate modes [91–95]. Understanding of the limit of a single carrier coupled
to a polariton BEC is naturally one of the first steps towards this goal.

In this work, we study the spectral properties of strongly interacting impurities in
two-dimensional atomic Bose–Einstein condensates and polariton quantum gases. The rest
of the paper is organized as follows. First, in Section 2 we study the two-dimensional Bose
polaron in an atomic Bose–Einstein condensate. We start by introducing the system and
our formalism based on the non-self consistent T-matrix approximation (NSCT) which
allows us to study the quasiparticle properties in a non-perturbative manner and treat
strong interactions arising from the atomic Feshbach resonances. We then numerically
study the zero-momentum properties of the polaron from an NSCT approach, revealing the
presence of two polaron states: an attractive and a repulsive quasiparticle. In Section 3, we
extend the theoretical approach to consider a highly population-imbalanced Fermi–Bose
mixture in a two-dimensional semiconductor microcavity where a polariton condensate is
coupled to a minority of itinerant electrons. In this case, we explore the Feshbach physics
by varying the cavity detuning to analyze the interplay between light–matter and matter–
matter interactions. Finally, in Section 4 we conclude the paper and provide an overview of
new challenges regarding the Bose polaron in 2D.

2. The Polaron in a Two-Dimensional Atomic Bose–Einstein Condensate
2.1. System

We start our study considering a single impurity coupled to a two-dimensional atomic
Bose–Einstein condensate. This system can be realized experimentally by preparing a highly
population-imbalanced Bose-Bose [16] or a Fermi–Bose mixture [15], where a majority BEC
hosts few bosonic or fermionic impurities.

The Hamiltonian of the system is taken as Ĥ = ĤB + Ĥc + ĤI , where

ĤB = ∑
k

ε
(B)
k b̂†

k b̂k +
gBB
2A ∑

k,k′ ,q
b̂†

k+q b̂†
k′−q b̂k′ b̂k , (1)

denotes the Hamiltonian of the majority bosons. Here, b̂†
k creates a boson with momentum

k and energy ε
(B)
k = k2/2mB of mass mB, and gBB the boson-boson interaction strength.

Finally, A denotes the area of the surface. Here, we use periodic boundary conditions. We
take h̄ = 1.

We assume a weakly interacting BEC described by the Bogoliubov theory, such that
the Hamiltonian in Equation (1) can be approximated by

ĤB = ∑
k

ωk β̂†
k β̂k,
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where β̂†
k creates a Bogoliubov mode with energy ωk =

√
ε
(B)
k (ε

(B)
k + 2ngBB). Here, the den-

sity of the BEC is denoted by n.
The non-interacting term of the impurity’s Hamiltonian is Ĥc = ∑k ε

(c)
k ĉ†

k ĉk, with

ε
(c)
k = k2/2mI and mI is the mass of the impurity. Finally, the interaction between the

host atoms and the impurity is assumed short-ranged and well-characterized by a contact-
interaction. The term accounting for the impurity–boson interactions is

ĤI =
g
A ∑

k,k′ ,q
b̂†

k+q ĉ†
k′−q ĉk′ b̂k , (2)

where g gives the boson-impurity interaction strength. In two dimensions, the contact
interaction supports a two-body bound state whose energy εB < 0 can be varied on demand
with a Feshbach resonance [96]. The coupling strength g and the energy of the bound state
are not independent and can be linked via the equation

mg =

[
1

4π
ln
(

εB

εB −Λ2

)]−1
≈
[

1
4π

ln
(

εB

−Λ2

)]−1
, (3)

where we have assumed equal masses m = mB = mI and introduced Λ, an energy cut-off
for the impurity-boson interaction. This parameter is assumed to be by far the largest
energy scale of the system. As we will show, our results are independent of Λ. It is also
convenient to introduce the two-dimensional scattering length defined as a2D =

√
−2mεB,

a dimensionless parameter α = ln(kna2D), a wavevector kn = (4πn)1/2, and a typical
energy scale of the system defined as En = k2

n/2mB. A quasi-2D geometry in ultracold
gases can be created by tightly confining the Bose gas in one direction with a 1D optical
lattice. Finally, in typical experiments with ultracold gases [11,16], the minority atoms
can be regarded as impurities for concentrations around nI/n . 0.1− 0.3, where nI is the
density of the impurities.

