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Abstract:  

Circuits provide ideal platforms of topological phases and matter, yet the study of 

topological circuits in the strongly nonlinear regime, has been lacking. We propose and 

experimentally demonstrate strongly nonlinear topological phases and transitions in 

one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear 

topological interface modes arise on domain walls of the circuit lattices, whose 

topological phases are controlled by the amplitudes of nonlinear voltage waves. 

Experimentally measured topological transition amplitudes are in good agreement with 

those derived from nonlinear topological band theory. Our prototype paves the way 

towards flexible metamaterials with amplitude-controlled rich topological phases and 

is readily extendable to two and three-dimensional systems that allow novel 

applications. 
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Introduction 

Topological phases of matter have been widely studied in different areas of physics, 

such as photonic [1-11], acoustic [12-20], mechanical [21-29], plasmonic [30, 31] and 

electrical circuit systems [32-45]. Most of the studies of topological systems are limited 

to the linear regime. Current advances combine topology with weak nonlinearity and 

give rise to exotic properties, such as topological solitons [46-48], amplitude-controlled 

topological phase transitions [49-51], non-reciprocal phase transition [52], and 

frequency conversion of topological modes [53-55], etc., among which the circuit 

system serves as the ideal platform for exploring properties when topology meets 

nonlinearity. To date, self-induced topological edge modes and enhanced harmonic 

generation have been realized in circuits composed of weakly nonlinear elements [50]. 

However, as perturbative analysis is invalid in the strongly nonlinear regime, the study 

and application of topological metamaterials with strongly nonlinear interactions, are 

largely limited. Recently, Berry phase of strongly nonlinear dynamics has been 

established, which extends the topological bulk-boundary correspondence to the 

strongly nonlinear regime from the theoretical perspective [56]. However, the 

experimental observations and characterization of the strongly nonlinear topological 

physics are still demanding.  

In this work, we experimentally demonstrate the strongly nonlinear topological 

phases via the observation of topological interface excitations in a cascaded circuit. 

Reflection symmetry quantizes nonlinear Berry phase, whose topologically non-trivial 

and trivial integer values are controlled by the amplitudes of the voltage fields and 

correspond to the emergence and absence of nonlinear topological modes on the 

interface of two semi-ladders. These highly adjustable electrical circuits and flexible 

phases open the door to smart, tunable and adaptive topological metamaterials. 

The model---The considered nonlinear topological model is a one-dimensional 

circuit under periodic boundary condition (PBC). As schematically shown by Fig.1(a), 

the diatomic unit cell consists of two identical LC resonators, whose inductance and 

capacitance are 𝐿 = 1𝜇𝐻, and 𝐶 = 22𝑝𝐹, respectively. The other ends of the resonators 

are grounded such that the functionalities are the analog of mechanical oscillators in 

elastic networks [57-60]. The resonators are connected by nonlinear voltage-dependent 

capacitors 𝐶1(𝑉) and linear capacitors 𝐶2 = 25 𝑝𝐹 that serve as the inter-cell nonlinear 

couplings and intra-cell linear couplings, respectively. Here, the nonlinear capacitors 



𝐶1(𝑉) are made up of two varactor diodes that yield mirror symmetry [53], and the 

voltage dependence is obtained by detecting the resonant frequency of an LC resonator 

that is constructed from an inductor of 1𝜇𝐻  and the nonlinear capacitor 𝐶1(𝑉) . By 

changing the bias voltage, the corresponding resonant frequencies are measured by 

network analyzer (KEYSIGHT 5061B). Derived from the resonant frequencies, the 

voltage dependence of the capacitor 𝐶1(𝑉) is plotted by blue dots in Fig. 1(c), with the 

maximum and minimum values 𝐶1max = 37.7𝑝𝐹 and 𝐶1min = 5𝑝𝐹, respectively. We 

further fit these experimentally measured data using Gaussian function, as shown by 

the red curve in Fig. 1(c), for numerical computations of the nonlinear topological 

phases and transitions. For a cascaded circuit of 𝑁 unit cells, the Lagrangian reads  

