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Strongly-MDS Convolutional Codes
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Abstract—Maximum-distance separable (MDS) convolutional
codes have the property that their free distance is maximal among
all codes of the same rate and the same degree. In this paper, a class
of MDS convolutional codes is introduced whose column distances
reach the generalized Singleton bound at the earliest possible
instant. Such codes are called strongly-MDS convolutional codes.
They also have a maximum or near-maximum distance profile.
The extended row distances of these codes will also be discussed
briefly.

Index Terms—Column distances, convolutional codes, extended
row distances, maximum-distance separable (MDS) codes, super-
regular matrices, unit memory codes.

I. INTRODUCTION

I N comparison to the literature on linear block codes, there
exist only relatively few algebraic constructions of convo-

lutional codes having some good designed distance. There are
even fewer algebraic decoding algorithms which are capable of
exploiting the algebraic structure of the code.

A large part of the literature on convolutional codes studies
codes over the binary field. Codes are then typically presented
by trellis and state diagrams and the decoding algorithm of
choice is the Viterbi algorithm. The reader is referred to the
standard books [1], [2] or the more recent articles [3]–[5] where
also further references to the literature can be found.

In the early 1970s, there were some important constructions
done for convolutional codes over large alphabets and we would
like to mention the papers [6]–[9] and the monograph by Piret
[10]. In [7], [8], Justesen and Hughes study the question on how
large the free distance of a convolutional code over a large al-
phabet can be. In [11], the authors of the present paper derived
a generalized Singleton bound and they define a convolutional
code to be maximum-distance separable (MDS) if its free dis-
tance reaches this upper bound. Using a construction idea due to
Justesen [6], they provided in [12] a first concrete construction
of MDS convolutional codes for all rates and degrees.

Manuscript received March 20, 2003; revised October 14, 2005. This
work was supported in part by the Nationa Science Foundation under Grants
DMS-0072383 and CCR-0205310. The material in this paper was presented
at the 2002 IEEE International Symposium on Information Theory, Lausanne,
Switzerland, June/July 2002 and at the International Symposium on the
Mathematical Theory of Networks and Systems (MTNS), University of Notre
Dame, Notre Dame, IN, August 2002.

H. Gluesing-Luerssen is with the Department of Mathematics, University
of Groningen, 9700 AV Groningen, The Netherlands (e-mail: gluesing@math.
rug.nl).

J. Rosenthal is with the Department of Mathematics, University of Zürich,
CH-8057 Zürich, Switzerland (e-mail: rosen@ieee.org).

R. Smarandache is with the Department of Mathematics and Statistics, San
Diego State University, San Diego, CA 92182-7720 USA (e-mail: rsmarand@
sciences.sdsu.edu).

Communicated by J. Justesen, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2005.862100

In [13], the class of cyclic convolutional codes, as first intro-
duced by Piret [14] and Roos [15], has been studied. It turned
out that many of the constructed codes were MDS and/or were
codes over large alphabets with excellent distance profile. More
recently, Goppa convolutional codes have been introduced in
[16] and many of these codes have excellent distances as well.

In this paper, we will consider the problem of constructing
codes with rapid growth of their column distances. These dis-
tance parameters have been introduced by Costello in [17] and
have been studied by many authors since. See, e.g., [1], [18],
and the references therein.

Algorithmic searches for codes with large column distances
have been carried out for instance in [19], [20]. We will now at-
tack the question of convolutional codes with large column dis-
tances from the theoretical point of view. First, we will discuss
how big these distances can possibly be, thereby introducing a
new class of convolutional codes which we call strongly-MDS
convolutional codes. These are codes with a column distance
profile such that the free distance, i.e., the generalized Singleton
bound, is reached at the earliest possible stage. The main part of
the paper will be about existence and construction of such codes.
At the end of the paper, we will also use our methods in order to
briefly discuss the extended row distances of these codes in case
they have unit memory. As opposed to the column distances, the
extended row distances also grow beyond the free distance and
thus contain some additional information about the performance
of the code.

Convolutional codes over large alphabets are interesting both
from a purely theoretical as well as from an applications point of
view. On the theory side, the following questions arise naturally:
How large can be the free distance of a convolutional code of
some fixed rate and fixed degree? How to construct codes which
achieve a maximal free distance? How good can be the column
and row distance profile of these codes?

From a practical point of view, we can identify a convolu-
tional code over a finite alphabet with a finite linear state ma-
chine (LFSM) having redundancy and which is capable of cor-
recting processing errors. In a series of recent papers [21]–[23],
Hadjicostis and Verghese showed how to error protect a given
LFSM with a larger redundant LFSM capable of detecting and
correcting state transition errors. The detection and correction of
errors is done using nonconcurrent measurements of the state
vectors of the redundant LFSM. The construction of the re-
dundant system boils down to the construction of convolutional
codes with good free distance over an alphabet which is in gen-
eral nonbinary.

Let be any finite field and let be the polynomial ring.
For the definition of a convolutional code we take a module
theoretic point of view [24], [25].

Definition 1.1: A convolutional code of rate is a sub-
module of rank such that there exists a

0018-9448/$20.00 © 2006 IEEE



GLUESING-LUERSSEN et al.: STRONGLY-MDS CONVOLUTIONAL CODES 585

polynomial encoder matrix which is basic, i.e.,
has a polynomial right inverse, and which is minimal, i.e., the

sum of the row degrees of attains the minimal possible value,
such that

We define the degree of as the sum of the row degrees of one,
and hence any, minimal basic encoder.