To theoretically study the system, we introduce the imaginary-time Green’s function
for the impurity [97]

G(k, τ) = −〈Tτ{ĉk(τ)ĉ†
k(0)}〉, (4)

where τ denotes time and Tτ denotes the time-ordering operator. After Fourier transform-
ing the Green’s function from the time to the frequency domain, we write the Dyson’s
equation for the impurity’s Green’s function G(k, iων) in energy-momentum space

G−1(k, ω) = ω− ε
(c)
k − Σ(k, ω), (5)

where Σ(k, ω) is the self-energy of the impurity. We consider all quantities evaluated at
real frequencies obtained by analytic continuation iων → ω + i0+, with ων a Matsubara
frequency [97].

The excitations can be studied from the spectral function defined as

A(k, ω) = −2ImG(k, ω). (6)

Due to the inherent complexity of the system, it is impossible to solve the many-
body Hamiltonian exactly. Therefore, we need to appeal to certain approximations. Here,
we base our study on the so-called T-matrix approximation for the Bose polaron, first
introduced to describe three-dimensional polarons [25]. This approach has been successful
in helping explain the first generation of Bose polaron experiments [15–19]. The T-matrix
approximation can be regarded as a mean-field-like approximation where the mean-field
correction ng is replaced by an in-medium scattering matrix

Σ(k, ω) = nΓ(k, ω), (7)
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with the in-medium scattering matrix defined as

Γ−1(k, ω) =
1
g
−Π(k, ω), (8)

to account for repeated impurity-boson scattering within the ladder approximation. This
approach only contains normal BEC propagators and accounts for the Feshbach physics.
This formalism can be extended in order to include polariton–polariton interactions and
also usually requires anomalous BEC functions [38]. One should recall that in the limit
of a single boson, the scattering matrix gives an exact solution to the two-body scattering
problem between a boson and an impurity [96]. In the ladder approximation, the pair-
propagator is given by

Π(k, ω) = − ∑
q,iων

G(0)(q, iων)G11(q + k, iων + ω), (9)

where, the BEC Green’s function is given by

G11(k, ω) =
u2

k
ω−ωk

−
v2

k
ω + ωk

, (10)

with the Bogoliubov mode wavefunctions

u2
k =

1
2

(
ε
(B)
k + ngBB

ωk
+ 1

)
,

and u2
k − v2

k = 1.
In this study, we employ the non-self consistent T-matrix approximation (NSCT) which

consists of taking in Equation (9) the bare impurity propagator

G(0)(k, ω) =
1

ω− ε
(c)
k

. (11)

The features of the scattering matrix Γ(k, ω) in Equation (7) can be read from Figure 1.
Figure 1 shows the spectral function of Γ defined as AT(0, ω) = −ImΓ(0, ω) as a function
of ω for α = 2 (red) and α = 0.5 (black). For clarity, we show the spectral function for
the same parameters in logarithmic scale. The scattering matrix is formed by a sharp and
real pole at the energy of the bound state (narrow peak) and a continuum of excitations
at ω > 0 only visible in the inset. As α is increased from large negative values, the bound
state becomes well-defined leading to a sharper pole.

Turning our attention to many-body physics, we have that in the limit gBB → 0 for a
non-interacting BEC, Equation (7) reads as

Σ(k, ω) = n
4π

m
1

ln
(

ω− k2
4m

εB

) , (12)

which is independent of the cut-off Λ as discussed. For non-zero gBB, we obtain Equation (9)
numerically. In practice, however, we will only study a weakly interacting BEC.

