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Abstract 

We demonstrate how the concepts of algebraic representability and strongly-local reductions devel- 

oped here and in [HSMOO] can be used to characterize the computational complexity/efficient approx- 

imability of a number of basic problems and their variants, on various abstract algebraic structures F. 

These problems include the following: 

1. A1gebra:Determine the solvability, unique solvability, number of solutions, etc., of a system of 

2. 0ptimization:Let E > 0. 

equations on F. Determine the equivalence of two formulas or straight-line programs on F. 

(a) Determine the maximum number of simultaneously satisfiable equations in a system of equa- 

tions on F; or approximate this number within a multiplicative factor of n'. 

(b) Determine the maximum value of an objective function subject to satisfiable algebraically- 

expressed constraints on F; or approximate this maximum value within a multiplicative factor 

of n'. 

(c) Given a formula or straight-line program, find a minimum size equivalent formula or straight- 

line program; or find an equivalent formula or straight-line program of size < f (minimum). 
.-Both finite and infinite algebraic structures are considered. These finite structures include all finite non- 

degenerate lattices and all finite rings or semi-rings with a nonzero element idempotent under multipli- 

cation (e.g. all non-degenerate finite unitary rings or semi-rings); and these infinite structures include 

the natural numbers, integers, real numbers, various algebras on these structures, all ordered rings, many 

cancellative semi-rings, and all infinite lattices with two elements a,b such that a is covered by b. 
Our results significantly extend a number of results by Ladner [La89], Condon, et. al. [CF+93], 

Khanna, et.al [KSW97, Cr951 and Zuckerman [Zu93] on the complexity and approximbaility of combi- 
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1 Introduction and problem statements 

We study the complexity and approximability of a number of problems involving computations on algebraic 

structures, including both finite and infinite algebraic structures. Such problems arise in diverse application 

areas including digital circuit design, simulation, analysis, and fault-diagnosis [BY76, Ha86, TF82J4, lexical 

analysis and code optimization of computer programs [ASU86, He77J5, relational and logical database query 

processing [U189, FV93, GLS98I6, computational algebraic geometry and robotics [ABS], combinatorial 

and numerical optimization [BC75, Zi8 1, IK941, fixed-precision numerical computation [IK94J7, model- 

checking and verification of finite-state processes and discrete dynamical systems [CGP98], and the analysis 

of finite and discrete dynamical systems [Ro99]*. The complexity and more recently approximability of 

decision and optimization of algebraic problems over various algebraic structures has been the subject of a 

number of recent papers. We refer the reader to [AM+97, AK95, AB88, AC+98, BHR841 and the references 

therein for further discussions of practical applications/implications of our results on topics related to this 

paper. In this paper, our goals are as follows: 

1. to demonstrate the power, wide applicability, naturalness and simplicity of algebraic representabil- 

i v  and associated &ongly-locaZ reductions as developed here and in [HSMOO] in characterizing the com- 

plexitiedefficient approximability of algebra and optimization over many abstract algebraic structures, for 

sequential as well as parallel and even distributed computational models. 

2. to develop techniques, concepts, and a uniJied methodology, for characterizing (preferably simultane- 

ously) the complexities/efficient approximability of the problems (1)-(14) below, for many different struc- 

tures, when instances are specified by standard specifications, hierarchically, periodically/dynamically, re- 

cursively, etc.; 

3. to develop techniques, concepts, and a unijied methodology, for characterizing the complexity/efficient 

approximability of algebraic problems, that can be used to characterize complexities, ranging inclusively 

from P-/ NP-hard to undecidable; 

4. assuming P#NP, P#PSPACE, etc. , to discover how much and what kinds of non-linearity suffice to 

make solving a system of non-linear equations on an algebraic structure F hard; and 

5. both to demonstrate the very wide existence of planar-crossover boxes and parsimonious planar- 

crossover boxes as defined for the problem 3SAT in [Li82, HM+98], for many different algebraic structures 

including all rings. 

4Using our terminology, the various methods in these references for testing postulated faults in acyclic gate-level andor  

transistor-level networks are equivalent to solving systems of equations on various finite lattices, where the systems of equations 

also result from the networks by strongly-local reductions. Our constructions actually show, that the problems of determining the 

testability of these various kinds of faults are strongly-local inter-reducible with the problem 3SAT, and hence, with each other. 

'For example, our results on the complexity of straight-line program equivalence and approximate minimization problems on 

the structures LANG((0,l)') and FIN-LANG((0, 1)') apply directly to LEX programs. 

60ur results on the complexity of formula and straight-line program equivalence and approximate minimization problems on 

the structures TUPLES((0,l)) and BIN-RELATIONS(U), i.e. finite sets of k- tuples (k 2 1) of 0's and 1's under the operations 

of U and Cartesian product and finite binary relations on an infinite set U under the operations of U and composition or under the 

operations of U andjoin, apply directly to query processing for both relational and logic databases 

7The proofs of our hardness results for solving systems of equations on various finite rings, finite semi- rings, and finite algebras 

also apply to solving systems of equations on the natural numbers, integers, reals, complex numbers, real and complex tensors, etc., 

when discretized. 

'For example, we can show a direct one-to-one correspondence between paths in the phase spaces of finite discrete dynamical 

systems and satisfling assignments of dynamically-specified satisfiability problems on various finite domains. This correspondence 

extends directly to finite discrete dynamical systems when specified hierarchically as in [RH93, AKY991. 
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We demonstrate again simultaneously how algebraic representability and strongly-local reductions en- 

able us to characterize in a unified way the complexity/efficient approximability, not only of the problems 

(1)-(14) below, but also of many of their variants obtained by varying (i) the kind of instance, e.g. formulas, 

straight-line programs, systems of equations, (ii) the kind of specification, e.g. hierarchical and dynamic 

specifications, and (iii) the class of algebraic structures on which problems are defined, or by restricting 

(iv) problems to bandwidth- or treewidth-bounded instances or to planar or 6-near-planar instances as de- 

fined in [ALS91, SH95, RHS93J. Thus for example using the concepts of algebraic representability and 

strongly-local reductions, we Characterize simultaneously the complexity/efficient approximability of prob- 

lems (1)-(14) below, for formulas, straight-line programs and acyclic networks, for systems of equations, 

etc., on any non-degenerate lattice with elements a,b, such that b covers a and on any ring or semi-ring with 

an element x such that Vn 2 1, zn # 0, when specified by standard, hierarchical, or dynamic specifications. 