In the sequel, we will adopt the notation used by McEliece
[26, p. 1082] and call a convolutional code of rate and de-
gree an code. Every code can be presented
in terms of a parity-check matrix , i. e.,

It is clear that we can choose to be basic and minimal and we
will do so throughout the paper. Notice also that for
any generator matrix of .

The weight of a vector is defined
as

where denotes the Hamming weight of . The
free distance of the code is given as

Since we assume that is minimal and basic, we
also have

for some

In Theorem 2.6, we will recall from the paper [11] an upper
bound on based on the parameters . It generalizes
the Singleton bound from block code theory and will play a
central role in our paper.

The paper is structured as follows: In Section II, we review
notions from convolutional coding theory such as column dis-
tances, the generalized Singleton bound and we introduce the
important concepts for this paper, namely, the property of being
strongly-MDS and having a maximum distance profile. In Sec-
tion III, we show the existence of strongly-MDS codes of rate

with . In order to do so, we introduce the interesting
concept of a superregular matrix which could be of indepen-
dent interest. In Section IV, we illustrate these concepts through
a series of examples. In Section V, we investigate to what extend
properties of MDS, strongly-MDS, and maximum distance pro-
file carry over to the dual code. The main result of this section
states that a code has a maximum distance profile if and only if
its dual has this property. This allows us to show that for certain
specific parameters, a code is strongly-MDS if and only if its
dual is strongly-MDS. Finally, in Section VI, we will derive a
lower bound for the extended row distances.

II. STRONGLY-MDS CODES AND CODES WITH MAXIMUM

DISTANCE PROFILE

Let be an code with a basic minimal
generator matrix

(2.1)

and a basic parity-check matrix

(2.2)
Notice that is the memory of the code. For every , the
truncated sliding generator matrices and
parity-check matrices are given by

. . .
...

...
...

. . .
(2.3)

where we let (resp., ) whenever (resp.,
); see also [1, p. 110]. The identity and the

full ranks of and immediately imply the full rank of the
sliding matrices as well as the identities

for all . Using these equations and following [1, pp. 110],
the th column distance of is given as (2.4)–(2.5) at the bottom
of the page. The column distances are invariants of the code,
i.e., they do not depend on the choice of the generator matrix
(see [1, Sec. 3.1]), and satisfy

(2.6)

The -tuple of numbers , where is
the memory, is called the column distance profile of the code [1,
p. 112].

Equation (2.5) immediately implies the following simple fact
used several times in the paper.

Proposition 2.1: Let . Then the following properties
are equivalent:

a) ;
b) none of the first columns of is contained in the span

of any other columns and one of the first columns
of is in the span of some other columns of that
matrix.

(2.4)

(2.5)
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We leave it to the reader to verify the equivalence of the state-
ments. The following upper bound on the column distances is
an immediate consequence of the previous result, along with the
fact that has full row rank.

Proposition 2.2: For every we have

This observation has already been made in the context of sys-
tematic convolutional codes in [8] and in [27]. The next propo-
sition shows that maximality of implies maximality of the
preceding column distances.

Corollary 2.3: If for some ,
then for all .

Proof: It suffices to prove the assertion for . In
order to do so notice that

...

and assume that one of the first columns of is in the span
of some other columns. Then rank
implies that one of the first columns of is in the span
of some other
columns of . But this is a contradiction to the optimality of

by Proposition 2.1.

The following characterizations of the th column dis-
tance being maximal will be useful later on for constructing
strongly-MDS codes and also when considering duality in
Section V.

Theorem 2.4: Let and be as in (2.3). Then the fol-
lowing are equivalent:

i) ;
ii) every full-size minor of formed

from the columns with indices ,
where for , is nonzero;

iii) every full-size minor
of formed from the columns with indices

, where for ,
is nonzero.

Notice that the index condition in part ii) simply says that for
each , the minors under consideration have at most columns
out of the first columns of . Clearly, all other full-size mi-
nors of are singular. The proof of this purely matrix theoret-
ical result will be given in Appendix A. The next corollary will
provide a link of our results to the existing literature later in this
section. It will also be helpful for the construction of codes with
maximum column distances in the next section.

Corollary 2.5: Let be a systematic matrix of
memory and let where

. Then the following are equivalent for :

i) ;

ii) each -submatrix of

. . .
...

that does not contain an -zero block for some such
that is nonsingular. If one of these conditions
is satisfied, then all entries of the matrices are
nonzero.

This result appeared already in [27]. However, since the paper
is not easily accessible and no detailed proof is provided, we
added a proof in Appendix A. We will come back to the relation
of our work with [27] at the end of this section.

In the sequel, we will relate the upper bound for the column
distances to an upper bound for the free distance of the code. The
maximum possible value for the free distance of a convolutional
code over any field has been established in [11]. Therein the
following has been shown.

Theorem 2.6: The free distance of an code satisfies

(2.7)

Notice that if , the number on the right-hand side of
(2.7) reduces to the usual Singleton bound for an
block code. Therefore, we call this number the generalized Sin-
gleton bound and codes whose distance attains this bound will
be called MDS codes. It has been shown in [11] that for every
set of parameters and every prime number there ex-
ists a suitably large finite field of characteristic and an MDS
code with parameters over . The proof is based on
techniques from algebraic geometry and is nonconstructive. In
[12], a construction of MDS codes with parameters was
given for suitably large fields of characteristic coprime with .

