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ABSTRACT

Strongly peraluminous granites (SPGs) form through the partial melting of metasedimentary rocks
and therefore represent archives of the influence of assimilation of sedimentary rocks on the
petrology and chemistry of igneous rocks. With the aim of understanding how variations in sedi-
mentary rock characteristics across the Archean-Proterozoic transition might have influenced the
igneous rock record, we compiled and compared whole-rock chemistry, mineral chemistry, and
isotope data from Archean and Paleo- to Mesoproterozoic SPGs. This time period was chosen as
the Archean-Proterozoic transition broadly coincides with the stabilization of continents, the rise of
subaerial weathering, and the Great Oxidation Event (GOE), all of which left an imprint on the sedi-
mentary rock record. Our compilation of SPGs is founded on a detailed literature review of the re-
gional geology, geochronology, and inferred origins of the SPGs, which suggest derivation from
metasedimentary source material. Although Archean and Proterozoic SPGs are similar in terms of
mineralogy or major-element composition owing to their compositions as near-minimum melts in
the peraluminous haplogranite system, we discuss several features of their mineral and whole-
rock chemistry. First, we review a previous analysis of Archean and Proterozoic SPGs biotite and
whole-rock compositions indicating that Archean SPGs, on average, are more reduced than
Proterozoic SPGs. This observation suggests that Proterozoic SPGs were derived from metasedi-
mentary sources that on average had more oxidized bulk redox states relative to their Archean
counterparts, which could reflect an increase in atmospheric O, levels and more oxidized sedi-
mentary source rocks after the GOE. Second, based on an analysis of Al,03/TiO, whole-rock ratios
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and zircon saturation temperatures, we conclude that Archean and Proterozoic SPGs formed
through partial melting of metasedimentary rocks over a similar range of melting temperatures,
with both ‘high-" and ‘low-"temperature SPGs being observed across all ages. This observation sug-
gests that the thermo-tectonic processes resulting in the heating and melting of metasedimentary
rocks (e.g. crustal thickening or underplating of mafic magmas) occurred during generation of both
the Archean and Proterozoic SPGs. Third, bulk-rock CaO/Na,O, Rb/Sr, and Rb/Ba ratios indicate
that Archean and Proterozoic SPGs were derived from partial melting of both clay-rich (i.e. pelites)
and clay-poor (i.e. greywackes) source regions that are locality specific, but not defined by age.
This observation, although based on a relatively limited dataset, indicates that the source regions
of Archean and Proterozoic SPGs were similar in terms of sediment maturity (i.e. clay component).
Last, existing oxygen isotope data for quartz, zircon, and whole-rocks from Proterozoic SPGs show
higher values than those of Archean SPGs, suggesting that bulk sedimentary '®0/'®0 ratios
increased across the Archean-Proterozoic boundary. The existing geochemical datasets for
Archean and Proterozoic SPGs, however, are limited in size and further work on these rocks is
required. Future work must include detailed field studies, petrology, geochronology, and con-
straints on sedimentary source ages to fully interpret the chemistry of this uniquely useful suite of
granites.

Key Words: Archean-Proterozoic transition; Great Oxidation Event; peraluminous granites; partial

melting; metasedimentary rock; assimilation

INTRODUCTION

The igneous rock record across the Archean-
Proterozoic transition is characterized by dramatic
changes in lithology and chemistry (Condie, 1989;
Condie & O’Neill, 2010; Keller & Schoene, 2012; Keller
& Schoene, 2018). The continental crust in the early
Archean (>2-8 Ga) was dominated by Na-rich tonalite—
trondjhemite—-granodiorite (TTG) suites (as well as less
abundant ultramafic to mafic greenstone terranes), but
underwent a transition to being characterized by a more
K-rich granite—granodiorite series in the Neoarchean
(2-5-2-8 Ga) and Proterozoic (Barker, 1979; Hill et al.,
1992; Smithies & Champion, 2000; Champion &
Smithies, 2001; Moyen 2003; Martin et al., 2009; Condie
& O’'Neill, 2010; Laurent et al., 2014; Halla et al., 2017;
Joshi et al, 2017). Simultaneously, komatiites
decreased in abundance in the volcanic rock record,
being replaced by lower-MgO basalts typical of those
erupted at the present day (Grove & Parman, 2004;
Arndt et al., 2009; Condie & O’Neill, 2010). In terms of
chemistry, trace element ratios, which are sensitive to
degree of mantle melting and depth of source region or
differentiation, changed dramatically in basalts across
this time period, suggesting lower degrees of mantle
melting and shallower depths of magma generation on
average in the Proterozoic (Condie, 1989; Herzberg
et al., 2010; Keller & Schoene, 2012). Additionally, max-
imum values of oxygen isotope ratios (as expressed
as 8"%0 = [("®0/"®0)sampie/("®0/"®0)ysmow— 11 x 1000],
where VSMOW is the Vienna Standard Mean Ocean
Water) in igneous and detrital zircon remained relatively
low and uniform in the Archean (5'®0=~7-5%,), but
dramatically increased in the Proterozoic (>109%, by

~2-0 Ga; Valley et al., 2005, Dhuime et al, 2012;
Spencer et al., 2014, 2019; Payne et al., 2015).
Understanding how these lithological and geochem-
ical changes in igneous rocks record global transforma-
tions across the Archean-Proterozoic transition has
been the focus of extensive and long-standing research.
This task is complicated, however, as the Archean-
Proterozoic transition was one of the most dynamic
times in Earth’s history, with fundamental changes
occurring across geophysical, tectonic, and atmospher-
ic realms. Although still debated, a large number of
researchers agree that something akin to modern-style
plate tectonics developed between ~3-0 and 2.6 Ga,
resulting in collisional orogens, an increase in continen-
tal crust volume, and the stabilization of cratonic cores
by the end of the Archean (McCulloch & Bennett, 1994;
Taylor & McLennan, 1995; Condie, 1998; Condie &
O’Neill, 2010; Campbell & Davies, 2017). In addition, the
continental crust changed from being dominantly
below sea level to subaerial, as evidenced by the ubi-
quitous occurrence of pillow basalts in Archean green-
stone belts in contrast to thick sequences of clastic
sediments in the early Proterozoic (Windley, 1977;
Thurston, 1990; Condie, 1994; Arndt, 1999; Kump &
Barley, 2007; Flament et al., 2008; Campbell & Davies,
2017). Concurrently the late Archean mantle began to
cool significantly (Korenaga, 2008; Condie & O’Neill,
2010; Herzberg et al, 2010) and the earliest
Paleoprotoerozoic was heralded with a decrease in the
volume of the preserved continental crust, a time
referred to as the Rhyacian tectono-magmatic lull
(Condie et al., 2009; Spencer et al., 2017). Superim-
posed on and potentially related to these massive
changes in continental growth, tectonics, and mantle
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Fig. 1. Branch of the rock cycle showing how strongly peraluminous granites (SPGs) are formed. (a) Sediments are deposited and
transformed into sedimentary rocks through diagenesis. (b) Metamorphism of sediments and formation of metasedimentary rocks
is caused by an increase in pressure and temperature during burial or heating by an external magma source. This is sometimes,
but not always, accompanied by deformation. (c) If metamorphism progresses to sufficiently high temperatures (>650°C), metase-
dimentary rocks may melt. Partial melts segregate and cool to form SPGs with minerals indicative of the peraluminous composition

of the melt (e.g. garnet or muscovite).

dynamics, the Earth’s atmosphere experienced an in-
crease in oxygen concentrations by about five orders of
magnitude at c¢. 2-3-2-4Ga [i.e. the Great Oxidation
Event (GOE); Holland, 1984, 2002, 2006; Canfield et al.,
2000; Kasting, 2001; Kump et al., 2001; Bekker et al.,
2004; Catling & Claire, 2005; Guo et al., 2009; Lyons
et al., 2014; Gumsley et al., 2017]. The dramatic increase
in atmospheric oxygen profoundly affected speciation
of redox-sensitive elements at the surface of the Earth
(e.g. Fe, S, Mo, U; Scott et al., 2008; Partin et al., 2013;
Reinhard et al., 2013; Planavsky et al., 2014), which in
turn destabilized some minerals during weathering (e.g.
pyrite, uraninite, molybdenite; Rasmussen & Buick,
1999), while stabilizing new classes of Fe*'-bearing
clays, phosphorites/ates, and sulfates (Hazen et al.,
2008, 2013; Sverjensky & Lee, 2010).

All of these global transitions certainly affected the
igneous rock record. Most directly, a change in plate-
tectonic regime and mantle cooling would have shifted
the location, depth of melting, and chemistry of mag-
matism. In addition, a change in sedimentary composi-
tions owing to oxidation of the near-surface could be
imprinted on the chemistry of igneous rocks through
partial melting or assimilation of sediments. However,
pinpointing the relationship between these global trans-
formations during the Archean-Proterozoic transition
and the major changes observed in the chemistry and
lithologies of igneous rocks is difficult, as igneous rocks
often record complicated, multi-faceted origins that are
incompletely understood. For example, the chemistry
of a felsic igneous rock may reflect its initial source,
assimilation of crustal material, and differentiation proc-
esses, as well as late-stage alteration and metamor-
phism. Therefore, it can be hard to disentangle the
source of petrological or chemical features when mul-
tiple potential causes are at play. Here we focus on a
specific igneous rock type that can shed light on one

piece of this complicated puzzle: strongly peraluminous
granites (SPGs). SPGs are formed when sedimentary
rocks (Fig. 1a) are metamorphosed (Fig. 1b) and heated
to sufficiently high temperatures to partially melt. These
melts may then be extracted from their source sedi-
ments and cooled, forming SPG plutons (Fig. 1c).
Although SPGs are several steps removed from sedi-
mentary rocks (e.g. metamorphism, partial melting, and
crystallization), they have the potential to record varia-
tions in sedimentary compositions and thus the input of
supracrustal material into magmas. Therefore, if the
chemical influence of sedimentary incorporation into
magmas varied across the Archean-Proterozoic transi-
tion, SPGs should record this signature, but not be influ-
enced by other global transitions (e.g. secular cooling
of the mantle). SPGs can provide a valuable tool in this
puzzle to understand the relationship between changing
surface conditions (such as the rise of atmospheric
oxygen or onset of subaerial weathering) and the chem-
istry of igneous rocks across the Archean-Proterozoic
transition.

The goal of this study is to catalogue and describe
known localities of SPGs in the Archean and Paleo- to
Mesoproterozoic, synthesize existing petrology, min-
eralogy, chemistry, and isotopic data from these local-
ities, discuss these data in the context of what is known
about changing surface conditions, and highlight poten-
tial avenues for future research. Although SPGs of this
age range have been recognized and described (see fol-
lowing detailed locality descriptions), there has not
been a synthesis of a global dataset of Archean and
Proterozoic SPGs. The most extensive prior treatment
of this subject that we are aware of comprises studies
focused on the broader topic of Archean granites
(Sylvester, 1994; Moyen, 2003). By compiling and ana-
lyzing existing geological, petrological, and chemical
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data for these important rocks, we hope to provide the
groundwork for future studies.

DEFINITION

Before proceeding with a discussion of SPGs across the
Archean-Proterozoic transition, it is necessary to define
these granites. Peraluminous granites are those that in-
clude corundum in their CIPW norms (Shand, 1927).
This translates into excess Al,Os in their bulk compos-
ition that cannot be accommodated in feldspar by coor-
dinating with Ca, Na, and K. Here we define strongly
peraluminous granites as granites with an aluminum
saturation index (ASI) or molar Al/(Ca-1-78P + Na + K)
> 1-1 (note reduction of Ca by the amount necessary to
combine with P,Os to make apatite). In terms of min-
eralogy, the peraluminous nature is manifest by the
presence of an aluminous mineral (other than biotite)
such as muscovite, garnet, tourmaline, cordierite, kyan-
ite, sillimanite, or andalusite (e.g. Fig. 1c). For all sam-
ples considered in this study, there is at least one of
these aluminous phases present (generally, but not al-
ways in addition to biotite) in the rock.

Strongly peraluminous granites are often considered
synonymous with ‘S-type’ granites, or those derived
through the partial melting of metasedimentary rocks.
In their original definition of ‘S-type’ granites, Chappell
& White (1974) used a variety of criteria to distinguish
granitoids of the Lachlan fold belt (Australia) in addition
to ASI. These included other geochemical indices, such
as initial whole-rock ®Sr/®®Sr > 0.708 and §'%0 > 107,
strongly suggesting derivation from weathered sedi-
mentary material. However, since the initial studies of
the Lachlan fold belt, other studies have demonstrated
that many S-type granites from the Lachlan fold belt
have a significant mantle contribution and thus are not
pure melts of sediments (Gray, 1984; Collins, 1996;
Healy et al., 2004; Kemp et al., 2006, 2007). For this rea-
son, we do not label the granites discussed within this
study as ‘S-type’, as most have not been rigorously
scrutinized using modern geochemical techniques to
confirm a purely sedimentary source (e.g. Hopkinson
et al., 2017; Spencer et al., 2017). However, with careful
review of the existing data we include only localities
with sufficient geological and chemical information to
suggest that they were derived predominantly, if not
wholly, from a metasedimentary source region. The
data we consider include geological setting, field rela-
tionships, mineralogy, and oxygen isotope data (when
available).

OCCURRENCES AND GEOLOGICAL SETTINGS

SPGs of all ages typically form in collisional tectonic
settings where quartzo-feldspathic sedimentary mater-
ial is buried and heated to sufficient temperatures to
partially melt (e.g. Sylvester, 1998; Nabelek, 2019) or
syn- to post-collisional mafic magmas heat basinal (e.g.
fore-arc or back-arc) sedimentary rocks (e.g. Lalonde,

1989). Archean and Proterozoic SPGs are no exception,
generally being located within or associated with meta-
sedimentary rocks of old orogenic belts. Here we briefly
describe the different localities considered in this re-
view by craton or orogenic belt, emphasizing the
inferred tectonic setting, source material, and the petro-
genesis of the granites. Table 1 provides further details
and references on individual localities and Fig. 2 illus-
trates their global distribution.