Moreover, we can characterize simultaneously both the sequential and parallel complexity of these prob- 

lems. Our bounds are always tight for finite structures. Many of our bounds, for particular infinite structures, 

are also provably tight. Our results are summarized in Section 2 and their significance including comparison 

with relevant results in the literature is discussed in Section 3. Selected proof sketches, illustrating the power, 

wide applicability, extensibility, naturalness, and simplicity of strongly-local reductions occur in Section 6.  

1.1 Problems and algebraic structures considered and naming convention 

Throughout this paper, F is an algebraic structure; and E > 0. We consider the following problem: 

A. Algebra: Let & be a system of equations and Fly F2 be two formulas or straight-line programs on F. (1): 

Determine if € has a solution, and if so find a solution. (2): Determine if € is uniquely satisfiable. (3): 

Determine the number of solutions of E.  (4): Determine the dimensionality (as a topological or differential 

manifold) of the set of solutions of &. (5): Determine if Fl and F2 are equivalent, given values for f's 

(input) variables. 

B. Optimization. (7): Determine the maximum number of simultaneously satisfiable equations of a system 

& of equations on F; and (8): approximate this maximum within multiplicative factors of e or of ne. (9): 

determine the maximum value of a linear objective function f on F, subject to algebraically-specified con- 

straints on F; and (10): approximate this maximum within multiplicative factors of E or of ne. (11)-(12): 

given a formula or straight-line program F on F, find a minimum size equivalent formula or straight-line 

program; and, (13)-(14): find an equivalent formula or straight-line program of size 5 f(rninimurn), e.g. 

(1 + E) times minimum. 

We denote the problems of determining the solvability of, unique solvability of, the maximum number of 

simultaneously satisfiable equations of, the maximum number of a distinguished set of variables set equal to 

one in a satisfying assignment of, and the cardinality of the set of solutions of a system of equations on F 

by SAT(F), UNIQUE-SAT(F), MAX-SAT(F), MAX-DONES-SAT(F), and #-SAT(F), respectively. We 

denote the problems of determining the equivalence of two formulas or of two straight-line programs PI, F2 

on F by FORM-EQUIV(F) and SLP-EQUIV(F). To simplify the statements of our results unless stated 

explicitly otherwise, we assume that these problems are restricted to systems of equations with no more than 

1 occurrence of an operator on each side of a equation. 

Finally, we denote the problems of determining the solvability of a system of linear equations on F, the 

(0, 1)-solvability of a system of linear equations on F, and the feasibility of a system of linear equalities 

on the integers by LINEAR- SAT(F), (0, 1)-LINEAR-SAT(F), and ILP-FEASIBILITY, respectively. 
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For these last three problems, we make no restrictions on the numbers of operators allowed on other side 

of equations or inequalities. For all problems IT considered here, we denote the problem ll, when restricted 

to planar instances by PL-IL9 We denote the problem J3, when instances are specified hierarchically as in 

[LW92, LW87, MH+94], etc., by H-IT. We obtain results, for both finite and infinite structures F, including 

(specific structures summarized in Figure 1): 

0 [Finite Structures:] all finite non-degenerate lattices, all finite rings or semi-rings either with a nonzero 

element idempotent under multiplication (e.g. all non-degenerate finite unitary rings or semi-rings) or with- 

out nonzero zero divisors, all bounded Bed-precision versions of the integers, reals, and complex numbers, 

etc., and 

0 [Infinite structures:] the natural numbers N, integers Z, algebraic real numbers RAY real numbers R, 
complex numbers C, various tensor algebras on these structures, all unitary rings, all ordered rings, many 

cancellative semi-rings, the sets of languages on and of finite languages on {0,1}* under union and concate- 

nation, all infinite lattices with two elements a,b such that a is covered by b, etc. 

1. Each distributive, finite or finite depth lattice [Bi67, Zi81, MB671 including ((0, l}, V, A, 0), ternary 

switching algebra, (N, min, m u ,  0) and (R+ U {oo}, max, min, ob, 0). 

2. Each positive idempotent semiring [Ei74, Zi81] including (2{011}*, U, e,$, {2}), 

(F1N(2{031}*), U, *,4, {A}) (R+ U {m},min, $, w,O) (R U {+m, -m},min, +, oo), 
([0,1], m a ,  a b, 0), ([0,1], min, a b, 1) and (TUPLES, U, X ,  4) 

3. For all sets U # 4, (2”’, U, 0,4 ,1u)  and (FIN(2UXU), U, 0,4, lu) 

4. For each ordered ring S = (S,+, -,. ,O), the nonnegative part of S under + and 

- and (S, +, - - ,+,O,  1) including (N,+,.,O, I), (z,+, . ,O,  I), (Q+, +, * , O ,  1) (Q, +, - , O ,  I), 

(R+, +, . ,O ,  1) and (R, +, . ,O,  1). 

Figure 1: Semi-rings and lattices with “hard” SAT(F) problems 

2 Summary of Results 

We obtain both easiness results (for exact solvability and for efficient approximability) and hardness results. 

Examples of our results are summarized in Figure 2 and META-THEOREMS 2.1-2.2. Figure 2 summarizes 

the relevant complexity-theoretic properties of strongly-local reductions; and META-THEOREMS 2.1-2.2 

summarize many of our results on the existence of strongly-local reductions and, consequently, the com- 

plexity/efficient approximability of the problems (1)-(14) above, for finite and for infinite algebraic structures 

respectively.. 

META THEOREM 2.1 : FINITE STRUCTURES ONLY. 

I. General Efficient Approximations for Finite Structures: Let F be any finite algebraic structure. 

9An instance is said to be planar if the bi-partite graph of the instance is planar. For a system of equations E,  the bi- partite 
graph of E has distinct nodes e and v, for each variable v and each equation e of E, and has edge {e, v} if and only if variable v 
occurs in equation e. 
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1. There exists E > 0 such that the problems of approximating the maximum numbers of simultaneously 

satisfiable equations in a system of equations, in a system of hierarchically- specified equations, or in a 

system of dynamically-specified equations on F, with E times optimum are solvable in polynomial time.'O 

2. For all 6 > 0, there exists a PTAS, for approximating the problem MAX- SAT(F), when this problem is 

restricted to 6-near-planar instances. 