In the sequel, we will strengthen the MDS property by re-
quiring that the generalized Singleton bound is attained by the
earliest column distance possible. This will lead us to the notion
of a strongly-MDS code.

Proposition 2.7: Suppose be an MDS code with
column distances and free distance . Let

. Then

Proof: From Proposition 2.2 we get

(2.8)

This yields the assertion.

The proof also shows that in the case , the
column distance never attains the upper bound

of Proposition 2.2, see also (2.6).

Definition 2.8: An code with column distances
, is called strongly-MDS, if
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Because of (2.6) strongly-MDS codes are in particular MDS
codes.

In the case where , the strong-MDS property im-
plies that attains the upper bound , see
Proposition 2.1. Hence, Corollary 2.3 shows that in this case all
column distances attain their optimum value. In other words, the
column distances are

(2.9)

where . If , we always have
as can be seen from (2.8). In this case,

nothing can be concluded for the previous column distances.
In order to also incorporate optimality of in this
general case we pose the following definition.

Definition 2.9: Let

(2.10)

An code with column distances is said to
have a maximum distance profile if

for

Using the notation of Definition 2.8 we have

if
otherwise.

(2.11)

Obviously, a strongly-MDS code with maximum-distance pro-
file satisfies (2.9) for . Furthermore,
we obtain that if divides then an code has max-
imum distance profile if and only if it is strongly-MDS. If
does not divide , then neither property implies the other one as
is verified by Examples in 2.12 later in the paper.

An immediate consequence of Corollary 2.3 is as follows.

Remark 2.10: An code has a maximum distance
profile if and only if the th column distance satisfies

Remark 2.11: The concept is clearly related to the notion
of optimum distance profile (ODP), see [1, p. 112]. For ODP
it is required that the column distances are maximal up to the
memory . Hence, if then a code with maximum distance
profile is always ODP. In general, one expects a good code to
have generic Forney indices, i.e., the indices attain only the two
values and . McEliece [26, Corollary 4.3] calls such
codes compact codes. It has been shown in [11] that an MDS
code always has generic indices. Of course, if the indices are
generic then and thus, .

The notion of ODP seems also to be dependent on the base
field which is usually assumed to be the binary field. A code
with maximum distance profile, in general, does not exist over
the binary field and it can only exist for sufficiently large base
fields. This is similar to the situation of MDS block codes. Such
codes are known to exist as soon as the field size of is larger
than the block length .

We close this section by relating our work to previous results
in the literature. As indicated earlier, the papers [8], [27], [28]

deal with a notion closely related to the bound given in Propo-
sition 2.2. In all these papers convolutional codes with a
systematic generator matrix of memory are considered and
such codes are called MDS if .
In order to avoid confusion, we will for the rest of this section
call codes that satisfy , where is
the memory, -MDS codes. It is easy to see that the number

is the maximum possible value for the free
distance of a systematic convolutional code with these param-
eters. In the papers [27], [28] this property has been character-
ized by the equivalence we presented in Corollary 2.5. In [27],
matrices with property ii) of the corollary are called strongly
nonsingular. In the case , we will call such
matrices superregular in the next section (see also Remark 3.7).
In the same paper [27] it is claimed that the problem of con-
structing superregular matrices has been solved. Unfortunately
this is not true. We will dwell on this in the next section. There-
fore, to our knowledge, the problem of constructing strongly
nonsingular matrices is still open.

Finally, we wish to verify that for general parameters the
properties strongly-MDS, having a maximum distance profile,
and -MDS are not related to each other, meaning that neither
of the properties implies the other. We list a suitable example for
each case. The column distances have been computed by using
straightforward computer routines.

Example 2.12:

1) The code over given in Example 4.2, item 8)
below is strongly-MDS in our sense, but not -MDS and
therefore does not have a maximum distance profile. In
this case, and this is also the memory. It is worth
being mentioned that over no code with max-
imum distance profile exists and in particular no system-
atic -MDS code with these parameters exists. This can
be shown by some lengthy, but straightforward computa-
tions.

2) The code over with generator matrix

where

has a maximum distance profile (thus, by Corollary 2.3,
is -MDS), but is obviously not MDS in our sense and
therefore in particular not strongly-MDS.

3) The code over with generator matrix

is -MDS but does not have a maximum distance profile.

III. EXISTENCE OF STRONGLY-MDS CODES

During his investigation of algebraic decoding of convolu-
tional codes, Allen conjectured in his dissertation [29] the ex-
istence of strongly-MDS convolutional codes in the situation
when and . In this section, we will show the ex-
istence of strongly-MDS codes with parameters such
that divides . It follows from (2.11) and Remark 2.10
that these codes also have maximum distance profile. By The-
orem 2.6, we have to find an code where such
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that for . In order
to do so, put and let

where

and

(3.1)

be a basic parity-check matrix of the desired code. Without loss
of generality we may assume . The strongly-MDS
property can now be expressed as follows.

Theorem 3.1: Let be as in (3.1), let
, and define to be the code

with parity-check matrix . Furthermore, let

(3.2)

be the Laurent expansion of over the field of Lau-
rent series and for define

where

...
...