We note here that we undertook an extensive review
of all localities where SPGs were present, but include
only those where there is clear evidence for derivation
from a sedimentary source rock and significant vol-
umes of sensu stricto granitic melt (i.e. not migmatites
nor pegmatites). For example, localities that are not
included in our compilation or our description here, but
are worth noting, are ~2.7 Ga migmatites associated
with metasedimentary rocks from the Karelia craton
(Mikkola et al., 2012), the ~2-9 Ga Mata Surrao biotite =
garnet-bearing monzogranite of the Amazonia craton
(Duarte et al., 1991; Althoff et al., 2000), ~2-8 Ga peralu-
minous pegmatites from the Pilbara craton (Blockley,
1980; Sweetapple & Collins, 2002), numerous
Neoarchean pegmatite localities associated with ana-
taxis of clastic metasedimentary rocks in the Canadian
Shield (Cern{/, 1990, 1991a; Breaks et al., 2003), ~2-6 Ga
migmatites of the Opinaca subprovince of the Superior
craton (Morfin et al., 2013), ~2-7 Ga migmatites of the
Mkhondo Valley Metamorphic Suite (Swaziland; Taylor
& Stevens, 2010), and of the Southern Marginal Zone of
the Limpopo Belt (South Africa; Nicoli et al., 2014,
2017), and 1-6-1.7Ga peraluminous granites of the
Durlacher supersuite of the Mangaroon Orogen
(Australia; Sheppard et al., 2005). In addition, we do not
exclude the possibility that other localities exist that ei-
ther we have missed in our literature review or have not
been described or examined sufficiently to determine
whether they are SPGs. Lastly, we have attempted to be
thorough in our citation of existing work on the SPGs;
however, there were instances where references were
available only in non-English languages and we did not
feel comfortable citing these references without being
able to read them first-hand. These references are listed
within other sources cited here and we encourage the
reader to explore them.

Archean localities

Superior Craton, Canada and USA

Traditionally the Superior Craton has been subdivided
into sub-provinces based on lithological characteristics
(Card, 1990), with more recent efforts being focused on
distinction of tectonic terranes that were juxtaposed dur-
ing the Neoarchean assembly of the craton (Percival
et al., 2006; Stott et al., 2010). The terranes can be broad-
ly divided into two kinds: those dominated by (1) plutonic
or orthogneissic rocks and greenstones and (2) metase-
dimentary rocks. The former (e.g. Uchi, Winnipeg River,
Wabigoon, Wawa-Abitibi subprovinces) are considered
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Fig. 3. Field photographs of Archean SPGs from Ontario, Canada. (a) and (b) show inclusion-rich zones of (a) the Ghost Lake batholith
(location of photograph: 49°48'63-7"N, 092°57'4.7"W) and (b) migmatite zone of the English River subprovince (location of photograph:
50°5'66-9"N, 093°16'7-7"W). (c) Biotite + garnet granite of Treelined Lake complex (location of photograph: 50°16'56-1"N,
094°2940-2"W. (d) Pegmatitic pod with muscovite rosettes hosted within biotite + muscovite granite of the Ghost Lake batholith (loca-
tion of photograph: 49°48'53-7"N, 092°57'4-7"W). Hammer is 36 cm long. Mechanical pencil is 13-5cm long. Diameter of coin is 18 mm.

micro-continental fragments or arc-related plutonic-vol-
canic rocks, which evolved independently between 3.6
and 2-7Ga. The latter (e.g. the English River, Quetico,
and Pontiac subprovinces) are dominated by variably
metamorphosed greywackes and volcanogenic turbi-
dites, but also contain pelagic and chemical sediments
such as carbonates, chert, and mudstones, and frag-
ments of greenstone lithologies (Percival & Williams,
1989; Breaks & Moore, 1992; Davis, 2002). The depositio-
nal settings of these basins have been interpreted as
inter-arc basins filled by synorogenic sediments from
erosion of adjacent, converging terranes (Langford &
Morin, 1976; Percival & Williams, 1989).

Five distinct accretionary events, progressive from
north to south, characterize the amalgamation of the
Superior Craton between 272 and 2:68Ga, during
which time the intervening sedimentary basins were
trapped in the collisional zones (Percival & Easton,
2007). The basin sediments underwent high-
temperature metamorphism, sometimes reaching
granulite-facies conditions, resulting in widespread par-
tial melting and migmatization (e.g. Southwick, 1991;
Southwick & Sims, 1979; Pan et al., 1997; Fig. 3a and b).
Many of these sedimentary provinces (and some of the
plutonic provinces) contain a suite of c. 2.6-2-8 Ga SPGs

that have been interpreted as resulting from the burial
and melting of the sediments during orogenic collision
(Fig. 3c and d). The sub-provinces of the Superior
Craton that preserve these SPGs include the Pontiac
sub-province (e.g. Feng & Kerrich, 1992a, 1992b), the
English River sub-province (Breaks et al.,, 2003), the
boundary of the Winnipeg River and Wabigoon sub-
provinces (Breaks & Moore, 1992), the Quetico sub-
province (e.g. Percival & Williams, 1989; Southwick,
1991), and the Wawa subprovince (Boerboom &
Zartman, 1993) (see Table 1 for details). For a detailed
discussion and review of occurrences of SPGs in
Ontario, we refer the reader to the comprehensive re-
port of Breaks et al. (2003).

Wyoming Province, USA

The Archean Wyoming Province can broadly be divided
into three sub-provinces: (1) the Montana metasedi-
mentary province; (2) the Beartooth-Bighorn magmatic
zone (BBMZ); (3) the southern accreted terranes (SAT)
(Chamberlain et al., 2003; Mueller & Frost 2006). The
Montana metasedimentary sub-province is located in
the NW part of province and comprises Neoarchean
quartzites, pelites, and carbonates together with
Paleoarchean quartzo-feldspathic gneiss (Mogk et al.,
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1988, 1992; Mueller et al., 1993; Mueller & Frost, 2006).
The BBMZ is primarily characterized by ~2-80-2-55 Ga
tonalities and granodiorites (Mueller et al., 1996, 1998;
Frost & Fanning, 2006; Bagdonas et al, 2016). The
Wyoming Province grew in the Neoarchean through ac-
cretion of southern terranes (including both recently
formed magmatic terranes as well as those composed
of older continental crust) between 2.68 and 2:63 Ga to
form the SAT (Chamberlain et al., 2003; Mueller & Frost,
2006; Souders & Frost, 2006; Bagdonas et al., 2016). A
widespread, but minor subset of the Neoarchean gran-
ites in the BBMZ and SAT are SPGs. These include the
Mt Owen batholith (~2-55 Ga) in the Teton Range (Frost
et al., 2006, 2018), the South Pass granites (~2-55 Ga) in
the southern Wind River Range (Frost et al., 1998), and
the Tin Cup Spring and Long Creek Mountain granites
(~2-65 Ga) of the western Granite Mountains (Stuckless
& Miesch, 1981; Wall, 2004). The Bear Mountain granite
of the Black Hills, South Dakota (~2-6 Ga) is thought to
be part of an extension of the Wyoming Province base-
ment, but definitive correlation between the identified
sub-provinces in Wyoming is not certain (Gosselin
et al., 1988, 1990; McCombs et al., 2004). The strongly
peraluminous compositions and Sr and Nd isotope
whole-rock data forthe Wyoming Province SPGs sug-
gest that they formed through crustal melting of psam-
mitic or pelitic metasedimentary rocks (Gosselin et al.,
1990; Frost et al., 2006).

Slave Craton, Canada

The rocks of the Slave Craton can broadly be divided
into three temporally and lithologically distinct groups:
(1) basement gneisses (4-1-2-8 Ga); (2) the Yellowknife
Supergroup (YKS, 2-8-2-6 Ga); (3) syn- to post-orogenic
granitoid rocks (<2-6 Ga). The YKS is a heterogeneous
package of metasedimentary rocks and metavolcanic
rocks. The upper member of the YKS includes turbidites
deposited in the Burwash Basin c¢. 2.67-2-65 Ga, which
has been interpreted as a back-arc basin whose closure
marked the onset of final amalgamation and assembly
of the Slave Craton (Henderson, 1972; Bleeker, 2003).
This accretion was characterized by deformation begin-
ning at c. 2-64 Ga, characterized by NE-SW structural
trends, overthickening of the crust resulting in high-
temperature-low-pressure metamorphism, and ana-
texis of metasedimentary rocks to produce SPGs at
c. 2-:61-2-59 Ga (Henderson, 1985; Davis & Bleeker,
1999; Bleeker, 2003). SPGs occur throughout the prov-
ince from the vicinity of Yellowknife near the Great
Slave Lake (e.g. Prosperous Granite; Kretz, 1989) to the
Contwoyto Lake area in the north—central part of the
craton (Contwoyto Intrusive Suite; King et al., 1992;
Davis et al., 1994). Metasedimentary protoliths of the
YKS, probably quartzo-feldspathic metagreywackes of
the Burwash Basin, have been proposed as the source
rock of the SPGs (Drury, 1979; Meintzer, 1987; Davis
et al., 1994).

Yilgarn Craton, Australia

The geological framework of Western Australia consists
of two cratonic nuclei, the Pilbara Craton in the north
and Yilgarn Craton in the south. The southwestern part
of the Yilgarn Craton, known as the Western Gneiss ter-
rane, is thought to represent the deepest exposed sec-
tion of the craton and is characterized by charnockites,
minor granulite-facies metavolcanic and metasedimen-
tary rocks, and voluminous granitoids. The granitoids
have been divided into several geochemical subgroups
based on Ca and Ti contents (Champion & Sheraton,
1997; Qui, 1997; Qui & Groves, 1999). A ‘low-Ti’ sub-
group comprises small discrete plutons of post-tectonic
garnet-, muscovite-, and tourmaline-bearing SPGs that
crystallized between 2-64 and 2:63 Ga (Qui, 1997; Qui &
Groves, 1999). Where exposed (e.g. at Griffin’s Find
gold mine and Nevoria goldmine) they are spatially
associated with metasedimentary rocks. Their whole-
rock major and trace-element chemistry, peraluminous
mineralogy, and abundance of inherited zircon support
derivation from partial melting of metasedimentary
rocks (Qui, 1997). Similar low-Ti granitoids are exposed
in the Fraser’s, Marvel Loch, Bounty and Edward'’s Find
gold mines in the Southern Cross greenstone belts in
the central part of the Yilgarn Craton (Qui, 1997). Their
widespread geographical distribution suggests that
there was a regional high-temperature thermal event in
the lower crust, possibly as a result of lithospheric de-
lamination at c. 2635Ma (Qui, 1997; Qui & Groves,
1999).

Kaapvaal Craton, South Africa

The Kaapvaal Craton of southern Africa forms the old-
est part of the African continent and ranges in age be-
tween ~3-6 and ~2.7Ga (Poujol et al, 2003). It
comprises four geographical domains (Northern,
Eastern, Central, and Western) characterized by gran-
ite—greenstone belts. SPGs in the Kaapvaal Craton are
found in the Eastern and Northern domains. The
Eastern domain is the oldest portion of the craton and
includes the 3-45-3.25Ga Barberton greenstone belt
and the 3-1-2-9 Ga Pongola Supergroup (Hegner et al.,
1984). A suite of granites intruding the Pongola metase-
diments are referred to as the ‘post-Pongola granites’
(Matthews, 1985). These plutons include marginally
peraluminous granites (ASI = 1-1-1) such as the
Mooihock, Mhlosheni, and Spekboom plutons, as well
as SPGs such as the Sinceni and Godlwayo plutons
(ASI > 1-1; Meyer et al., 1994). These plutons have all
been classified as either ‘S-type’ or ‘ilmenite-series’
granites (Meyer et al., 1994, Ishihara et al., 2002). The
Sinceni pluton may be as old as ~3-07 Ga [Pb-Pb evap-
oration zircon age, Maphalala & Kroner, 1993; although
see Robb et al. (2006) questioning the >3 Ga age and
Trumbull (1993) reporting a Rb—Sr whole-rock isochron
age of 2990 + 43 Mal, whereas the other leucogranites
formed between 2-86 and 2-82 Ga (Maphalala & Kroner,
1993). The younger plutons are leucogranites that
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display field relationships with the Pongola Supergroup
suggesting high-temperature interaction and assimila-
tion, such as contact migmatites and xenoliths of
quartzite and pelitic hornfels along their margins
(Matthews, 1985). In contrast, the intrusive relationship
with the Pongola Basin metasediments is unknown for
the Sinceni pluton, which is a coarse-grained granite
with minor amounts of biotite, muscovite, and tourma-
line (Blamart et al., 1993; Trumbull, 1993). In addition to
peraluminous mineralogy, the initial ¥Sr/2®Sr ratio of
the Sinceni pluton is radiogenic at 0-7113 = 0-007
(Trumbull, 1993) suggesting derivation from an older
crustal source.

Other SPGs in the Kaapvaal Craton are found in the
southern portion of the Murchison greenstone belt of
the Northern domain (e.g. the 2.99-2.80Ga
Lekkersmaak suite, including the Willie and Discovery
plutons; Poujol & Robb, 1999; Poujol, 2001; Zeh et al.,
2009), which range in size from large plutons (20-30 km
in diameter) to pegmatitic dikes. Typically, they are bio-
tite- and muscovite-bearing leucogranites with sporadic
occurrences of garnet and tourmaline (Jaguin et al.,
2010). It has been suggested that the source rock to the
granites is similar to metapelite of the La France domain
schists found in the Murchison greenstone belt
(Vearncombe, 1988; Jaguin et al. 2010; Block et al.,
2013).

Grunehogna Craton, Antarctica

The Grunehogna Craton in East Antarctica is thought to
have formed as part of or adjacent to the Kalahari
Craton of southern Africa, but remained attached to
Antarctica during the breakup of Gondwana in the
Jurassic (e.g. Fitzsimons, 2000). The Archean basement
of the craton is exposed solely as a small, glacier-bound
exposure or nunatak of granite with cross-cutting gar-
net-bearing pegmatite dikes at Annandagstoppane (or
‘Boxing Day Peaks’) (Barton et al., 1987; Marschall et al.,
2010). The crystallization age of the granite has been
dated at 3067 =8Ma (U-Pb zircon; Marschall et al.,
2010), but the granite contains inherited grains as old as
3433 =7 Ma, which constrain the maximum depositio-
nal age of the sediments from which the granites were
derived. Although specific sedimentary source material
cannot be identified owing to the limited exposure of
the granite, whole-rock chemistry and zircon Hf and
oxygen isotopes suggest a supracrustal sedimentary
source (Barton et al., 1987; Marschall et al., 2010).