𝐋 ({𝑉𝑛
(1)

, 𝑉𝑛
(2)

}) = ∑ [𝐋𝑛 − 𝑈1(𝑉𝑛−1
(2)

− 𝑉𝑛
(1)

) − 𝑈2(𝑉𝑛
(1)

− 𝑉𝑛
(2)

)]𝑁
𝑛=1 ,              (1) 

where 𝐋𝑛 is the total Lagrangian of the two LC resonators of the 𝑛th unit cell, 𝑈𝑗=1,2 

denote the potential energies of the nonlinear and linear capacitors, and 𝑉𝑛
(𝑗=1,2)

 are the 

two voltage fields of the unit cell, as marked in Fig. 1(a). While the potential energy of 

linear capacitors is harmonic, the energy of nonlinear capacitors 𝑈1(𝑉) = ∫ (𝑉 −
𝑉

0

𝑥)𝐶1(𝑥) 𝑑𝑥  is strongly anharmonic for large biased voltage 𝑉 , which forbids the 

availability of linear analysis. Due to the intrinsic structural symmetry of the nonlinear 

capacitor and the ladder circuit, the Lagrangian stays invariant under reflection 

transformation  

𝐋 ({𝑉𝑛
(1)

, 𝑉𝑛
(2)

}) = 𝐋 ({𝑉−𝑛
(2)

, 𝑉−𝑛
(1)

}).                                          (2) 

As we show below, reflection symmetry of the lattice Lagrangian fundamentally 

quantizes the nonlinear Berry phase, whose non-trivial integer value guarantees the 

emergence of nonlinear topological interface modes.  

The nonlinear dynamics of the considered circuit follow from the Lagrangian 

equations of motion, which are expressed by four-field generalized nonlinear 

Schrödinger equations [61]. Spatially repetitive structures enjoy the nonlinear extension 

of Bloch theorem [56, 61], whose spatial-temporal periodic voltage oscillations take the 

format of plane-wave nonlinear normal modes [62] 𝑉𝑘 = (𝑉𝑘
(1)(𝜔𝑡 − 𝑛𝑘), 𝑉𝑘

(2)(𝜔𝑡 −

𝑛𝑘 + 𝜙𝑘)) . Here, 𝜔  and 𝑘  are the frequency and wave number respectively, 

𝑉𝑘
(𝑗=1,2)

(𝜃) are 2𝜋-periodic wave components, and 𝜙𝑘 characterizes the relative phase 

between these two wave components.  The frequencies of plane-wave nonlinear normal 



modes 𝜔 = 𝜔(𝑘, 𝐴)  are controlled both by wavenumber 𝑘  and mode amplitudes 𝐴 , 

which naturally deviate from their linear counterparts as nonlinearity grows.  

Nonlinear normal modes yield reflection symmetry in Eq. (2), from which Berry 

phase of nonlinear normal modes are guaranteed to pick quantized values (see Ref. [56] 

and Supplementary Information [61] for details),  

𝛾(𝐴) = ∮ 𝑑𝑘
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|
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= 𝑛𝜋,   𝑛 = 0 or 1. (3) 

Here, 𝐴  stands for the amplitude of the nonlinear voltage modes, and 𝑣𝑙,𝑘
(𝑗)

(𝜃) =

(2𝜋)−1 ∫ 𝑒𝑖𝑙𝜃𝑉𝑘
(𝑗)