. . .
(3.3)

We call the th systematic sliding parity-check matrix of .
The following conditions are equivalent:

a) is strongly-MDS, i.e., ;
b) none of the first columns of is contained in the span

of any other columns of ;
c) each -submatrix of that does not contain an

-zero block where is nonsingular.
Notice that b) automatically implies that none of the first
columns of is in the span of any other
columns.

Proof: After a column permutation the sliding parity-
check matrix of has the form

...
...

. . .
...

...
. . .

It is straightforward to see that left multiplication of by the
inverse of the first block leads to the matrix of (3.3). After
these transformations, Proposition 2.1 applied to the case

and translates into the equivalence:
is strongly-MDS if and only if neither any of the first columns
of nor any of the first columns of the second block of

is in the span of any other columns of
. But this, in turn, is equivalent to b) above. The equivalence

of a) and c) is obtained from Corollary 2.5.

In order to establish the existence of strongly-MDS codes
we will proceed as follows. First, we will establish the exis-
tence of a systematic sliding parity-check matrix as in (3.3)
with property c) of the preceding theorem. Thereafter, we will

show that there exists a basic polynomial matrix
of degree such that

higher powers

Theorem 3.1 then yields that the code with parity-check matrix
is a strongly-MDS code.
As for the first step, let us have a look at the special case of

codes. In this case, and the systematic sliding
parity-check matrix in (3.3) has the form

. . .
...

. . .
...

. . .
. . .

where (3.4)

As we will see, the existence of matrices of any given size
and the structure above such that has the column property of
Theorem 3.1, part b) will be the main tool for the existence of
strongly-MDS codes even of length . Therefore, we will
concentrate on these matrices first. The main point is to express
the column condition on in terms of the minors of .

Definition 3.2: Let be a ring. For a matrix ,
denote by the -submatrix obtained from

by picking the rows with indices and the columns
with indices .

In the sequel the following property will play a crucial role.

Definition 3.3: Let be field. A lower triangular matrix
is said to be superregular,1 if is nonsingular for

all and all indices

which satisfy for . We call the submatrices
obtained by picking such indices the proper submatrices and
their determinants the proper minors of .

Obviously, a submatrix of is proper if and only if no
diagonal element of comes from strictly above the diagonal
of .

Remark 3.4: Observe that the proper submatrices are the
only submatrices which can possibly be nonsingular. This can
be seen as follows. If for some , then in the submatrix

the upper right block consisting of the first
rows and the last columns is identically zero. Hence,
the first rows of can have at most rank . In other
words, the improper submatrices of are trivially singular. For
example, for we have

Before we come to the existence of superregular matrices we
will first present the following collection of characterizations of
superregular matrices.

1We adopt this notion from [30], where it has been coined in a slightly dif-
ferent context.
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Theorem 3.5: Let be a field and be a lower triangular
Toeplitz matrix, i.e.,

. . .
...

...
. . .

. . .
(3.5)

Furthermore, put

Then the following are equivalent:

a) is superregular, i.e., all proper submatrices in the sense
of Definition 3.3 are nonsingular;

b) all proper submatrices of of the form , where
and , are

nonsingular;
c) for all , all

, and all ;
d) where

and and ;
e) if satisfies and , then

.
f) where

and and .
g) If satisfies and , then

.
Proof:

a) b) is obvious since in case of properness the Toeplitz
structure implies

b) c): Let and assume to the con-

trary . This implies that consists of at least
zero entries, say at the positions . Then

...
...

(3.6)

The superregularity yields for some ,
which we can choose to be minimal with this property. Then the
submatrix is identically zero and therefore, we obtain
from (3.6) the identity

a contradiction to superregularity since by minimality of this
coefficient matrix is nonsingular.

c) b): Assume to the contrary that for
some indices satisfying for . We can
assume to be minimal with this property. Then there exists

such that . Minimality of and
the equivalence of a) and b) imply . Hence, we can take

and (3.6) is satisfied. Thus,

a contradiction.
The properties (d) and (e) are simply reformulations of (c).
The equivalence (d) (f) is clear from the structure of

(a linear combination of by the other columns of has to
involve the column and vice versa).

The property g) is a reformulation of f).

The equivalence of e) and g) immediately implies the fol-
lowing.

Corollary 3.6: If is a superregular lower triangular
Toeplitz matrix, then so is .

Using arguments as in the proof of Corollary 2.5 or by
straightforward computations we obtain again the following.

Remark 3.7: Let be a lower triangular matrix with
all elements on and below the diagonal being nonzero. Let

be a submatrix of . Then is proper if and only if
does not contain an -zero block where .

Now we will turn to the existence of superregular matrices.
As indicated already earlier, there exists literature seemingly
closely related to this problem, but unfortunately not solving it.
Indeed, in [31], [32] (see also [33, p. 322]) triangular configu-
rations are constructed for which all square submatrices inside
the configuration are nonsingular. An example of such a config-
uration over is given bythe matrix at the bottom of the page,
where . In [31, Theorem 3] and [32, p. 107]
it has been shown that all square submatrices inside this tri-
angular configuration are nonsingular. However, the triangular
matrix shown at the top of the following page is not superreg-
ular, since, for instance, . The same applies to
the triangular configurations given in [31, Theorem 5]. As this
example shows, the main obstacle for constructing superregular
matrices are those proper submatrices that are partly located in
the zero triangle of the matrix. This produces a type of irregu-
larity making it hard to come up with an algebraic construction
of such matrices, even though examples in Example 3.10, item
1) indicate that such construction should be possible. However,
existence of superregular matrices, even with Toeplitz structure,
is guaranteed by the following lemma.