Paleo- and Mesoproterozoic localities

Wopmay orogen, Canada

The Wopmay orogen is an Early Proterozoic (c. 2-1-
1.9 Ga) collisional belt located on the western edge of
the Slave Craton (Hoffman & Bowring, 1984; St-Onge &
Davis, 2018). The eastern part of the Wopmay com-
prises the Coronation Supergroup, which preserves a
west-dipping sedimentary prism with rift-fill, passive
margin, and foredeep flysch-molasses sequences that

accumulated within a back-arc basin (Hoffman, 1980;
Hildebrand et al., 1987; Lalonde, 1989). In the western
part of the Coronation Supergroup, these sedimentary
units were thrust onto underlying Archean basement,
translated eastward, and subsequently intruded and
metamorphosed by the Hepburn intrusive suite during
the Calderian orogeny at c¢. 1885Ma (Hoffman &
Bowring, 1984; King, 1986). The Hepburn intrusive suite
is composed of ~100 plutons with 2750 km? of exposure
along two north-south-trending belts (Lalonde, 1989).
The plutons of the Hepburn intrusive suite are variable,
ranging continuously from gabbro to granite, but are
dominated by peraluminous monzogranites and sye-
nogranites. The Hepburn intrusive suite has been inter-
preted as the product of mantle-derived basalt
generated in a back-arc setting, which subsequently
assimilated and/or partially melted significant amounts
of the sedimentary basin host rocks (Hoffman et al.,
1980; Lalonde, 1989).

Talston magmatic zone, Canada

The Talston-Thelon orogen is an ~2500km long oro-
genic belt marking the suture between the 2-0-2-4 Ga
Buffalo Head terrane to the west and the Archean
Churchill province to the east (Bostock et al., 1987;
Hoffman, 1988; Ross et al., 1991). In the southern part of
the orogen, the Talston magmatic zone in Alberta and
the Northwest Territories is composed of granitoids
that intrude pre-2.0Ga basement characterized by
ortho- and paragneisses, high-grade pelitic metasedi-
mentary rocks, and amphibolites (Bostock et al., 1991;
van Breemen et al., 1992b; McNicoll et al., 1994; Chacko
et al.,, 2000; De et al., 2000). The granitoid series are
characterized by an early phase of biotite and
hornblende-biotite granodioritic to granitic intrusions
at c. 1:99-1-93 Ga, which was followed by the intrusion
of a large volume of SPGs from 1-95 to 1-93 Ga (see
summary given by Chacko et al., 2000). The latter in-
clude the biotite = garnet * cordierite * spinel gran-
itoids of the Slave and Konth suites (Bostock et al.,
1987, 1991; Bostock & Loveridge, 1988) and the bioti-
textgarnet granitoids of the Arch Lake suite (McNicoll
et al., 1993). The SPGs often contain enclaves of base-
ment metapelites (Bostock et al., 1987; Thériault, 1992;
Chacko & Creaser, 1995; Grover et al., 1997). Based on
U-Pb zircon and monazite ages, Bostock & van
Breemen (1994) concluded that the protoliths of the
metapelites were originally deposited in the Rutledge
River basin, a rift-related basin on the western margin
of the Churchill Province, between 2:17 and 2.04 Ga.
Whole-rock chemistry, peraluminous mineralogy, abun-
dance of metasedimentary enclaves, and similarities in
Nd and oxygen isotopes between metapelites and the
SPGs suggest an origin of the latter primarily through
partial melting of the basement metasedimentary rocks
(De et al., 2000; Thériault, 1992; Chacko et al., 1994,
2000).
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Trans-Hudson orogen, Canada and USA

The Trans-Hudson Orogeny (THO) was a major colli-
sional event closing the Manikewan Ocean and suturing
the Superior Province with the Wyoming and Rae-
Hearne cratons at c. 2.0-1-8 Ga, and marks the largest
Paleoproterozoic orogenic belt in the world (Corrigan
et al, 2009). Two well-documented occurrences of
SPGs occur in the THO, including those in the
Wollaston domain of Saskatchewan (Annesley et al.,
2005; McKechnie et al., 2012a, 2012b) and the Harney
Peak Granite and satellite intrusions in the Black Hills of
South Dakota (Redden et al., 1982, 1990; Duke et al.,
1992; Nabelek et al., 1992a, 1992b, 1999, 2001; Shearer
et al., 1992). The Wollaston domain comprises metase-
dimentary rocks deposited unconformably on the mar-
gins of the Hearne craton during rifting and formation
of the Manikewan Ocean in the early Proterozoic
(Madore & Annesley, 1996). Sedimentary rocks of the
Wollaston domain include a succession of arkoses, con-
glomerates, and graphitic pelites towards the base,
which are overlain by calcareous clastic units, marbles,
and iron formations, and are interpreted as a rift-fill se-
quence deposited between 2-3 and 2-1Ga (Madore &
Annesley, 1996; Ansdell, 2005). During the Trans-
Hudson Orogeny, these sediments were buried to
depths equivalent to 0-6-0-9 GPa and reached peak tem-
peratures of 720-825°C, which, combined with basaltic
underplating in the lower crust, initiated large-scale
crustal melting (Annesley et al., 2005). Peraluminous
leucogranites and granitic pegmatites occur ubiquitous-
ly throughout the Wollaston Group and are interpreted
as the products of partial melting of the Wollaston
domain metasedimentary rocks (Annesley et al., 2005;
McKechnie et al., 2012a, 2012b, 2013).

The Harney Peak granite (1715 = 3Ma; Redden et al.,
1990) marks the culmination of the Trans-Hudson
Orogeny during collision of the Wyoming Province and
the western boundary of either the Superior Craton or
the Dakota block (DeWitt et al., 1986; Nabelek et al.,
1999). This collision resulted in the thrusting of
Proterozoic metasedimentary rocks to the west over the
Wyoming Craton and low-pressure (0-3-0-4 GPa), high-
temperature regional metamorphism of late Archean
and early Proterozoic (deposited 2100-1880 Ma) meta-
sedimentary rocks exposed around and within the gran-
ite (Redden et al., 1982, 1990; DeWitt et al., 1986; Helms
& Labotka, 1991; Nabelek & Bartlett, 1998). The metase-
dimentary rocks are dominantly quartz + muscovite =
biotite = garnet schists with metapelite and greywacke
protoliths (Walker et al., 1986; Redden et al., 1990). The
Harney Peak granite consists of a main pluton with nu-
merous satellite intrusions and isolated sills. The main
intrusion is zoned with respect to mineralogy and
oxygen isotopes, with a core composed of ‘low-§'80’
muscovite + biotite granites and an outer zone with
‘high-8"80" muscovite + garnet + tourmaline (Nabelek
et al., 1992a). Based on whole-rock chemistry, mineral
chemistry, and isotopic constraints, Nabelek et al.

(1992a) suggested that the core of the pluton formed
through high degrees of melting of an immature
Archean metasedimentary source. The ascent of these
hot melts may then have triggered lower degree of
melting of Proterozoic schists higher in the crust to pro-
duce the high-5'80 series and satellite intrusions.

Southwestern USA (Colorado and Arizona)

The time period from 1600 to 1300 Ma in Laurentia was
characterized by extensive magmatism resulting in a
transcontinental belt of granitoids across the USA and
Canada (e.g. Anderson & Bender, 1989; Anderson &
Morrison, 2005). This magmatism has been classically
considered to be ‘anorogenic’, resulting from low
degrees of partial melting of dominantly
Paleoproterozoic or older crustal sources (Anderson &
Bender, 1989; Anderson & Morrison, 2005; Ramo et al.,
2003). However, it has also been suggested that the
magmatism was an in-board expression of orogenesis
on the margin of Laurentia (Nyman et al., 1994; Kirby
et al., 1995; Nyman & Karlstrom, 1997; Karlstrom et al.,
2001). Although most of these intrusions are metalumi-
nous, biotite + hornblende granites (Anderson &
Bender, 1989; Anderson & Morrison, 2005), a third
group, and the ones considered here, are c. 1400-
1500 Ma peraluminous, two-mica granites forming a
distinct province from Colorado to central Arizona and
New Mexico, such as the Silver Plume and St Vrain
granites of Colorado (Anderson & Thomas, 1985;
Anderson & Cullers, 1999) and the Ak Chin, Ruin, Sierra
Estrella, and Oracle granites of Arizona (Anderson &
Bender, 1989). The SPGs have been divided into two
petrographic groups: (1) Silver Plume-type granites
(located in Colorado) are relatively water-poor based on
the occurrence of magmatic sillimanite and late crystal-
lization of muscovite, biotite, and fluorite (Anderson &
Thomas, 1985); (2) Oracle-type granites (located in
Arizona) were emplaced under more hydrous condi-
tions, demonstrated by the early crystallization of bio-
tite and muscovite, and lack sillimanite and fluorite as
accessory phases (Anderson & Bender, 1989). Granites
from both these groups are similar to SPGs in orogenic
belts in terms of their peraluminous nature and high
whole-rock §'0 values (10-2-11-6%,; Anderson &
Morrison, 1992).

The Silver Plume and St Vrain batholiths of Colorado
intrude Paleoproterozoic paragneisses and schists of
the ldaho Springs Formation (Gable & Sims, 1969;
Tweto & Schoenfeld, 1979; Anderson & Thomas, 1985)
and range in composition from two-mica monzogranite
to syenogranite, with primary sillimanite occurring in
the more evolved lithologies (SiO, > ~70wt %).
Although Sr isotope compositions of the granites have
been used to suggest that the Idaho Springs Formation
is not itself the source material, the granites were
probably derived through crustal melting of a similar
peraluminous quartzo-feldspathic source at pressures
of 0.7-1.0GPa (DePaolo, 1981; Anderson & Thomas,
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1985). Robust crystallization ages are not available for
the Silver Plume and St Vrain batholiths; however, Rb—
Sr whole-rock and mineral isochrons suggest crystal-
lization from 1420 to 1450 =30 Ma (Peterman et al.,
1968).

Nd isotope studies on the peraluminous Oracle-type
granites of Arizona concluded that they were derived
from Proterozoic crust (Farmer & DePaolo, 1984; Nelson
& DePaolo, 1985). Although specific source materials
were not identified, whole-rock major and trace element
and oxygen isotope compositions are consistent with
melting of a peraluminous, quartzo-feldspathic sedi-
mentary source (Anderson & Bender, 1989; Anderson &
Morrison, 2005). Peraluminous two-mica granites from
Arizona have crystallization ages varying from
1440 = 20 Ma (U/Pb zircon age) for the Oracle and Ruin
granites to c¢. 1380 Ma (Rb/Sr whole-rock age) for the
Sierra Estrella granite (see summary by Anderson &
Bender, 1989).

Svecofennian orogen, Finland

The Svecofennian orogen formed through accretion of
island arc complexes and older crustal fragments to the
Archean basement of the Karelian craton between 1-91
and 1-87 Ga (Gaal & Gorbatschev, 1987; Lahtinen, 1994;
Nironen, 1997). The main collision at c¢. 1-88 Ga pro-
duced significant quantities of syn-orogenic predomin-
antly metaluminous granitoids (Huhma, 1986; Front &
Nurmi, 1987; Gaal & Gorbatschev, 1987). However, in
southernmost Finland a later generation of peralumin-
ous granitic melts intruded between 1-84 and 1-81Ga,
forming a 500 km long and 100 km wide belt of intru-
sions (Huhma, 1986; Vaasjoki & Sakko, 1988;
Suominen, 1991; Ehlers et al., 1993; Vaisanen et al.,
2000). These granites are associated with granulite
metamorphism and extensive migmatization
(Sederholm, 1926; Hopgood et al., 1976; Edelman &
Jaanus-Jarkkala, 1983; Korsman et al., 1984) in what is
known as the late Svecofennian granite-migmatite
(LSGM) zone. The country rocks include pelitic and
psammitic garnet-cordierite *= spinel gneisses with
intercalations of volcanic rocks and tonalitic sheets
(Vaisanen & Holtta, 1999). The cause for high-tempera-
ture metamorphism (c. 800°C and 0-5-0-7 GPa) in the
area, which resulted in partial melting of the metasedi-
mentary rocks, is controversial, as both transpressional
(Ehlers et al., 1993) and extensional (Korja & Heikkinen,
1995; Nironen, 1997) tectonic models have been pro-
posed; however, mafic underplating as a heat source
has been suggested to be an important process
(Schreurs & Westra 1986; Van Duin & Nieman, 1993;
Vaisdnen et al., 2000). Perhaps the best evidence for
mafic underplating is the presence of contemporaneous
mafic plutonic rocks in the LSGM zone (Vaisanen et al.,
2000). The SPGs commonly occur as a stromatic net-
work or garnet-, cordierite-, and biotite-bearing leuco-
somes in migmatitic metapelitic rocks. However, at
higher metamorphic grades the volumes of granitic

melt increase and garnet- and cordierite-bearing peg-
matitic dikes and sheets are common (Vaisanen et al.,
2000). The metasedimentary rocks hosting the migma-
tites and the SPGs have detrital zircon age populations
similar to local basement rocks. Maximum depositional
ages of pre-Svecofennian quartzites are shown to short-
ly precede deformation and range from 1.87 to 1-84 Ga
(Bergman et al., 2008).

