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1. INTRODUCTION

As steep waves have recently come to be described with increasing accu-

racy, a number of unexpected physical and mathematical phenomena have

been revealed. Until ten years ago it had been assumed that accurate

solutions for high waves would hold few surprises. Examples of such sup-

positions are that deep-water solutions would converge for all waves short

of the highest, that important integral quantities such as speed, energy,

and momentum would increase with wave height until the highest is

reached, that the solutions for periodic waves would be unique, and that

if one solitary wave overtakes another any change of wave height would
be a decrease. It is now known that all these suppositions are false, having

been disproved in the last decade. The nonlinearity of the describing equa-

tions produces a complexity of solution structure that is only now beginning
to be appreciated.

This review will deal with effectively exact solutions for nonlinear waves

and the phenomena revealed by such solutions. The governing equation

within the fluid is taken to be Laplace’s equation, corresponding to irro-

tational flow of an incompressible fluid. Excluded are the physical effects

of viscosity, density gradients, compressibility, and rotation. This model
of the flow is the simplest, but one which is an excellent approximation in

many cases of wave motion, and is the traditional avenue of approach to

most problems of fluid flow. Throughout this review, however, the problems

and solutions described are those where the complete nonlinear boundary
conditions have been included. It has been the nonlinearity of these con-

ditions which has made the accurate solution of water-wave problems

so difficult.
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40 SCHWARTZ & FENTON

The fluid is assumed to be inviscid and the flow irrotational, such that

the velocity q may be expressed as the gradient of a potential ~b, q =
Vq~. If the fluid is assumed to be incompressible, such that ~’ .q = 0, the

equation that holds throughout the fluid is Laplace’s equation

where the subscripts denote partial differentiation. The x and z coordinates

are taken to be in a horizontal plane, the y axis vertically upwards. If the

fluid is partly bounded by solid boundaries that are free to move such that

y = h(x, z, t) on the boundary, it can be shown that the condition that

no fluid pass through the boundary is

h, = ~ -- ~hx -- ~zh~

on y = h. In many situations the boundary can be taken as stationary,

h~ = 0, and horizontal, h~ = hz = 0, so that the boundary condition

becomes

~y(x, h, z, t) = (1.2)

The free-surface boundary conditions are to be satisfied on y = ~ (x, z,

t), which is also unknown. The kinematic requirement that a particle on
the surface remain on it is expressed by

D

Dt (y ~) --~, --~ ¢~n~ + ~ 
(1.3)

on y = 0. The dynamic boundary condition can be written

~, + ~/~(~ + ~ + ~) + g~ + p~/p

+ T(1/R, + lIRa) = C(t) (1.4)

on y = ~, where g is gravitational acceleration, p~ is the pressure at the

surface, ~ is fluid density, T is surface tension, R~ and R2 are principal
radii of surface curvature, and C(t) is a function only of time. In many
situations, and throughout the rest of this review, air motion above the

surface is neglected and the surface pressure taken to be a constant. The

equations may be simplified in any or all of the cases of (a) steady flow,

O/Ot ~ O, (b) two-dimensional flow, O/Oz ~ 0, and (c) surface tension

relatively unimportant, T set to zero. However, in all these physical
simplifications, nonlinear terms remain in the free-surface boundary

conditions.

2. THE CANONICAL PROBLEM : STEADY WAVES

The problem of a periodic train of waves propagating without change of

form allows a considerable simplication by the addition of a suitable hor-
izontal velocity to the reference frame, so that the fluid motion may be

made steady and all time dependence and time derivatives vanish from
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STRONGLY NONLINEAR WAVES 41

(1.1-1.4). By considering a coordinate frame in which one axis is parallel

to the direction of propagation the problem is made two-dimensional.

Surface tension will be neglected in this section, and its inclusion described
in Section 3. The problem now formulated, the two-dimensional steady

periodic gravity wave, is the simplest of all, and has often been the avenue

by which solutions to more difficult and general problems have been ap-
proached. Despite its relative simplicity, it contains the full nonlinearity

of the surface boundary conditions and has succumbed to accurate solution

only in the last decade, during which several interesting phenomena have

been discovered.

The existence of solutions to this problem has been studied by several

authors. Krasovskii (1960) has devised the most significant proof. A recent

discussion of his work has been given by Keady & Norbury (1978), who

also established existence of a set of solutions of which his are a subset.
Toland (1978) has shown that a solution exists for a wave of greatest

height, and that this wave is the uniform limit of waves of almost extreme

form.

A number of general theorems for the motions due to steady wave trains
have been established, a summary of which is given in Wehausen & Lai-

tone (1960, Section 32). These include theorems on the decrease of motion
with depth, as well as relations between energy and momentum integrals.

Longuet-Higgins (1974, 1975) has established a number of relations be-
tween the integral quantities of a wave train, and these have been gener-

alized by Cokelet (1977a) to allow for the wave train moving at arbitrary

speed relative to the frame of reference.

A steady wave train can be uniquely specified by three lengths--the
peak-to-trough wave height H, the wavelength ~,, and the mean depth D.

From these, two independent dimensionless ratios can be formed, so that

the steady-wave problem has a two-parameter family of solutions, although

recently (see Section 2.2.1) it has been shown that for waves near the

highest there may be more than one solution. Special limiting cases of the

steady-wave problem are (a) D/~ --~ ~o, ?~ and H finite, called the deep-
water wave, and (b) D/~ --~ O, D and H finite, called the solitary wave.

