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Abstract. We study concentrated bound states of the Schrödinger-Newton equations




h2∆ψ − E(x)ψ + Uψ = 0, ψ > 0, x ∈ R3,

∆U + 1
2 |ψ|2 = 0, x ∈ R3,

ψ(x) → 0, U(x) → 0 as |x| → ∞.

Moroz, Penrose and Tod proved the existence and uniqueness of ground states of




∆ψ − ψ + Uψ = 0, ψ > 0, x ∈ R3,

∆U + 1
2 |ψ|2 = 0, x ∈ R3,

ψ(x) → 0, U(x) → 0 as |x| → ∞.

We first prove that the linearized operator around the unique ground state radial solution (ψ0, U0)

with

ψ0(r) =
Ae−r

r
(1 + o(1)) as r = |x| → ∞,

U0(r) =
B

r
(1 + o(1)) as r = |x| → ∞

for some A, B > 0 has a kernel whose dimension is exactly 3 (corresponding to the translational modes).

Using this result we further show: If for some positive integer K the points Pi ∈ R3, i = 1, 2 . . . , K

with Pi 6= Pj for i 6= j are all local minimum or local maximum or nondegenerate critical points of E(P )

then for h small enough there exist solutions of the Schrödinger-Newton equations with K bumps which

concentrate at Pi.

We also prove that given a local maximum point P0 of E(P ) there exists a solution with K bumps

which all concentrate at P0 and whose distances to P0 are at least O(h
1
3 ).
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1. Introduction and Main Results

The Schrödinger-Newton equations were derived by Penrose [30] to describe a nonlinear system

obtained by coupling the linear Schrödinger equation of quantum mechanics with the gravitation law

of Newtonian mechanics. Here in the gravitation law a mass point located at the origin interacts with

a matter density given by the square of the wavefunction, which is the solution of the Schrödinger

equation. On the other hand, in the Schrödinger equation a given potential energy is superposed

with a gravitational energy obtained by solving Newton’s law of gravitation. (The Schrödinger-Newton

equations have also been derived via a variational principle by Christian [5]). For a single particle of

mass m, the Schrödinger-Newton equations consist of the following pair of partial differential equations





h2

2m
∆ψ − E(x)ψ + Uψ = 0,

∆U + 4πγ|ψ|2 = 0.

(1.1)

Here, ψ is the wavefunction, U is the gravitational potential energy, E(x) is a given external potential,

γ = Gm2, G being Newton’s constant, h is Planck’s constant. It is assumed that the space dimension

is 3, i.e., x ∈ R3 and ∆ is the Laplace operator in R3. We further suppose that

inf
x∈R3

E(x) > 0, E(x) ∈ C2(R3). (1.2)

The Schrödinger-Newton equations in the whole space R3 have been studied by Moroz, Penrose and

Tod [24], Moroz and Tod [25]. To state their results, we rescale U, ψ as follows

ψ(x) =
1

h

(
1

16πγm

)1/2

ψ̃(x), E(x) =
1

2m
Ẽ(x), U(x) =

1

2m
Ũ(x). (1.3)

Since w.l.o.g. ψ̃(x) is a real function, (1.1) reduces to the system





h2∆ψ̃ − Ẽ(x)ψ̃ + Ũ ψ̃ = 0, x ∈ R3,

h2∆Ũ + 1
2
ψ̃2 = 0, x ∈ R3.

(1.4)
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Note that (1.4) is equivalent to the following non-local partial differential equation

h2∆ψ̃ − Ẽ(x)ψ̃ +
1

8πh2
(
∫

R3

ψ̃2(ξ)

|x− ξ| dξ) ψ̃ = 0, x ∈ R3. (1.5)

We are particularly interested in the semi-classical limit (h → 0). The formulation (1.5) will be used

for our discussion of the semi-classical limit.

From now on, we drop the tildes on ψ̃, Ẽ(x), U , but we still mean the rescaled variables. The

following result about (1.4) with E(x) ≡ 1 and h = 1 has been obtained by Moroz and Tod [25].

Theorem 1.1. There exists a unique radial solution (w, u) with w(y) → 0, u(y) → 0 as |y| → ∞, of

the following problem





∆w − w + uw = 0 in R3,

∆u + 1
2
w2 = 0 in R3,

u, w > 0, w(0) = maxy∈R3 w(y).

(1.6)

Moreover, w is strictly decreasing and

lim
|y|→∞

w(y)e|y||y| = λ0 > 0, lim
|y|→∞

w
′
(y)

w(y)
= −1 (1.7)

for some constant λ0 > 0 and

lim
|y|→∞

u(y)|y| = λ1 > 0 (1.8)

for some constant λ1 > 0.

Remarks: 1. The solution given by Theorem 1.1 is often called the ground state.

2. In [25] also existence of radially symmetric solutions with 1, 2, . . . zeros is proved.

3. Existence of the ground state was also proved by P. L. Lions using variational methods [20, 21].

In other words, Theorem 1.1 establishes existence of a single-peaked solution in R3. It can be

considered as the quantum-mechanic representation of a particle under the influence of gravity which
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is placed at the origin. A natural question to ask is the following: For a single material particle of mass

m, are there any multiple-bump bound states? If yes, how do the different bumps interact?

In this paper we answer these questions. We rigorously prove that for an inhomogeneous external

potential E(x), multiple-bump bound states do occur. Furthermore, there is strong interaction between

each pair of bumps and also between each bump and the external potential. In the semi-classical limit

(h → 0) these K bumps behave like K particles (mass points) located at points P1, . . . , PK such that

their mutual attractive forces are balanced by a force which the potential E(x) exerts on each individual

particle. The mathematical formulation of this result is given in Theorem 1.3 below.

Our approach can be summarized as follows: We first study the kernel of the linearized operator at the

ground state of (1.6) and show by an analysis which for a system of partial differential equations is by

no means trivial that its dimension is exactly 3 (thus comprising exactly the three translational modes).

Then we use the Liapunov-reduction scheme to reduce the problem from the system of partial differential

equations on an infinite-dimensional Sobolev space to a critical point problem on the 3K-dimensional

space of the locations of the K peaks. We solve this reduced problem by a simple perturbation argument.

The following two are our main results:

Theorem 1.2. Assume that E(x) satisfies the assumption (1.2). Suppose that for a positive integer

K, Pi ∈ R3, i = 1, . . . , K are given with Pi 6= Pj for i 6= j. Furthermore, suppose that Pi are local

minimum points of E(P ), i.e. there exist bounded open sets Γi such that

Pi ∈ Γi, E(Pi) = min
x∈Γi

E(x) < E(P ),∀P ∈ Γi\{Pi}. (1.9)

Then there exists h0 > 0 such that for any h < h0 there exists a positive solution ψh of (1.5) with the

following properties:

(1) ψh has exactly K local maximum points Qh
1 , ..., Q

h
K and Qh

i → Pi as h → 0.