Kondalite belt, North China Craton, China
The North China craton (NCC) coalesced in the Late
Paleoproterozoic through amalgamation and collision
of terranes along three large suture zones now pre-
served as the Khondalite belt, the Trans-North China
orogen, and the Jiao-Liao-Ji belt (e.g. Zhao et al., 2001,
2005; Wilde et al., 2002; Zhao & Zhai, 2013). The
Khondalite belt consists of khondalites (i.e. high-grade
sillimanite—garnet paragneisses), which are intruded by
or display transitional contacts with SPGs. The khonda-
lites are thought to have formed during the culmination
of a continental collision between the Yinshan terrane
and southern Huai'an (or Ordos) terrane at c¢. 1-95Ga
(e.g. Qiao et al., 2016). The protoliths to the khondalites
are metapelites, metasandstones, and minor marbles
deposited between 2:0 and 1.96 Ga and metamor-
phosed under both granulite-facies conditions (c.
1.95 Ga) and ultra-high-temperature (UHT) metamorph-
ism (1-93-1-92Ma) (Santosh et al., 2006; Peng et al.,
2010; Wang et al., 2011). The SPGs are garnet-bearing
granites and occur as isolated plutons over an area of
about 220km x 80 km. At least three episodes of SPG
magmatism occurred during partial melting of the
khondalites at ~1-95, 1.93-1-90, and ~1-85 Ga (Yin et al.,
2009, 2011; Peng et al., 2012; Dan et al., 2014; Zhang
et al., 2017a; Wang et al., 2018). As an alternative mech-
anism to crustal thickening and burial, underplating of
mantle-derived basalts, potentially during ridge subduc-
tion, has been evoked as an origin for both the UHT
metamorphism and SPG generation in the eastern por-
tion of the Khondalite belt near Liangcheng (Peng et al.,
2012; Wang et al., 2018). Input from basaltic magmas is
supported by the presence of numerous syn-magmatic
gabbronorite intrusions and mafic dikes, and basaltic
enclaves within the SPGs (Wang et al., 2018).
Muscovite- and garnet-bearing SPGs are also found
in the Helanshan region located in the western part of
the Khondalite belt (Dan et al., 2014; Zhang et al,
2017a). Based on zircon Hf and oxygen isotope compo-
sitions, geochronology, and field relationships, Dan
et al. (2014) suggested that the Helanshan SPGs formed
during a slab break-off event at which time mafic mag-
mas intruded into and partially melted the khondalite
source rocks. (Zhang et al. 2017a) presented a further
study of the Helanshan SPGs and, based on similar
trace element patterns, zircon Hf model ages, and
whole-rock Nd model ages between the khondalites
and SPGs, also suggested derivation of the SPGs
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through partial melting of the khondalites following a
collisional orogenic event.

Nangrim Massif, Imjingang Belt, and Yeongnam
Massif granites, North and South Korea
Precambrian basement rocks in the Korean peninsula
comprise Archean and Proterozoic metasediments and
granitoids of the Nangrim (called elsewhere ‘Rangnim’)
Massif, Imjingang Belt, Gyeonggi Massif, Okcheon Belt
and Yeongnam Massif from north to south. In the north-
ern part of North Korea Proterozoic metasedimentary
rocks belong to the Paleoproterozoic Jungsan and
Machollyong Groups in the Nangrim Massif and
Imjingang Belt. The Jungsam group comprises primar-
ily pelitic schists, although amphibolites, hornblende-
biotite gneisses, and calc-silicate rocks are also present
(Zhang et al., 2017b). The Machollyong Group occurs
along a NW-SE-trending belt that has been interpreted
as a Paleoproterozoic rift zone and consists of a strati-
graphically lower unit of metamorphosed arkoses and
volcanic rocks, a carbonate-rich middle unit (now mar-
bles and calc-silicate rocks), and an upper unit domi-
nated by argillaceous metasediments (Zhang et al.,
2017b). Intruding into the Jungsam and Machollyong
groups are garnet = sillimanite granites, which are
interpreted as partial melts of the metasedimentary
rocks (Zhao et al., 2006). At their margins the garnet-sil-
limanite granites are gradational with the metasedi-
mentary rocks, varying from migmatites with
leucosomes into SPGs with metasedimentary enclaves
(Zhao et al., 2006). However, in the cores of the plutons,
the granites become massive and homogeneous.
Weighted averages of 2°’Pb/?°®Pb zircon ages from two
samples of the SPGs yielded crystallization ages of
1908 = 12 and 1903 + 49 Ma (Zhao et al., 2006). One of
these two samples yielded inherited zircon ages be-
tween 2-5 and 2-1 Ga, placing a maximum constraint on
depositional age.

SPGs and related pegmatites also occur in South
Korea at the boundary of the Ogcheon Belt and the
Yeongnam Massif. The Yeongnam Massif is primarily
composed of pelitic to psammo-pelitic metasedimen-
tary rocks and orthogneiss, as well as Mesozoic gran-
ites. Detrital zircon constraints on the metasedimentary
rocks from the Yeongnam Massif constrain the deposi-
tional age to c¢. 2-:00 Ga (Kim et al., 2012). Both small vol-
umes of garnet-bearing leucogranites dikes, sills, and
stocks (Kim & Cho, 2003) and the larger (5-20km? in
areal extent) biotite + muscovite * tourmaline * gar-
net-bearing Nonggeori and Naedeokri leucocratic gran-
ites (Lee et al, 2005) intruded into the metamorphic
rocks. The Nonggeori and Naedeokri granites are char-
acterized by low magnetic susceptibilities [(0-08-
0-3) x 10738SI], suggesting that they belong to the
‘ilmenite-series’ (Jin et al., 2001). A Sm-Nd whole-rock-
garnet isochron yielded an age of 1926 + 41 Ma for the
garnet-bearing leucogranites (Kim & Cho, 2003), where-
as K-Ar muscovite ages range from 1802+ 18 to

1732+ 16 Ma for the Nonggeori granite and from
1787 =19 to 1773+ 18 Ma for the Naedeokri granite
(see summary by Lee et al., 2005). Although the tectonic
history of this region is not well constrained, Lee et al.
(2005) concluded, on the basis of mineralogy, whole-
rock chemistry, and Nd isotopes, that the Nonggeori
and Naedeokri granites were derived from partial melt-
ing of ‘crustal rocks represented by the gneissic base-
ment of the Sino-Korean craton’.

Guyana Shield granites, Brazil

The Roraima State located in the Guyana Shield may be
divided into four major geological domains (Surumu,
Parima, Central Guyana, and Uatuma-Anaua), which
are characterized by an intense period of
Paleoproterozoic magmatism (Reis et al., 2000; Almeida
et al., 2007, 2008). Two of these domains contain SPGs:
the garnet-bearing Curuxium, Taiano, and Amajari
granites of the Central Guyana domain (CGD) and the
muscovite * cordierite =* sillimanite-bearing Serra
Dourada granite of the Uatuma-Anaua domain (UAD).
The crystallization ages of the Taiano and Serra
Dourada granites have been constrained via zircon U-
Pb geochronology at 1969 = 4Ma (CPRM, 2003) and
1962 = 2 Ma respectively (Almeida et al., 2007). Based
on whole-rock chemistry and mineralogy, Almeida et al.
(2007) suggested that the Serra Dourada granite was
probably derived from partial melting of metagray-
wackes during collision of older Paleoproterozoic
domains of the Guyana Shield. Both the Serra Dourada
and the Taiano granites contain zircon with inherited
cores ranging from 2138 Ma to 2047-2072 Ma, respect-
ively, suggesting a maximum depositional age of their
source sediment in the earliest Paleoproterozoic.
Although future field studies and geochronology are
required to understand the detailed origin of these gran-
ites, they were probably formed during the collision of
the Paleoproterozoic Anauad magmatic arc with
Transamazon (2-2-2.0Ga) and Central Amazonian
(>2-3 Ga) terranes (Almeida et al., 2007).

Jacobina-Contendas Mirante belt, Sao Francisco
craton, Brazil

The Jacobina—Contendas Mirante (JCM) belt is a north—
south-trending dominantly volcano-sedimentary belt in
the eastern part of the Sao Francisco craton. The JCM
belt is situated between two Archean crustal blocks: the
Jequié domain and Atlantic coast ‘mobile belt’ to the
east and the Gaviao domain to the west. The Gaviao do-
main comprises migmatitic gneisses and amphibolites
that represent the basement of the JCM supracrustal
sequences. The convergence between the Jequié and
Gaviao domains in the Paleoproterozoic was marked by
the formation of basins in which the JCM belt volcanic
and sedimentary rocks were deposited (Barbosa &
Sabaté, 2004). The Serra de Jacobina series of the JCM
belt is an ~10km wide by >200km long belt of meta-
quartzite, meta-conglomerates, mica-schists, banded
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iron formations, and minor intercalated meta-ultramafic
rocks (Cuney et al., 1990; Marinho et al., 1993). Two lith-
ostratigraphic units have been defined in the Contendas
Mirante belt: a lower unit of basalts and andesites with
interbedded clastic and chemical sediments and an
upper unit of greywackes, pelites and argillites with
conglomerate layers (Marinho et al., 1993). A maximum
depositional age defined by detrital U-Pb zircon ages
from the Contendas—Mirante upper unit is 2168 = 18 Ma
(Nutman & Cordani, 1993; Nutman et al., 1994).

Numerous (>20) SPGs intrude the Gaviao basement
rocks and the JCM belt. These include, but are not lim-
ited to, the Gameleira, Riacho das Pedras, Alianga,
Caetano, Lagoa Grande, and Lagoinha plutons in
Contendas Mirante belt and the Campo Formos and
Carnaiba plutons in the Serra de Jacobina series
(Cuney et al., 1990; Sabaté et al., 1990; Marinho et al.,
1993; Leal et al., 2000). Rb/Sr whole-rock isochrons for
the granites vyield ages between 1974+36 and
1883 = 87 Ma (Sabaté et al.,, 1990). The granites are
muscovite + biotite = garnet-bearing and sometimes
associated with late muscovite-, garnet, and
tourmaline-bearing pegmatites (Cuney et al., 1990;
Sabaté et al, 1990). Biotite-rich layered enclaves
thought to be representative of restitic source material
are present in the plutons (Cuney et al., 1990). Based on
whole-rock and mineral chemistry, Sr and Nd isotope
ratios, geochronology, and field relationships, the SPGs
are thought to be derived through partial melting of
supracrustal material during the c¢. 2 Ga collision of the
Jequié and Gaviao domains (Cuney et al., 1990). Based
on whole-rock Sr isotope ratios, Sabaté et al. (1990)
suggested that the Archean Gaviao terrane was the
most likely source rock; however, Nd isotopes are in
conflict with this interpretation and instead are consist-
ent with derivation from rocks of the Contendas Mirante
metasedimentary rocks.

Cape Coast suite granites, Baoulé Mossi domain,
Ghana and Céte d’lvoire

The Baoulé Mossi domain of the West African craton is
a composite terrane composed of NE-SW-trending
belts of early Paleoproterozoic (~2-35-2-20 Ga) tholeiitic
to calc-alkaline metavolcanic rocks and metasedimen-
tary rocks of the Birimian and Tarkwaian groups, all of
which were intruded by granites at ~2-1-2.0 Ga (Boher
et al., 1992; Taylor et al., 1992; Vidal & Alric, 1994;
Hirdes et al., 1996; Gasquet et al., 2003; Baratoux et al.
2011). The metasedimentary rocks of the Birimian
Supergroup consist of metamorphosed volcanoclastic
rocks, turbidite-related greywackes, carbonaceous argil-
lites, cherts, carbonates, and Mn-rich sediments, inter-
preted as having formed in a basin proximal to a
volcanic front (Leube et al., 1990). There are four main
suites of granite; the Winneba, Cape Coast, Dixcove,
and Bongo. Of interest here are the Cape Coast gran-
ites, which are peraluminous muscovite + biotite-bear-
ing granitoids that predominantly occur as batholiths

hosted in the Birmain metasedimentary rocks (Leube
et al., 1990). Metasedimentary xenoliths in the granites
(up to 10m in size) have been observed (Petersson
et al., 2016). These granites represent the latest stage of
magmatism in the domain and formed during the accre-
tion of various oceanic arc terranes at ~2-1-2-0Ga
(Boher et al., 1992; Pouclet et al., 1996; Gasquet et al.,
2003).

Leube et al. (1990) analyzed 25 samples from the
Cape Coast granite suite for whole-rock major and trace
element chemistry and found that although all samples
were peraluminous, only seven were strongly peralu-
minous. In addition, initial #Sr/%°Sr ratios (0-70150 + 42)
and &eng (+3:7) values suggested a relatively depleted
(i.e. mantle-like) source for these granites. A more re-
cent study of the U-Pb and Hf isotopes in zircon of three
different muscovite-bearing granodioritic, granitic, and
pegmatitic samples from the Cape Coast suite yielded
207pp2%6py  crystallization ages of 2125+ 18 Ma,
2093 = 20 Ma, and 2092 = 40 Ma respectively and initial
ens values of +2-1 to +5-5 (Petersson et al., 2016). The
existing collective radiogenic isotope data suggest that
there is a strong mantle-derived component in the Cape
Coast granites. Leube et al. (1990) suggested that the
peraluminous character of the granites may have
resulted from large-scale contamination of the ascend-
ing melts by volcaniclastic sediments. However, radio-
genic isotope data exist for only three samples with
well-described petrology (i.e. muscovite-bearing gran-
ites) and whole-rock data for these samples do not
exist. We therefore have decided to include these gran-
ites in this compilation based on the strongly peralu-
minous nature of some of the granites, their described
primary mineralogy, and their field relationships sug-
gesting intimate association with the Birimian sedi-
mentary rocks. However, Leube et al. (1990) reportedd
only an average whole-rock chemistry of the 25 sam-
ples they analyzed, so our analysis of geochemical data
from this suite in subsequent discussion is hindered.

PETROGRAPHY AND MINERAL CHEMISTRY

The corundum-normative nature of SPGs requires that
in addition to quartz and two feldspars they have one or
more aluminous major phase such as biotite, musco-
vite, garnet, cordierite, aluminosilicates (sillimanite, an-
dalusite, or kyanite), tourmaline, topaz, spinel, or
corundum (Clarke, 1981). These phases can have a
magmatic origin (i.e. crystallizing directly from the gran-
itic melt) or can be entrained restitic phases (e.g. biotite
and garnet; White & Chappell, 1977; Stevens et al.,
2007). If these are primary magmatic phases, the crys-
tallization of these phases is controlled by temperature,
pressure, bulk composition, fluid composition, and oxy-
gen fugacity. As such, careful interpretation of the min-
eral crystallization textures, reaction relationships, and
chemistry can be used to constrain these intensive vari-
ables during crystallization. As a comprehensive discus-
sion of petrography and mineral chemistry in SPGs
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Fig. 4. Examples of mineralogy observed in Archean and
Proterozoic SPGs. (a) Photomicrograph in plane-polarized light
of biotite + muscovite granite from the Ghost Lake batholith
(sample E19-8). (Note interlocking growth of biotite and mus-
covite.) (b) Back-scattered electron image of biotite + musco-
vite + garnet granite from the Ghost Lake batholith (sample
F11-4). (c) Photomicrograph in cross-polarized light of tourma-
line-rich granite from satellite intrusion associated with Harney
Peak granite (sample HP-39a from Nabelek et al, 1992a,
1992b). bt, biotite; ksp, K-feldspar; ms, muscovite; plg, plagio-
clase; gtz, quartz; tur, tourmaline.

merits a paper unto itself (e.g. Clarke, 1981; Clemens &
Wall, 1988; Zen, 1988; Holtz et al., 1992), we focus our
discussion on an overview of Archean and Proterozoic
SPG phase assemblages and mineral chemistry be-
tween these temporally distinct groups, which can in-
form our understanding of their intensive parameters
during crystallization, whether they changed across the
Archean-Proterozoic transition, and the implications
these differences have for their sedimentary source ma-
terial across this transition. We summarize reported
mineral assemblages (including accessory phases) and
compositions (when available) in Table 2.