3. For all finite (not necessary total) algebraic structures F, there exists an integer IC 2 1 such that the problem 

SAT(F) is (k-strongZy-ZocaI+parsimonious+l)- reducible to the problem 3SAT. 

11 

11. General Hardness Results for Finite Structures: Let F be any finite non-degenerate lattice or any 

finite ring or semi-ring for which 32 E F such that V n  2 1, zn # 0. Then, the problem 3SAT is (2- or 

1-strortgly-Zocal+parsimonious+l)-reducible to the problem S AT(F). Consequently, the following hold: 

4. The problem SAT(F) is both NQL- and <::,-complete for NP; the problem UNIQUE SAT(F) is 

DP-complete with respect to random polynomial reductions; the problem #-SAT(F) is both #NQL-and #P- 

: complete; the problem MAX-SAT(F) is MAX-SNP-complete; and the problem MAX-DONES-SAT(F) is 

MAX-ill-complete. Consequently by results in [AM+97, Ho971, there exists E > 0 such that approximating 

the problem MAX-SAT(F) within E times maximum is also NP-hard; and there exists E > 0 such that 

approximating the problem MAX-DONES-SAT(F) within ne times optimum is NP-hard. l 3  

5. The problem H-3SAT is (2- or 1-strongly-local+parsimonious+l)-reducible to the problem H-SAT(F). 

Consequently, the problems H-SAT(F) and H-#-SAT(F) are PSPACE- and #PSPACE-complete, Also 

there exist E > 0 such that approximating the problems H-MAX-SAT(F) and H-MAX-DONES-SAT(F) 

within E times maximum and within n' times maximum, respectively, are PSPACE-complete. l4 

META THEOREM 2.2: INFINITE STRUCTURES 

Let E > 0. Let F be an algebraic structure. 

1. There exists E > 0 such that the problem SAT(F) is 1-strongly-local reducible to the problem of approx- 

imating the maximum number of simultaneously satisfiable equations of a system of equations on F within 

ne times maximum. (Here, we place no restrictions on he numbers of operators appearing on the sides of the 

equation.) 

"Since the maximization versions of many of these optimization problems, when instances are specified hierarchically or by 

various kinds of dynamic specifications are PSPACE-, DEXPTIME-, NDEXPTIME-, EXSPACE-hard, or even undecidable 

[MH+98], we see that our concepts and techniques can also be used to develop efficient approximation algorithms, for natural 

algebraic optimization problems ranging in complexity from NP-hard to undecidable. Previous to our work, no such general gen- 

eral easiness results were known, for natural provably hard problems, much less for such large classes of natural provably hard 

problems. 

"By PTAS we mean a polynomial time approximation scheme as defined in [GJ79]. All of these schemes are actually NC 

approximation schemes. Recalling the previous footnote, this result yields a natural infinite collection ofprovably hard optimization 

problems with NC approximation schemes. Previously, no such general infinite class ofprovably hard, as opposed to Zikely hard(e.g. 
NP-hard), but arbitrarily efficiently approximable problems was known. 

'*We say that problem T I 1  is "(a+P+y)-reducible" to problem TI2 if and only if TI, is reducible to r I 2  by a single reduction, that 

is simultaneously an a, a P, and a y reduction. 

I3The concepts of NQL- and <::,,-completeness are stronger than the concept of NP-completeness and are defined in [Sc78b, 

SH951, respectively. The concepts ofDP-, #P-, MAX-SNP-, and MAX-l&-completeness are defined in [W85, Va79, PY91, PR931, 

respectively. 

14The counting complexity class #PSPACE defined by [BMS81, La891 is the analogue for PSPACE of the counting complexity 

class #P for NP. 
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2. Suppose 0 E F. Let II be the problem of determining if a formula on F denotes the constant function 0. 

For all functions f : N - (0) -+ N - {0}, the problem Il is 1-strongly-local reducible to the problem of 

finding an equivalent formula of size 5 f (rnin), where rnin is the size of an equivalent formula of minimum 

size. 

3. The problems FORM-EQUIV(F1N-LANG((0, 1}*)) and SLP-EQUIV(F1N-LANG((0, 1}*)) are 

coNP- and coNDEXPTIME-complete, respectively. 

4. [Complexity of ILPFeasibility and Real-Closed Fields, Restricted to Bandwidth- or Treewidth- 

Bounded 1nstances:lThere exists a fixed integer k 2 1 such that the problems ILPFEASIBILITY and 

SAT(RA) are weakly-NP-complete, when restricted to systems of linear constraints and algebraic equa- 

tions with integer coefficients on Rd with bandwidth andor treewidth 5 k .  Unless P=NP, these problems 

are not strongly-NP-complete. l6  

5. [Nonlinear Optimization on Semi-Rings]: (a)Let F = (S, +, a ,  0) be anyone of the partially-ordered 

algebraic structures of Figure 1. Then, the problem of determining if the minimum value taken on by a 

quadratic function of the form 1c1 y1 + . . . + xn - y,, subject to linear equality constraints on F is NP- hard 

by a 2-strongly-local reduction of SSAT. (b)Let F be any idempotent semi-ring or lattice in Figure 1. Then 

the problem SSAT is 2- strongly-local reducible to the problem of determining if a system of equations on 

F consisting of linear equations and a single quadratic equation of the form 2 1  . y1 + . . . + 2, yn = 0. 