𝑑𝜃
2𝜋

0
 is the 𝑙-th Fourier component of 𝑉𝑘

(𝑗)
. This quantized geometric 

phase serves as the topological index of the nonlinear circuit dynamics, where 𝛾 = 𝜋 

and 𝛾 = 0 indicate topologically nontrivial and trivial phases, respectively. Upon the 

increase of mode amplitudes 𝐴, 𝛾(𝐴) cannot change continuously from 𝜋 to 0 due to 

its topological nature. Nevertheless, it experiences abrupt jumps between distinct 

integer multiples of 𝜋 as the nonlinear bandgap closes and reopens at the topological 

transition amplitude 𝐴𝑐 . This nonlinear topological transition can be intuitively 

understood by referring to the transitions of linear SSH circuit in Fig. 1(b), whose 

intercell and intracell couplings are 𝐶3  and 𝐶2 , respectively. When 𝐶2 < 𝐶3 , the 

intracell coupling is weaker (𝐶2 > 𝐶3 , the intracell coupling is stronger), the linear 

topological number is in the non-trivial (trivial) phase. Likewise, the nonlinear Berry 

phase is in the non-trivial (trivial) phase when 𝐶2 < 𝐶1(𝑉)  for weaker intracell 

coupling (𝐶2 > 𝐶1(𝑉) for stronger intracell coupling), as we discuss below.  

As shown in Fig. 1(d), we numerically compute the nonlinear band gap in the 

circuit system with the unit cells addressed in Fig. 1(a). The nonlinear band gap 

experiences topological phase transition as voltage amplitudes rise. In the linear regime, 

the initial bandgap opens, and the topological number 𝛾(𝐴 = 0) = 𝜋 indicates that the 

circuit system is in the non-trivial phase. As voltage amplitudes rise, topological 

invariance states that quantized nonlinear Berry phase should stay unchanged as 

𝛾(𝐴 < 𝐴𝑐) = 𝜋 , provided that the nonlinear band gap remains open, where  𝐴𝑐 =

2.97 𝑉 is the topological phase transition amplitude. The nonlinear gap closes at this 

critical amplitude 𝐴𝑐, as pictorially depicted by the vanishing gap in Fig. 1(d), where 

nonlinear Berry phase becomes ill-defined. We define the degree of nonlinearity 

𝐶1(0)−𝐶1(𝐴)

𝐶+𝐶1(0)+𝐶2
 by comparing the nonlinear part of 𝐶1(𝐴) and the linear part of all capacitors 



𝐶, 𝐶1(0) and 𝐶2. At the transition amplitude 𝐴𝑐, the degree of nonlinearity reads 0.332, 

which demonstrates the strongly nonlinear regime of the underlying circuit dynamics 

[56, 62]. The bandgap reopens above 𝐴𝑐 (Fig. 1(d), whose topological index is well-

defined again to pick the integer value 𝛾(𝐴 > 𝐴𝑐) = 0 in the trivial phase.  

Fig. 2 addresses both the theoretical and experimental transition amplitudes of the 

topological index in the strongly nonlinear circuit dynamics, as we treat the linear 

capacitor 𝐶2 as the varying parameter in the horizontal axis. As the amplitude of the 

voltage fields grows, integer-valued topological Berry phase jumps from 𝛾 = 𝜋 to 0, as 

indicated by the nonlinear topological phase transition of the unit cell structure in Fig. 

1(a). The theoretical scenario of the transition amplitude is based on the matching 

condition of the frequencies 𝜔(𝑘 = 𝜋, 𝜙𝜋 = 0, 𝐴𝑐) = 𝜔(𝑘 = 𝜋, 𝜙𝜋 = 𝜋, 𝐴𝑐)  of the 

nonlinear normal modes at the time-reversal-invariant-momentum 𝑘 = 𝜋  with even 

(𝜙𝜋 = 0) and odd (𝜙𝜋 = 𝜋) parities. Given the nonlinear capacitor 𝐶1(𝑉) of Fig. 1(a), 

we theoretically compute a series of topological transition amplitudes 𝐴𝑐 by varying 

the linear capacitor 𝐶2, and plot the relationship between transition amplitudes and the 

linear capacitor using the blue curve in Fig. 2. For example, the transition amplitude for 

𝐶2 = 23𝑝𝐹 is 3.65 𝑉, whose topological transition is captured by the inset of Fig. 2. 