All of the SPGs considered here contain biotite and/
or muscovite and sometimes other peraluminous min-
erals, dominantly garnet (Figs 3c, d and 4a, b). In add-
ition, many include major to accessory minerals such
as cordierite, aluminosilicates, tourmaline, or beryl, typ-
ical of SPGs (Tables 1 and 2; Fig. 4c). Within certain SPG
plutons, zoning in mineralogy and composition is
observed. For example, the Ghost Lake batholith, which
has been the subject of a detailed study by Breaks &
Moore (1992), demonstrates mineralogical zoning from
west to east from a more primitive biotite + cordierite
granite to a highly evolved garnet + muscovite (= tour-
maline = beryl) granite. This was interpreted as the pet-
rological and geochemical consequences of in situ
differentiation (Breaks & Moore, 1992). Another ex-
ample of a zoned intrusion is the Harney Peak granite,
where biotite is the dominant ferromagnesian mineral
in the core of the pluton, whereas tourmaline domi-
nates along the perimeter, as well as in satellite intru-
sions (Nabelek et al.,, 1992a). (Nabelek et al. 1992a)
ascribed this difference in mineralogy to different
source regions for the biotite- versus tourmaline-
bearing granites, as well as extents of melting. The bio-
tite granites were proposed to have formed through
high extents of biotite dehydration melting of immature
greywackes, whereas the tourmaline granites (see ex-
ample in Fig. 4c) were concluded to have formed
through a lower extent of melting of metapelites, pro-
ducing melts with high boron concentrations.

Biotite

Other than feldspar, biotite is generally the dominant
aluminous mineral in the SPGs considered here and
becomes rare to absent only in the more evolved leu-
cogranites or tourmaline-dominated granites. Biotites
from SPGs of all ages are more aluminous than mem-
bers of the phlogopite—annite solid solution with signifi-
cant eastonite-siderophyllite components (Abdel-
Rahman, 1994; Bucholz et al., 2018). With the limited
dataset available, no distinctions in major and minor
elements in biotite (e.g. TiO,, halogens, etc.) from
Archean and Proterozoic SPGs are observed, except for
FeT/Mg ratios. Biotite Fe"/Mg (where Fe" = Fe?* + Fe®*)
ratios are highly sensitive to oxygen fugacity (fg,) dur-
ing crystallization, with higher values being stable at
lower fp, (Wones & Eugster, 1965; Czamanske &
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Fig. 5. Histograms of (a) Fe"/Mg biotite~WR (whole-rock) partition coefficient [K(bt—-WR)] and (b) calculated oxygen fugacity (relative
to the Ni-NiO buffer) for Archean and Proterozoic SPGs using the method of Bucholz et al. (2018), which utilizes biotite and bulk-
rock compositions and alphaMELTS modeling. In (a) and (b) samples in lighter blue and red indicate those not amenable to model-
ing via alphaMELTS [owing to K(bt-WR) > 0-9; see Bucholz et al., 2018, for details]. For these samples, although a specific fp, could
not be calculated, their elevated K(bt-WR) values impose a maximum limit of 2 log units below the Ni-NiO buffer (NNO - 2).

Wones, 1973; Ague & Brimhall, 1988). This arises as a
result of the breakdown of the annite component in bio-
tite with increasing fp, to produce K-feldspar, magnetite
(or hematite component in hemo-ilmenite or Fe,03
component in the melt), and H,O via a reaction such as

KFe3" AlSiz049(OH), + O, KAISi3Og + Fe304 + H,0
annite + 0,aK — feldspar + magnetite (1)
(solid or component in melt) + water vapor

Therefore, as fp, increases in a melt the total percent-
age of the Fe in the bulk system (i.e. melt + crystals)
hosted within biotite will decrease as Fe®" is preferen-
tially partitioned into an oxide phase or the melt.
As such, the Fe'/Mg partitioTn coefficient between
biotite and whole-rock [KL /M —  (FeT /Mg)piomie/
(Fe" /Mg) whore- rock] deCreases as fo, increases (Bucholz
et al., 2018). If independent estimates of temperature,
pressure, and water activity are available, quantitative
estimates of fp, can be obtained through thermodynam-
ic modeling using alphaMELTS software (Smith &
Asimow, 2005).

Developing and using this method, Bucholz et al.
(2018) modeled variations in Fe'/Mg ratios in biotite
from Archean and Proterozoic SPGs to understand

whether they were characterized by differences in fp,
duriTng crystallization. They found that the average
K[e /M9 for Archean SPGs was 1.01+021 versus
0-74 = 0.-45 for Proterozoic granites (Fig. 5a). The majority
(>80%) of Archean SPGs considered in the study crystal-
lized at fp, values near the maximum stability of graphite
in equilibrium with a water-saturated C-O-H fluid,
whereas only ~40% of the Proterozoic samples did. The
other Proterozoic samples crystallized at higher fp, val-
ues [up to one log unit above the Ni-NiO (NNO) buffer;
Fig. bbl. The simplest explanation for this observation is
that the sediments from which Archean SPGs were
derived had lower bulk redox states than the more oxi-
dized Proterozoic SPGs, possibly reflecting the depos-
ition of Archean SPG source rock sediments under lower
partial pressures of atmospheric O, prior to the GOE.

For example, Fe and S, two of the dominant redox-
sensitive elements in sediments, are characterized by
different bulk redox states in Archean versus
Proterozoic sediments. Fe in Archean sediments is
dominantly ferrous and S is hosted in sulfides, mainly
pyrite, as S7'. In contrast, Proterozoic sediments are
characterized by the proliferation of red beds stained by
ferric Fe (Holland, 1984) and the onset of sulfate
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(S®*-bearing) deposits (Chandler, 1988). Thus, the vari-
ation in fp, of SPGs derived from sedimentary rocks
deposited on either side of the GOE may reflect this
change in Fe and S speciation. Although organic carbon
is present in both Archean and Proterozoic sedimentary
rocks and certainly exerted a reducing influence on
Archean and Proterozoic SPG fp,, it was probably the
bulk redox state of the sediments that ultimately fixed
the fp, of SPG magmas. In particular, although the cu-
mulative preserved thicknesses of black shales in the
Paleoproterozoic to Mesoproterozoic reached a peak in
Earth history, the total organic carbon in these shales
(<5wt %) was on average lower than at other times in
Earth history (up to ~30% in the Phanerozoic; Condie
et al., 2001; Och & Shields-Zhou, 2012). The simultan-
eous decrease in the organic carbon content of sedi-
ments (by weight per cent) and increase in amount of
other oxidized sedimentary material may explain the
relatively elevated f, of Proterozoic SPGs as compared
with Phanerozoic and Archean SPGs. Notably, however,
many SPGs from both the Archean and Proterozoic
crystallized at fp, values controlled by reduced carbon
in their source region (samples at NNO - 2 in Fig. 5b),
suggesting that burial of organic carbon in the sedi-
mentary source regions for the SPGs has exerted an im-
portant control on the fp, of the SPGs across the
transition (and indeed also for Phanerozoic SPGs; Flood
& Shaw, 1977; Blevin & Chappell, 1992; Nabelek, 2019).

White mica

White mica is a common mineral in SPGs and can be ei-
ther primary or secondary in origin. Primary white mica
occurs as large euhedral books or phenocrysts (Fig. 4a),
whereas secondary white mica shows textural relation-
ships suggesting that it formed through the breakdown
of feldspars, biotite, or other aluminosilicates during
cooling and potential ingress of fluids (Miller, 1981). In
addition to textural arguments, primary versus second-
ary white mica can be identified based on its chemistry.
Miller (1981) suggested that magmatic white mica is
consistently richer in Ti, Na, and Al, but poorer in Mg
and Si, than secondary white mica. Bucholz et al. (2018)
compiled and screened existing white mica compos-
itional data for Archean and Proterozoic SPGs. In both
the Archean and Proterozoic granites, white mica does
not occur as pure end-member muscovite
[K2AlL(SigAl,040)] but rather exhibits solid solution to-
wards paragonite [NayAl4(SigAl,020)(OH),] and celadon-
ite [K,Aly(Fe,Mg),(SigO20)(OH),] (Bucholz et al., 2018).
Primary white mica was identified in all SPG samples
from that study and no systematic compositional differ-
ences in white mica (e.g. Na contents, halogens, etc.)
from Archean and Proterozoic SPGs were observed.

Garnet

Garnets in SPGs display variable compositions from
one intrusion to another, mostly in relationship to
Fe:Mg:Mn ratios. In both Archean and Proterozoic

SPGs, garnets are almandine-spessartine solid solu-
tions, having only a minor pyrope and grossular com-
ponent (generally <10 mol. %; Table 2). Some garnets
in the highly evolved SPGs from both the Archean and
Proterozoic can attain spessartine-rich compositions
(e.g. 50-60 mol %), probably owing to high Mn/(Mn +
Fe?* + Mg) in evolved peraluminous melts. However,
no systematic differences in composition between
Archean and Proterozoic samples are observed in the
existing data. Garnet in SPGs can have a number of ori-
gins, including direct crystallization from the granitic
melt (Hall & Tyler, 1965; Joyce, 1973; Green, 1977), der-
ivation from restitic material (White & Chappell, 1977;
Stevens et al., 2007; Villaros et al., 2009) or surrounding
host rock (Allan & Clarke, 1981), or reaction between
early formed phases and silicate melt (e.g. liquid + bio-
tite — garnet + muscovite; Miller & Stoddard, 1981).
Combined careful textural, petrographic, and geochem-
ical studies are required to determine the origin for gar-
net in SPGs, which are currently lacking for SPGs from
the Archean and Paleo- to Mesoproterozoic. Therefore,
at this time using garnet compositions to understand ei-
ther the crystallization conditions or the characteristics
of the source rocks of these granites is difficult, but
would provide a fruitful avenue for future study.

Other peraluminous indicator minerals and
accessory phases

Other peraluminous indicator minerals present in both
Archean and Proterozoic SPGs include cordierite, tour-
maline, sillimanite, and beryl. Cordierite is found in less
evolved granites (e.g. parts of the Ghost Lake batholith,
the Treelined Lake complex, the Talston Magmatic
Zone, and the Liangcheng granites) (Breaks & Moore,
1992; Pan & Breaks, 1997; De et al., 2000; Wang et al.,
2018). In contrast, tourmaline is a phase dominantly
found coexisting with muscovite and garnet in more
evolved SPGs and only rarely with biotite (Fig. 4c;
Breaks & Moore, 1992; Nabelek et al., 1992a). The water
content of the melt is probably the determining factor
controlling whether tourmaline or biotite crystallizes
from a B-bearing strongly peraluminous melt. For ex-
ample, Scaillet et al. (1991) found that in a strongly per-
aluminous granitic melt biotite is the stable liquidus
phase at high water activities (when the mole fraction of
water in the coexisting vapor phase is <0-7), whereas
tourmaline is stable only at lower water activities.
Elevated Ti contents in strongly peraluminous melts
may also stabilize biotite over tourmaline (Nabelek,
2019). No systematic differences in either abundances
or compositions of these phases are observed between
Archean and Proterozoic SPGs based on existing, albeit
limited data.

Dominant accessory phases in the SPGs include
(fluor-)apatite, monazite, thorite, zircon, titanite, allanite,
spinel, uraninite, graphite, ilmenite, magnetite, and ru-
tile. Notably, Archean SPGs predominantly contain il-
menite as the sole stable Fe-Ti oxide [although
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magnetite has been described in granites from the
Yilgarn and Kaapvaal craton (Trumbull, 1993; Qui,
1997)], whereas magnetite is found in a number of the
Proterozoic SPGs (e.g. Cree Lake granites, Mesopro-
terozoic granites of the southwestern USA, the
Helanshan complex, and SPGs of the Transamazonian
Orogeny). The presence of magnetite in these granites
indicates that they crystallized at sufficiently elevated
fo, for magnetite to be a stable crystallizing phase (e.g.
Ishihara, 1977). As discussed in the section on biotite
chemistry, this transition in fp, values of crystallization
may reflect a shift in the bulk redox state of the sedi-
mentary source rocks across the GOE.

WHOLE-ROCK MAJOR AND TRACE ELEMENT
CHEMISTRY

Whole-rock major and trace element chemistry for
SPGs can be difficult to interpret in the framework of
melt compositions because of the potential for restitic
material to be entrained in the granitic melt during ex-
traction from the source (White & Chappell, 1977;
Chappell et al., 1987; Stevens et al., 2007). [However,
see Wall et al. (1987) and Clemens (1989) for points
raised against the restite model.] In addition, melt com-
positions, and in particular some trace element concen-
trations, are highly sensitive to the degree of melting,
the source rock composition, and the presence and
abundance of accessory minerals in the restite. With
these caveats in mind, we present an analysis of the
whole-rock chemistry of both Archean and Proterozoic
SPGs, both compiled from the existing literature and
newly acquired data. A complete dataset with referen-
ces is available in Supplementary Data Table S1; sup-
plementary data are available for downloading at http://
www.petrology.oxfordjournals.org. Newly acquired
major and trace element whole-rock chemistry for 50
samples from the St Vrain and Silver plume granites
(Colorado, USA), Mt Owen batholith (Wyoming, USA),
and the Superior Craton was obtained via X-ray fluores-
cence (XRF) at Caltech (n=47) and Washington State
University (n=3). Sample information (i.e. locality, lith-
ology, sampling GPS coordinates) for the newly
acquired data is provided in Supplementary Data Table
S2. Whole-rock sample preparation and analytical
methods are described in the Supplementary Data.
From an initially larger dataset including all available
whole-rock data from the localities listed in Table 1, we
culled the samples to include only whole-rock composi-
tions normalized to 100% on an anhydrous basis that
contained 68-80wt % SiO, and <5wt % FeO + MgO +
TiO,, and had ASI>1-1; 586 Archean and 255
Proterozoic whole-rock analyses of SPGs are
considered.