2.1 Solution by Perturbation Expansion Methods

2.1A STOI~ES EX~’ANSIONS Stokes (1847) first used a systematic perturba-

tion technique to solve the steady-wave problem. He assumed that the

free-surface elevation may be represented by an infinite Fourier series

rt(x) = a~ cos x + 2 cos 2x +. . . (2.1a)

and that the velocity potential may be similarly represented by

4~(x, y) = cx + b~ cosh (y + Y0) sin 

+ bz cosh 2(y + Y0) sin 2x + . . (2.1b)

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
1
9
8
2

.1
4
:3

9
-6

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 D

eu
ts

ch
e 

F
o
rs

ch
u
n
g
sg

em
ei

n
sc

h
af

t 
o
n
 0

1
/1

0
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


42 SCHWARTZ & FENTON

where the problem has been made dimensionless by referring lengths to

A/2~r and velocities to Co = (gA/2r)~/2, the speed of an infinitesimal wave
in deep water. The coefficient c and the an and bn are functions of the

water depth. In some situations Y0 has been assumed to be D, while in

inverse formulations of the problem (see Section 2.2.1) it is more conve-

nient to let Yo, the height of the origin above the bottom, be d ---- Q/c

where Q is the area flow rate under the stationary wave. The leading
coefficient c is the phase speed of the wave train in another frame through

which the waves propagate such that the time-mean fluid velocity at all

points is zero. The coefficients c, an, and bn are assumed to be’ power-series

expansions in a~, such that the leading orders of an and bn ~ O(aT). When

these series are substituted into (2.1a and b), which are then substituted
into the steady free-surface conditions, an ordered set of equations is

obtained from which the coefficients in the power series can be found

successively. The complexity of the manipulations makes a manual high-

order calculation impractical. Fifth-order solutions have been obtained by

De (1955), Chappelear (1961), who claimed mistakes in De’s solution,

and by Skjelbreia & Hendrickson (1961).
If the inverse problem is studied, where $ and ~b rather than x and y are

the independent variables, the calculations can be greatly reduced. The

free surface becomes a known boundary, ~b = 0.
Stokes (1880) computed the deep-water case to O(a~) and found results

for finite depth to O(a{). In the most ambitious manual computations using

the inverse method, Wilton (1914) carried the infinite depth calculation

to O(al°) (but has errors at the eighth order) and De (1955) has published

a fifth-order solution for general depth.

In order to reveal details of highly nonlinear waves by the series method,

solutions of much higher order must be obtained. Schwartz (1972, 1974)

simplified the formalism of the inverse method by using complex functions.
Each wave cycle in the physical z = x + iy plane is mapped onto the

interior of an annulus in the ~" plane, where ~ = exp(--if/c) wherefis the

complex potential f = ~b + i~k. The mapping function is an infinite poly-

nomial in ~" with coefficients an, each being taken to be a power series in

~, a parameter that is zero for the undisturbed stream and assumed to

increase monotonically with wave height. By substituting into the dynamic
boundary condition, a set of recurrence relations is found, and the coef-

ficients in the power series determined successively by computer. The

system of equations is closed by defining ~. Choosing ~ = al reproduces
the procedure of Stokes (1880).

Stokes (1847) showed that the highest wave, assumed to be sharp-
crested, must have an included angle of 120° at the crest. He conjectured

that this limiting wave would correspond to the critical value of a~ in the
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STRONGLY NONLINEAR WAVES 43

series expansion. In fact this is not the case, for al is not a monotonic

function of wave height but achieves its maximum value before the highest
wave is attained, about 10% before for the deep-water wave. To surmount

this difficulty Schwartz introduced the wave height as a new parameter,
in fact, ~ = HI2. He found that all the coefficients in the expansions

reached maxima before the highest wave is achieved. Thus when a~ is used

as the independent parameter, the maximum of at as a function of H
becomes a square-root singularity, which limits the convergence of Stokes’

expansion in al. Schwartz subsequently used series-analysis techniques,

including Pad6 approximants and Domb-Sykes plots, to estimate the lim-

iting wave height in deep water. He found this to be (H/A)max = 0.1412.

From the accurate results of the enhanced series, Schwartz showed that
the mass of the wave has a maximum in H. This has important implications

for other integral quantities of the wave train such as energy and

momentum.

Longuet-Higgins (1975) used Schwartz’s program for the deep-water

wave, recomputed to 32 decimal places by Cokelet, and re-expressed the

series in terms of the parameter o~ = 1 - (qcqt/cco)2, where q¢ is the fluid

speed at the crest and qt that at the trough. The parameter ~o has the
useful property that its range is known ab initio, undisturbed flow corre-

sponding to ~o = 0 and the limiting wave to o~ = 1. Longuet-Higgins found

maxima in each of the integral quantities : wave speed, momentum, and

potential and kinetic energy, before the highest wave was attained, as had

been found by Longuet-Higgins & Fenton (1974) for the solitary wave.