6. [Results for Ordered Rings or Cancellative Semi-Rings]: Let F be any ordered unitary ring or can- 

cellative semi-ring, that is the non-negative part of an ordered unitary ring. Then the problem SAT(F) is 

1-strongly-enforcer or 1 -strongly-local bounded tt-reducible" to each of the following problems: 

i. UNIQUE-SAT(F); ii. for all k 2 1 determine if a system of equations on F has exactly IC or has 2 k dis- 

tinct solutions; iii. determine if a system of equations on F has an infinite number of solutions; iv. determine 

the maximum number of simultaneously satisfiable equations in a system of equations on F; v.there exists 

E > 0 approximating the maximum number of simultaneously satisfiable equations of a system of equations 

on F within n' times maximum; videtennine the maximum value (MAX) taken on by a linear objective hnc- 

tion subject to satisfiable equational constraints on F; and vii.there exists E > 0 such that approximating the 

maximum taken on by a linear objective function subject to satisjable equational constraints on F within n' 

times maximum. 

Moreover for any ordered ring F, viii.the problem SAT(F) is (1-strongly-local+ parsimoniously)-reducible 

to the problem of determining if a 4th degree multiple-variable polynomial on F has roots in F. 

7. [An Undecidability Corollary of item 6:] Let F equal Z or N. Then, there are no algorithms, for any of 

the problems i-viii of item 6.'* 

"Thus there is aprovable exponential gap between the complexities of the formula- and of the straightline-program-equivalence 

problems, for these structures. By direct expansion, there is at most a singly exponential gap between the complexities of these two 

problems, for any abstract algebraic structure F. 

I6Let IC 2 1 be a fixed integer. Assuming P #NP, this results shows, that the known polynomial time algorithms for ILP and 

for solving a system of equations on Rd, for instances with 5 k variables, cannot be extended (while remaining polynomial time 

bounded) to apply to instances of bandwidth or of treewidth 5 I C .  
Here, tt stands for truth-table. These more general variants of strongly- local reductions have essentially the same complexity- 

theoretic properties as pure strongly-local reductions. 

"The conclusions of this item follow immediately from those of item 6, together with the undecidability of Hilbert's 10th 

problem [Ma70, Da731. Among other things, these results generalizes Jeroslow's result [Je73], that there is no algorithm, for integer 

programming subject to quadratic constraints, by showing that there are also no algorithms for approximating integer programming 

subject to quadratic constraints. 

17 
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8. All of the strongly-local reductions and consequent hardness results of items 4 and 5 of META-THEOREM 

2.1 , for the problems SAT(F) and MAX-SAT(F), also hold for any infinite ring or infinite semi-ring with a 

non-zero element z such that x2 = z. (Note:These rings and semi-rings include all infinite (not necessarily 

commutative) unitary rings and semi-rings.) In addition all of the strongly- local reductions and consequent 

hardness results of items 4 and 5 of META-THEOREM 2.1 , for the problems SAT(F), #-SAT(F), and MAX- 

SAT(F), also hold, 

(a)for any infinite lattice with elements a$ where a is covered by by and (b)for any infinite ring 

with no non-zero zero divisors, and (c)for the problems LINEAR-SAT(N), (0, 1)-LINEAR- 

SAT(N), and ILP-FEASIBILITY. 

Moreover, there exists an E > 0 such that approximating the maximum value of a linear objective function 

on Z subject to linear constraints and to hierarchically-specified linear inequality constraints on Z within ne 

times maximum are NP-hard and PSPACE-hard, respectively. 

9. The problem SSATWP is I-strongly-local and A-red~cible'~ to the problem LPFEASIBILITY. Conse- 

quently since the problem H-SSATWP is PSPACE-hard and there exists E > 0 such that approximating the. 

problem H-MAX-DONES-SSATWP within a multiplicative factor of n' times maximum is also PSPACE- 

hard, so are the the problems of approximating the maximum value of a linear objective function on Q subject 

to satisfiable hierarchically-specified linear inequality constraints on Q. 2o 

10. For all rings F, the problem SAT(F) has a linear and parsimonious crossover-box. Consequently, the 

problems SAT(F), LIN-SAT(F), #-SAT(F), and #-LIN- SAT(F) are polynomial-time reducible to the 

problems PL- SAT (F) , PL-LIN- SAT( F), PL-#- SAT( F), and PL-#-LIN- S AT( F) , respectively. 

3 Significance 

The following additional properties of results/constructions/techniques are also of interest. They also indicate 

some of the ways in which the results in Figure 2 and META-THEOREMS 2.1 AND 2.2 can already be 

generalized and/or extended. 

1. Usually the formulas, straight-line programs, systems of equations, recursive function specifications, etc. 

, occuring in our proofs contain only a bounded number of distinct constants. Moreover, usually the only 

properties of these constants used are properties that hold, for each algebraic structure of the same kind, 

e.g. the properties of the additive and multiplicative identities common to all unitary rings or semi-rings. 

This enables us to obtain complexity results, for a structure that are independent both of the structure's 

presentation and its cardinality. 

2. By restricting ourselves to strongly-local reductions, we know a priori, that all properties of Meta-Result I 

hold for them. Thus for example, we know that our reductions relate simultaneously both the sequential and 

parallel complexities of problems, when instances are specified straight-line programs, acyclic computational 

networks, systems of equations, hierarchically- and recursively-specified functions and systems of equations, 
~ ~ 

IgThe concept of A-reducibility defined in [PR93] is stronger than the concept of L-reducibility 

*'Since the problems 3SATWP and LPFEASIBILITY are polynomial time solvable, this results illustrates the usefulness of 

strongly-local reductions of certain polynomial time solvable problems in proving hardness results for problems when instances are 

hierarchically-specified. We also can show that exactly analogous complexity results hold, for the problems MONOTONE-CIRCUIT- 
EVALUATION and H-MONOTONE-CIRCUIT-EVALUATION. 
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periodically-specified formulas and systems of equations, etc. One immediate implication is that all of 

the hardness results in [MH+98], for the problems SSAT and SSATWP, when instances are specified by 

various kinds of dynamic/periodic specifications, also hold , for the problems SAT(F), #-SAT(F), MAX- 

SAT(F), UNIQUE-SAT(F), etc. and for the algebraic structures in items 4 of META-THEOREM 2.1 and 

4, 5 ,  6,  8, 9, and 10 of META-THEOREM 2.2, when instances are specified by the corresponding kinds of 

dynamic/periodic specifications. 