...
...
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...
. . .

. . .
...

Lemma 3.8: Let be a field and be independent
indeterminates over . Define the matrix

. . .
...

...
. . .

. . .

Then is superregular.
Proof: We proceed by contradiction. Assume there exists

a singular proper submatrix

We can take the size to be minimal. Then certainly . By
properness, we know that for .

Notice that for the entry of at the position
is given by . Hence, the indeterminate with the
largest index appearing in is . It appears only once in
the matrix and that is in the lower left corner. Thus, its coefficient
in is , where

Singularity of now implies . By minimality of ,
this yields that is an improper submatrix of , i.e., there exists
an index such that . Picking minimal
we get and therefore the first

rows of have the form

...
...

...
...

where the block of possibly nonzero elements consists of
columns. Hence, is a blocktriangular matrix and we have

Since both factors are proper minors we get a contradiction to
the minimality of the size .

The following consequence is standard.

Theorem 3.9: For every and every prime number
there exists a finite field of characteristic and a superregular
matrix having Toeplitz structure.

Proof: Consider the prime field and the matrix of the
previous lemma with entries in . All its proper
minors are nonzero polynomials in . Over an al-
gebraic closure , a point can be found
such that none of the minors vanishes at . Hence, the Toeplitz
matrix having as its first column is superregular.
Since each is algebraic over , the matrix has its entries
in a finite field extension of .

In particular, for every size there exist superregular
Toeplitz matrices over a field of characteristic . Unfortunately,

the theorem above is nonconstructive and it is not at all clear
what the minimum field of characteristic is to allow a super-
regular Toeplitz matrix of given size . We present some
examples.

Example 3.10:
1) Using a computer algebra program one checks that the fol-

lowing matrices are superregular. The first examples are all over
prime fields .

The following examples represent superregular matrices over
finite fields of characteristic . For this assume that , , and
satisfy

and

Then the following matrices are superregular over , , and
, respectively:

Assume satisfy

and
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Then the following matrices are superregular over and ,
respectively:

Notice that the matrices above have even more symmetry than
required. One can easily show that there is no superregular
matrix over of general Toeplitz structure. However, the above
suggests a question whether one can find for every a
superregular -Toeplitz matrix over .

2) In Appendix B, we prove that for every the proper
minors of the Toeplitz matrix

...
. . .

. . .

are all positive. Hence, for each there exists a smallest
prime number such that is superregular over the prime
field . One can check that

Now we can establish the existence of strongly-MDS codes in
the following sense.

Theorem 3.11: For every such that divides
and for every prime number there exists a strongly-MDS

code with parameters over a suitably large field of char-
acteristic .

The proof of this theorem is rather long and technical and
therefore it is given in Appendix C.

Remark 3.12: It would be of course interesting to find good
bounds on the size of the field where an strongly-MDS
code exists. Using the fact that an matrix, whose entries
have magnitude at most , can have a determinant of at most

it is possible to bound the largest minor of the matrix
from Example 3.10, item 2) above. This, in turn, provides

then a very rough bound for a prime field where the existence
of strongly-MDS codes is guaranteed. In his upcoming disserta-
tion, R. Hutchinson will provide sharper bounds for the smallest
field size where the existence of strongly-MDS codes are guar-
anteed. Unfortunately, examples show that these bounds are still
far away from being optimal.

There is of course the natural question if strongly-MDS con-
volutional codes and codes with maximum distance profile exist
for all parameters . This section showed that such codes
exist whenever divides . In [34], it has been shown that
codes with a maximum distance profile exist for all parameters

over sufficiently large fields. For other small values
of we have found strongly-MDS convolutional codes
and codes with maximum distance profile by making computer
searches. In the next section, we present a series of examples
of such codes. Based on this wealth of data we conjecture the
following.

Conjecture 3.13: For all and for all there
exists an code over a sufficiently large field which is
both strongly-MDS and has a maximum distance profile.

IV. EXAMPLES

In this section, we will present some examples of strongly-
MDS codes with small parameters. The first set of examples is
constructed according to the proof of Theorem 3.11 by utilizing
the superregular matrices in Example 3.10.

Example 4.1: Recall the first part of the proof of The-
orem 3.11.

1) We can construct strongly-MDS codes once a
superregular matrix, where , is available.

Thus, the and matrices given in Example
3.10, item 1) lead to the strongly-MDS code over

(where ) with a parity-check matrix

and to the strongly-MDS code over (where
) with a parity-check matrix

Indeed, one checks that

higher powers

and

higher powers

Hence, the free distance of the two codes above is (resp.,
), and this is also the forth (resp., sixth) column distance.