Before delving into the numerical details, let us comment on the approximations we
have made so far. The NSCT is a non-perturbative approach that allows inclusion of the
relevant Feshbach physics that may become dominant in the formation of the polaron
when the interaction strength is driven towards the strongly interacting regime. This
method extends far beyond the so-called Fröhlich model, allowing the impurity to form a
bound state with a majority boson. The NSCT has demonstrated success in providing an
explanation for the first generation of Fermi and Bose polaron experiments in atomic gases.
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Moreover, the flexibility of this approach has facilitated its extension to finite temperature
polarons [24], polaron-polaron interactions [37,38], Efimov physics [98,99], and remarkably,
it has proven to be a valuable framework to explain polaron physics in the context of solid-
state systems such as Fermi polaron–polaritons [67], and Bose polaron–polaritons [80,82].
On the other hand, the NSCT is restricted to permit the binding of a single boson to the
impurity, limiting the formation of bosonic clusters around the impurity [25], and assumes
that the Bogoliubov theory remains valid. Different studies have tried to improve upon
the inherent restrictions of the NSCT. However, many aspects of the Bose polaron remain
under debate, aspects that lie beyond the scope of this study. In this work, we keep in
mind the scope and validity of our assumptions and discuss comparisons made against
other approaches.
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Figure 1. Spectral function AT(0, ω) for α = 2 (red) and α = 0.5 (black). Spectral function AT(0, ω)

in logarithmic scale (inset). The main peak corresponds to the bound state, whereas a continuum of
excitations appear for ω > 0.

2.2. Quasiparticle Properties

The impurity Green’s function gives access to the quasiparticle properties of the po-
laron. In fact, the poles of the Green’s function are connected to the presence of quasiparticle
states. In the vicinity of a pole, the impurity Green’s function is well approximated by [97]

G(k, ω) ≈ Zk
ω− Ek + iγk

, (13)

where, Ek is the polaron energy, Zk is the quasiparticle residue, and γk is the damping rate.
The self-consistent equation for the energy is

Re
[
G−1(k, Ek)

]
= Ek − ε

(c)
k − Re[Σ(k, Ek)] = 0. (14)

The quasiparticle residue is found from

Z−1
k =

(
1− ∂Re[Σ(k, Ek)]

∂ω

)∣∣∣∣
ω=Ek

, (15)

while the damping rate of the polaron is given by

γk = −ZkIm[Σ(k, Ek)]. (16)

The spectral function A(k, ω) is normalized to one,

1
2π

∫ ∞

−∞
dωA(k, ω) = 1. (17)
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For γk = 0 the spectral function can be decomposed as A(k, ω) ≈ Zkδ(ω− Ek)+ Iinc(k, ω).
That is, the spectral function is the sum of a coherent part (the quasiparticle) and an
incoherent part Iinc(k, ω). In the literature, these two parts are often defined to express the
quasiparticle state and incoherent part to Equation (17).

Finally, the mobility of the quasiparticle can be understood in terms of an effective
mass defined as

m∗k =
k

∂Ek
∂k

. (18)

A quasiparticle is well-defined given that the energy remains larger than its damp-
ing rate. Moreover, the quasiparticle residue Zk is required to be large enough to be
experimentally observable.

2.3. Zero-Momentum Properties

We are now in a position to study the properties of a zero-momentum impurity
coupled to a Bose–Einstein condensate. In Figure 2, we show the spectral function of the
impurity. We consider a weakly interacting BEC with ngBB/En = 0.3. Figure 2a shows the
spectral function A(k = 0, ω) as a function of α and ω for a zero-momentum impurity.
Figure 2b illustrates cross-sections of A(0, ω) for fixed values of α.

Figure 2. (a) Spectral function of a two-dimensional impurity at zero momentum as a function of
ω and α. The coherent excitations (quasiparticle) are situated at the narrow maxima of the spectral
function (red regions), whereas the incoherent parts of the spectral function correspond to the white
regions at positive energies. (b) Spectral function for fixed α = 2 (red), α = 0.5 (black) and for α = −2
(blue) and varying ω.