For 𝐶2 > 𝐶1max = 37.7 𝑝𝐹 , the topological phase stays trivial for all voltage 

amplitudes, and thus the system cannot experience nonlinear topological transition. As 

𝐶2  drops below 𝐶1max = 37.7 𝑝𝐹 , increasing amplitudes are needed to achieve the 

topological phase transition. Meanwhile, we experimentally probe these transition 

amplitudes by identifying the emergence of nonlinear topological interface modes. The 

experimentally measured transition amplitudes for 𝐶2 = 15𝑝𝐹 ,  18𝑝𝐹 , 

20𝑝𝐹 ,  22𝑝𝐹 ,  25𝑝𝐹 ,  27𝑝𝐹 ,  32𝑝𝐹  are denoted by square marks in Fig. 2, which 

qualitatively agree with the aforementioned simulation results. Furthermore, we 

investigate how the nonlinear topological transition amplitude is affected by 

fluctuations in the nonlinear capacitors 𝐶1 with a range of ±10%. In Fig. 2, the lower 

bound of the blue area indicates that the theoretical curve for the topological transition 

voltage exhibits better agreement with experimental measurements for a value of 0.9𝐶1. 

Deviations between theory and experiment may also arise from fluctuations in the linear 



coupling strength of 𝐶2, on-site resonators 𝐿 and 𝐶, and resistance, which is set to zero 

in theory but non-zero in experiments. 

Based on these numerical demonstrations of topological phases and transitions in 

the nonlinear circuit model, we experimentally conduct the corresponding nonlinear 

topological physics in real space. According to the nonlinear extension of bulk-

boundary correspondence [63], topological physics can be manifested by the emergence 

and absence of nonlinear topological modes on the interface of two semi-lattices. To 

observe the evolution of topological interface modes, we build two prototypes in Fig. 3 

and Fig. 4, and experimentally investigate the spatial profile of the impedance along 

the circuit board in response to external excitation power.  

The electrical circuits are built on the Printed Circuit Board, with the tolerance of 

chip capacitors and chip inductors ±5%  and ±10% , respectively. We measure the 

impedance response of circuit system by generating a chirp voltage signal from a 

function generator (KEYSIGHT 33600A), and subsequently enlarge the signal by a 

power amplifier (Minicircuit ZHL-6A-S+). The impedance is measured by the 

frequency response of the voltage and current on the top end of the 𝐿𝐶 resonators by an 

oscilloscope (KEYSIGHT DSOX4054A) controlled by a computer. We probe the 

voltage responses in all unit cells and measure their local impedance by raising the 

excitation power from 0.038 𝑉 to 7.84 𝑉, to experimentally measure the responding 

interface modes.  

The first prototype in Fig. 3(a) considers two semi-infinite ladder circuits, whose 

unit cells are enclosed by the green and red dashed boxes respectively, to construct a 

mutual interface between them. We encircle the unit cells of the left-sided and right-

sided semi-lattices using the green and red dashed boxes, respectively. These gauge 

choices of the unit cells yield open boundary conditions on both sides of the 

experimental circuit board in Fig. 3(b). Other unit cell choices of the left semi-lattice 

may cause problems, because left the open boundary can slice the unit cell at 𝑁 = −8 

into half, making it un-defined.  

In Fig. 3(b), we experimentally build the circuit board based on the design 

principle of Fig. 3(a), where both the left and right sides of the interface contain 4 unit 



cells. On the right side, the unit cells of the semi-lattice are composed of purely linear 

electrical elements with 𝐶2 = 25 𝑝𝐹  and 𝐶3 =  37𝑝𝐹  as the intracell and intercell 

couplings. The topological number is fixed at 𝛾right = 𝜋, and the linear band gap is 

marked by the blue dashed box on the right semi-lattice of Figs. 3(c, d, e). On the left 

side, the intracell and intercell couplings are 𝐶1(𝑉) and 𝐶2, respectively. In the weakly 

nonlinear regime, we approximate 𝐶1(𝑉 = 0.038 V) = 𝐶3, and hence, the topological 

number of the left semi-lattice is 𝛾left = 0 is in line with the linear SSH model. This 

index is different from the right semi-lattice, because the unit cell choices are different 

on the two sides of the interface to yield open boundary conditions. As a result, 