2) Using the -superregular matrix of Example 3.10,
item 1), one can construct a strongly-MDS code
over . Hence, the code has free distance equal to its
third column distance, and this value is . Using the con-
struction of the proof of Theorem 3.11 and going through
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some tedious calculations in the field (where
) one finally arrives at the parity-check matrix

3) A strongly-MDS code has free distance and
this is identical with the first column distance. It can be
obtained from a -superregular matrix using the con-
struction of the proof of Theorem 3.11. Indeed, the matrix

has been obtained from the superregular Toeplitz matrix
of Example 3.10, item 1) and thus it satisfies property
b) of Theorem 3.1. Hence, a parity-check matrix of a
strongly-MDS code over where
is given by

4) Of course, not every MDS code is strongly-MDS. For in-
stance, the code with parity-check matrix

is an MDS code, but not strongly-MDS. In this example,
the MDS property follows from the fact that this code is
the result of the construction of MDS codes as presented
in [12]. However, a code is strongly-MDS if and
only if it is an MDS code. This can be checked directly
by using Theorem 3.1 and the fact that for the (basic)
parity-check matrix of an MDS code
all coefficients as well as are nonzero.

The next series of examples has been found by completely
different methods. They are all cyclic convolutional codes in the
sense of [13], [35], [14], [15]. In those papers, convolutional
codes having some additional algebraic structure are being
investigated. This additional structure is a generalization of
cyclicity of block codes but is a far more complex notion for
convolutional codes. In particular, cyclicity of convolutional
codes does not mean invariance under the cyclic shift in .
We will not go into the details but rather refer to [13], [35].
However, in order to understand and test the following exam-
ples there is no need in understanding the concept of cyclicity
for convolutional codes since in the following we provide all
information needed to specify the codes. We present the gener-
ator matrices and also provide all column distances; they have
been computed with a computer algebra program. All matrices
given below are minimal basic. We would like to mention that
just like for cyclic block codes, the length of the code and the
characteristic of the field have to be coprime. Therefore, only
codes with odd length are given below.

One should note that most of the following codes exist over
comparatively smaller alphabets than the examples of Ex-
ample 4.1. However, we do not know any general construction

for strongly-MDS cyclic convolutional codes yet. But the abun-
dance of (small) examples suggests that such a construction
might be possible and might lead to smaller alphabets for given
parameters than the construction of the last section. We will
leave this as an open question for future research.

Example 4.2:

1) A strongly-MDS code over

The column distances are , , for
.

2) A strongly-MDS code over (where
)

The column distances are , , ,
for .

3) A strongly-MDS code over

The column distances are , , ,
for .

4) A strongly-MDS code over

The column distances are , , for
.

5) A strongly-MDS code over

The column distances are , , ,
for .

6) A strongly-MDS code over as shown at the
bottom of the page. The column distances are ,

, for .
7) A strongly-MDS code over (where

)

The column distances are , , for
.

8) A strongly-MDS code over

The column distances are , , ,
for .
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9) It is worth noting that there does not exist even an MDS
code over , since the generalized Singleton

bound in this case is , but due to the Griesmer bound
(see [1, p. 133] for the binary case) the parameters of an

code over with memory and distance sat-
isfy

for all

Hence, a code over with memory has at most
distance . The inequality applied to shows that
the field size has to be at least in order to allow the
existence of an MDS code.

One should notice that the codes in Example 4.2, items 1)–7)
are not only strongly-MDS but also have all column distances
being optimal in the sense that they reach the upper bound given
in Proposition 2.2. In particular, they also have a maximum dis-
tance profile in the sense of Definition 2.9. For the code
in item 8), only the second column distance is not optimal, but
rather one less than the upper bound, which is in this case.
The implications of this have been discussed already in Ex-
ample 2.12, item 1).

V. THE DUAL OF A STRONGLY MDS-CODE

In this section, we will present some results concerning the
dual code of a strongly-MDS code. The main result shows that
a convolutional code has a maximum distance profile if and only
if its dual has this property. This then implies for certain param-
eters that a code is strongly-MDS if and only if its dual has this
property. These results are very appealing as they generalize the
situation for block codes.

Recall that if

is an code with generator matrix and
parity-check matrix , then the dual code,
defined as

for all

is given by

and thus an code. In contrast to the block code
situation, almost nothing is known about the relation between
the distances of a code and its dual. In particular, it has been
shown in [36] that no MacWilliams identity relating the weight
distributions of and exists. In block code theory, a very
simple relation between the distances of a code and its dual is
given in the case of MDS codes. In fact, if is an MDS
block code, then the dual is an MDS code, see
[33, Ch. 11, Par. 2] and very specific knowledge on the weight
enumerator and its dual is known [33, Ch. 11]. Therefore, it
is quite natural to investigate whether the dual of an MDS (or
strongly-MDS) convolutional code is MDS (or strongly-MDS),
too. Unfortunately, this is in general not the case.

Example 5.1: In general, the dual of a strongly-MDS code
is not even an MDS code. This can be seen from the dual of
the code given in Example 4.1, item 3). The dual has generator
matrix

which obviously has weight less than the generalized Singleton
bound (see Theorem 2.6).

As we will show next, the property of maximum distance
profile carries over under dualization. In addition, for specific
code parameters the strongly-MDS property carries over to the
dual code as well. To this end, recall from Definition 2.8 that
an code is strongly-MDS if the th column distance
attains the generalized Singleton bound where

Thus, the dual code is MDS if the th column distance
attains the generalized Singleton bound where

Obviously, these two numbers differ by one when divides
but does not or vice versa. What remains equal for both
the code and its dual is the quantity

used in Definition 2.9, where we introduced the concept of max-
imum distance profile.