In Figure 2a, we observe that for large positive α an attactive polaron branch with
Ek=0 < 0 is visible taking most of the spectral weight. This is also shown in Figure 2b
where for α = 2 a sharp peak appears at negative energies accompanied by a small bump
at positive energies. This bump is formed by a continuum of incoherent excitations and
is usually termed simply as the continuum. With decreasing α → 0+, this quasiparticle
peak loses visibility, while a significant increment of the spectral weight at positive energies
occurs simultaneously. For negative α, a repulsive polaron branch emerges at positive
energies. This quasiparticle state is formed from the spectral weight transferred from
low- to high-energy excitations, as shown in Figure 2b. Here, the bump has evolved into
a quasiparticle state. The repulsive polaron is a metastable state, and is much broader
than the attractive polaron. In our numerics, we have added a small imaginary width of
iη/En = 0.01 to add visibility to the attractive polaron. Here, a consequence of the NSCT
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approximation is the gap opened between the attractive polaron peak and the continuum
of excitations with ω > 0 which is unphysical, a self-consistent treatment would lead to
a continuum of excitation starting just above the polaron peak [25]. We remark that the
ground state of the system is the attractive polaron even for large negative α; however, this
state loses residue and is no longer visible.

To give quantitative understanding of the polaron states, we now study the quasi-
particle properties of the polaron. The energies of the attractive and repulsive polaron
are plotted in Figure 3a and correspond to the peaks of the spectral function in Figure 2a.
The black line gives the energy of the attractive polaron that evolves from a weakly to a
strongly interacting polaron with visible energy shifts as parameter α is varied from large
positive to smaller values. The repulsive polaron has positive energies. For large negative
α, this is a weakly interacting state with energy slightly above zero. As α→ 0−, the energy
of the repulsive polaron increases until the polaron ceases to exist. We are no longer able to
find a solution to Equation (14) when: (a) the broadening of the spectral function becomes
comparable to its energy shifts and (b) the quasiparticle residue becomes too small, which
will subsequently be discussed.

Figure 3. Zero-momentum quasiparticle properties of the two-dimensional polaron: (a) Energy Ek=0,
(b) Quasiparticle residue Zk=0, (c) Effective mass m∗k=0/m and (d) Damping rate of the polaron.
The red lines correspond to the repulsive branch, whereas the black lines depict the attractive polaron.
System parameters are as in Figure 1.

The narrowing and broadening of the polaron branches in Figure 2a can be understood
in terms of the quasiparticle properties. In Figure 3b, we plot the quasiparticle residue
for the attractive and repulsive polaron. For large positive α, the attractive polaron takes
most of the spectral weight. As α decreases, the residue of the polaron significantly reduces,
close to α = 0 this branch has already lost most of its quasiparticle character as Z0 � 1.
Finally, for negative α it is no longer possible to regard this branch as a quasiparticle
state. Our inability to find quasiparticle states with a very small residue implies that these
states become experimentally unaccessible. Through experimentation, one can extract the
quasiparticle properties with spectroscopic and interferometric measurements. States with
very small residue provide no visible signal [16].

The broadening of the polaron is associated with its damping rate, in this case, the at-
tractive polaron branch is long-lived as it represents the ground state and cannot decay.
On the other hand, the repulsive polaron is an excited state and has an associated finite
lifetime. In Figure 3c, we illustrate the damping rate of the repulsive polaron. For large
negative α, this branch has only a small broadening and is long-lived, and with increasing
α the repulsive branch broadens leading to a short-lived polaron. Eventually, the broad-
ening of the polaron exceeds its energy and it becomes no longer possible to define a
repulsive polaron.

Finally, in Figure 3c we show the effective mass for the polaron states. With our
approximations, we find that the attractive polaron can bind with a boson of the medium,
and then as it crosses α = 0, the effective mass approaches m∗0/m→ 2.