To frame our discussion, a brief overview of partial
melting of metasedimentary rocks is merited. We direct
the reader to more detailed discussions in the literature,
as a wealth of work has been done on this subject,
through both experimental studies (Le Breton &

Thompson, 1988; Vielzeuf & Holloway, 1988; Patino
Douce & Johnston, 1991; Icenhower & London, 1995;
Vielzeuf & Montel, 1994; Montel & Vielzeuf, 1997;
Stevens et al., 1997; Patino Douce & Harris, 1998;
Pickering & Johnston, 1998) and detailed geochemical
modeling (e.g. Clemens & Vielzeuf, 1987; Harris et al.,
1993, 1995; Sylvester, 1998; Spear et al., 1999; Nabelek,
2019). A critical factor controlling the amount of melt
produced during the partial melting of metasedimen-
tary rocks is the presence or absence of excess fluid
(see Clemens & Vielzeuf, 1987, for a detailed discus-
sion). In both the presence and absence of excess fluid,
the primary melting reactions that occur involve the
breakdown of either muscovite or biotite:

muscovite + quartz 4+ plagioclase (+ fluid)
= aluminosilicate (Al;SiOs) + melt (2)

biotite + aluminosilicate (Al,SiOs) + quartz
+ plagioclase (+ fluid)
= garnet + K — feldspar + melt (3)

In equations (2) and (3), if excess fluid is present
(indicated by ‘+ fluid’ in parentheses), the reactions pro-
ceed until one of the phases on the left-hand side of the
reaction is exhausted. When fluid is absent, sometimes
referred to as dehydration melting, the amount of either
muscovite [equation (2)] or biotite [equation (3)] in the
source controls the amount of melt produced.
Quantitative modeling of these reactions to determine
trace element concentrations in the derivative melts will
strongly rest upon assumptions concerning equilibrium
between the melt and solid phases and the choice of
partition coefficients used (e.g. Harris et al., 1993). For
trace elements that reside predominantly in major
phases (e.g. Rb, Sr, and Ba in micas and feldspars), it is
reasonable to infer that trace element modeling of bio-
tite- and muscovite-breakdown reactions [equations (2)
and (3)]1 will generally capture the range of composi-
tions produced in nature. Other trace elements that pre-
dominantly reside in accessory phases (e.g. REE, Zr, Th,
and Nb) are dominantly controlled by dissolution of
these minor phases, which in turn are dependent on the
solubility of the phases in various melt compositions
and, potentially, incomplete separation between the
melt and restitic minerals (e.g. Barbero et al., 1995;
Ayres & Harris, 1997; Zeng et al., 2005a, 2005b). Trace
element modeling based on the reactions in equations
(2) and (3), therefore, is restricted to Rb, Sr, and Ba. (Zr,
however, can potentially yield information on max-
imum temperatures of melting through zircon satur-
ation temperature modeling as discussed in more detail
below.)

Archean and Proterozoic SPGs are relatively similar
in terms of most major element concentrations, be-
cause as a whole they represent near minimum melts in
the peraluminous haplogranite system. Most (>90%) of
the analyses fall within the following compositional
brackets: 13:-5-17-0wt % Al,O3;, <0-4wt % TiO,, 0-3-
25wt % CaO, and 3-7wt % Na,O. K,O contents are
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Fig. 6. Summary of whole-rock geochemistry indicative of temperature of melting. Zr (a, b) and zircon saturation temperature (c, d)
for Archean (a, c) and Proterozoic (b, d) SPGs versus whole-rock Al,03/TiO,. Zircon saturation temperature is calculated using distri-
bution coefficient of Zr between zircon and melt as parameterized by Boehnke et al. (2013). Filled symbols are used for localities
that generally plot at higher Zr contents and zircon saturation temperatures, and lower Al,O3/TiO, ratios.

more variable, between 1 and 8wt %. According to the
granite classification of Frost et al. (2001), the SPGs con-
sidered here span a range of compositions from mag-
nesian to ferroan and calcic to alkalic. The only
consistent compositional features (as defined by the
compositional constraints imposed on the compilation)
are that they are strongly peraluminous and have high
SiO, contents (70-80 wt %). Although there is variability
between localities in both Archean and Proterozoic
SPGs, their major and trace element concentrations are
similar to those observed in Phanerozoic SPGs (see

Sylvester, 1998; Nabelek, 2019). However, several major
and trace element characteristics of Archean and
Proterozoic samples indicative of temperature of melt-
ing and source lithology merit discussion.

Al,03/TiO, and Zr—melting temperatures

In an analysis of experimental studies on partial melting
of sediments, Sylvester (1998) found that Al,O3/TiO,
values in the partial melts are primarily controlled by
the temperature of melting. Whereas Al,0O3 contents re-
main relatively constant in partial melts owing to the
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stability of refractory aluminous phases (e.g. plagio-
clase, garnet, aluminosilicates) in the restite, TiO, con-
tents will increase with increasing temperatures owing
to the breakdown of Ti-bearing phases such as biotite
and ilmenite. If whole-rock SPG compositions are con-
sidered pure partial melts (i.e. they have not experi-
enced mixing with another melt, assimilation, or
fractional crystallization) their whole-rock Al,O3/TiO,
should reflect the temperature of melt generation. If this
assumption is valid, SPGs produced as a result of par-
tial melting at higher temperatures will have lower
Al,05/TiO, on average than those produced at lower
temperatures. Similarly, Zr concentrations and calcu-
lated zircon saturation temperatures have also been
used as an indicator of magmatic temperature for silicic
magmas (e.g. Watson & Harrison, 1983; Miller et al.,
2003; Boehnke et al., 2013). Zr solubility in magmas is
primarily a function of magmatic composition and tem-
perature, with higher concentrations of Zr capable of
being dissolved in melts at higher (Na-+ K+ 2Ca)/
(Al x Si) ratios and higher temperatures (Watson &
Harrison, 1983; Boehnke et al., 2013). If a rock is satu-
rated in zircon, calculated zircon saturation tempera-
tures using whole-rock Zr contents provide a maximum
magmatic temperature estimate (Miller et al., 2003).

These two geochemical variables (whole-rock Al,Os/
TiO, ratios and calculated zircon saturation tempera-
tures) portray a consistent story concerning magmatic
temperatures in SPGs. Both whole-rock Zr concentra-
tions and zircon saturation temperatures covary with
whole-rock Al,O3/TiO, ratios (Fig. 6). That is, Archean
and Proterozoic SPGs with low Al,O3/TiO, ratios (<100)
have higher Zr contents (generally >100ppm) and Zr
saturation temperatures (average 807 = 105°C, 20),
whereas SPGs with Al,O5/TiO, ratios >100 have lower
Zr contents (generally <100 ppm) and Zr saturation tem-
peratures (688 = 145°C, 20) (Fig. 6). Whether these tem-
peratures reflect the primary temperatures of partial
melting versus secondary temperatures during cooling
(and fractional crystallization of biotite and zircon) is un-
clear (see Finger & Schiller, 2012). However, SPGs with
high Zr saturation temperatures and low Al,O5/TiO,
ratios certainly obtained elevated temperatures and
were probably derived through relatively high-tempera-
ture melting above the biotite-dehydration curve
(>800°C). In contrast, SPGs with low Zr concentrations
and zircon saturation temperatures and high Al,O3/TiO,
whole-rock ratios may have formed under conditions of
relatively cool, muscovite-dehydration melting (which
occurs between 650 and 725°C at 0-4-1-0 GPa). These
‘cooler’ peraluminous granitic melts would have been
saturated in zircon in the source (along with potentially
other refractory restitic trace phases such as monazite
or apatite).

Sylvester (1998) compared whole-rock Al,O3/TiO,
ratios in SPGs from different Phanerozoic orogens with
known metamorphic histories to test the idea that ‘low-
temperature’ versus ‘high-temperature’ orogens would
preserve SPGs with different whole-rock compositions

indicative of temperature of melting. His observations
suggested that a distinction may be made between
SPGs from (1) ‘low-temperature, high-pressure’ colli-
sions [e.g. the Alps and Himalayas, where small- to
moderate-volume ‘cool’, post-collisional SPGs formed
by decompression melting of over-thickened crust
(>50 km thick) heated by in situ decay of radiogenic ele-
ments] and (2) high-temperature collisions (e.g. the
Hercynides or the Lachlan fold belt) in which large-vol-
ume, ‘hot’ post-collisional SPGs formed by mantle-
derived heating of crust <50 km thick after lithospheric
delamination. Indeed, Sylvester (1998) found that
Phanerozoic SPGs from ‘low-" and ‘high-temperature’
collisions tended to have high and low Al,O3/TiO,
ratios, respectively. Archean and Proterozoic SPGs
span the range in Al,O3/TiO, values observed by
Sylvester (1998) for Phanerozoic SPGs (20-500), al-
though some samples in both temporal groups extend
to higher Al,03/TiO, values (up to 2000; Fig. 6). [It
should be noted that the samples with the highest
Al,O3/TiO, values are primarily due to low TiO, concen-
trations with limited reported significant digits (e.g. 0-01
and 0-02wt %), giving rise to near-vertical trends in Zr
or zircon saturation temperature versus Al,03/TiO,.]

For Archean SPGs, those from the Yilgarn,
Kaapvaal, and Grunehogna Cratons (filled blue sym-
bols) define a more tightly clustered range of values at
lower Al,O3/TiO, and higher Zr concentrations and zir-
con saturation temperatures than those from the
Superior, Slave, and Wyoming cratons (open symbols),
which display more variable values extending to lower
Zr contents and higher Al,03/TiO, values (Fig. 6a and
c). This geographical distinction is notable, as it sug-
gests that the SPGs from the Yilgarn, Kaapvaal, and
Grunehogna Cratons were derived predominantly
through higher temperatures of melting (>800°C). In
contrast, SPGs from the Superior, Slave, and Wyoming
cratons appear to have formed through cooler melting
conditions (<750°C). In the Proterozoic SPGs, the
Harney Peak granite of the Trans-Hudson Orogeny
(open left-pointing triangles) defines the high Al,O3/
TiO, and low zircon saturation temperature end of the
distribution of samples in our dataset (Fig. 6b and d),
suggesting derivation at relatively low temperatures of
melting. In contrast, the Proterozoic SPGs from the SW
USA, the Talston magmatic zone, Guyana Shield, and
Khondalite belt of north China (filled red symbols) de-
fine the low Al,0O5/TiO, end of the data array, suggest-
ive of partial melting at higher temperatures. Although
specific localities cluster towards high or low Al,O3/
TiO, values, these variations occur in both Archean
and Proterozoic SPGs. As such, this suggests that var-
iations in temperatures of sediment melting and likely
tectonic mechanisms of producing melting (e.g. burial
during a collisional orogeny, mafic underplating, ridge
subduction, etc.) were locality specific and tectonically
viable from the Mesoarchean (~3-0 Ga) into the Paleo-
and Mesoproterozoic.
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Fig. 7. Summary of bulk-rock geochemistry indicative of source rock lithology. Rb/Ba versus CaO/Na,O (a, b) and Rb/Sr (c, d) for
Archean (a, c¢) and Proterozoic (b, d) SPGs. Symbols as in Fig. 5. In (c) and (d), calculated pelite- and greywacke-derived melts are

from Sylvester (1998).

Ca0/Na,0, Rb/Sr, and Rb/Ba—source lithologies
In his analysis of partial melting experiments on metase-
dimentary rocks and SPG whole-rock compositions,
Sylvester (1998) also demonstrated that CaO/Na,O, Rb/
Sr, and Rb/Ba whole-rock values of SPGs could be used
to understand variation in source lithologies. SPGs pro-
duced through partial melting of plagioclase-rich, clay-
poor sources (greywackes) will have higher CaO/Na,O
ratios than those produced through partial melting of
clay-rich pelites owing to the contribution of CaO to the

melt from plagioclase (Patino Douce & Johnston, 1991;
Patino Douce & Beard, 1995). Extent of melting, pres-
sure, and H,0 activity will also affect these ratios; how-
ever, the abundance of plagioclase in the source
lithology is the strongest control (Sylvester, 1998). The
systematics of Rb/Sr and Rb/Ba ratios of SPG whole-rock
compositions are  slightty more complicated.
Comprehensive partial melting modeling of various
source materials suggest that two primary factors con-
trol Rb/Sr and Rb/Ba ratios (Harris & Inger, 1992; Harris
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Bindeman et al. (2016) with 1osp errors on average. Data for the Archean Annandagstoppane granite (blue dots) are from
Marschall et al. (2010), and for the Proterozoic granites from the Khondalite belt and Liangcheng granites of the North China Craton

are from Dan et al. (2014) and Wang et al. (2017, 2018).

et al., 1993). First, vapor-absent melting produces higher
Rb/Sr and Ba/Sr ratios in the partial melt owing to lower
melt fractions and the presence of significant feldspar
(both plagioclase and K-feldspar) in the restite, which
will retain Sr. Second, muscovite- or biotite-rich, plagio-
clase-poor rocks (i.e. metapelites) will yield higher Rb/Sr
and Rb/Ba ratios than plagioclase-rich, mica-poor sedi-
ments (i.e. greywackes) owing to higher Rb concentra-
tions in the source rocks (Harris et al., 1993; Sylvester
1998). Sylvester (1998) pointed out that the Rb/Sr and
Rb/Ba ratios of Phanerozoic SPGs generally fall on a log-
linear array of increasing Rb/Sr with Rb/Ba. In addition,
he noted that SPGs with low CaO/Na,O ratios generally
have higher Rb/Sr and Rb/Ba ratios than do those with
high CaO/Na,O ratios, although there is some overlap.
As such, Sylvester (1998) suggested that Rb/Sr and Rb/
Ba ratios in SPGs are dominantly controlled by the char-
acteristics of the source rock, with higher Rb/Sr and Rb/
Ba ratios reflecting clay-rich sources.