(2) ψh(x) ≤ Ce−β
mini=1,...,K |x−Qh

i
|

h for some β > 0, C > 0 and ψh(Q
h
i ) → α, α > 0, i = 1, ..., K as

h → 0, i.e. ψh concentrates at Qh
1 , ..., Q

h
K.
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Remark: The approach can be easily extended to the case where P1, ..., PK ∈ R3 with Pi 6= Pj for i 6= j

are all (not necessarily strict) local maxima or local minima of E(P ) or if they are all nondegenerate

critical points of E(P ).

Theorem 1.3. Assume that E(x) satisfies the assumption (1.2). Let P0 be a local maximum point of

the potential E(x), i.e. there exists a bounded open set Γ such that

P0 ∈ Γ, E(P0) = max
x∈Γ

E(x) > E(P ), ∀P ∈ Γ\{P0}. (1.10)

Then for any positive integer K ∈ Z, there exists h0 > 0 such that for any h < h0 there is a positive

solution ψh of (1.5) with the following properties:

(1) ψh has exactly K local maximum points Qh
1 , ..., Q

h
K and Qh

i → P0 as h → 0. Moreover,

|Qh
i −Qh

j | ≥ Ch1/3, i 6= j, i, j = 1, ..., K

for some C > 0, as h → 0;

(2) ψh(x) ≤ Ce−β
mini=1,...,K |x−Qh

i
|

h for some β > 0, C > 0 and ψh(Q
h
i ) → α, α > 0, i = 1, ..., K as

h → 0, i.e. ψh concentrates at Qh
1 , ..., Q

h
K.

Remarks: 1. We call the solution ψh given in one of the previous theorems a K-bump solution since

it has the properties (1) and (2) stated there.

2. It can be shown that in the system (1.4) the corresponding solution uh of the second equation also

is a K-bump solution. However, in contrast to ψh, it has only algebraic decay at infinity:

uh ∼ C

r

for some C > 0 in accordance with Theorem 1.1.

3. A simple analysis of the functional

Mh(P) = C
K∑

i=1

E(Pi)
3/2 −Dh

∑

i6=j

K∑

j=1

E(Pi)
1/2E(Pj)

1/2 1

|Pi − Pj| + O(h2)
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with C,D > 0 given real constants (see Section 5 for its derivation and also the proof of its smoothness)

noting that

E(Pi) = E(P0) + O(|Pi − P0|2),

∇Pi
E(Pi) = ∇P0E(P0) + O(|Pi − P0|) = 0 + O(|Pi − P0|)

shows that for the K-bump solutions given in Theorem 1.3

|Pi − P0| ≥ Ch1/3.

In the case of a nondegenerate maximum point of E(P ) (see the next remark for a precise definition)

we even have

|Pi − P0| ∼ h1/3,

and from this we get

|Pi − Pj| ∼ h1/3 i 6= j.

This result stands in marked contrast with a similar result for the Schrödinger equation. Namely, it was

recently proved in [16] that |Pi−Pj| ∼ h log 1
h

in the case of a nondegenerate maximum point of E(P ).

For the Schrödinger-Newton equations the bumps are strongly coupled as their distance is bigger by the

algebraic factor h−2/3 than their respective size. However, for the Schrödinger equation their distance

is bigger only by a logarithmic factor log 1
h

than their respective size.

5. If P0 is a nondegenerate critical point of E(P ), i.e.

det(∇2E(P ))|P=P0 6= 0 (1.11)

then for 0 < h < h0 the peak points Pi can are uniquely determined by solving a nondegenerate system

of equations.

This result can be interpreted as analytical progress towards two fundamentally important issues of

quantum mechanics:
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The first issue is quantum entanglement, the phenomenon referred to by Schrödinger as “the essence of

quantum physics”. Roughly speaking, it says that in a quantum mechanical system different particles or

waves interact in a very intricate manner and can not be considered as being separated from one another.

Although the sum of two stationary states is again a stationary state for the (linear) Schrödinger

equation alone this is no longer the case for the Schrödinger equation coupled with the gravitation law

and thus quantum entanglement can be accounted for. Our results show that one mass point is enough

to trigger the appearance of a wavefunction with not only one but an arbitrary number K of bumps

which interact strongly. If the mass point was removed the whole wavefunction would collapse. This

behavior confirms the capability of the Schrödinger-Newton equations to tackle the issue of quantum

entanglement.

The second issue is state reduction. The Liapunov-Schmidt reduction process provides a very efficient

tool to locate particles in a quantum-mechanical system under the influence of gravity even when they

are strongly interacting. The physical relevance of these points in R3 obtained by Liapunov-Schmidt

reduction from the wave function lies in the fact that the single particle wavefunction if it is centered

at one of those points will have maximal overlap with the multi-bump solution.

There are many studies of the nonlinear Schrödinger equation on multi-bump solutions for which

the bumps interacts weakly, for example [1, 4, 6, 7, 8, 10, 11, 18, 22, 28, 29, 31, 33, 34]. For multi-

bump solutions with strongly interacting bumps we refer to [2, 32] and the references therein. For the

time-dependent Schrödinger-Newton equations in 2D dipole-like solutions and spinning solutions were

computed numerically in [15].

The paper is organized as follows. In Section 2 we provide some preliminaries which are essential for

the rest of the paper. In Section 3 we show that the dimension of the kernel of the linearized operator of

(1.6) is exactly three. In Section 4 we introduce the Liapunov-Schmidt reduction process and calculate

the energy of the approximate solutions obtained by the Liapunov-Schmidt scheme. Finally, in Section

5 we finish the proof of the existence of solutions using a variational approach.
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2. Preliminaries

The goal in this section is to introduce and analyze an approximate solution of (1.5). Before we do

this we study two related problems which will be of importance later.

Note that (1.6) may be rewritten as a single equation for w as follows:

∆yw(y)− w(y) +
1

8π
(
∫

R3

w2(z)

|y − z| dz)w(y) = 0, y ∈ R3. (2.12)

Now (1.6) and (2.12) are equivalent: If w ∈ H2(R3) is given then u is uniquely determined by the

second equation of (1.6). By the Hardy-Littlewood inequality we know that

‖u(y)‖W 2,r(R3) = ‖ 1

8π

∫

R3

w2(z)

|y − z| dz‖W 2,r(R3)

≤ ‖w2‖Lq(R3) + ‖w2‖Lr(R3)

for

1

q
=

1

r
+

2

3
.

Therefore, u ∈ W 2,r(R3) for r > 3. Associated with (2.12) is the following energy functional

I(w) =
1

2

∫

R3
(|∇w(x)|2 + w2(x)) dx− 1

32π

∫

R3

∫

R3

w2(x)w2(ξ)

|x− ξ| dx dξ,

where w ∈ H2(R3).