The variation of the integral quantities with wave steepness H/A is shown
in Figure 1 for the deep-water case. It is clear that the highest wave is not

£1 .~1~; .10 . 141

Figure 1 Dimensionless wave speed, impulse and kinetic and potential energies versus wave

height for deep-water progressive gravity waves.
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44 SCHWARTZ & FENTON

the fastest nor the most impulsive nor the most energetic. The physical

implications of this are not well understood, but it may be responsible for

the instability of the crest of high waves (see Section 4.1), for the multi-

plicity of solutions (see Section 2.2.1) and be relevant to the observed

intermittency of spilling breakers (Longuet-Higgins & Turner 1974). 

the maxima occur for high waves, when surface tension and viscosity would

also be important, especially on a laboratory scale, experimental confir-

mation would be difficult.

Cokelet (1977a) used a method very similar to that of Schwartz, and

for a wide range of finite water depths produced a number of accurate

results for integral quantities of the wave train. Each showed a maximum

before the highest wave was reached. Finite-depth results for wave speed

are displayed on Figure 2, using data from Schwartz (1972), Cokelet

(1977a), and Longuet-Higgins & Fenton (1974).

2.1.2. SHALLOW-WATER EXPANSIONS It has been shown by Ursell (1953)

that the linear theory of periodic waves (the first term in Stokes’ expansion)

is valid only if the shallowness parameter HX2/D3 as well as the wave

steepness///~, is small. That is, the waves must not be too long relative

to the water depth. This is shown by the results given by Schwartz (1974),
where the radii of convergence of the Stokes expansions become smaller

for longer waves. Analytical theories show the dependence on wavelength

more explicitly; it can be shown that whereas the nominal Stokes expansion

parameter is a~k, where k is the wavenumber 27r/~, the ratios of successive

terms in the expansion actually behave.like a~k/sinh3kD. For shallow water

0.2 ~
t~" ~

0.0 ~ I ~
0.4 0.6 0.8 1 .0 I .2 1.4 I .6

c=/gd

Figure 2 Wave speed versus amplitude and depth for progressive gravity waves. Numbers

on curves are values of d/P,.--sharp-crested waves.

1.0
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STRONGLY NONLINEAR WAVES 45

kD becomes small so that the effective expansion parameter varies like

alk/(kD)3, proportional to Ursell’s parameter.

A theory for waves in shallow water was put forward by Korteweg &

de Vries (1895), who showed that to first order, the free surface of steady

waves is of the form of a Jaeobian elliptic cn function squared, giving rise
to the term "cnoidal" waves which show the long flat troughs and short

crests characteristic of waves in shallow water. Higher-order cnoidal wave

theories have been obtained by Laitone (1960) and Chappelear (1962) 

second and third order respectively. A systematic method using power-

series expansions in terms of shallowness, (D/X)2, was used by Fenton

(1979), who used computer manipulation of the long series to produce 

ninth-order solution. It was shown that the most appropriate depth scale

is h, the water depth under the troughs, and that the natural expansion

parameter when the series are recast in terms of wave height is H/mh,
where rn is the parameter of the elliptic functions. For the long-wavelength

limit of the solitary wave m --~ 1; however, for shorter waves m becomes

smaller and the expansion parameter larger, complementary to the manner

in which the sinhakD denominator in Stokes’ expansion invalidates their
application to shallow water. The cnoidal-wave solutions were found to be

not accurate for very high waves, for reasons associated with the maxima

of integral quantities as a function of wave height. While the cnoidal-wave

results should be used instead of Stokes’s wave solutions in shallow water,
for physical applications where accurate solutions are necessary, both have

been somewhat superseded by the numerical method of Rienecker & Fen-

ton (1981), described in Section 2.2.2.

2.1.3 SOLITARY WAVE The solitary wave is a steady wave of infinite wave-

length. A recent specialized article on solitary waves has been written by
Miles (1980), so that the treatment here will be brief. The only high-order

series results are those presented by Fenton (1972) to ninth order, and 

Longuet-Higgins & Fenton (1974) to fourteenth order. It was found that

the series in terms of wave height H/h did not give accurate solutions for

very high waves.. The series was recast in terms of the parameter ~o = l

- qE~/gh, where o~ has the known range (0,1). Using these series, Pad6

methods were implemented, and convergent results were obtained for all
wave heights. It was found that the integral quantities of the wave all

showed maxima as functions of wave height.

The other approach has been through an integral-equation formulation,

the history of which is given by Miles (1980). Accuracy of the alternative

equations and numerical methods has usually been measured by their
ability to describe the wave of greatest height. Some of the more notable
results for the maximum height (H/h)max are 0.827 _ 0.008 (Yamada

1957b), 0.827 (Lenau 1966), 0.8262 (Yamada et al. 1968), and the result
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46 SCHWARTZ & FENTON

of 0.827 from Longuet-Higgins & Fenton (1974). All these results seem

to support one another. However, Witting & Bergin, in an unpublished

work mentioned by Witting (1975), obtained a value of 0.8332, precisely

the result obtained by Fox (1977) in an unpublished dissertation. This

agreement is rather striking, despite the use of some extrapolation in both

cases. Finally, it should be noted that Witting (1975) has suggested that

the method developed by Fenton (1972), on which the high-order series

results are based, is defective in that the assumed expansions are

incomplete.

2.2. Solution by Numerical Methods

Recent numerical solutions of the steady-wave problem are as accurate as

the series results, are often easier to implement computationally, and gen-
erally do not need the convergence improvement techniques of the series.

They do suffer from the usual disadvantage of numerical solutions in that

they reveal less about the nature of the problem and its solution. In the

case of high waves, however, so much numerical smoothing and extending

of the series solutions is necessary that they too suffer from this disadvan-
tage. Numerical methods can be divided into two categories depending on

whether the authors choose to solve the problem in the physical (x,y) plane
or the inverse (4~,ff) plane.