3. OAen our proofs, for rings and semi-rings, do not require that the binary operations + and - actually be 

total, associative, or commutative. One direct implication of this is that- 

Our hardness results, for finite rings and semi- rings, also hold, for discretized bounded-precision 

versions of the natural numbers, integers, rationals, reals, Gaussian integers, complex numbers, tensors 

on these structures, etc. Due to under-flow and over-flow, these discretized bounded-precision versions 

are actuallyneither rings nor semi-rings. 

4. [Some General Complexity Theoretic Implications:] The variant problems, for several basic algebraic 

structures F, provide natural yardsticks, for measuring complexity and/or efficient. approximability. They 

play roles in characterizing the complexities of algebraic and numerical optimization strongb analogous to 

the roles played by the problems SSAT, MAX-3SAT, MAX-DONES-SSAT, #-SSAT, in characterizing 

the complexity or efficient approximability of combinatorial problems (e.g. in [GJ79, PY91, PR931). By 

using infinite structures F, we can obtain results for higher levels of complexity including undecidability. 

0 Thus recalling items 1,2,6, and 9 of META-THEOREM 2.2, our results are a significant step towards 

finding general techniques that can be used to simultaneously prove lower bounds across very wide 

ranges of complexity classes - from NP to NDEXPTIME and even to Undecidability. 

5 .  [Progress on open questions in the literature:] Our results significantly extend earlier results and are 

a strong step towards answering open questions in the literature. Specific questions related to our work 

include: (i) Ladner [La891 to identify new natural #PSPACE-hard and -complete counting problems (only 3 

such natural problems were presented in [La89]) as follows: 

0 Our results in Meta-Theorems 2.1 and 2.2 and in [MH+98] yield sufficient conditions, for the prob- 

lems #-SAT(F) to be #P-, #PSPACE-, and #NDEXPTIME-complete, when instances are specified 

by standard, hierarchical, and dynamic/periodic specifications, respectively. These conditions are sat- 

isfied by a countably infinite collection of non-isomorphic algebraic structures F. 

(ii) Condon et al. [CF+93, CF+94] to identify natural classes of PSPACE-hard optimization problems with 

provably PSPACE-hard €-approximation problems, and the results of Khanna, Sudan, Williamson and Creg- 

niou [KSW97, Cr95] providing dichotomy results for the problems MAX SAT(S) as follows: 

0 Our general techniques simultaneously imply the MAX-SNP-hardness and MAX-IIl -hardness of the 

problems MAX-SAT(F) and MAX-DONES-SAT(F) and the PSPACE-hardness of approximating 

the problems H-MAX-SAT(F) and H-MAX-DONES-SAT(F), for suitable large E < 1 and for all 

E > 0 respectively, over infinitely many non-isomorphic algebraic structures including all those of 

items 4 and 8 of META-THEOREMS 2.1 & 2.2, respectively. No analogous such general results were 

known previously. 
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(iii) Zuckerman [Zu93] on NP-hardness of constrained problems to PSPACE-hardness of approximating 

succinctly specified constrained optimization problems. 

0 Our results show that most of Zuckerman’s hardness results, for approximation problems, are actu- 

ally implied by strongly-local reductions of the problem UNIQUE-3SAT. Consequently among other 

things, we get analogous hardness results, for these approximation problems when restricted to planar 

or UD instances and when instances are specified hierarchically, dynamically/periodically, etc. 

(iv) the results of Khanna and Motwani [KM96], our results [HM+95] and those of Trevisan [Tr97] on 

(NC)-PTAS for MAX SAT(S) restricted to planar and near-planar instances: 

0 We show that PTASs exist, for the problem MAX-SAT(F) restricted to near-planar instances, for 

all finite algebraic structures; and that this is an immediate implication of our earlier PTAS for the 

problem PL-MAX-3SAT in [HM+95]. 

(v) Our strongly-local L- and strongly-local A-reductions of the problems MAX-3SAT and MAX-DONES- 

3SAT to the problems MAX-SAT(F) and MAX-DONES-SAT(F), respectively, for all structures F sat- 

isfying items 4 and 8 of META-THEOREMS 2.1 & 2.2, respectively, significantly extend the collection of 

natural problems known to be hard to approximate (assuming P#NP). 

6.  Direct analogues of our hardness results, for approximating minimum equivalent formulas, also hold 

for other classes of algebraic, logical, or linguistic descriptors including 3CNF formulas, Boolean formulas 

and acyclic Boolean networks, quantified Boolean formulas, regular expressions, nondeterministic FSA, 

nondetenninistic PDA, CFGs, etc. Thus for example, all f (min)-bounded approximations for minimum 

equivalent 3CNF formulas, Boolean formulas and acyclic Boolean networks, quantified Boolean formulas, 

regular expressions, nondeterministic FSA, nondeterministic PDA, and CFGs are intuitively as hard as the 

corresponding satisfiability or “={ 0,1}*” problems. Thus all approximations for these problems are coNP-, 

coNP-, PSPACE-, PSPACE-, PSPACE-hard, have no algorithms, have no algorithms, respectively. 

7 .  Our strongly-local reductions for ordered rings and semi-rings in item 6 of META-THEOREM 2.2 prob- 

lem instances with m 5 1 variables into problem instances with O ( n ) ,  and in some cases, with m + 0(1) 

variables. In which case, these reductions also preserve upper bounds of the form -Problem II is solvable de- 

terministically in polynomial time, for problem instances with a fixed number of variables, where the degree 

of the polynomial upper bounds grows polynomially, linearly, quadratically, etc., in the number of variables 

occurring in the instance. (Recall that such upper bounds are known for solving systems of polynomial 

equations on Rd.) 