𝐶1(𝑉 = 0.038 V) = 𝐶3, 𝐶2  and 𝐶3 , together appear alternatively in real space to 

constitute a lattice without an interface, and no topological interface modes are expected 

in the weakly nonlinear regime. As pictorially manifested by the dark band gap that 

ranges from 15.36MHz to 17.88MHz in Fig. 3(c), topological voltage modes cannot 

arise on the interface, which is in line with purely linear SSH models. In Fig. 3(d), the 

interface is on the verge of nonlinear topological phase transition for the external 

triggering power at 3.09 𝑉 , which approaches the transition amplitude 𝐴𝑐 = 2.97 𝑉 , 

and the left nonlinear band gap closes. As the amplitude further rises to 7.84 V in Fig. 

3(e), the intracell coupling of the left semi-lattice, 𝐶1(𝑉 ≈ 7.84 V) ≈ 5pf , becomes 

weaker. The nonlinear band gap reopens above the topological transition amplitude, as 

depicted by the blue dashed box in the left semi-lattice of Fig. 3(e), leading to the 

topological numbers (𝛾left, 𝛾right)  =  (𝜋, 𝜋) in the large-amplitude regime. Since the 

band gaps of the left and right semi-lattices mismatch, nonlinear interface modes only 

arise on the right semi-lattice (left semi-lattice) within the frequency range between 

15.36 MHz and 17.88 MHz (between 17.88 MHz and 19.70 MHz) as the same 

frequency is in the conducting band on the other side of the interface, which enables 

bulk mode excitations. These experimental results can be verified using LTspice 

simulations in Figs. 3(f, g, h), where the nonlinear capacitors 𝐶1(𝑉) are numerically 

replaced by purely linear ones of 37𝑝𝐹 in Fig. 3(c), 25𝑝𝐹 in Fig. 3(d), and 15𝑝𝐹 in 

Fig. 3(e), respectively.  



In the second prototype, namely Fig. 4(a), the interface is composed by two semi-

ladder circuits that are mirror-reflection of one another. Following the unit cell 

convention in Fig. 3, the unit cells in Fig. 4 are encircled by the left and right green 

dashed boxes. This gauge choice is not only compatible with open boundary conditions, 

but also yields mirror symmetry regarding the interface. Given that the external power 

is 0.065 𝑉 in Fig. 4(c), stronger capacitors, 𝐶1(𝑉 = 0.065 V) ≈ 𝐶3, are connected to 

the interface, whose topological phases of the numbers (𝛾left, 𝛾right)  =  (𝜋, 𝜋)  are 

analogous to linear SSH models. We observe the nonlinear topological interface mode, 

which is also in line with the linear topological interface modes of linear SSH circuits. 

The topological mode becomes blur in Fig. 4(d) when the external power 1.91 𝑉 

approaches the critical point 𝐴𝑐 = 2.97 𝑉, as indicated by the closure of the nonlinear 

band gap. As the exciting power further grows to 6.17 𝑉 in Fig. 4(e), the interface is in 

the non-topological regime, which manifests a nonlinear localized mode. This mode is 

not topological because the frequency can shift into the nonlinear band by tuning the 

coupling parameters, as indicated by the interface studies of nonlinear topological 

mechanics [55, 57]. These nonlinear topological physics can be verified by performing 

numerical simulations in Figs. 4(f, g, h), where the nonlinear capacitors, 𝐶1(𝑉), are now 

replaced by linear capacitors (37𝑝𝐹, 25𝑝𝐹, and 15𝑝𝐹) in the calculations of LTspice. 

It is worth emphasizing that all these nonlinear topological phases, transitions, and 

interface modes are flexibly controlled by the external input power without 

entangling/disentangling the hardware of the platform.  