Any critical point of I(w) solves the Euler-Lagrange equation (2.12) and vice versa. We calculate

I(w) =
1

2

∫

R3
(−w(y)∆w(y) + w2(y)) dy

− 1

32π

∫

R3

∫

R3

w2(y)w2(η)

|y − η| dy dη
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=
1

2

∫

R3
w2(y)

1

8π

∫

R3

w2(η)

|y − η| dη dy

− 1

32π

∫

R3

∫

R3

w2(y)w2(η)

|y − η| dy dη

=
1

32π

∫

R3

∫

R3

w2(y)w2(η)

|y − η| dy dη.

Now we introduce a suitably rescaled ground state function in R3. This will be essential for the rest

of the paper. For fixed a > 0 let (wa, ua) be the unique radially symmetric solution with wa(y) →

0, ua(y) → 0 as |y| → ∞, of the following problem





∆wa − awa + uawa = 0 in R3,

∆ua + 1
2
w2

a = 0, in R3,

ua, wa > 0, wa(0) = maxy∈R3 wa(y).

(2.13)

Associated with problem (2.13) is the following energy functional

Ia(wa) =
1

2

∫

R3
(|∇wa(y)|2 + aw2

a(y)) dy

− 1

32π

∫

R3

∫

R3

w2
a(y)w2

a(η)

|y − η| dy dη,

where wa ∈ H2(R3). In the same way as for I(w) we calculate

Ia(wa) =
1

32π

∫

R3

∫

R3

w2
a(y)w2

a(η)

|y − η| dy dη.

Note that

wa(y) = aw(a1/2y),

ua(y) = au(a1/2y).

A simple scaling argument implies

Ia(wa) = a3/2I(w). (2.14)
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Our goal is to construct an approximate solution of the Schrödinger-Newton equations (1.4) which has

the shape of K bumps. For this purpose we fix P = (P1, P2, . . . PK) ∈ (R3)K with Pi 6= Pj for i 6= j.

We also introduce the notations P = (Pj,k), j = 1 . . . , K, k = 1, . . . , 3 and Ej = E(Pj), j = 1, . . . , K.

We introduce as a first approximation to our solution

ψh,P(x) =
K∑

i=1

wEi
(
x− Pi

h
),

Uh(x) =
K∑

i=1

uEi
(
x− Pi

h
).

Recall from the introduction that the system (1.4) is equivalent to the non-local equation (1.5). Asso-

ciated with (1.5) is the following energy functional (dropping tildes)

Jh(ψ) =
1

2h3

∫

R3
(h2|∇ψ|2 + E(x)ψ2) dx

− 1

32πh5

∫

R3

∫

R3

ψ2(x)ψ2(ξ)

|x− ξ| dx dξ,

where

u ∈ E = {w ∈ H2(R3)|
∫

R3
E(x)w2(x) dx < ∞}.

We calculate

Jh(ψh,P) =
1

2h3

∫

R3
(h2|∇ψh,P|2 + E(x)ψ2

h,P) dx

− 1

32πh5

∫

R3

∫

R3

ψ2
h,P(x)ψ2

h,P(ξ)

|x− ξ| dx dξ

=
1

2h3

∫

R3




∣∣∣∣∣
K∑

i=1

∇x−Pi
h

wEi
(
x− Pi

h
)

∣∣∣∣∣

2

+ E(x)

(
K∑

i=1

wEi
(
x− Pi

h
)

)2

 dx

− 1

32πh5

∑

i,j

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ej
( ξ−Pj

h
)

|x− ξ| dx dξ

=
1

2h3

∫

R3


−

K∑

i=1

wEi
(
x− Pi

h
)∆x−Pi

h

wEi
(
x− Pi

h
)

−∑

i6=j

K∑

j=1

wEi
(
x− Pi

h
)∆x−Pj

h

wEj
(
x− Pj

h
) + E(x)

K∑

i=1

w2
Ei

(
x− Pi

h
)


 dx

− 1

32πh5

K∑

i=1

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ei
( ξ−Pi

h
)

|x− ξ| dx dξ
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− 1

32πh5

∑

i6=j

K∑

j=1

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ej
( ξ−Pj

h
)

|x− ξ| dx dξ + O(e−C/h)

=
1

2h3

∫

R3


−

K∑

i=1

wEi
(
x− Pi

h
)(∆x−Pi

h

wEi
(
x− Pi

h
) + E(x)wEi

(
x− Pi

h
))


 dx

− 1

32πh5

K∑

i=1

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ei
( ξ−Pi

h
)

|x− ξ| dx dξ

− 1

32π
h

∑

i6=j

K∑

j=1

1

|Pi − Pj|E
1/2
i E

1/2
j

(∫

R3
w2(y) dy

)2

+O(e−C/h +
∑

i6=j

K∑

j=1

h2

|Pi − Pj|2 ) as h → 0.

Here we have used that for i 6= j

∫

R3
wEi

(
x− Pi

h
)∆x−Pj

h

wEj
(
x− Pj

h
) dx = O(e−C/h)

(because of the exponential decay of w at infinity) and that for i 6= j

1

32πh5

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ej
( ξ−Pj

h
)

|x− ξ| dx dξ

=
1

32π

h

|Pi − Pj|
(∫

R3
w2

Ei
(y) dy

) (∫

R3
w2

Ej
(y) dy

)

+O(
h2

|Pi − Pj|2 ).

We now use (2.13), (2.14) and calculate

Jh(ψh,P) =
1

2h3

∫

R3

K∑

i=1

(E(x)− E(Pi))w
2
Ei

(
x− Pi

h
) dx

+
1

32πh5

K∑

i=1

∫

R3

∫

R3

w2
Ei

(x−Pi

h
)w2

Ei
( ξ−Pi

h
)

|x− ξ| dx dξ

− 1

32π

∑

i 6=j

K∑

j=1

h

|Pi − Pj|E
1/2
i E

1/2
j

(∫

R3
w2(y) dy

)2

+O(e−C/h +
∑

i6=j

K∑

j=1

h2

|Pi − Pj|2 ) as h → 0

=
K∑

i=1

E
3/2
i I(w)
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− 1

32π

∑

i 6=j

K∑

j=1

h

|Pi − Pj|E
1/2
i E

1/2
j

(∫

R3
w2(y) dy

)2

+O(h2∆E(Pi) +
∑

i6=j

K∑

j=1

h2

|Pi − Pj|2 ),

where ∆E(Pi) =
∑3

j=1
∂2E(Pi)

∂P 2
i,j

, since

1

h3

∫

R3
(E(x)− E(Pi))w

2
Ei

(
x− Pi

h
) dx

=
∫

R3
(E(Pi + hy)− E(Pi))w

2
Ei

(y) dy

=
∫

R3
(h∇E(Pi) · y +

h2

2

∑

j,k

∂2E(Pi)

∂Pi,j∂Pi,k

yjyk)w
2
Ei

(y) dy + O(h3)

= 0 +
h2

2
∆E(Pi)

∫

R3
y2

1w
2
Ei

(y) dy + O(h3)

= O(h2∆E(Pi) + h3).