Recently, a theoretical approach based on Quantum Monte Carlo calculations has
demonstrated that the polaron branches rapidly become ill-defined as α→ 0 [89]. The NSCT
calculation, as explained above, is unable to account for a dressing larger than one Bogoli-
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ubov mode. Thus, it can underestimate the surrounding cloud of the impurity, while the
qualitative features are in good agreement with the QMC, we obtain a larger value of the
residue at strong interactions and an effective mass that remains smaller that m∗0/m < 2
contrasting to the large masses predicted in Ref. [89]. These quantitative differences arise
due to the restrictions imposed by NSCT approximation. On the other hand, the interplay
between the finite range of the impurity-boson potential may alleviate some effects [100].

3. The Polaron in a Bose–Einstein Condensate of Polaritons
3.1. System

We now explore a different kind of Bose polaron arising as a result of the strong
coupling between exciton–polaritons and itinerant electrons in a semiconductor micro-
cavity. A two-dimensional semiconductor monolayer is confined in a high-finesse cavity.
Cavity photons are circularly polarised and coherently driven into the system inducing
a Bose–Einstein condensation of exciton-polaritons. We consider spin-valley selection
rules such that the relevant band diagram is as illustrated in Figure 4a, thus the polariton
BEC only populates the valley at crystal momentum −K. A small fraction of itinerant
electrons populate the opposite valley forming a spin-polarized two-dimensional electron
gas (2DEG).

The Hamiltonian of the system is given by Ĥ = ĤP + Ĥe + Ĥe−X where

ĤP = ∑
k
(ε

(x)
k↓ x̂†

k↓ x̂k↓ + ε
(a)
k↓ â†

k↓ âk↓) + Ω ∑
k
(x̂†

k↓ âk↓ + x̂k↓ â†
k↓) +

gxx

2A ∑
k,k′ ,q

x̂†
k+q↓ x̂

†
k′−q↓ x̂k′↓ x̂k↓. (19)

We assume a valley-exciton-locked selection rule such that exciton in valley index −K only
couple cavity photons with left circular polarization σ =↓ . Here, x̂†

k↓ creates an exciton

in the valley −K with in-plane momentum k and energy ε
(x)
k↓ = ωx + k2/2mx, with mx

and ωx the mass and energy of the excitons, respectively. Near the valleys, the dispersion
of excitons is parabolic. On the other hand, â†

k↓ creates a cavity photon with left circular

polarization σ =↓ and in-plane momentum k and energy ε
(a)
k↓ = ωc + k2/2mc. We introduce

δ, the cavity detuning from the exciton δ = ωx − ωc. Finally, mc is the mass of the cavity
photons. The coupling between excitons and photons is taken within the rotating wave
approximation (RWA) and is characterised by the Rabi coupling energy Ω. The RWA is
justified for a large ratio ωx/Ω such that it is safe to neglect the anti-resonant terms in the
light–matter Hamiltonian. The exciton–exciton interactions are assumed to be weak and
described by a short-ranged potential that is approximated by a contact interaction. This
assumption is well-justified for tightly bound excitons [101].

On the eigenbasis of ĤP, neglecting the exciton–exciton interactions, the Hamiltonian
can be written in terms of the lower- and upper-polaritons as

ĤP = ∑
k

ωLP
k↓ L̂†

k↓ L̂k↓ + ωUP
k↓ Û†

k↓Ûk↓, (20)

where L̂†
k↓(Û

†
k↓) creates a lower- (upper-) polariton with energy

ωLP/UP
k↓ =

1
2

(
ε
(x)
k↓ + ε

(a)
k↓ ∓

√(
ε
(x)
k↓ − ε

(a)
k↓

)2
+ 4Ω2

)
. (21)

Here, we treat the excitons and polaritons as point bosons.
The itinerant electrons are injected into the system and can be described by

Ĥe = ∑k ε
(e)
k↑ ê†

k↑ êk↑, where ε
(e)
k↑ = ωe + k2/2me is the energy of an electron in the val-

ley +K with spin ↑ . Here, the spin-valley locking prevents electrons with spin down
in the valley +K [102,103]. The energy of an electron at the bottom of the conduction
band is denoted by ωe↑, while ê†

k↑ corresponds to the creation operator of an electron with
momentum k in the conduction band of valley +K as illustrated in Figure 4a. Since we
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consider a BEC of polaritons in the valley −K, itinerant electrons introduced by gating will
only populate the opposite valley −K due to the Pauli exclusion principle.