Theorem 2.4 provides us with the following nice duality re-
sult.

Theorem 5.2: An code has a maximum
distance profile if and only if the dual code has
this property.

Proof: Let have generator matrix and parity-check
matrix as given in (2.1) and (2.2). Assume has a maximum
distance profile. By Theorem 2.4, every

full-size minor formed from the columns of with
indices , where for

, is nonzero.
Consider now the dual code which is defined as the rows-

pace of the matrix . It follows from (2.4) that the
th column distance of the dual code is given by

Taking the reversed ordering into account, we obtain again from
Theorem 2.4 that the dual code has maximum distance pro-
file as well.

Corollary 5.3: When both and divide then an
code is strongly-MDS if and only if

has this property.
Proof: From and , it follows that

and
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which is the generalized Singleton bound of the code and

which is the generalized Singleton bound of the dual code .

The preceding result gives us another class of strongly-MDS
codes by dualizing Theorem 3.11.

Corollary 5.4: For every such that both
and divide and every prime number there exists a
strongly-MDS code over some suitably large field of
characteristic .

Example 5.5:

a) Corollary 5.3 tells us that the duals of the codes
given in Example 4.1, item 1) are strongly-MDS. But this
is obviously so, since they are—up to ordering—identical
to the given codes.

b) Dualizing the code of Example 4.1, item 2) gives us a
strongly-MDS code with generator matrix

c) Dualizing the codes given in Example 4.2, items 2) and
3), we obtain another two strongly-MDS codes with gen-
erator matrices

and

It is known that these codes are also cyclic convolutional
codes in the sense of [13], see [13, Theorem 7.5].

Finally, we would like to mention that even in the case where
and , the dual of an MDS code is not MDS in

general. An example is given by the following code.

Example 5.6: The code , where
, with generator matrix

and parity-check matrix

is an MDS code, but not strongly-MDS. It satisfies and
. The dual code generated by is not MDS. Its distance

is .

VI. ESTIMATES FOR THE EXTENDED ROW DISTANCES

In this section, we will use the information about the column
distances in order to present a lower bound for the extended row
distances of a strongly-MDS code with unit memory.

For this, let be the generator
matrix of a unit memory code of degree , thus, has full row
rank, and let the code be strongly-MDS and have a maximum

distance profile. Hence, for all
where and we have

Denote by the th extended row distances of the code, thus,
is the minimum weight of all codewords

of degree where for all . Define

. . .

. . .

Lemma 6.1: Let . Then

Proof: Let . Then
for some .

Since , we have

Estimating the weight of by we obtain the desired result.

Theorem 6.2: Let and write where
and . Then we have

Hence, the extended row distances are bounded from below by
a linear function with slope .

Note that the constant part of this linear function is always
positive.

Proof: Write the matrix at the top of the following page.
We have to estimate where all .
Thus, we may use the lower bound for the
first block, the lemma for the next blocks,
and for the last two blocks, respectively. Hence,

Remark 6.3: We computed the weight distribution for some
of our codes (those with number of states not bigger than ),
and in all cases we even obtain . This is
in general a much better slope than the estimate of the preceding
theorem.

VII. CONCLUSION

In this paper, we introduced two new classes of convolutional
codes called strongly-MDS convolutional codes and codes
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. . .

. . .

. . .

. . .

. . .

. . .

. . .

having maximum distance profile. Strongly-MDS convolutional
codes have the property that the generalized Singleton bound
is attained at the earliest possible column distance. Codes with
maximum distance profile have a maximal possible increase of
the column distances.

From an applications point of view, strongly-MDS convolu-
tional codes are particularly suited in situations where codes
over large alphabets are required and in situations where alge-
braic decoding is desirable. Hadjicostis [21], [22] has recently
demonstrated that convolutional codes over large alphabets are
very desirable in areas of process control via linear finite-state
machines, where large numbers of nonconcurrent errors should
be detected and corrected. It seems that strongly-MDS convo-
lutional codes have potential for such applications.

APPENDIX A
We will need the following lemma.

Lemma A.1: Let and such that

and

Then the following are equivalent:

a) the -submatrix of consisting of the columns with
indices is singular;

b) the -submatrix of obtained by taking the
rows with indices in is singular;

Proof: Without loss of generality, assume
and partition , where is the

submatrix under consideration. If is invertible then

This shows that the bottom -submatrix of
is invertible.

Proof of Theorem 2.4:
i) ii): Assume there are indices

satisfying for whose corresponding
minor is zero. It follows that there is a vector
such that has zero coordinates at positions .
Let . Consider the vector

The weight of this vector is at most as there
are at least zero coordinates. From (2.4), it follows
that and by Corollary 2.3 we also
have , contradicting i).

ii) i): Assume that . Let

It follows that there is a vector , such
that has at least zeros. As a submatrix inside

we select the columns corresponding to the first
positions where has a zero and we augment it by the last

columns of . We call the indices of the selected
columns . This gives a full-size
minor and we claim that this minor is zero and that the indices

satisfy for . In order
to prove the latter, note that for

. It therefore follows that has at
most zeros for . In particular,

for . Clearly, it is also true for
. It remains to be shown that the minor is zero. For

this, note that the selected matrix has the form , where

is an submatrix of which is singular
by construction. The full size minor is therefore zero.
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As for the equivalence of ii) and iii) recall that
and that both matrices have full rank. The minor in comple-
mentary to the minor of with the indices as in ii) has indices
as given in iii). Therefore, Lemma A.1 completes the proof.