2.2.1 ~yvERsE ~’I~AYE MErHOOS In this case the problem is to be solved on

a region which is known a priori. This huge advantage is offset by the fact

that as the sharp-crested wave is approached, the singularities near the

crest are stronger in the inverse plane. Also, the calculation of local quan-
tities such as pressure and velocity as functions of position becomes a

separate problem to be solved subsequently if the inverse plane is used,
Schwartz & Vanden-Broeck (1979) used an algorithm that is typical

of inverse plane methods to solve the capillary-gravity wave problem on

infinitely-deep fluid and that was generalized to the finite-depth case in

Vanden-Broeck & Schwartz (1979). One wavelength of the flow was

mapped onto an annulus, the dynamic boundary condition becoming a

nonlinear differential equation for x and y on the unit circle. To satisfy
Laplace’s equation within the annulus, a Cauehy integral was written,

valid on the unit circle and satisfying the bottom boundary condition

identically. The equations were approximated by finite-difference expres-
sions to give a system of nonlinear algebraic equations which were solved

by Newton’s method. The spacing of computational points at equal inter-

vals of velocity potential was found to work well for capillary-gravity waves

where the points tended to be clustered around the narrow troughs where

velocities were greatest. For pure gravity waves, on the other hand, the
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STRONGLY NONLINEAR WAVES 47

sparse spacing occurred in the vicinity of the sharp crests and produced

poor results for waves near the highest. This was overcome by a simple

transformation which could be used to cluster points near the crest. The

results given for some wave speeds and energies are probably the most

accurate to date.

A remarkable result has recently been found by Chen & Saffman

(1980a), providing convincing evidence that solutions for permanent grav-

ity waves of finite amplitude are not unique when they are sufficiently

high! They formulated the deep-water steady-wave problem as a nonlinear

integro-differential equation, and approximated it by finite-difference

methods to give a system of nonlinear algebraic equations which were

solved by Newton’s method. Having noted the existence of the "prema-

ture" maxima of the various integral properties of periodic waves, and its

possible analogy, with the analytic structure 6f the capillary-gravity wave
problem, where multiple solutions were known to exist, they carefully

monitored the determinant of the Jacobian matrix used in the Newton’s
method solution. Zeroes were found, identifying bifurcation points in the

solutions, and the separate branches were followed. The new families of
solutions, found to occur for very steep waves, H/~, ~ 0.13, corresponded

to a doubling and tripling of the fundamental wavelength. In the doubling

case, for example, the solution obtained was a train of steep waves in which

alternate waves differed slightly in wave height.

2.2.2 PHYSICAL PLANE METHODS These have an important role to play in

practical applications where, despite an approximate doubling of the num-
ber of unknowns because the free surface is also unknown, it is considerably

easier to solve the problem from the beginning in the physical plane. Such

solutions include the recent work of Rottman & Olfe (1979) and Rienecker

& Fenton (1981). In the first of these, a boundary-integral technique was
used to formulate an integro-differential equation, Newton iteration being

used to find the vector of surface points. The method worked well for steep
gravity waves in that the now well-known speed maximum was found. It

is, however, not well suited to its nominal objective, the computation of

capillary-gravity waves, since it fails when n(x) becomes double-valued.

Rienecker & Fenton (1981) used a method in which the stream function
is represented by a truncated Fourier series similar to that of Stokes in

(2.1b). However, for a given wave the coefficients of the expansion are

found by numerical means, obviating the introduction of general power
series with their finite radius of convergence and breakdown in the inap-

propriate depth limit. The numerical method depends for its accuracy on

the ability of a Fourier series to describe the wave train. This approach
was originated by Chappelear (1961) and Dean (1965), but the method
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of Rienecker & Fenton is substantially different in that, for example, the

solution method is simpler because Newton’s method is used directly, the

only approximation is in the truncation of the Fourier series, and the

method recognizes that the waves may propagate at speeds determined by

quantities such as mass flux. In comparing results for fluid velocity with

experimental results, good agreement was found. Very close agreement

for all waves including the highest was found between the results for phase

speed and those reported by Cokelet (1977a) and Vanden-Broeck 

Schwartz (1979).

2.3 The Highest and Almost-Highest Waves

2.3.1 THE HIGHEST WAVE A number of attempts have been made to solve

the problem of the sharp-crested wave of greatest height, usually incor-

porating Stokes’ discovery that it has an included crest angle of 120°. For

a sharp-crested wave with its apex at z = x + iy -- 0, it follows from the

Bernoulli condition that the complex potential f = ~ + i~b varies like

z3/2 locally. Thus the complex velocity df/dz varies like f~/3 near the

crest. If the computation is restricted to deep water, an expansion can be

assumed (Michell 1893):

af _ c(1 - if)l/3 (1 + b, g- + b2 ~-z + ...),
(2.2)

dz

where ~" = exp(--if/c). Michell substituted this into the dynamic boundary
condition and determined the first few coefficients of the expansion to give

a result for the limiting steepness of (H/X)max = 0.142. The same method
was used by Havelock (1919) who obtained a limiting steepness of 0.1418.