Finally, the interaction between electrons and excitons is described by

Ĥe−X =
gx−e

A ∑
k,k′ ,q

x̂†
k+q↓ ê

†
k′−q↑ êk′↑ x̂k↓. (22)

The electron–exciton interaction is assumed to be short-ranged and characterized by a
coupling strength gx−e [70]. The exciton–electron interaction supports a bound state
at an energy εB < 0,. This state is usually coined a trion: a charged optical excitation.
The binding energy of the trion εB < 0 is measured with respect to the energy of the bare
pair exciton–electron, that is, EB = ωx + ωe↑ + εB.

Figure 4. (Left) Relevant band structure. Exciton–polaritons are created by the coupling between
cavity photons with left circular polarization ↓ and excitons in valley −K. Itinerant electrons form a
spin-polarized 2DEG in valley +K. (Right) Bogoliubov spectrum of exciton–polaritons as a function
of k/kn for Ω/En = 0.75 and δ/En = 0 (solid red) and δ/En = −1 (solid blue). The dashed lines
represent the parabolic dispersion of the exciton shifted by ∆LP = −(δ−

√
δ2 + 4Ω)/2.

Contrary to atoms in ultracold gases, where the interaction can be tuned on demand
by means of a magnetic Feshbach resonance, in solid-state systems, the interaction is
much more fixed and cannot be varied with such flexibility. However, in semiconductor
microcavities, the ability to generate hybridised light–matter quasiparticles allows for
control of the interactions. In contrast to magnetic Feshbach resonances, here, the interaction
can be controlled mechanically by means of a piezo-electric device [67] or by engineering
of the mirrors [104] such that cavity detuning δ = ωx −ωc can be varied.

We consider a driving term Ĥpump = ∑k Fâ†
k↓e
−iωpt + h.c that injects photons into

the cavity. Here, F is the strength of the pump and ωp the frequency of the pump. We fix
ωp = ωLP

k=0↓. The net effect of this driving term is to create a steady-state of Bose–Einstein
condensation of lower polaritons of density nLP with a chemical potential fixed by the
pump frequency [105]. The effective Hamiltonian for the polaritons is

ĤP = ∑
k

Ek β̂†
k β̂k, (23)

with a Bogoliubov spectrum Ek =
√

εLP
k (εLP

k + 2C2
0C2

kgxxnLP) and εLP
k = ωLP

k −ωLP
0 [105].

Here the Hopfield coefficient Ck is

C2
k =

1
2

1 +

(
ε
(x)
k↓ − ε

(c)
k↓

)
√(

ε
(x)
k↓ − ε

(c)
k↓

)2
+ 4Ω2

. (24)
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The Bogoliubov dispersion is plotted in Figure 4b for δ/En = −1 (red) and δ/En = 0,
(blue) with mass ratio mc/mx = 10−5, nLPgxx/En = 0.1, and Ω/En = 0.75. Here, we
take En = k2

n/2mx with kn =
√

4π2nLP. The dashed line gives the dispersions k2/2mx +
∆LP with an effective gap ∆LP = −(δ −

√
δ2 + 4Ω)/2 given by half the splitting of the

polariton branches for a given detuning δ. This illustrates that the main effect of the light-
matter coupling at large k is to induce an effective energy shift to the excitonic dispersion.
The exciton and photon mix efficiently for momenta ∆k .

√
2mcΩ. Due to the small mass

of the cavity photons the coupling only occurs for k/kn ∼ 10−3, as shown by the steep
polariton dispersions in Figure 4b.