8. Assuming P # NP, we can show that the conditions of items 4 and 8 of Meta-Theorems 2.1 and 2.2 

are not necessary for the hardness of the problem SAT(F). In fact, we can show the NP-hardness of the 

problem SAT(F), for finite structures F such that both Vz E F, z2 = 0 and Vz, y, z E F, 2 . y . z = 0. These 

additional hard rings include rings of dzferential forms on vector spaces over finite fields; and thus, they may 

be of independent interest. Additionally for all ordered rings F,we can show that the the problem 3SAT is 

(1-strongly-local+parsimonious+l)-reducible to the problem of determining if a system ofpeice-wise linear 

equations on F has a solution. These two results show how little non-linearity is required, for the problem of 

determining if a system of non-linear equations on F to be hard. 
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4 Overview of technqiues 

The concepts and methodology used here are based upon the concepts of algebraic representability (a mod- 

ification for algebraic structures of the concept of relational representability as defined in [Sc78, HSMOO]) 

and strongly-local replacementslreductions defined in [HSMOO] as extended here to apply to the problems 

SAT(F), #-SAT(F), MAX-SAT(F), etc., for various abstract algebraic structures F. Recall that unless 

stated explicitly otherwise, we restrict our attention to systems of equations with 5 1 occurrence of an 

operator on each side of an equation. We note that- 

0 For all fixed integers k > 1, exactly analoguous results hold, when we restrict our attention 

to systems of equations with 5 k occurrences of operaotors on each side of an equation or 

comparison operator. 

For each algebraic structure F considered, there exist distinct constants a l ,  . . . , a k  (k 2 0) such that, the 

only constants appearing in the formulas, straight-line programs, systems of equations, etc., on F occurring 

in our proofs are the ai (1 5 i 5 k ) .  Usually k 5 2. 

1. AlgebraidRelational Representability: Let F1 and F2 be algebraic structures with domains D1 and 

Dz, finite sets of finite- arity operators { o ~ J ,  . . . , O ~ , ~ I }  and {OZJ, . . . , 0 2 , ~ 1 } ,  and finite sets of allowed 

constants { a l , ~ ) ,  . . , q r z }  and { a z , ~ , .  . . , ~ ~ , ~ 2 } ,  respectively. For simplicity here, we assume that all of 

these operators are binary. We define the sets  SF^ and of relations (on D1 and 0 2 )  defined by F1 and 

F2, respectively, as follows: 

1.  SF^ consists of the following set of relations on D1: R~,o={(x, y )  I z, y E D1 and x = y } ,  for 

all constants a1,l in D1, bl,I={al,l}, and for all operators 01,j, Rol,j={(x, y ,  z )  I x, y ,  z E D1 and 

= O l , j ( X ,  Y H .  

2.  SF^ consists of the following set of relations on D2: Rz,o={(a, b) I a, b E D2 and a = b}, for all 

constants a2,~' in D2, &z,It={u2,~t},  and for all operators 02,j', Roz,jt={(u, b,c) I a, b,c E 0 2  and 

c = 02,j'(U, b)} .  

Algebraiclrelational representability formalizes the intuitive concept that the relations in  SF^ are express- 

ible (or extending the terminology from [Sc78] are representable) by finite conjunctions of the relations in 

SFz. 

Definition 4.1 We say that F1 is algebraically-representable by F2 ifand only iJ: there exists a 1 - 1 function 

<I> : D1 + D2 such that, for all relations R(x), R(x, y), or R(x, y, z )  E  SF^, there exists afinite conjunction 

CR(x) ,  CR(z,y), or CR(x,Y,Z),  of relations in  SF^ applied to the variable(s) x, or x, y, or x, y,z,respectively, 

additional existentially-quantijied variables, and constants of F2 such that, 

letting XR be the set of tuples of elements of D1 that satisfi relation R and letting YR be the projection 

of the set of tuples of elements of 0 2  that satisfi conjunction CR on their first, jirst and second, or 

Jirst,second, and third components, XR = <P-' (YR). *' 
2'Here, @-'( (a) )  := (@-'(a)), @-'((u,b)) := (@-'(a),@-'@)), and@-l((a,b,c)) := ( @ - l ( ~ ) , ~ - ' ( b ) , @ - * ( c ) ) .  
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2. Local Replacements: Let k 2 1 .  The second basic component of our methodology consists of 

the formalization and systematic investigation of the properties of the classes of k-strongly-local and k- 

strongly-local-enforcer replacements and reductions, to the problems SAT(F), #-SAT(F), MAX-SAT(F), 

etc, Meta-Result I in Figure 2 summarizes the complexity-theoretic properties of these reductions. 22 Here, 

we only describe l-strongly-local and 1 -strongly-local enforcer reductions intuitively. 

Let E = (eql, . . . , eq,) with m 2 1 be a finite sequence of equations < Zhs >=< rhs > on F, 

where no more than one operator of F occurs in < Zhs > and no more than one operator of F occurs 

in < rhs >. Using distinct new temporary variables, we can replace each such equation by a fixed size 

conjunction of relations in the set SF, i.e. the relations defined by F. Let F and F’ be distinct algebraic 

structures. We define k-strongly-local and k-strongly-local-enforcer reductions of the problem S AT(F) to 

the problem S AT(F’) to be k-strongly-local and k-strongly-local-enforcer replacements from the set of all 

finite sequences of relations in SF to the set of all finite sequences of relations in SF!, that are also reductions. 

Intuitively, Vk, in k-strongly-local replacements we have templates, to be treated as macros, with the same 

template for each variable and distinct templates for each relation in SF. Details about macro expansions 

and the the way the variables are replaced depend very simply on the value of k. 

Specifically, this reduction is specified by t templates Templ, . . . Tempt, one for each of the relations 

T I ,  . . . , Tt in the set SF, plus (optionally) one template Temp, (the variable template) corresponding to the 

variables as follows: Let f = Ti, A . . . A Ti, (rn 2 1 )  be a conjunction of the relations in ST applied to the 

variables .XI,. . . , z, (n 2 1). The formula g = R ( f )  is the conjunction of the Temp(Tij) for 1 5 j 5 m 

optionally anded with one occurrence of Temp, for each variable zi (1 5 i 5 n) o f f .  Here, Temp(Tij) 

is specified as follows: Let Tij be the relation Te (1 5 5 t). Let the variables occurring in Tij in order be 

xj1 , . . . , x j , .  Then the (dummy) variables of Tempe are in order zjl, . . . , zj,,,, V I ,  . . . , om( and Temp(Tij ) 

results from Tempe by replacing all Occurrences of the variables z j l ,  . . . , zj, by occurrences of the of 

the variables zj, , . . . , x j ,  , respectively, and by replacing all occurrences of the variables vl, . . , umt by 

new variables w1, . . . , Wmt respectively, local to the conjunction Temp(Tij). We call such an “intuitively” 

local reduction a I-strongly local reduction. More generally ,a k ( >  2)-strongly local reduction is specified 

analogously except that each of the variables uj is replaced by IC new variables z j ,  . . . , z; and each of the 

variables xj in Temp(Tij) is replaced by k new variables z;, . . . , x;. Formal definitions of these concepts 

can be found in [HSMOO]. 