He also calculated solutions for waves short of the highest by displacing

the cube-root singularity above the crest. This technique is apparently

defective, however, since Grant (1973) has shown that only square-root

singularities are admissible in all cases but the limiting one. He showed

that the singularity structure of the highest wave solution is much more

complicated than had previously been assumed and that the sharp crest

is not a regular singular point. The Stokes singularity is merely the first
term in a local expansion about the crest in which irrational exponents

occur.

Meanwhile Yamada (1957a) had assumed a solution equivalent to that

of Michell, truncated after twelve terms, and obtained a limiting steepness
of 0.1412. In a later paper, Yamada & Shiotani (1968), the method was

extended to finite depth. McCowan (1894) and Lenau (1966) used 

parable techniques for the solitary wave. Schwartz (1972, 1974) analyzed

his high-order Stokes series and incorporated the inferred singularity struc-

ture in a recast form of the series. The highest wave was graphically
indistinguishable from Yamada’s and had the same steepness.
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Michell’s expansion (2.2) has been used again, but with a deli,ghtful
difference, by Olfe & Rottman (1980). They observed that the nonlinear

equation resulting from substitution of a one-term expansion into the dy-

namic boundary condition has multiple roots, one corresponding to Mich-

eli’s solution but another real root almost eliminating the fundamental

Fourier term so that the series is dominated by a higher harmonic--pre-

cisely the behavior found by Chen & Saffman (1980a) for irregular gravity

waves. Subsequently, using (2.2) with up to 120 terms, Olfe & Rottman

experimented with Newton’s method and found other solutions in addition

to Michell’s, corresponding to every second, third, or fourth crest being

sharp, the intermediate ones being lower and more rounded, as found by

Chen& Saffman for waves lower than the highest.

Some simple and accurate irrational approximations, not part of sys-

tematic schemes, have been found by Longuet-Higgins (1973, 1974) for

the highest steady, standing, and solitary waves.

2.3.2 ALMOST-HIGHESTWAVES A local expansion in the vicinity of the crest

for waves just short of the highest was devised by Longuet-Higgins & Fox

(1977). They found a class of self-similar flows with a length scale of 

= q2~/2g, which have a smooth crest and whose free surface oscillates

about the Stokes corner flow with a decaying amplitude like (~/r) 1/2, where

r is the distance from the Stokes corner. The oscillations cause the max-
imum inclination of the surface to be greater than 30°, namely 30.37°, a

result confirmed from extrapolated numerical results of Sasaki & Mura-

kami (1973) and Byatt-Smith & Longuet-Higgins (1976). In a second

paper, Longuet-Higgins & Fox (1978) matched the local-crest solution 

a form of Michell’s expansion for deep-water waves, valid far from the

crest. A small parameter proportional to qc was introduced, and a number

of asymptotic expressions found for the height of the waves, the phase

speed and other integral quantities. Unlike almost all other results for non-
linear waves, these are valid in the limit of the highest wave. These expres-

sions have the unusual feature that they show an infinitude of local maxima

and minima as the highest wave is approached. The global maximum and
the first local minimum of speed and energy was found in the numerical

solution of Schwartz & Vanden-Broeck (1979) for deep water and for 

particular case of finite depth D/k = 0.110. No doubt all finite-depth
wave trains, and perhaps the solitary wave, show such behaviour.

Longuet-Higgins & Fox (1978) analytically continued their solution

across the free surface in the crest neighborhood. They found a stagnation
point above the crest corresponding to the square-root singularity found

by Grant (1973) and Schwartz (1972, 1974). The apparent transition 

the 2/3-power form for the sharp-crested wave was explained by Grant
as the coalescence of several square-root singularities. Longuet-Higgins
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(1979a) has subsequently developed a simpler approximation to the crest

flow found by himself and Fox. This result, and other approximations,

have been used to calculate fluid particle paths (Longuet-Higgins 1979b).

3. OTHER PERIODIC WAVES

There are two other important classes of spatially periodic surface waves

that will be discussed here. The emphasis, as before, will be on strongly

nonlinear effects.

3.1 The Inclusion of Surface Tension

In this case the waves considered are also two-dimensional, periodic, and

the flow is steady, but the surface-tension term in (1.4) is retained. For

two-dimensional waves, l/R2 = 0, and 1/R~ = ~xx/(l + r/x2) 3/2 a highly
nonlinear function of 7. The parameter K = 4~r2T/pg~2 is used to measure

the relative importance of surface tension and gravity. When K is large;

corresponding to short wavelengths, surface tension is the dominant re-
storing force. For longer waves gravity is most significant; however, cap-

illarity becomes increasingly important as the wave steepens and the crest
becomes more sharply rounded.

The problem of pure capillary waves in deep water has been resolved
completely by Crapper (1957). In this most remarkable work, he obtained

an exact closed-form, solution for waves of arbitrary amplitude. More
recently, closed-form solutions for finite depth were found by Kinnersley

(1976), a result anticipated by Crapper. Unlike pure gravity waves, steep

capillary waves are characterized by deep troughs and broad fiat crests.

The limiting wave occurs when the two sides of the trough meet, enclosing

a pendant-shaped bubble. Steeper "waves" can be computed but they are
physically impossible since the free surface crosses itself. Recently Vanden-

Broeck & Keller (1980) discovered a new family of capillary waves 

allowing a nonzero pressure within the enclosed pendant.

Wilton (1915) treated the combined capillary-gravity wave problem 

using a Stokes expansion which he carried to fifth-order in amplitude,
invoking Stokes’ hypothesis that the nth Fourier coefficient is nth order.