On the other hand, electrons are regarded as impurities, characterized by a density
ne � nLP, such that we can assume that the BEC is unaltered in the presence of the electrons.
Then, we focus on the properties of the electrons, whose Green’s function is given by

G−1(k, ω) = ω− ε
(e)
k↓ − Σe(k, ω), (25)

written in terms of the self-energy of the electrons Σ(k, ω) . Here, again we employ the
NSCT approximation

Σe(k, ω) = nLPC2
0 Γ(k, ω), (26)

where the polariton-electron scattering matrix is given by

Γ(k, ω) =
1

1
gx−e
−Π(k, ω)

. (27)

The polariton–electron interaction accounts for the fact that polaritons only interact via
their excitonic component. That is, the C2

k=0 originates from the scattering between a
condensate polariton with k = 0 and an electron. Finally, Π(k, ω) is the propagator of
the pair exciton-electron including the light-matter coupling. In our theory the trion - the
bound state between an exciton and an electron - emerges as a pole of the scattering matrix
Γ(k, ω).

3.2. Quasiparticle Properties

As explained above, we can explore Feshbach physics by varying the detuning δ. Here,
we now have an interplay between the light–matter coupling Ω, the cavity detuning δ,
the binding energy εB, and the density of the condensate nLP. We illustrate the computed
spectral function of the electrons as a function of the detuning in Figure 5 for Ω/|εB| = 1,
Ω/En = 0.75, and mx = 2me. We note the emergence of two quasiparticle branches: an
attractive and a repulsive polaron. The former takes most of the spectral weight for large
negative detuning forming a weakly interacting attractive polaron. As the detuning is tuned
to zero, the energy of the polaron visibly shifts towards negative values. Finally, at large
positive detuning the energy of this branch saturates. On the other hand, the repulsive
branch arises as a high energy state with very little spectral weight for large negative
detuning. When the detuning shifts to positive values, this branch gains coherence and
then vanishes for large positive detuning.

The spectral function can intuitively be explained as follows: for large negative detun-
ing, all of the spectral weight is concentrated in the attractive polaron. This branch appears
as a consequence of weak interactions between the impurity and the BEC. In this case, inter-
actions are heavily suppressed since the BEC is essentially photonic, characterised by a very
small Hopfield coefficient (C0 � 1). As the detuning is increases, excitons and photons mix
giving the polaritons scope to interact via a significant excitonic component (C0 ∼ 1). This
enhances the polariton interactions and visibly shifts the energy of the attractive polaron
signaling that the system is entering into the strongly interaction regime. As the cavity
detuning drives to strong interactions, the spectral function exhibits two polaron branches.
A high-energy polaron branch situated at positive energies with small spectral weight for
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large negative detuning. It appears at positive energies due to the large value of ∆LP, note
that the gap is larger for negative detuning. As the detuning increases, the effective gap
∆LP reduces and the coupling to the trion state becomes more efficient. This gives rise to a
repulsive polaron which gains spectral weight. Finally, as the cavity detuning is varied to
large positive detuning, we observe that the repulsive branch broadens losing coherence.
This shows that there is an optimal value of cavity detuning, where the repulsive state is
more coherent while retaining significant spectral weight.

Figure 5. Spectral function for zero-momentum electrons as a function of the cavity detuning δ and
ω for Ω/En = 0.75, a coupling strength given by the binding energy Ω/|εB| = 1, and assuming
non-interacting excitons gxx = 0.

To further understand the quasiparticle properties of the system, we show in Figure 6
the energy and the residue of the polaron branches. In Figure 6a, we show the energy
of the attractive (red) and repulsive polaron. The attractive polaron appears as a weakly
interacting polaron state for large negative detuning as the energy shift is clearly small,
in this case, the reduced interactions are a consequence of a small Hopfield factor and a trion
energy that lies far away in energies. As the cavity detuning is varied to positive values,
the system enters into the strongly interacting regime: the Hopfield factor of the polariton
BEC enlarges and the coupling to the trion enhances. This induces large energy shifts of
the attractive polaron. On the other hand, the repulsive polaron arises as a high-energy
branch since the ∆LP is a large positive number. Subsequently, for increasing δ, this gap
reduces and the energy of the repulsive polaron decreases.