We summarize this result in the following lemma.

Lemma 2.1.

Jh(ψh,P) =
1

32π

K∑

i=1

E
3/2
i

∫

R3

∫

R3

w2(y)w2(η)

|y − η| dy dη

− 1

32π

∑

i6=j

h

|Pi − Pj|E
1/2
i E

1/2
j

(∫

R3
w2(y) dy

)2

+O(h2∆E(Pi) +
∑

i6=j

K∑

j=1

h2

|Pi − Pj|2 + h3) as h → 0.
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3. The linearized operator for the single-particle solution

In this section we show that the linearization of equation (1.6) around the ground state solution (w, u)

has a kernel which is exactly of dimension 3 (thus comprising exactly the translational modes). This

result will be the basis to the construction of multi-bump solutions by the Liapunov-Schmidt reduction

method. It is summarized by the following theorem.

Theorem 3.1. Suppose that (φ, ψ) ∈ H2(R3)×H2(R3) satisfies the following eigenvalue problem




∆φ− φ + uφ + wψ = 0,

∆ψ + wφ = 0.

(3.15)

Then

(φ, ψ) ∈ span

{
∂(w, u)

∂yj

, j = 1, 2, 3

}
. (3.16)

Remarks:

1. Note that (3.15) is a system of PDEs, which is in contrast to the single Schrödinger equation case.

A similar eigenvalue problem has been treated in [23].

2. Theorem 3.1 states for the corresponding nonlocal eigenvalue problem (with the second equation

in (3.15) solved for w and the result substituted into the first equation):

Suppose that φ ∈ H2(R3) satisfies the following eigenvalue problem

∆φ− φ + uφ + w
∫

R3

w(y)φ(η)

4π|y − η| dη = 0. (3.17)

Then

φ ∈ span

{
∂w

∂yj

, j = 1, 2, 3

}
. (3.18)

Proof: We first recall that the eigenvalues of ∆S2 are given by

µ1 = 0, µ2 = µ3 = µ4 = 2, µ4 < µ5, µ6, µ7, . . . . (3.19)
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Let ei(θ) be the corresponding eigenfunctions, i.e.,

∆S2ei + µiei = 0, i = 1, 2, . . . .

For any solution (φ, ψ) of (3.15) set

φi(r) =
∫

S2
φ(r, θ)ei(θ) dθ,

ψi(r) =
∫

S2
ψ(r, θ)ei(θ) dθ.

Recall that

∆φ = ∆rφ +
∆S2φ

r2
.

We calculate

∆φi =
∫

S2
∆rφ(r, θ)ei(θ) dθ

=
∫

S2
(∆φ− ∆S2φ

r2
)ei(θ) dθ

= φi − uφi − wφi +
µi

r2
φi.

We do the same calculation for ψi. This gives the system





∆φi − φi − µi

r2 φi + uφi + wψi = 0,

∆ψi − µi

r2 ψi + wφi = 0.

(3.20)

The proof will be finished by showing the following claims.

Claim 1: If i ≥ 5 then φi ≡ ψi ≡ 0.

Suppose this is not the case. We first multiply (3.20) by w′ and u′, respectively, where ′ = ∂
∂r

, and

integrate over the ball Br centered at the origin with radius r. Note that





∆w′ − w′ + uw′ + wu′ = 2
r2 w

′,

∆u′ + ww′ = 2
r2 u

′.

(3.21)
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Integration by parts gives

0 =
∫

Br

(∆φi − φi − µi

r2
φi + uφi)w

′ dy +
∫

Br

ww′ψi dy

=
∫

∂Br

(w′φ′i − φiw
′′) dθ +

∫

Br

(∆w′ − w′ + uw′)φi dy

−
∫

Br

µi

r2
w′φi dy +

∫

Br

ww′ψi dy.

By (3.21) we get

0 =
∫

∂Br

(w′φ′i − φiw
′′) dθ +

∫

Br

2− µi

r2
w′φi dy

−
∫

Br

wu′φi dy +
∫

Br

ww′ψi dy. (3.22)

Similarly,

0 =
∫

Br

(∆ψi + wφi)u
′ dy −

∫

Br

µi

r2
ψiu

′ dy

=
∫

∂Br

(u′ψ′i − ψiu
′′) dθ +

∫

Br

(∆u′ψi + wφiu
′) dy −

∫

Br

µi

r2
ψiu

′ dy.

By (3.21) we get

0 =
∫

∂Br

(u′ψ′i − ψiu
′′) dθ +

∫

Br

2− µi

r2
u′ψi dy

−
∫

Br

ww′ψi dy +
∫

Br

wu′φi dy. (3.23)

Adding (3.22) and (3.23) we get

0 =
∫

∂Br

(w′φ′i − φiw
′′) dθ +

∫

∂Br

(u′ψ′i − ψiu
′′) dθ

+
∫

Br

2− µi

r2
(w′φi + u′ψi) dy = I1(r) + I2(r) + I3(r), (3.24)

where Ij(r), j = 1, 2, 3 are defined by the last equality. We now choose an appropriate r and estimate

each of the terms Ij(r). By definition we have

φ′i(0) = ψ′i(0) = 0.
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Without loss of generality we assume that there is some r1 > 0 such that φi(r) < 0 for 0 < r < r1 and

φi(r1) = 0. (We choose r1 = ∞ if φi < 0 in (0,∞).) Note that by standard ODE theory φ′i(r1) > 0.

We claim that ψi(0) < 0 for r small enough. Suppose this is not the case. Since

∆ψi =
µi

r2
ψi − wφi > 0

ψi(r) can not have a local maximum where ψi(r) > 0 and 0 < r < r1. This implies

ψi(r) > ψi(0) ≥ 0 for r ∈ (0, r1).

By (3.20) and (1.6), we get

0 >
∫

Br1

(
µi

r2
φi − wψi)w dy =

∫

Br1

w(∆φi − φi + uφi) dy

=
∫

∂Br1

(wφ′i − φiw
′) dθ = 4πr2

1w(r1)φ
′
i(r1) > 0.

This gives a contradiction. Therefore ψi(0) < 0 and so ψi(r) < 0 for r small. This implies that there is

some r2 > 0 such that ψi(r) < 0 for 0 < r < r2 and ψi(r2) = 0. (We choose r2 = ∞ if ψi < 0 in (0,∞).)

Note that necessarily ψ′i(r2) > 0. From now on we distinguish three different cases.