When the parameter r = 1In for n = 2,3 ..... this expansion fails

because certain series coefficients become infinite. For the particular case

of ~ = 1/2, Wilton was able to find two solutions, each of which he carried
to third order, by revoking Stokes’ hypothesis and re-ordering the terms
in the series.

Recently the numerical methods described in Section 2.2.1 have been
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applied to the problem (Schwartz & Vanden-Broeck 1979, Chen & Saff-

man 1980b). Waves of maximum height can be computed without diffi-

culty for most values of K. In all cases for K > 0, the highest waves are

topologically limited, in that the surface encloses one or more bubbles,

just as for pure capillary waves, and unlike pure gravity waves where

the limiting wave is sharp-crested. The critical values of K, where the

Stokes-series solution fails, are indicative of multiple solutions. When

1 1
-- < r < -, for moderate steepness the series yields a family of pro-
n+l n

files with approximately n inflection points or "dimples." The numerical

methods showed that each solution family can be analytically continued

outside its "natural" domain. Thus there can be many different wave forms

for a given wavelength. Certain of the multiple solutions arise via a finite-

amplitude bifurcation from the regular wave train. As ~ -~ 0 the number
of solution families increases. The structure of this highly singular limit,

where surface tension should be important only in the neighborhood of the

sharp crest, remains to be explored. A stability analysis for each of the
several possible wave forms would be a useful contribution and might

resolve the non-uniqueness in the ripple regime. Experimental results are

not completely consistent, but Schooley (1960), for example, has published

photographs of several multi-dimpled profiles. Analytical work, dealing

with the genesis of multiple solutions, has been presented by Pierson &

Fife (1961), Nayfeh (1970), and Chen & Saffman (1979).

Hogan (1979) obtained a number of relations between integral quan-

tities of the steady wave train, which for Crapper’s pure capillary wave

reduced to very simple expressions. He then (Hogan 1980) extended the

series technique of Schwartz (1972, 1974) to include surface tension for

the deep-water case, and obtained members of the family of solutions

corresponding to the gravity wave. For K sufficiently small, each integral

property was found to have a maximum as a function of wave height, but

the effect of increasing r was to move the maximum closer to the highest
wave possible, showing how surface tension acts so as to make experimental

verification of the maxima more difficult. Beyond a certain value of r, the

maximum wave height became limited by the wave geometry, and no

maxima in the integral quantities were found before the limiting bubble

was attained.

Figure 3 shows two steep wave profiles for the case r = 1/2, taken from
Schwartz & Vanden-Broeck (1979). The profile labelled 1 belongs to the

family of Crapper’s limiting wave and exhibits one trapped bubble per

wave cycle; the other wave is from a different family which, while also
symmetric, is limited by two bubbles per cycle.
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3.2 Finite-Amplitude Standing Waves

A time-dependent relative of the steady gravity wave is the two-dimen-

sional time and space periodic standing wave. Physically the problem is

that of the periodic "sloshing" or "seiching" of water between two vertical
side walls. To first order it corresponds to the reflection of a periodic wave

train by a vertical barrier or the interaction of two oppositely propagating

wave trains. Unlike the steady wave, no rigorous existence proof for finite

amplitudes has been obtained.

In the spirit of Stokes, Rayleigh (1915) solved the problem by a third-

order expansion in wave height. Penney & Price (1952) computed a fifth-

order solution, and obtained a maximum steepness, for deep water, of 0.22.

They also suggested that this highest wave has a 90° included angle at

the crest, but the premises in their argument have been questioned by
subsequent workers. Experiments of Taylor (1953) and Edge & Walters

(1964) confirmed that the crest angle is close to °.

Recently Schwartz & Whitney (1977, 1981) have produced a 25th-

order solution by a time-dependent conformal mapping method. They
found that Penney & Price’s procedure is defective in that it produces

non-periodic secular time dependence if carried to higher order. This "res-

onance" may be suppressed by exploiting a degree of arbitrariness in

certain of the series coefficients. Very steep waves were found to possess
several inflection points near the crest, reminiscent of those for steady

waves. The highest wave steepness was found to be about 0.208, with an

included angle of about 90°. The oscillating water surface is never flat and

has no nodes. The wave frequency, which in general decreases with in-

creasing amplitude, appears to reach a minimum value just short of the

limiting steepness.

.5

Figure 3 Two steep gravity-capillary wave profiles for x = 1/2.
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Unlike the deep-water case, shallow-water standing waves show an in-

crease in frequency with amplitude, the critical value of the D/k ratio at

which the first nonlinear correction to the frequency changes sign being

0.17. This was obtained as part of the third-order series solution for

finite depth obtained independently by Chabert-d’Hi~res (1960) and

Tadjbakhsh & Keller (1960), and has been experimentally confirmed 

Fultz (1962). An interesting feature of the series method is that certain

values of D/k must be excluded so as to suppress secular terms, which

may indicate multiple solutions; however, the set of excluded depths be-

comes infinite as the order of the series solution becomes infinite (Concus

1964). Until this can be explained, the existence of standing-wave solutions

for finite amplitude and depth remains in doubt.

A numerical method for finite depth, employing truncated Fourier series

to represent space and time variation has been used by Vanden-Broeck
& Schwartz (1981). While inappropriate for very steep waves because 

computer storage limitations, the results confirmed the series results for

moderate steepness and showed that, for some depths, the frequency is not

a monotonic function of wave height.