In summary, we construct and experimentally demonstrate nonlinear topological 

modes on the interface of two cascaded semi-ladder electrical circuits. Nonlinear Berry 

phase is quantized by reflection symmetry of the underlying circuit structure, and 

guarantees nonlinear topological interface modes in the non-trivial regime. Amplitude-

induced topological transitions are naturally manifested from the conversion between 

topologically non-trivial and trivial interface modes, whose topological transition 

voltage amplitudes are in good agreement between experimental measurements and 

simulations from nonlinear topological band theory. Our prototype establishes flexible 



metamaterials with amplitude-controlled rich topological phases and transitions and are 

readily extendable to higher dimensional platforms.  
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Fig. 1. (a) The unit cell of the underlying nonlinear topoelectrical circuit. (b) The unit 

cell of the linear circuit that helps to construct an interface between two semi-lattices 

in Fig. 3. (c) The voltage-dependence of the nonlinear capacitors, where the dots 

represent the data measured by the network analyzer, and the fitting Gaussian curve is 

adopted for numerical computations. (d) The numerical calculation of the nonlinear 

band gap and topological phase transitions of the circuit unit cell in (a) for growing 

nonlinearity as voltage amplitude increases. At the transition point marked by the 

vertical red line, the degree of nonlinearity (horizontal axis) reads 0.332, which grants 

the considered topoelectrical circuit the strongly nonlinear regime.  

 

  



 

 

Fig. 2. Topological phase diagram of the nonlinear electrical circuit in Fig. 1(a). In the 

horizontal axis, we vary the parameter of the linear capacitor 𝐶2 from 14.0 𝑝𝐹 to 

37.0 𝑝𝐹. The vertical axis represents the amplitude of responding voltage fields. The 

blue curve denotes the numerical result of the topological transition voltage 

amplitudes for varying linear capacitor 𝐶2 . The blue area depicts the numerical result 

of the topological transition voltage under the influence of fluctuations in the 

nonlinear capacitors 𝐶1 with a range of ±10%. The experimentally measured 

transition voltages are depicted by the square marks with error bars. The inset 

illustrates the transition of the topological index when 𝐶2 = 23𝑝𝐹. 

  



 

Fig. 3. (a) Schematic illustration of the first prototype of the nonlinear topoelectrical 

circuit, whose interface connects the left and right half-lattices. Encircled by the red 

dashed box, the right-sided unit cells are composed of linear elements, as shown in Fig. 

1(b). The left-sided semi-lattice, as enclosed by the green dashed box, is composed of 

unit cells whose intra-cell and inter-cell couplings are switched comparing with Fig. 

1(a). (b) Photograph of the experimentally constructed circuit board from the design in 

(a), whose right and left sides contain 4 unit cells each. (c) The absence of topological 

interface mode in the small amplitude regime. (d) Topological interface mode on the 

verge of nonlinear topological phase transition. the mode amplitude reads  3.09 𝑉 , 

which approaches the transition point 𝐴𝑐 = 2.97 𝑉. (e) Nonlinear topological interface 

mode becomes clearer for amplitude at 7.84 𝑉 . (f) (g) (h) Impedance diagram of 

variable capacitor replaced by linear capacitor 37𝑝𝐹 in (f), 25𝑝𝐹 (g), and 15𝑝𝐹 in (h). 

 



 

Fig. 4.  (a) Schematic illustration of the second prototype of the nonlinear topoelectrical 

circuits. As encircled by the green dashed boxes, the unit cells of the two semi-lattices 

are designed from Fig. 1(a). (b) Experimental setup of (a). (c) The interface hosts a 

topological mode with the excitation power of 0.065 𝑉 . (d) Nonlinear topological 

interface mode on the verge of disappearance, as the external power 1.91 𝑉  approaches 

the topological transition amplitude 𝐴𝑐 = 2.97 𝑉. (e) For the power that further rises to 

6.17 𝑉 , trivial localized modes take place on the interface. (f) (g) (h) Impedance 

diagram of variable capacitor replaced by linear capacitor 37𝑝𝐹 in (f), 25𝑝𝐹 (g), and 

15𝑝𝐹 in (h). 
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