Case 1: r1 = r2.

Set r = r1 = r2. We easily calculate

I1(r) < 0, I2(r) < 0, I3(r) < 0.

By (3.24) this gives a contradiction.

Case 2: r2 < r1.

We easily calculate I3(r2) < 0 and I2(r2) < 0. It is more difficult to evaluate I1(r2). We define

Φ(r) = r2φ′i(r)w
′(r)− r2w′′(r)φi(r).

Then for r2 < r < r1,

Φ′(r) = (r2φ′i)
′w′ − (r2w′′)′φi.
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Now we use

1

r2
(r2φ′i)

′ − φi + uφi + wψi =
µi

r2
φi,

1

r2
(r2w′′)′ − w′ + uw′ + wu′ =

2

r2
w′

and get

Φ′(r) = r2(φi − uφi − wψi +
µi

r2
φi)w

′ − r2(w′ − uw′ − wu′ +
2

r2
w′)φi

= (µi − 2)φiw
′ − r2ww′ψi + r2wu′φi > 0.

Suppose that ψi(r) > 0 does not hold for all r2 < r < r1. Then ψi(r) must have a zero for some

r3 ∈ (r2, r1) with ψ′i(r3) < 0 such that ψi(r) > 0 for r ∈ (r2, r3). Therefore, ψi(r) must have a local

maximum in (r2, r3). However, this is not possible since

∆ψi = −wφi +
µi

r2
ψi > 0, r2 < r < r3.

This is a contradiction and so ψi(r) > 0 for all r2 < r < r1.

Putting these two facts together we conclude

0 > r2
1(w

′(r1)φ
′
i(r1)− φi(r1)w

′′(r1))

= Φ(r1) > Φ(r2) =
1

4π
I1(r2).

By (3.24) this gives a contradiction.

Case 3: r1 < r2.

We easily calculate I3(r1) < 0 and I1(r1) < 0. It is more difficult to evaluate I2(r1). We define

Ψ(r) = r2ψ′i(r)u
′(r)− r2u′′(r)ψi(r).

Then for r1 < r < r2,

Ψ′(r) = (r2u′)′ψ′i − (r2u′′)′ψi.
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Now we use

1

r2
(r2ψ′i)

′ + wφi =
µi

r2
ψi,

1

r2
(r2u′′)′ + ww′ =

2

r2
u′

and get

Ψ′(r) = r2(−wφi +
µi

r2
ψi)u

′ − r2(−ww′ +
2

r2
u′)ψi

= (µi − 2)ψiu
′ − r2wu′φi + r2ww′ψi.

Suppose that φi(r) > 0 does not hold for all r1 < r < r2. Then φi(r) must have a zero for some

r3 ∈ (r1, r2) with φ′i(r3) < 0 such that φi(r) > 0 for r ∈ (r1, r3). We compute

0 <
∫

Br3\Br1

(−wψi +
µi

r2
φi)w dy

=
∫

Br3\Br1

w(∆φi(r)− φi + uφi) dy

=
∫

∂Br3

(wφ′i − φiw
′) dθ −

∫

∂Br1

(wφ′i − φiw
′) dθ

= 4πr2
3r3w(r3)φ

′
i(r3)− 4πr2

1w(r1)φ
′
i(r1) < 0.

This is a contradiction and so φi(r) > 0 for all r1 < r < r2.

Therefore Ψ′(r) > 0 for r1 < r < r2 and we get

Ψ(r1) < Ψ(r2) < 0.

Therefore I2(r1) < 0 and (3.24) gives a contradiction.

Claim 2: If i = 1, then φ1 ≡ ψ1 ≡ 0.

Suppose this is not the case. Since µ1 = 0 we have





∆φ1 − φ1 + uφ1 + wψ1 = 0,

∆ψ1 + wφ1 = 0.

(3.25)
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where

φ1 = φ1(r), ψ1 = ψ1(r)

and

(φ1, ψ1) ∈ H1(R3)×W 2,q(R3), (q > 3).

By definition, we have

φ′1(0) = 0, ψ′1(0) = 0.

Without loss of generality we assume that φ1(0) > 0. We define ρ such that φ1(r) > 0, r ∈ (0, ρ) and

φ1(ρ) = 0. (If φ1 > 0 for r ∈ (0,∞) we set ρ = ∞.)

We show that then necessarily ψ1(ρ) > 0. Suppose not. Then multiplying the first equation in (3.25)

by w and integrating over Br we get

4πr2(wφ′1 − φ1w
′) +

∫

Br

w2ψ1 dy = 0, 0 < r < ρ.

This implies

w2

(
φ1

w

)′
= wφ′1 − φ1w

′ < 0.

Therefore

φ1(r)

w(r)
<

φ1(0)

w(0)
= 0

and thus

φ1(r) < 0 for 0 < r < ρ.

By the second equation in (3.25)

∆ψ1 = −wφ1 > 0 for r ∈ (0, ρ).

Thus ψ1 can not have a local maximum in (0, ρ). Since ψ′1(0) = 0 we therefore get ψ′1(r) > 0 for

r ∈ (0, ρ). This implies ψ1(r) > ψ1(0) > 0 for 0 < r < ρ. This is a contradiction to ψ1(ρ) = 0 and so

ψ1(0) > 0.
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Since φ1(0) > 0 we know by standard ODE theory that the dimension of the solution set of (3.25) is

at most one.

On the other hand,

(φ1, ψ1) = (2w + rw′, 2(u− 1) + ru′)

is a solution to (3.25). Since the dimension of the solution set is at most one we know that any solution

satisfies

(φ1, ψ1) = c(2w + rw′, 2(u− 1) + ru′).

But since ψ1(r) → −2 as r → ∞, we conclude ψ1 6∈ W 2,q(R3), (q > 3). Therefore (3.25) has no

solution in H2(R3)×W 2,q(R3).

Claim 3: (i = 2, 3, 4). The solution for (φ2, ψ2), (φ3, ψ3), and (φ4, ψ4), respectively, is one-dimensional.

We have to show that the solution set of





∆φi − φi + uφi + wψi = 2
r2 φi,

∆ψi + wφi = 2
r2 ψi,

φi(r), ψi(r) → 0 as r → +∞

(3.26)

is one-dimensional.

Suppose that (φi, ψi) solve (3.26). We must have

φi(0) = ψi(0) = 0.

Without loss of generality we assume that ψ′i(0) > 0. We will show that then also φ′i(0) > 0, which, by

the linearity of (3.26), implies that the solution set of (3.26) is one-dimensional.