Miche (1944) established that deep-water standing waves have a second-

order contribution to the pressure field that is unattenuated with depth

and varies with twicethe frequency of the surface displacement. Longuet-

Higgins (1.9,50)’ proposed this effect as a likely cause of observed micro-

seismic activity and explained the phenomenon very simply in terms of
variation of the potential energy of the water mass. The phenomenon has

been demonstrated experimentally by Cooper & Longuet-Higgins (1951)
for low waves, but recent calculations by Schwartz (1980) indicate that

the leading-order theory used by Longuet-Higgins may overpredict the
pressures for very steep waves by as much as 40%.

4. UNSTEADY WAVES

The standing-wave problem described in the previous section is unsteady,

but it is periodic in time and space and all flow quantities can be expanded

in Fourier series in both variables. In this section, problems, methods and

results are described in which the motion is more generally unsteady and

where the effects of nonlinearities may bring about irreversible changes.

Unlike the problems described in Sections 2 and 3, for which some of the

most powerful methods were devised last century, almost all of the methods

and results described here have appeared in the last decade.

4.1 Stability of Steady Waves

There has been much effort expended on the stability of weakly nonlinear
waves, but very little on the stability of steep steady waves. The reason is

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
1
9
8
2

.1
4
:3

9
-6

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 D

eu
ts

ch
e 

F
o
rs

ch
u
n
g
sg

em
ei

n
sc

h
af

t 
o
n
 0

1
/1

0
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


54 SCHWARTZ & FENTON

simple enough--it was not until 1972 that accurate solutions for waves of

arbitrary height became available. Longuet-Higgins (1978a, 1978b) ex-

amined the stability of steady waves in deep water for all heights, testing

the linear stability of the nonlinear wave solutions to small harmonic

perturbations. For low waves it was found that they were neutrally stable,

but above a certain steepness the waves became unstable to subharmonic

perturbations (disturbance wavelength greater than the fundamental). The

growth rates obtained agreed quite well with experiment. For higher waves

these modes became stable again, but for waves close to the highest, a very

fast-growing superharmonic (small wavelength) instability was found.

This was associated with the crest, and it seemed to owe its existence to

the fact that the wave was steep enough that the first Fourier coefficient

of the unperturbed wave had a maximum.

The results of this linear stability analysis were checked by Longuet-

Higgins & Cokelet (1978), who followed the evolution of the perturbation

by numerically solving the full nonlinear equations, and confirmed the

accuracy of the linear analysis. It was found that the local superharmonic
instability could quickly lead to overturning at the crest, providing the

beginning of insight into the causes of that phenomenon. More remarkably,

however, they found that the slow subharmonic instability, if followed for
long enough, could also cause an overturning of the crest. Results from

the linear theory have had some success in supporting a conjectc,"re of Lake

& Yuen (1978) that in very steep wind waves the modulation frequency

of the wave amplitude may correspond to.the fastest-growing subharmonic
instability (Longuet-Higgins 1980d).

4.2 Breaking Waves

The plunging or overturning wave is the most important and dramatic of

all breaker types and probably is the orisin of the spillin 8 breaker. It is

one of the most difficult of all wave phenomena to analyze because of the
rapidity with which it can occur, the large amplitudes and accelerations

involved, and the contortions of the free surface. The origin of plunging

in deep water remains unexplained; however, as described in Section 4.1,
it has been shown that the wave crest is vulnerable to perturbations and

that overturning of the crest is a common outcome even for waves that

are considerably lower than the highest.

Some progress has been made in describing the overturning. Several
methods are described in Cokelet (1977b), but the only method so far able

to describe the overturning wave for most of its duration is that of Longuet-

Higgins & Cokelet (1976, 1978), which will be outlined in Section 4.3. 

the original 1976 paper they studied an idealized problem of a steady wave
in deep water to which an asymmetric pressure distribution was applied
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for a finite time, after which the wave turned over. Cokelet (1977b) studied

an initially sinusoidal wave train with an excess of energy and also found

that the crest steepened and overturned. Subsequently Longuet-Higgins
& Cokelet (1978) followed the motion of steady waves with a small per-

turbation and found the overturning as described in Section 4.1. A more

detailed picture of the dynamics and kinematics inside a wave as it ap-

proaches breaking has been given by Peregrine, Cokelet & Mclver (1980).

The wave crest before breaking has been found to travel faster than the

maximum phase speed for a wave of that length, while the whole front

face of the wave had an acceleration several times greater than gravity!

Longuet-Higgins (1980e) has studied simple analytical models of the
development of the overturning, and for the evolution of the tip of a

plunging wave (Longuet-Higgins 1980b). In a very different study (Lon-

guet-Higgins 1980c) he calculated the angular momentum of steady waves
in deep water, and found that the relative persistence of wind-wave crests

may be explained by the fact that for a force applied to the wave to have

a minimum effect, it should act at about the wave-crest level; this is what
actually occurs for both wind forces and drag forces due to whitecapping.

4.3 Solution of the Unsteady Equations

An early approach to the numerical solution of the full nonlinear equations

(1.1-1.4) was through a marker-and-cell technique. The furthest devel-
opment of this method is that of Chan & Street (1970) who used it 

study th.e reflection of a solitary wave by a wall. This problem was also

considered by Byatt-Smith (1971 ), who obtained a second-order analytical

solution from a pair of nonlinear integro-differential equations. Other

methods for the full equations include those of Brennen & Whitney (1970)
(summarized in Brennen 1970), Whitney (1970), Multer (1973), 

Chan (1975). None, however, seems to have been adopted and exploited

further.