The distribution of the coherent and incoherent excitations in Figure 4b can be charac-
terised by the quasiparticle residue of the branches. In Figure 3b, we plot the residue of the
polaron states as a function of δ. When the attractive polaron (black lines) is in the weakly
interacting regime, it possesses most of the spectral weight, namely Z0 ≈ 1. The residue
of the repulsive polaron (red lines) is very small Z0 � 1. As the system is tuned to strong
interactions, the attractive polaron cedes spectral weight. This spectral weight is transferred
to the repulsive polaron. Finally, while the attractive polaron remains permanently as a
long-lived quasiparticle, the repulsive polaron broadens for positive detuning and becomes
short-lived close to δ/En ≈ 1.5
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Figure 6. Quasiparticle energy and residue for zero-momentum electrons in the polariton BEC.
(a) Energy of the attractive (black) and repulsive polaron (red). (b) Residue for the attractive (black)
and repulsive polaron (red). The system parameters are as in Figure 5.

Finally, we mention that polaritons are intrinsically driven-dissipative systems. Here,
we have neglected losses and assumed that the system is in the strong light–matter coupling
regime Ω/γc � 1 and also, that such broadening is much smaller than the binding
energy |εB|/γc � 1. Since the trion state is formed mainly from the scattering between
high-momentum polaritons and an electron, and that for such processes the polariton is
essentially purely exciton, the trion is thus prevented from cavity losses.

Our results show a subtle interplay between light–matter interactions and trion
physics, giving rise to two polaron states on which quasiparticle properties are heav-
ily dependent, regarding both the properties of the polaritons and energy of the trion.
In view of the recent proposals to realize polariton-mediated superconductivity [91–95],
our results provide a valuable guide to optimize the parameters in which electrons couple
efficiently to a Bose–Einstein condensate of polaritons.

4. Conclusions

Recent breakthrough experiments with ultracold gases and microcavity polaritons
have defied the old paradigms of the polaron, taking this concept to a new frontier. Our
understanding has undergone significant improvements owing to the parallel development
of new theoretical and numerical approaches. Consequently, these novel approaches have
allowed us to characterize the many facets of the Bose polaron. Herein, we have studied
the coupling between a quantum impurity and a bosonic bath in two different scenarios,
employing a diagrammatic approach based on the T-matrix approximation.

First, we examined the spectral and quasiparticle properties of an impurity coupled
to an atomic BEC in two-dimensions, revealing the interplay between a repulsive and
an attractive polaron as a function of the impurity-boson coupling strength. We showed
that when the binding energy is far smaller or larger than the typical atomic energies, the
spectral weight is mainly taken by a single polaron branch: the attractive or repulsive
polaron. An interplay between these branches arises when the bound-state energy is of
the order of the other relevant energies, leading to large changes of their quasiparticle
properties. Second, we analyzed the coupling of itinerant electrons coupled to a polariton
BEC in a semiconductor monolayer in a microcavity. Here, we employ the cavity detuning
as a mechanism to explore the effects of light–matter coupling and Feshbach physics on the
emergence of the polaron branches.

Although the Bose polaron has now been studied using numerous different setups,
the properties of two-dimensional Bose polarons remain relatively unexplored. There-
fore, our study may provide a valuable benchmark for further experiments and theo-
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ries to analyse other aspects of the polaron in two-dimensions, which have so far only
been characterized for three-dimensional Bose polarons, such as the orthogonality catas-
trophe [30,31,34], Efimov physics [33,98,99], few-body states [22,32] polaron–polaron in-
teractions [35,37,38,106], long-ranged interactions [47–49], finite range corrections [100],
Cherenkov physics and impurity dynamics [107–109], among others. The interesting effects
that have been thoroughly characterised for 3D Bose polarons remain yet to be understood,
in the contexts of both atomic and condensed matter.
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