Suppose not, i.e., let φ′i(0) ≤ 0.
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Let ρ be the first zero of ψ′i. (We set ρ = ∞ if ψ′i(r) > 0 for r ∈ (0,∞).) We integrate the first

equation of (3.26) by w and integrate over the ball Br to get

4πr2(w(r)φ′i(r)− φi(r)w
′(r)) +

∫

Br

w2ψi dy =
∫

Br

2

r2
φiw dy, 0 < r < ρ. (3.27)

If φ′i(0) < 0 then, since φi(0) = 0, by continuity there exists r1 > 0 such that

φi(r) < 0, 0 < r < r1, φi(r1) = 0.

By (3.27) we get

wφ′i − φiw
′

w2
=

(
φi

w

)′
< 0, 0 < r < min(r1, ρ).

This implies

0 =
φi(r1)

w(r1)
<

φi(r)

w(r)
< 0, 0 < r < min(r1, ρ)

and therefore ρ < r1.

If φ′i(0) = 0 then by the first equation of (3.26) we get φ′′i (0) = 0. We expand φi at r = 0 and

substitute the result into the first equation of (3.26) to obtain

φ′′′i (0) = −c0w(0)ψ′i(0) < 0, (c0 > 0).

Now we continue in the same way as for φ′i(0) < 0 since there exists r1 > 0 such that

φi(r) < 0, 0 < r < r1, φi(r1) = 0.

Moreover, in the same way as above we show ρ < r1. For 0 < r < ρ we calculate (noting that φi < 0

for < ρ < r1)

∆ψi =
2

r2
ψi − wφi > 0.

Therefore ψi has no local maximum and ψ′i(r) > ψ′i(0) > 0 for 0 < r < ρ. This gives ψi(ρ) > ψi(0) in

contradiction with ψi(ρ) = 0. Thus we have ρ > r1. On the other hand, the argument based on (3.27)

gives ρ > r1. So we can not have φ′(0) ≤ 0.
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2

In the following section we will use the result in Theorem 3.1 to construct multi-particle solutions by

the method of Liapunov-Schmidt reduction.

4. Liapunov-Schmidt Reduction

We construct K-bump solutions ψh ∈ H2(R3) of the non-local partial differential equation

h2∆ψ − E(x)ψ +
1

8πh2
(
∫

R3

ψ2(ξ)

|x− ξ| dξ) ψ = 0, x ∈ R3,

which was given in (1.5). Fix P = (P1, P2, ..., PK) ∈ (R3)K . We set

wPi
(x) = wEi

(
x− Pi

h
), uPi

(x) = uEi
(
x− Pi

h
). (4.1)

Since we look for K-bump solutions of (1.5), we set

ψ(x) =
K∑

i=1

wPi
(x) + Φh,P,

where ‖Φh,P‖H2(R3) is small.

In this section, we solve problem (1.5) up to an approximate kernel and cokernel of its linearized op-

erator, respectively. This process is commonly called Liapunov-Schmidt reduction. Since the procedure

has become standard by now, we shall only give a sketch of the proof. For more details, please see and

[18] and [29]. We first introduce some notations.

Using the scaling ψ̂(y) = ψ(hy) we introduce the operator Sh : H2(R3) ∩ E → L2(R3) (from Section

2 recall the Hardy-Littlewood and the definition E = {w ∈ H2(R3)| ∫R3 E(x)w2(x) dx < ∞}) by

Sh(ψ̂) = ∆ψ̂ − E(hy)ψ̂ + T [
1

2
ψ̂2]ψ̂,

where

T [
1

2
ψ̂2](y) =

1

8π

∫

R3

ψ̂2(η)

|y − η| dη.
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Then equation (1.5) is equivalent to the equation

Sh(ψ̂) = 0.

From now on we write ψ instead of ψ̂ but we mean the rescaled function.

To solve (1.5) we first consider the linearized operator L̃h[ψ] : H2(R3) ∩ E → L2(R3) by

L̃h[ψ](Φ) = ∆Φ− E(hy)Φ + T [
1

2
ψ2]Φ + T [Φψ]ψ.

In the following we write L̃h instead of L̃h[ψ] for ψ = ψε,P. We remark that the operator L̃h is self-

adjoint and it is then an easy consequence (integration by parts) that the cokernel of L̃h coincides with

its kernel. We choose approximate cokernel and kernel as

Ch,P = span{h∂wPi

∂Pi,j

|i = 1, . . . , K, j = 1, . . . , 3} ⊂ L2(R3),

Kh,P = span{h∂wPi

∂Pi,j

|i = 1, . . . , K, j = 1, . . . , 3} ⊂ H2(R3) ∩ E .

Remark: Setting x = hy and differentiating the equation

∆wPi
(y)− E(Pi)wPi

(y) + T [
1

2
w2

Pi
](y)wPi

(y) = 0

with respect to Pi,j gives

∆h
∂wPi

(y)

∂Pi,j

− E(Pi)h
∂wPi

(y)

∂Pi,j

+ T [
1

2
w2

Pi
(y)]h

∂wPi
(y)

∂Pi,j

+T [wPi
(y)h

∂wPi
(y)

∂Pi,j

]wPi
(y)− h

∂E(Pi)

∂Pi,j

wPi
(y) + O(h2) = 0, y ∈ R3.

Hence it is easy to see by using Theorem 3.1 that

‖h∂wPi

∂Pi,j

+
∂wEi

(y)

∂yj

‖H2(R3)

= O(h|∇E(Pi)|‖wPi
‖L2(R3) + h2) = O(h|∇E(Pi)|+ h2). (4.2)
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Let πh,P denote the projection from L2(R3) onto C⊥h,P (using the L2 scalar product). Our goal in this

section is to show that the equation

πh,P ◦ Sh(
K∑

i=1

wPi
+ Φ) = 0

has a unique solution Φ = Φh,P ∈ K⊥h,P if h is small enough. Moreover Φh,P is C1 in P = (P1, ..., PK).

As a preparation the following proposition gives the invertibility of the corresponding linearized

operator.

Proposition 4.1. Let Lh,P := πh,P◦L̃h. Then there exist positive constants h such that for all h ∈ (0, h)

and P = (P1, ..., PK) ∈ R3K with |Pi − Pj| > δ for i 6= j and some δ > 0 the map

Lh,P = πh,P ◦ L̃h : K⊥h,P → C⊥h,P

is both injective and surjective. Moreover

‖Lh,PΦ‖L2(R3) ≥ C‖Φ‖H2(R3) (4.3)

for all Φ ∈ K⊥h,P.

Proof: We just mention the two most important facts:

1. By the remark above

∫

R3
h2∂wPi

(y)

∂Pi,j

∂wPk
(y)

∂Pk,l

dy = E
3/2
i δikδjl

∫

R3

(
∂w(y)

∂y1

)2

dy

+O(h(|∇E(Pi)|+ |∇E(Pj)|) + h2) as h → 0.

This means that h
∂wPi

(y)

∂Pi,j
, i = 1, . . . , K, j = 1, . . . , 3, converge to an orthogonal system in L2(R3) as

h → 0.