The concepts of algebraic representability and strongly-local reductions combine together naturally as 

illustrated by the following theorem: 

Theorem 4.2 Let F1 and F2 be algebraic structures such that F1 is algebraically representable by Fz. Then, 

the problem SAT(F1) is l-strongly-local reducible to SAT(F2). 23. 

5 Terminology and Selected Definitions 

Generally, we consider homogeneous total algebraic structures S = (S, +, a )  with two binary operations + 
and e ,  called addition and multiplication, respectively. We assume that structures are non-degenerate, i.e. 

221n contrast, previous researchers, e.g. [GJ793, have discussed the intuitive concept of reductions by local replacement; but they 

have not gone far in formalizing, or in characterizing the complexity-theoretic properties of, their concepts. 

231n [HSMOO], we present a similar theorem relating the concepts of relational representability and l-strongly-local reductions 
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1. They are simultaneously O ( n  Zogn) time-, linear size-, and O(Zogn) space-bounded on deterministic 

multiple-tape Turing machines; and they are NC(1) using only O(n)  processors. 

2. They preserve treewidth- and (often) bandwidth-bounds. They can also be modified easily to preserve 

near-planarity. 

3, They extend directly to efficient reductions, when instances are specified by straight-line programs, 

hierarchically, recursively, or dynamically, as defined in [LW92, MH+94, Ma74,Or82]. 

Figure 2: Meta-Result I. Some Basic Properties of Strongly-Local Reductions. 

have at least two elements. We restrict our attention to such algebraic structures having only a finite set of 

operators, each operator of which is itself of finite-arity. The additive (multiplicative) identity of S ,  when 

it exists, is usually denoted by 0 (by 1). We define ring as in [MB67], except that we do not require rings 

to have multiplicative identities. We define semi-ring F by F = (S, +, e ,  0), where + is an associative and 

commutative binary operation on S and . is an associative binary operation on S that distributes over + on 

both the left and the right. We say that a ring or semi-ring is unitary iff it has a 1. [NOTE: Thus unlike 

[MB67, Ei741, we do not assume that all rings or all semi-rings have a 1.1 A ring or semi-ring R is said 

to cancellative iff, for all z,y,z E R, z . y = z - z implies z = 0 or y = z. We denote the problem 

of determining if a 3CNF formula with exactly 3 non-negated literals/clause, has a satisfying assignment 

satisfying exactly 1 literal per clause by EXACTLY 1 -EX3MONOTONESAT. [NOTE: The problems 3SAT 

and EXACTLY 1 -EX3MONOTONESAT are known to be l-strongly-local inter-reducible by reductions that 

are also parsimonious and L [HSMOO].] 

A reduction between problems SAT(F1) and SAT(F2) is said to be parsimonious iff the numbers of 

satisfying assignments of a source and corresponding target of the reduction are equal (i.e. either both finite 
and equal as natural numbers or both infinite). L- and A-reductions and the respective complexity classes 

MAX-SNP- and MAX-IIl are defined as in [PY91, PR931, respectively. The important properties of these 

two complexity classes with respect to this paper are the following: 

' 

1 .P # NP implies that 3~ > 0 such that approximating the maximum value of an instance of a 

MAX-SNP-hard problem within E times maximum is NP-hard. 

2.P # NP implies that 3~ > 0 such that approximating the maximum value of an instance of a 

MAX-IIl -hard problem within ne times maximum is NP-hard. 

6 Selected Proof Sketches 

We present several general theorems on the complexities of determining the solvability of systems of equa- 

tions over various finite lattices, rings, and semi-rings. When we restrict our attention to finite structures, we 

assume that in each case we have a set of constant symbols, denoting in a one-to-one fashion, the elements 

of the structure. Recall that a lattice L = ( S ,  A, V) is an algebraic structure where the operations V and A 

are binary operations on S that are commutative, associative, and idempotent, such that for all z, y E S, 

z V ( z A y )  = z A ( z V y ) = z .  

Finally, recall that an element a of a lattice L "is covered by" an element b of L if a < b in the partial order 

defined by the operations of L; and there is no element c of L such that a < c < b [Bi67, MB671. 
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Theorem 6.1 For all lattices L with elements a and b and constant symbols A and B denoting a and b, 

respectively, such that a ”is covered by” b, the problem EXACTLY 1 -3MONOTONESAT is @-strongly 

local+parsirnonious+ planarity-preserving)-reducible to the problem S AT(L). 

Proof sketch: Let n, m 2 1 be integers. Let f = CIA,  . . . , c, be a monotone 3 C N F  Boolean formula with 

exactly 3 

variables. 

1. vi, 

2. vi, 

3. Vj, 

literals per clause with distinct variables xi (1 5 i 5 n). Let yi (1 5 i 5 n) be n distinct new 

The resulting system of equations EQ( f )  on L is given by - 

1 5 i 5 n , A  5 xi, yi 5 B (Le. xi A A  = A, z i V B  = B,etc.) 

1 5 i 5 n, xi A yi = A and xi V yi = B. 

1 5 j 5 m, let cj = xj, VxjzVxj3,  then E Q ( f )  also includes the equation+ (zjl V x j z V x j 3 )  = B, 
( ~ j ~  A ~ j , )  = A, (xjl A zj2) = A, and (zj2 A zj3) = A. 

We claim that “there is an assignment of truth-values to the variables of such that exactly one literal 

in each clause o f f  is satisfiable” iff ” E Q ( f )  is satisfiable.” This is implied by the following: note the 

following: 

1. 

2. 

3. 

By assumption, B covers A, thus A 5 C 5 B implies C = A.or C = B. 

Given this, for all assignments of values from L to the variables xi, yi satisfying the equations of items 

1 and 2 and for each i with 1 5 i 5 n, one of xi and yi takes on the value A and the other takes on the 

value B . 