In Archean and Proterozoic SPGs, whole-rock CaO/
Na,O is negatively correlated with both Rb/Sr and Rb/Ba
(Fig. 7a and b). In addition, whole-rock compositions of
Archean and Proterozoic SPGs define a similar, positive-
ly correlated trend of Rb/Sr and Rb/Ba to the Phanerozoic
SPG compilation presented by Sylvester (1998) (Fig. 7¢
and d). Localities with lower CaO/Na,O values tend to
have higher Rb/Sr and Rb/Ba ratios and vice versa, sug-
gesting derivation from clay-rich and clay-poor source
regions, respectively. For example, for the Proterozoic
SPGs, the Harney Peak granite of the Trans-Hudson
Orogeny (open left-pointing triangles) defines the low
Ca0O/Na,O and high Rb/Sr and Rb/Ba end of the

distribution of samples in our dataset (Fig. 7b and d),
suggesting derivation from clay-rich sources. In contrast,
the Proterozoic SPGs from the SW USA, the Talston
magmatic zone, Guyana Shield, and Khondalite belt of
north China (filled red symbols) define the high-CaO/
Na,O and low Rb/Sr and Rb/Ba of the data array (Fig. 7b
and d), suggestive of partial melting of greywacke-rich
(i.e. clay-poor) source rocks. SPGs from other localities
appear to have formed through melting of both plagio-
clase- and clay-rich source rocks, such as those from the
Superior, Slave, and Wyoming cratons.

No systematic difference in the ranges or distributions
of CaO/Na,0O, Rb/Sr, or Rb/Ba values is observed be-
tween Archean and Proterozoic SPG populations as a
whole, suggesting that clay-rich and clay-poor sediments
were present in the source rocks of both Archean and
Proterozoic SPGs. Therefore, on a broad scale the sedi-
mentary source regions for SPGs may have been similar
in terms of maturity (i.e. clay component) across the
Archean-Proterozoic transition. However, we recognize
that this suggestion is based upon a relatively limited
dataset of both Archean and Proterozoic SPGs (Fig. 7). A
larger compilation of Archean and Proterozoic SPG
whole-rock chemistry from more localities, in addition to
quantitative trace element modeling of partial melting of
specific representative source rocks, would be useful to
explore this idea in greater detail.

STABLE ISOTOPES

Given the existing petrological and geochemical data
indicating an origin through partial melting of
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metasedimentary rocks, Archean and Proterozoic SPGs
should preserve stable (e.g. oxygen) and radiogenic iso-
tope signatures suggesting derivation from weathered,
continental material (e.g. elevated '®0/'®0 ratios and
initial 8’Sr/%®Sr ratios). The available oxygen isotope
data for the SPGs, however limited, clearly demonstrate
this, as explained in detail below. We do not discuss the
radiogenic isotope compositions of the SPGs because
of the difficulties involved in their interpretation. Melts
derived through the partial melting of metasedimentary
rocks have complicated trace element and radiogenic
isotope signatures owing (in part) to the disequilibrium
nature of crustal anatexis at relatively low temperatures
(e.g. Watson & Harrison, 1983; Hammouda et al., 1996;
Patino Douce & Harris, 1998; Knesel & Davidson, 2002;
Zeng et al., 2005a, 2005b). As a result of incomplete dis-
solution of accessory phases (e.g. apatite, monazite, or
zircon), some trace elements (e.g. Pb and REE) and
radiogenic isotope characteristics (e.g. those of Nd, Pb,
and Hf) of anatectic melts are not representative of their
source rock, but rather the degree to which the acces-
sory phases have participated in the partial melting pro-
cess (Hogan & Sinha, 1991; Nabelek & Glascock, 1995;
Zeng et al., 2005a, 2005b; Farina et al., 2014; Tang et al.,
2014). Therefore, the radiogenic isotope signatures of
SPGs are controlled by two factors, which are difficult
to untangle: (1) the age of the crust from which the sedi-
mentary material was derived and subsequently melted
(which is highly dependent on location and geological
history); (2) disequilibrium melting during partial melt-
ing of refractory mineral phases. Therefore, we focus
here on a review of existing oxygen isotope data, as
other stable isotopes have not been measured in the
SPGs to so great an extent as to merit a comparison be-
tween Archean and Proterozoic samples [although see
Nabelek et al. (1992b) for H isotopes of the Harney Peak
granitel.

Oxygen isotopes

Background

Studies of oxygen isotopes in igneous and detrital zir-
con demonstrate that zircon §'80 values in the Archean
are mostly between 5 and 79, suggesting crystalliza-
tion from dominantly mantle-derived melts, whereas
zircon 880 shifts abruptly in the Proterozoic to higher
and more variable values (up to 109, (Valley, 2003;
Valley et al., 2005; Spencer et al., 2014, 2017; Payne
et al., 2015; Fig. 8). Possible causes for the shift in
3"®0,icon Vvalues may be related to several, non-
mutually exclusive factors (see discussion by Valley
et al., 2005) including the following: (1) the onset or ac-
celeration of subduction at the end of the Archean,
which would enhance the recycling of sediments into
the source regions of magmas; (2) the quantity and
composition of sediments available for recycling owing
to the emergence of a subaerial, evolved crust in the
Proterozoic (Spencer et al., 2014); (3) differences in
weathering across the GOE, giving rise to higher-3'%0

Proterozoic sediments that were ultimately assimilated
into magmas (Bindeman et al., 2016; Spencer et al.,
2019). Support for the latter two causes comes from
what is known about the ancient sedimentary record.
Archean sediments are characterized by immature, sub-
aqueous volcaniclastic material and shales with low
5'80 values (Ronov, 1964; Longstaffe & Schwarcz, 1977;
Shieh & Schwarcz, 1978; Lowe, 1994; Veizer &
Mackenzie, 2003; Bindeman et al., 2016; Fig. 8). In con-
trast, Proterozoic sedimentary sequences mark the
onset of subaerial weathering, characterized by high-
5'80, mature sediments such as clays, and chemical
sediments (e.g. carbonates and evaporates) (Ronov,
1964; Grotzinger & James, 2000; Veizer & Mackenzie,
2003; Campbell & Davies, 2017). In addition, the rise of
atmospheric oxygen diversified the number of clay min-
erals (e.g. Fe®"-bearing smectites) through oxidative
weathering of subaerial continental crust (Hazen et al.,
2013).

Testing whether the secular change in 5"80,ircon val-
ues was primarily due to a change in sediment
composition or volume or in tectonic regime is difficult
using zircon from a broadly sampled igneous record.
First, igneous rocks often have a complicated origin and
may have both mantle and crustal source components.
Second, detrital zircons (which are the primary dataset
for more recent studies demonstrating a secular trend
in §'®0,i,con Vvalues) have no petrological context to
understand their origin (see Spencer et al., 2019). As
SPGs are derived entirely from the partial melting of
metasedimentary rocks, they therefore should preserve
a pure sedimentary signal in their oxygen isotope val-
ues. If a stepwise change is observed, this suggests that
the increase in 8'0 values of igneous zircon at c. 2-3—
2.4 Ga was due, at least in part, to the increasing §'80 of
sediments. On the other hand, if there is no shift across
the Archaean-Proterozoic transition in the §'80 values
of the SPGs, then sedimentary rocks must have been
incorporated into magmas in more abundant amounts
via enhanced crustal recycling (through the formation
of larger volumes of sediments or enhanced subduc-
tion). In addition, mineral §'®0 values of SPGs are a
complementary, and in some cases, more robust record
than the sedimentary archive as the 5’0 values of
some minerals (such as zircon) are more resistant to
subsequent alteration than whole-rock values (Valley,
2003). Although diagenesis and metamorphism (pre-
requisites prior to partial melting) certainly will affect
the 8"80 values of the source rocks for the SPGs, SPGs
should still faithfully record relative variations in sedi-
mentary 8'0 values as these processes should affect
the §'80 values of Archean and Proterozoic sedimentary
rocks equally.

Oxygen isotopes in Archean and Proterozoic
SPGs

Archean SPGs with previously measured §'®0 values
(of both whole-rocks and minerals) include the

6102 J8qWaAON | Uo Jasn ABojouyoa] 1o synnsu| eluloyied Aq 29€Z1SS/662 L/./09A0ensqe-ajonie/ABojosad/woo dno-oliwepeose//:sdiy woll pepeojumod



1330

Journal of Petrology, 2019, Vol. 60, No. 7

Table 3: Archean and Proterozoic SPG oxygen isotope literature data summary

Locality WR/min* Range (%)t Av. (%) 10(%) n References Notes
Archean
Superior Craton
[1] Preissac-Lacorne WR 7-8-8-6 82 0-6 7 Fengetal, 1993
batholith
qtz 8-3-10-1 9.4 0-7 7 Feng et al., 1993
ksp 6-4-9-1 7-4 11 7 Fengetal., 1993
grt 4.3-6-5 5.4 0-7 7 Fengetal, 1993
ms 5.5-6-4 6-0 03 6 Fengetal, 1993
bt 1.7-3-4 27 0-6 5 Fengetal, 1993
WR 8:1-9-8 86 0-3 9 Mulja et al., 1995b
[9] Treelined Lake WR 9-0-11-6 10-0 09 8 Pan & Breaks, 1997
complex
[9] Separation Rapid WR 9.2-11-8 10-3 09 6 Pan & Breaks, 1997
pluton
[10] Winnipeg River WR 8-1-12.4 101 1.4 30 Longstaffe et al., 1981 Data from Eaglenest
pegmatite field—per- Lake, Greer Lake, Osis
aluminous Lake, and Tin Lake
leucogranites intrusions. Whole-rock
5'80 are homogeneous
within individual intru-
sions, but vary be-
tween bodies (e.g.
Greer Lake: +8:1 to
+8-79, v. Osis Lake:
+11-1to +12-49,,)
gtz 9-8-134 11-6 1-4 9 Longstaffe et al., 1981
ksp 7-7-114 9.3 1.5 9 Longstaffe et al., 1981
bt 3:3-5.9 4.8 12 6 Longstaffe et al., 1981
ms 6-3-9-6 7-6 15 7 Longstaffe et al., 1981
Slave Craton
[19] Yellowknife gran-  WR 8-8-11-0 10-3 07 12 Meintzer, 1987
ite—pegmatite field
Kaapvaal Craton
[22] Sinceni pluton WR 10-0-11-1 105 0-37 8 Blamart, 1993
Grunehogna Craton
[24] Annandagstop- zrc# 5.4-7-8 6-2 0-8 9 Marschall et al., 2010 zircon from 3 granodior-
pane granite ite to granite samples
(values only from zir-
con with crystallization
ages; i.e. not inherited)
Proterozoic
Wopmay Orogen
[25] Hepburn intrusive WR 8-7-12:1 10-1 0-7 28 Lalonde, 1989 only data from peralu-
suite minous granodiorites
to granites compiled
(whole-rock >65wt %
SiO,)
Trans-Hudson Orogen
[28] Harney Peak gran- WR 10-4-13.3 115 0-6 — Nabelek et al., 1992a, 1992b averages are those
ite (‘low-8'80’ reported by Nabelek
series) etal., 1992b
[28] Harney Peak gran- WR 10-4-13-3 132 0-8 — Nabelek et al., 19924, 1992b averages are those
ite (’high—5180’ reported by Nabelek
series) etal., 1992b
[28] Calamity Peak WR 12.9-14.3 137 05 6  Rockhold et al., 1987
pluton
[26] Arch Lake granite, WR 9.7-10-9 10-4 05 6 De etal., 2000
Talston Magmatic
Zone
[26] Slave granite, WR 9-6-11-8 109 09 6 Deetal., 2000
Talston Magmatic
Zone
SW USA—Colorado
[29] Silver Plume & St WR 10-4-11-6 10-8 05 5 Anderson & Morrison, 2005
Vrain granites
SW USA—Arizona
[30]1 Ruin, Sierra WR 10-2-11-2 10-6 0-4 6 Anderson & Morrison, 2005

Estrella, Oracle, Ak-
Chin granites
North China Craton

(continued)
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Table 3: Continued

Locality WR/min* Range (%)t Av. (%) 106(%) n References Notes
[33] Helanshan zrc# 7-3-10-6 9.4 1 37 Danetal., 2014 zircon data from two dif-
complex ferent granite samples
[32] Liangcheng zrct 9-2-11-6 10-5 05 143 Wang et al., 2018 5 different samples of
granites grt-bt to grt-opx gran-
itoids; only values from
zircon with ‘magmatic’
textures included
zrct 7-2-91 82 05 45 Wang et al., 2017 3 different samples of

‘meta-leucogranites’
(grt-, bt-, and sil-bear-
ing); only values from
zircon with ‘magmatic’
textures included

Locality number in brackets is locality number in Table 1.

*Indicates whether reported values are for whole-rock (WR) or mineral separates. qtz, quartz; ksp, K-feldspar; grt, garnet; ms, mus-

covite; bt, biotite; zrc, zircon.

0 isotope values are reported in per mil notation relative to the Vienna Standard Mean Ocean Water (VSMOW).

*Measured in situ via secondary ion mass spectrometry.

Annandagstoppane granite of Antarctica (~3-1Ga;
Marschall et al., 2010), the Preissac-Lamotte-Lacorne—
Moly Hill granites of Quebec (~2-6 Ga; Feng et al., 1993;
Mulja et al., 1995b), the Treelined Lake complex (Pan &
Breaks, 1997); the Yellowknife granite—pegmatite field
(Prosperous granite, Meintzer, 1987), the Winnipeg
River pegmatite field (Longstaffe et al., 1981), and the
Sinceni pluton of the Kaapvaal Craton (Blamart, 1993).
Paleoproterozoic SPGs with previously measured §'0
values are the Harney Peak granite and satellite intru-
sions (Walker et al., 1986; Rockhold et al., 1987; Shearer
et al., 1987; Nabelek et al, 1992b), the Helanshan
Complex (Dan et al., 2014) and Liangcheng granites
(Wang et al., 2017, 2018) of the North China Craton, and
the Taltson Magmatic Zone of Saskatchewan (De et al.,
2000). A summary of oxygen isotope data from the lit-
erature is provided in Table 3.