2. We calculate

L̃h[ψh,P](h
∂wPi

(y)

∂Pi,j

) = −(E(hy)− E(Pi))h
∂wPi

(y)

∂Pi,j
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+(∆− E(Pi) + T [
1

2
w2

Pi
](y))(h

∂wPi
(y)

∂Pi,j

+
∂wEi

(y)

∂yj

)

+T [wPi
(h

∂wPi

∂Pi,j

+
∂wEi

∂yj

)](y)wPi
(y)

+T [
1

2
(

K∑

k=1

wPk
)2 − 1

2
w2

Pi
](y)h

∂wPi
(y)

∂Pi,j

+
∑

k 6=i

T [(wPk
h
∂wPi

(y)

∂Pi,j

)](y)wPi
(y)

+
∑

k 6=i

T [(wPi
h
∂wPi

(y)

∂Pi,j

)](y)wPk
(y)

+
∑

k,l 6=i

T [(wPk
h
∂wPi

(y)

∂Pi,j

)](y)wPl
(y).

Therefore

‖L̃h(h
∂wPi

(y)

∂Pi,j

)‖L2(R3) = O(h|∇E(Pi)|+
∑

j 6=i

h

|Pi − Pj| + h2) (4.4)

by using the remark above and the relations

‖T [wPi
wPk

]wPl
‖L2(R3) = O(e−C/h), i 6= k, l = 1, . . . , K, (4.5)

‖T [wPk

∂wPi

∂Pi,j

]wPl
‖L2(R3) = O(e−C/h), i 6= k, l = 1, . . . , K, (4.6)

‖T [wPi
]wPk

]‖L2(R3) = O(
h

|Pi − Pk

), i 6= k. (4.7)

With these two facts in hand the proof can easily be completed. 2

We are now in a position to solve the equation

πh,P ◦ Sh(
K∑

i=1

wPi
+ Φ) = 0, Φ ∈ K⊥h,P. (4.8)

For the ansatz ψh,P introduced in Section 2, we first compute

Sh(ψh,P) = h2∆ψh,P − E(hy)ψh,P + T [
1

2
ψ2

h,P]ψh,P

=
K∑

i=1

∆wPi
(y)− E(hy)

K∑

i=1

wPi
(y)
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+T [
1

2

∑

i,j

wPi
wPj

)](y)
K∑

k=1

wPk
(y)

= −
K∑

i=1

(E(hy)− E(Pi))wPi
(y)

+T [
1

2

∑

i,j 6=k

wPi
wPj

)](y)
K∑

k=1

wPk
(y).

In the same way as in proving (4.4) we estimate

‖Sh(ψh,P)‖L2(R3) = O(h
K∑

i=1

|∇E(Pi)|+
∑

i6=j

K∑

j=1

h

|Pi − Pj| + h2).

Now note that simple computations show

Sh(ψh,P + Φ) = Sh(ψh,P) + L̃h(Φ) + Nh,P(Φ), (4.9)

where

Nh,P(Φ) = T [
1

2
Φ2]ψh,P + T [ψh,PΦ]Φ + T [

1

2
Φ2]Φ.

It is easy to see that

‖Nh,P(Φ)‖L2(R3) = O(‖Φ‖2
H2(R3))

for ‖Φ‖H2(R3) ≤ 1. Therefore we have established the following Lemma.

Lemma 4.2. For h and ‖Φ‖H2(R3) sufficiently small, we have

Sh(
K∑

i=1

wPi
+ Φ) = Mh,P + L̃h(Φ) + Nh,P(Φ) (4.10)

with

Mh,P := Sh(
K∑

i=1

wPi
),

where

‖Mh,P‖L2(R3) = O(h
K∑

i=1

|∇E(Pi)|+
∑

i6=j

K∑

j=1

h

|Pi − Pj| + O(h2))

and

‖Nh,P(Φ)‖L2(R3) ≤ C‖Φ‖2
H2(R3).



SCHRÖDINGER-NEWTON EQUATIONS 27

Next we solve (4.8). Since Lh,P = L̃h|K⊥
h,P

is invertible (call the inverse L−1
h,P) we can rewrite (4.8) as

Φ = −(L−1
h,P ◦ πh,P)Mh,P − (L−1

h,P ◦ πh,P)Nh,P(Φ)

≡ Gh,P(Φ), (4.11)

where the operator Gh,P is defined by the last equation for Φ ∈ H2(R3). We are going to show that the

operator Gh,P is a contraction on

Bh,η ≡ {Φ ∈ H2(R3)|‖(Φ)‖H2(R3) < η}

if η = C0h(
∑K

i=1 |∇E(Pi)|+ ∑
i 6=j

∑K
j=1

1
|Pi−Pj |) and C0 > 0 is large enough. In fact, we have

‖Gh,P(Φ)‖H2(R3) ≤ C(‖πh,P ◦Nh,P(Φ)‖L2(R3) + ‖πh,P ◦ (Mh,P)‖L2(R3)))

≤ C(c(η)η + h
K∑

i=1

|∇E(Pi)|+
∑

i6=j

K∑

j=1

h

|Pi − Pj|)

< η

where C > 0 is independent of η > 0 and c(η) → 0 as η → 0. If we choose C0 large enough, then Gh,P

is a map from Bh,η to Bh,η. Similarly we can show

‖Gh,P(Φ)−Gh,P(Φ′)‖H2(R3) ≤ Cc(η)‖Φ− Φ′‖H2(R3),

where c(η) → 0 as η → 0. Therefore Gh,P is a contraction on Bh,η. The existence of a fixed point

Φ = Φh,P now follows from the Contraction Mapping Principle and hence Φh,P is a solution of (4.11).

Because of

‖Φh,P‖H2(R3) ≤ C(‖Nh,P(Φh,P)‖L2(R3) + ‖Mh,P‖L2(R3))

≤ C + h
K∑

i=1

|∇E(Pi)|+
∑

i 6=j

K∑

j=1

h

|Pi − Pj| + c(η)‖Φh,P‖H2(R3),

we have

(1− Cc(η))‖(Φh,P)‖H2(R3) ≤ Ch(
K∑

i=1

|∇E(Pi)|+
∑

i6=j

K∑

j=1

1

|Pi − Pj|).
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We have thus proved the following

Lemma 4.3. There exists h > 0 such that for any 0 < h < h and P ∈ R3K, P = (P1, . . . , PK) with

Pi ∈ R3, Pi 6= Pj for i 6= j, there exists a unique Φh,P ∈ K⊥h,P satisfying

Sh(
K∑

i=1

wPi
+ Φh,P) ∈ C⊥h,P.