In 1976 a method was introduced which seems to have considerable

potential. Longuet-Higgins & Cokelet (1976) studied the evolution 

waves on water of infinite depth. If the initial free surface and $ on it are
known, then a Cauchy-type integral equation may be formulated and

approximated using discrete computational points on the surface, to give

subsequently the velocity of each point normal to the surface as the solution

of a matrix equation. The tangential velocity can be found by numerical
differentiation. The surface particles are allowed to move a finite distance

in a small time step, giving a new surface location. The new values of $

may be calculated from the dynamic free-surface condition and the process

repeated, with a predictor-corrector method, for a large number of time

steps. Longuet-Higgins & Cokelet found that a slow instability developed,
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but this could be countered by regular smoothing. This method has proved

capable of describing the evolution of high waves, including the overturn-

ing of the crest (see Sections 4.1 and 4.2). Fenton & Mills (1976) showed

how the method may be applied to water of finite depth with arbitrary

boundary geometry, but were unable to produce solutions.

In two recent works, the free-surface boundary conditions have been

given in different forms. Longuet-Higgins (1978a) expressed them in in-

verse form with dependent variables x and y as functions of q~ and
Another technique (Longuet-Higgins 1980a) has been developed in which

the usual dynamic boundary condition with p = 0 is used, but the kine-

matic condition is written in terms of the material derivative of pressure,

Dp/Dt = 0. This has been used (Longuet-Higgins 1980b, 1980e) to find

exact solutions which mimic the overturning breaker.

A Fourier method has been developed by Fenton & Rienecker (1980,

but described in greater detail in a manuscript submitted for publication).

The method is applicable to irrotational flows over arbitrary bed topog-

raphy and makes use of Fourier approximation throughout to represent
horizontal variation. The truncation of Fourier series for q5 and ~?, similar

to (2.1), is the only approximation. The solution may be advanced in time

by a leapfrog scheme, although it is necessary to solve a matrix equation
at each time step. The method was found to be stable and accurate in

describing solitary wave interactions, the use of Fourier series automating

a number of numerical operations as well as facilitating deductions about

stability or spectral growth. This makes it well suited to studies of finite-
wave interactions, although it loses accuracy if at any stage a wave

comes sharp-crested, and it cannot describe overturning waves because it

depends upon the surface elevation’s being a single-valued function of x.

4.4 Solitary Wave Interactions

The problem of two interacting solitary waves has come to be considered

a classical problem of nonlinear waves because it is completely specified
by 0nly two parameters (the incident wave heights), and because of the

fundamental nature of the first-order equations which describe it, the

existence of an exact solution to one of these equations, and the fact that

the solution shows that the waves emerge unchanged from the interaction.

4.4.1 OVERTAKING SOLITARY WAVES TO first order in wave height and shal-

lowness, the interaction of one solitary wave overtaking another is de-

scribed by the Korteweg~le Vries (K~le V) equation, for which an exact
solution has been obtained (see Miles 1980). The only change after inter-

action contained in the solution is that the high and fast wave has received

a finite phase shift forward and the low wave has been shifted backward.
Weidman & Maxworthy (1978) conducted a number of experiments and
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found generally good agreement between experiment and K~le V theory,

but with some consistent differences. Nothing was reported on the waves

after interaction; this has been studied numerically using the full nonlinear

equations by Fenton & Rienecker in the report mentioned in Section 4.3.

For the one interaction studied they found that the waves after interaction,

contrary to expectation, had a larger height difference than the incident

waves--the high wave had grown slightly higher, at the expense of the

lower wave. After interaction the waves propagated almost without further

change, and there was no trace of a trailing wave train.

4.4.2. COLLIDING SOLITARY WAVES The other form of interaction, when the
waves travel in opposite directions, has received much attention, as de-

scribed in Miles (1980). In this case the interaction, although brief, 

more nonlinear. Nevertheless, to second order in wave height, theory pre-
dicts that the waves emerge from the interaction unchanged, with a finite

backward phase shift (Oikawa & Yajima 1973, Byatt-Smith 1971). 

recent work, a third-order calculation has been made by Su & Mirie

(1980). The waves after interaction were shown to have the same height
as before, but the profiles are tilted backwards, and each sheds dispersive

waves. Fenton & Rienecker (1980, and the above-mentioned report) stud-

ied a number of collisions with the numerical method outlined in Section

4.3. They found that both waves were actually degraded by the interaction,
but that this change was slightly greater than that for overtaking. Ac-

cordingly, they recommend that the adjectives "weak" and "strong" not

be used for the colliding and overtaking interactions, as the former has

more effect on the waves than the latter. In contradiction of the third-

order theory, they found strong evidence that the change of wave height

is actually of third order, and that the waves after interaction were trav-

elling faster than before, also noted experimentally by Maxworthy (1976).

This change of speed has important implications for the measurements of

phase changes due to the interaction, for it means that the change depends

on the measuring location, which may explain some unusual features of

Maxworthy’s results for the phase change. In view of the ambiguity of the

spatial phase shift, Fenton & Rienecker recommend use of the temporal

shift at the wall, and show that this is considerably underestimated by
second- and third-order theories.
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