Given the above, any assignment of values from L to the variables xi, yi causes exactly one of the 

(non-negated) literals in each of the clauses of EQ(F) to equal B and the other two (non-negated) 

literals to equal A. 

Finally, it’s not hard to see that this reduction is (2-strongly-local+parsimonious). See Figure 3, to see 

why it is also preserves planarity of instances. w 

The above reduction can be extended uniformly to obtain a (2-strongly-local+parsimonious+l)- 

reduction, by replicating the equations of 1) sufficiently often. The above proof can easily and directly 

be modified to apply to apply to any (not-necessarily finite) lattice L such that L has two distinct elements a 

and b, expressible by constants such that b covers a. 

0 Since the problems SSAT, #-3SAT, UNIQUE-3SAT, MAX-3SAT, and MAX-DONES-3SAT are 

known to be NQL-complete and 5;; ,-complete for NP, #NQL- and #P-complete, DP-complete 

w.r.t. random polynomial time reductions, MAX-SNP-complete, and MAX41  -complete, respec- 

tively, Theorem 6.1 implies exactly analogous results for the corresponding variants of the problem 

SAT(L), whenever L is a finite non-degenerate lattice, more generally whenever L is a lattice with 

two elements a,b. For analogous reasons, the problems PL-SAT(L), PL-#-SAT(L), PL-UNIQUE- 

S AT(L), and PL-MAX-DONES-SAT(L) are also NP-complete, #-PSPACE-complete, DP-complete 

w.r.t. random polynomial reductions, and MAX-TZI -complete, respectively. Finally, recall that prob- 

lem PL-MAX-SAT(L) (when L is finite) has a PTAS by above results. 

The proofs for rings and semi-rings F with a non-zero element 20 such that, xi = 20 - xo = zo make 

use of the construction of the above proof and the proposition from [HS87] immediately following this 

paragraph. The proof for semi-rings depends upon both the proof for lattices above and the proof for rings 

below. Here, we only sketch the proof for rings. Before proceeding, we note that, for finite rings and semi- 

rings F, the the condition 3x0 # 0 in F such that xg = 20 is equivalent to the condition 3x0 in F such 

that V n  2 0, x$ # 0 [HS87]. This explains the seeming difference in the statements of items 4 and 8 of 

META-THEOREMS 2.1 AND 2.2, respectively, above. 
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Figure 3: Example of how a single clause is replaced by a set of equations in a planarity preserving fashion. 

the set of 12 clauses involving xil and xi3 along with yil and yi3 are omitted. 
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Proposition 6.2 Prop.2.6 in [HS87]: Let bf S = (S, +, x, 0 )  be a ring. Let D be a nonempty subset 

of S such that, for all x,y  E D, x = x x and x . y = y - x. Let 9, h : D x D + D be given by 

g(x, y) = z + y + -(z. y) and h(x, y) = x y. Let V be the closure ofD under g and h. Let g and h be the 

restrictions to D x V. Then, the structure T = (D, g, h) is a distributive lattice. 

Theorem 6.3 For allfinite rings R with an element a such that an # 0, for all integers n 2 1, the problem 

3SAT is l-strongly local reducible to the problem SAT(R). Moreover; this reduction can also be made 

simultaneously both parsimonious and L. 

Proof sketch: For finite rings R satisfying the conditions of this theorem, the structure T of 6.2 defined fiom 
R has at least two elements. Consequently, we can complete the specification of the reduction and proof 

using the reduction in the proof of Theorem 6.1. The reason why this can be done using a 1- rather than a 

2-strongly local reduction is that we can use constant symbols, known results on Boolean algebrasBoolean 

rings[MB67] and the operations +, x and - of the ring to define a “complementation” operator, eliminating 

the need for duplicating variables. H 

The proof of Theorem 6.3 can be generalized so that the resulting reduction is both parsimonious and 

L, for any finite ring R. The reduction of the proof of Theorem 6.3 also generalizes immediately so as to 

become a (1-strongly-local+L)-reduction of 3SAT to any commutative ring R such that R has at least one 

nonzero element x such that x = x x- Such rings include all commutative unitary rings. (For a number 

of authors, e.g. [MB67] all rings are unitary. For such authors, the above proof applies to all commutative 

rings.) ‘The variant of the proof above can be generalized so as to apply to non-commutative rings. The 

intuitive reason, for this is that the proof above does not require nested occurrences of multiplication because 

the conjunctions in generalized CNF formulas can be simulated directly by the simultaneous satisfiability of 

equations. 

Our next theorem is for finite semi-rings S for which there exists an element x in S such that zn # 0, 

Vn 2 1. It shows that, subtraction, equivalently, the existence of additive inverses, is not necessary for a 

theorem similar to Theorem 6.1 to hold for S .  

Theorem 6.4 For all suchjnite semi-rings, the problem 3SAT is 1- or 2- strongly reducible to the problem 

SAT@): 

Again the reduction can also be ma& parsimonious and L. It The can be made 1-strongly local if some 

nonzero element x of S satisfying the condition of the theorem is invertible under +; and it is 2-strongly 

local otherwise. 

Finally in Figure 4, we present a simple linear and parsimonious planar-crossover box, for systems of 

equations, for systems of linear equations, and for systems of piece-wise linear equations, on any ring or 

cancellative semi-ring R. That the proposed cross-over box is in fact a parsimonious crossover-box follows 

by noting that, for any such algebraic structure R and for all x, y, z E R, 

= + y, = z + yl, z = z1 + y, andz = x’+ y’implythat x = x I and y = Y I . 

Our last theorem is an immediate corollary of this parsimonious planar-crossover box. 

Theorem 6.5 For all rings or cancellative semi-rings R, the problem SAT(R) is polynomially reducible 

to the problem PL-SAT(R); and the problem #-SAT(F) is parsimoniously polynomially reducible to the 

problem PL-#- SAT( F). 
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Figure 4: Example of how a crossover between two edges can be replaced by a crossover box. replacing each 

crossover by similar box after laying out the variables on a vertical line and the equations on a horizontal 

line and drawing the edges between them in a rectilinear fashion with exactly one bend (in the same fashion 

as describe by [LiS2]) yields a planar instance. 
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