Proof of Corollary 2.5: In this special case, where is
systematic, the truncated sliding generator matrix has the form

. . .
. . .

...
...

...
...

First of all, using Theorem 2.4, item ii) it is easy to see that
both conditions in the corollary imply that the matrices do
not contain any zero entries. Therefore, we may assume that
all entries of are nonzero. Second, notice that the

submatrices of are in one to one
relation to the square submatrices of . Precisely, let be
obtained from by picking, say, columns from the block
columns containing the identity matrix and, say, columns
from the block column starting with . Then

(A1)

and satisfies the index condition in Theorem 2.4, item ii) if
and only if

for all (A2)

The submatrix contains a -submatrix of , where
, and obviously, the matrix is nonsingular if

and only if is. Therefore, it remains to prove that satisfies
the index condition in Theorem 2.4, item ii) if and only if
does not contain an -zero block where . Since
all entries of the matrices are nonzero, the largest zero blocks
contained in the submatrix are of sizes

for

Using (A1) it is easy to see that

But this is just the condition in (A2) and, by virtue of The-
orem 2.4, that proves the equivalence of i) and ii).

APPENDIX B

We will prove that the proper minors of the matrix given in
Example 3.10, part 2) are all positive. In order to do so consider
the matrix

. . .
. . .

and notice that for all we have

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(B1)
In particular, . Therefore, the positivity of the
proper minors is a consequence of the following theorem.

Theorem B.1: Let and

and define . Then and

for all

Proof:
1) We first show that

for some
(B2)

To this end notice that

for or

and thus,

for or

Assume now for some . Then for all and
we have and thus, . Hence, the
first rows of have at most rank and thus, .
Similarly, if for some , then we have for
all and and the first columns of have at most
rank .

2) It remains to prove the implication “ ” of the equiva-
lence given in the theorem.

We begin with proving the statement for , i.e., for the
matrix . In order to do so, we proceed by induction on . For

we have to consider the submatrices and . They
all trivially have determinant . Now let . We suppose the
statement is true for all proper submatrices
with the according restriction on the indices and we have to
show that the assertion is also true for where

for all . Notice that the first column of
has either one or two nonzero entries and they are equal to . If
the first column of has one only, then it is on the first row.
Applying cofactor expansion along that column we obtain

(B3)

The -submatrix satisfies for
all and hence by induction has positive determi-
nant. This proves in this case. If the first column of

has two entries equal to , then they are necessarily
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on the first two rows, thus, and . Since
and , we can only have

. Then the first row will have only one nonzero entry
equal to on the first position, and applying cofactor expansion
along that row, we obtain again (B3) and thus .We
now proceed by induction on in order to prove the desired re-
sult for where . Assume has the stated property.
Using and the Cauchy–Binet formula for mi-
nors we obtain

Due to part 1) of the proof, the sum indeed expands only over
the given indices. By induction, all nonsingular submatrices of
both matrices and have positive determinant, hence if
there are any nonzero terms in the sum, it is necessarily posi-
tive. Therefore, the only thing left to be proven is that there is
a nonzero term in the above sum. But all products of the form

with

for all are nonzero. Thus, and the proof is complete.

APPENDIX C

Proof of Theorem 3.11:

Step 1: We will show the existence of a matrix as in
(3.3) satisfying part c) of Theorem 3.1. This can be
accomplished as follows. Define
and pick a superregular Toeplitz matrix

. . .
...

...
. . .

. . .

Theorem 3.9 guarantees the existence of such a ma-
trix over a suitably large field of characteristic . For

define the matrices

Then, due to the Toeplitz structure of , we have
for all

for

and therefore the matrix in (3.3) is obtained from
by picking the rows with indices

and the columns with indices

But then it is obvious that the matrix inherits
from the property that all -submatrices not
containing an -zero block where
are nonsingular, cf. Remark 3.7. This provides us
with a matrix as in (3.3) satisfying the equivalent
conditions of Theorem 3.1.

Step 2: We now establish the existence of a polynomial ma-
trix having in (3.3) as th
systematic sliding parity-check matrix. For this, de-
fine and start with as in (3.1). Without
loss of generality we may assume . Then
(3.2) tells us that we need matrices and satis-
fying

higher terms (C1)

Comparing the coefficients of we
obtain the matrix equation

...
...

(C2)

Denote the matrix occurring on the left-hand side
by . In order to see that the matrix equation is
solvable we will show that has full column rank.
Notice that . Using

and one can easily see that
. But then the full column

rank of follows from part c) of Theorem 3.1.
Thus, we can find matrices satisfying
(C2). Comparing now the powers of
in (C1) we obtain . Then the equation is
fully satisfied by setting suitably.

Step 3: It remains to see that the code

has degree . But this follows directly from the con-
struction. Indeed, recall that .
Therefore, using Theorem 3.1, part a), we know that
the th column distance of satisfies

Now the generalized Singleton bound in Theorem
2.6 shows that the code cannot have a degree
smaller than . Thus, is a strongly-MDS
code, and the proof is complete.
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