Furthermore, we have the estimate

‖Φh,P‖H2(R3) ≤ Ch(
K∑

i=1

|∇E(Pi)|+
∑

i 6=j

K∑

j=1

1

|Pi − Pj|). (4.12)

Finally we note that Φh,P is actually smooth in P.

Lemma 4.4. Let Φh,P be defined by Lemma 4.3. Then Φh,P ∈ C1 in P.

Proof: The proof follows along the same line as the one given in [12]. Therefore we just sketch the

main argument.

Notice that it can be read off directly that the functions wPi
, ∂wPi

/∂Pi,j, and ∂2wPi
/(∂Pi,j∂Pi,k) are

continuous in P. This implies that the projection πh,P is C1 in P.

We then decompose
∂Φh,P

∂Pi,j
into two parts:

(
∂Φh,P

∂Pi,j

)
=

(
∂Φh,P

∂Pi,j

)

1

+

(
∂Φh,P

∂Pi,j

,

)

2

where
(

∂Φh,P

∂Pi,j

)
1
∈ Kh,P and

(
∂Φh,P

∂Pi,j

)
2
∈ K⊥h,P.

Then it follows first by a direct calculation that
(

∂Φh,P

∂Pi,j

)
1

is continuous in P. Finally, by using the

theorem about the smoothness of inverse operators it follows that
(

∂Φh,P

∂Pi,j

)
2

is also continuous in P. The

proof is finished. ¤
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5. The Existence Proof

In this section, we finish the proof of Theorem 1.3.

Fix P = (P1, . . . , PK) ∈ R3K such that Pi 6= Pj for i 6= j. Let Φh,P be the function given by Lemma

4.3. For a given (small) c0 > 0 we introduce

Λh := {P ∈ ΓK
0 : |Pi − Pj| ≥ c0h, i 6= j} (5.1)

and define a new functional

Mh(P) = Jh(
K∑

i=1

wPi
+ Φh,P) : Λh → R. (5.2)

We first prove the following asymptotic expansion of Mh(P).

Lemma 5.1. For P ∈ Λ̄0, we have

Mh(P) =
K∑

i=1

E(Pi)
3/2I(w)

− 1

32π

∑

i6=j

K∑

j=1

E(Pi)
1/2E(Pj)

1/2 h

|Pi − Pj|
(∫

R3
w2(y) dy

)2

+O(h2(
K∑

i=1

(|∇E(Pi)|+
∑

i6=j

K∑

j=1

1

|Pi − Pj|)
2 + h2

K∑

i=1

|∆E(Pi)|), (5.3)

where w is the ground state of (1.6).

Proof: For any P ∈ Λh, we have

Mh(P) = Jh(
K∑

i=1

wPi
) +

∫

R3
L̃h(Φh,P)(y)

K∑

i=1

wPi
(y) dy + O(‖Φh,P‖2

H1(R3)).

After integration by parts and using the calculations from the proof of Proposition 4.1 we obtain

Mh(P) = Jh(
K∑

i=1

wPi
) + O(h2(

K∑

i=1

|∇E(Pi)|+
∑

i6=j

K∑

j=1

1

Pi − Pj|)
2)

+O(‖Φh,P‖2
H1(R3)).
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With Lemma 2.1 and Lemma 4.3 the claim follows. ¤

Proof of Theorem 1.3 : By Lemma 4.3 and Lemma 4.4, there exists h0 such that for 0 < h < h0

we have a C1 map which, to any P ∈ Λh, associates Φh,P ∈ K⊥h,P such that

Sh(
K∑

i=1

wPi
+ Φh,P) =

∑

k=1,...,K;l=1,...,3

αkl
∂wPk

∂Pk,l

(5.4)

for some constants αkl ∈ R3K .

In the same way as in [16] it can be shown that for h small the optimization problem

min{Mh(P) : P ∈ Λh} (5.5)

has a solution Ph ∈ Λh.

That means, we have

∂Mh(P
h)

∂Pi,j

= 0, i = 1, ..., K, j = 1, ..., 3.

Let Φ = Φh,Ph and uh =
∑K

i=1 wP h
i

+ Φh,P h
1 ,...,P h

K
. Integration by parts gives

∫

R3
[∇uh∇∂(wPi

+ Φh,P1,...,PK
)

∂Pi,j

|Pi=P h
i

+Euh
∂(wPi

+ Φh,P1,...,PK
)

∂Pi,j

|Pi=P h
i
− T [

1

2
u2

h]uh
∂(wPi

+ Φh,P1,...,PK
)

∂Pi,j

|Pi=P h
i
] = 0

for i = 1, ..., K and j = 1, ..., 3.

Therefore we obtain

∑

k=1,...,K;l=1,...,3

αkl

∫

R3

∂wP h
k

∂Pk,l

∂(wP h
i

+ Φh,P h
1 ,...,P h

K
)

∂P h
i,j

= 0, ∀i = 1, ..., K, j = 1, ..., 3. (5.6)

Since Φh,P h
1 ,...,P h

K
∈ K⊥h,Ph , we have that

∫

R3
h
∂wP h

k
(y)

∂P h
k,l

h∂Φh,P h
1 ,...,P h

K
(y)

∂P h
i,j

dy = −h2
∫

R3

∂2wP h
i
(y)

∂P h
k,l∂P h

i,j

Φh,P h
1 ,...,P h

K
(y) dy

= h2‖ ∂2wP h
i

∂P h
k,l∂P h

i,j

‖L2(R3)‖Φh,P h
1 ,...,P h

K
‖L2(R3)
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= O(h
K∑

i=1

|∇E(P h
i )|+ ∑

i 6=j

K∑

j=1

h

|P h
i − P h

j |
) = O(h).

Note that by the Proof of Proposition 4.1

∫

R3
h
∂wP h

k
(y)

∂P h
k,l

h
∂wP h

i
(y)

∂P h
i,j

dy =





E
3/2
i

∫
R3( ∂w

∂yj
)2 + o(1) if i = k, j = l

o(1) otherwise.

Thus equation (5.2) becomes a system of homogeneous equations for αkl and the matrix of the system

is nonsingular since it is diagonally dominant. So αkl ≡ 0, k = 1, ..., K, l = 1, ...3.

Hence ψh =
∑K

i=1 wP h
i

+ Φh,P h
1 ,...,P h

K
is a critical point of Jh and ψh satisfies (1.5).

It is easy to see that by the maximum principle ψh > 0.

This proves Theorem 1.3. ¤

Finally we mention that the Proof of Theorem 1.2 is the same as of Theorem 1.3 except for a small

change.

Proof of Theorem 1.2: Choose in the Proof of Theorem 1.3

Λh := {P ∈ Γ1 × Γ2 × · · · × ΓK : |Pi − Pj| ≥ c0h, i 6= j}

and we optimize the following problem as in [16]

max{Mh(P) : P ∈ Λh}.

2
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