Average whole-rock, zircon, and quartz §'80 values
from SPGs all increase from the Archean to the
Paleoproterozoic (Fig. 9a—f). Among mineral phases in
high-silica rocks, zircon is generally taken as the most
reliable recorder of magmatic 3'80 values owing to its
slow O self-diffusivity and robustness to alteration
(Valley, 2003; Bindeman et al., 2018). [Garnet, although
considered a phase often resistant to weathering, is not
always present in high-silica rocks, with SPGs being a
notable exception (King & Valley, 2001).] Zircon 3'0
values in Archean SPGs are limited in number and de-
rive solely from the Annandagstoppane granite
(Marschall et al., 2010) with a mean value of 6:1 = 1-6%,
(2o0sp, n=10; Fig. 9c). Available zircon 580 data for
Paleoproterozoic SPGs exist only for the Helanshan
Complex (Dan et al., 2014) and the Liangcheng granites
(Wang et al., 2017, 2018) of the North China Craton and
yield significantly higher average values of 9-9 =229
(20sp, N=225) (Fig. 9d). However, as the present zircon
5'80 data are limited [from one Archean locality (with
10 analyses) and two Paleoproterozoic localities], we
discuss whole-rock and quartz §'80 values as well, even

though these materials are known to be more suscep-
tible to alteration of primary magmatic 5'®0 values by
weathering (for whole-rock samples) or sub-solidus re-
equilibration (e.g. for quartz; Giletti & Yund, 1984; Eiler
et al, 1992). The averages of all available quartz §'30
values from Archean and Proterozoic SPG localities are
10-6 =3-2%, (20sp, n=16) and 13-4 +*25%, (2csp,
n=61), respectively, whereas whole-rock §'®0 values
are 9-8*+2.5% and 11-0x3-3%, (Fig. 9a, b, e and f;
Table 3). The average zircon, quartz, and whole-rock
5'80 values from the Archean and Proterozoic are statis-
tically distinguishable with t-test p values of <0-001.
Magmatic 80 values can increase through differen-
tiation and concomitant SiO, enrichment in the melt
(Eiler, 2001; Bindeman et al., 2004; Bucholz et al., 2017).
However, the difference in whole-rock §'®0 values is
not simply a function of an increase in whole-rock SiO,
contents. Indeed, in the oxygen isotope compilation,
the Archean samples skew to higher SiO, contents than
the Proterozoic samples while maintaining distinctly
lower 8'0 values (Fig. 9g). Unfortunately, for most
studies included in the compilation, mineral pairs were
not measured, rendering implementation of oxygen iso-
tope thermometry impossible. An exception to this is
the study of Nabelek et al. (1992b) in which the authors
comprehensively measured quartz, feldspar, garnet,
muscovite, biotite, and tourmaline §'®0 values from
over 50 samples from the Harney Peak granite and
associated pegmatites. Calculated oxygen isotope
equilibration temperatures are widely variable (408-
848°C, excluding feldspar—quartz pairs, which yielded a
lower range of 300-550°C), suggesting that in many
samples significant subsolidus re-equilibration of oxy-
gen isotopes in quartz and other minerals occurred.
Further such detailed studies involving mineral pair
oxygen isotope measurements (e.g. zircon and garnet)
will need to be undertaken to verify which values are
representative of magmatic §'0 values. Although the
SPG data summarized in Figs 8 and 9 come from a
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Fig. 9. Oxygen isotope ratios [expressed as 8'20 (%,)] of Archean and Proterozoic SPGs. Histograms of whole-rock (a, b), zircon (c,
d), and quartz (e, f) 5'80 values. (g) Whole-rock and zircon §'80 values versus whole-rock SiO, for samples where whole-rock major
element analyses were available. Summary of data and data sources are given in Table 3.

relatively small set of data, it is nevertheless important
to note that the 3'®0 data from the Archean to
Proterozoic SPGs come from four continents
(Antarctica, North America, Europe, Asia) and are con-
sistent between zircon, quartz, and whole-rock values.
The shift in §'®0 mineral and whole-rock values is con-
sistent with the hypothesis that sedimentary 5'®0 val-
ues underwent a dramatic increase across the Archean—
Proterozoic transition, potentially owing to the rise of
new styles of weathering of subaerial landmasses in an
oxygenated atmosphere.

PERSPECTIVES

The motivation and premise for this review paper is
that SPGs may be able to shed light on how variations

at the surface of the Earth and in sedimentary rock com-
positions across the Archean-Proterozoic transition
may have been imprinted on the igneous rock record. In
particular, the Archean—-Proterozoic transition coincided
with both the rise of subaerial weathering and the Great
Oxidation Event, both of which profoundly influenced
the chemistry and lithologies of sedimentary rocks.
Further, SPGs may provide complementary insight into
the evolution of sediments across Earth’s history as
they can mitigate some of the issues associated with
poor preservation of the sedimentary rock record. We
briefly summarize our key findings.

1. No systematic variations between Archean and
Proterozoic SPGs in terms of mineral assemblages
are observed. Because of their strongly peralumin-
ous nature, all are characterized by biotite and/or
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muscovite, sometimes with another peraluminous
indicator mineral such as garnet, cordierite, or tour-
maline. Biotite compositions and the presence of
magnetite in some Proterozoic SPGs, however, indi-
cate that Archean SPGs on average crystallized from
melts characterized by lower oxygen fugacity val-
ues, which may reflect derivation from sedimentary
source rocks with more reduced bulk redox states
prior to the Great Oxidation Event.

2. Whole-rock chemistry indicators of temperatures of
melting and source lithology (e.g. greywackes ver-
sus pelites) imply that although specific SPGs local-
ities are characterized by coherent patterns (e.g.
high-temperature melting of greywackes), there is
no systematic difference between Archean and
Proterozoic SPGs as a whole. This in turn suggests
that the generation of SPGs on either side of the
Great Oxidation Event was not characterized by dis-
tinct temperatures of melting or maturity of sedi-
mentary source rocks. These conclusions are based
on a relatively limited dataset predominantly defined
by SPGs that appear to have been derived from both
clay-rich and clay-poor source regions.

3. Although interpretation of radiogenic isotopes in
SPGs (e.g. Sr or Nd) is complicated owing to disequi-
librium melting of accessory phases such as mona-
zite, the oxygen isotope composition of SPGs should
reflect variations in source rock oxygen isotope
ratios. Whole-rock, quartz, and zircon §'80 values, al-
though currently limited in number and geographic-
al locality, are on average higher in Proterozoic
SPGs as compared with Archean SPGs. This shift in
580 values is consistent with the hypothesis that
sedimentary §'80 values increased across the
Archean-Proterozoic transition as a result of the
onset of oxidative weathering of subaerial
landmasses.

Above, we discussed what is known about Archean
and Paleoproterozoic SPG localities in terms of pet-
rology and chemistry. However, there exist large gaps
in our knowledge of these rocks and there is abundant
future work to be done on them. Below we outline sev-
eral fruitful areas for research and potential avenues
forward.

Detailed field studies, petrology, and
geochronology

In this review, we have attempted to catalog and de-
scribe all the localities of Archean and Paleo- to
Mesoproterozoic SPGs in the literature. The SPGs from
the localities listed in Table 1 have been studied to
greater or lesser degrees. For some, a combination of
careful field mapping and sampling [e.g. the Ghost Lake
batholith (Breaks & Moore, 1992) or the Harney Peak
granite (Nabelek, 1999, and references therein)] have
allowed for a detailed understanding of their petrogen-
esis and relationship to broader tectonic events. Many
others require more detailed studies to understand their

source rock characteristics and ages, crystallization
ages through modern geochronological techniques,
and crystallization conditions as inferred from quantita-
tive thermobarometry. Many of the granite localities in
Table 1 do not have robust age constraints. For ex-
ample, many localities from the Superior Craton are
only known to be Neoarchean in age (e.g. Allison Lake
batholith) and others, such as the Silver Plume and St
Vrain granites, have ages based on Rb-Sr whole-rock
and mineral isochrons (Peterman et al., 1968). Precise
and accurate age constraints are required to explore the
temporal evolution of isotope systems in these granites.
To obtain crystallization ages zircon rims should be ana-
lyzed, as SPGs are often characterized by zircon with
inherited cores owing to partial dissolution of zircon
during partial melting (Miller et al., 2003).

A critical objective of any future studies should be to
constrain the depositional age of the sedimentary
source material. As constraining crustal residence ages
through radiogenic isotope systems is complicated in
SPGs, analyzing inherited cores of zircon in the granites
will provide provenance and maximum depositional
age information, analogous to the detrital zircon tech-
nique in sediments (Gehrels, 2014). This will allow cor-
relation of geochemical signals in the SPGs not only
with the age of crystallization, but also with the age of
source rock deposition and will be particularly import-
ant for Proterozoic sediments to screen for SPGs that
may have been derived from Archean sediments.

Mineral chemistry

Detailed studies of individual localities and their mineral
chemistry can yield information concerning intensive
variables during granite formation. For example, in a
study of Archean and Proterozoic SPGs from North
America, Bucholz et al. (2018) used biotite and whole-
rock Fe'/Mg ratios to demonstrate that on average the
Archean SPGs crystallized at higher oxygen fugacity
values than the Proterozoic SPGs. They related this shift
in fp, values to the more oxidized sedimentary sources
of the Proterozoic SPGs owing to deposition under oxi-
dative weathering conditions after the GOE. The proto-
col developed for constraining the fp, during
crystallization for SPGs in that paper could be applied to
a wider sample suite from different continents and a
wider temporal range. In addition, although based on a
limited dataset, Fe3*/Fe' ratios of biotites in SPGs are
generally lower (0-04-0-09) as compared with those of I-
type granites (generally >0-1) (De Albuquerque, 1973;
Ishihara, 1977; Lalonde & Bernard, 1993). Measurement
of Fe**/Fe" ratios in biotite in Archean and Proterozoic
SPGs could be another fruitful way forward, to con-
strain relative fp, values.

In garnet-bearing SPGs, detailed studies of garnet
textures and compositions (e.g. Taylor & Stevens,
2010), as well as garnet-biotite thermometry (e.g.
Holdaway, 2000), can yield information on garnet for-
mation mechanisms (e.g. through peritectic reactions)
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and crystallization conditions. This information, in turn,
will inform how bulk-rock compositions should be inter-
preted (as melt or a mixture of melt + restite) and SPG
formation mechanisms (Stevens et al., 2007).

Oxygen isotopes

As reviewed above, there is a general paucity of oxygen
isotope data on SPGs from the Archean and Proterozoic
and, in particular, single mineral oxygen isotope data.
Obtaining oxygen isotope ratios for minerals consid-
ered relatively robust to subsolidus diffusive oxygen
isotope re-equilibration (e.g. zircon and garnet) would
inform the long-standing problem concerning secular
variation of oxygen isotope ratios in both sedimentary
and igneous rocks (see previous section on oxygen iso-
topes). Obtaining data for mineral pairs from individual
samples will be crucial to assess the temperatures at
which oxygen isotope equilibrium was achieved and
whether the minerals faithfully recording magmatic val-
ues (in contrast to sub-solidus conditions).

Sulfur isotopes

Although our discussion of stable isotopes has
concerned only oxygen isotopes, sulfur isotope studies
of Archean and Proterozoic SPGs would yield interest-
ing information on several fronts. First, sulfur in the
sedimentary record primarily occurs either in its oxi-
dized form as sulfate or its reduced form as sulfide
(Canfield, 2001). Sulfate has higher 3*S/*S ratios as
compared with coexisting sulfide at equilibrium (i.e.
higher 83*S values). Further, during reduction of sulfate
ions by anaerobic bacteria, the remaining sulfate is fur-
ther enriched in 3*S. The sedimentary sources from
which Archean SPGs were derived were probably domi-
nated by sulfide-bearing metasedimentary rocks
because of the relatively low fp, values inferred in their
genesis (Bucholz et al., 2018). In contrast, Proterozoic
SPGs may have been derived from a significantly more
oxidized source region, potentially owing to the incorp-
oration of sulfate deposits, which became abundant
only in the Proterozoic. If sulfate is the cause of the in-
crease in fp, values of SPGs in the Proterozoic, rocks
that preserve evidence for elevated fp, values during
crystallization may also have elevated &3*S values. For
example, there is some evidence that sulfur isotopes in
igneous rocks may mirror the bulk sulfur oxidation state
of their source region, with more reduced ‘ilmenite-
series’ granitoids and more oxidized ‘magnetite-series’
granitoids from Japan and the Sierra Nevada batholith
having lower (0 to —10%,) and higher (+1 to 9%,) &%*S
values, respectively (Sasaki & Ishihara, 1979; Ishihara &
Sasaki, 1989).

Second, Archean sulfide and (less-abundant) sulfate
minerals display mass-independent fractionations (MIF)
among the four stable sulfur isotopes, providing evi-
dence for an anoxic atmosphere at that time (e.g.
Farquhar et al., 2000; Johnston, 2011; Paris et al., 2014).
Examining MIF signatures in sulfur-bearing minerals

has been classically used in the study of Archean sedi-
mentary rocks, but has been extended to igneous rocks
through analysis of sulfide inclusions in ocean island
basalts (Cabral et al., 2013; Delavault et al., 2016) and
diamonds (Farquhar et al., 2002; Thomassot et al., 2009;
Smit et al., 2019). For example, small S-MIF (<19, have
been observed in sulfides from ocean island basalts
from Mangaia and Pitcairn and have been interpreted
as indicating a deep, long-lived subducted Archean
component in their mantle source regions (Cabral et al.,
2013; Delavault et al., 2016). However, it is not well
understood how sulfur isotopes are transferred to the
igneous record, as sulfur isotopes in igneous rocks (and
particularly 33S or 36S) are generally not analyzed and
have not received much attention. A careful study of
Archean SPGs and rocks representative of their metase-
dimentary source rocks could help shed light on the
fundamentals of sulfur isotope transfer from the sedi-
mentary to the igneous rock record.

Other stable isotopes

Numerous other stable isotope systems in sedimentary
rocks have been observed to undergo radical changes
across the GOE (e.g. Fe, Rouxel et al., 2005; Mo,
Planavsky et al., 2014; Cu, Fru et al., 2016; U, Kendall
et al., 2013). These shifts in isotope ratios are hypothe-
sized to have occurred as a result of changing redox
conditions during sediment transport and/or deposition.
An outstanding question is whether these shifts are
also preserved in Archean versus Proterozoic SPGs.
Each of these systems will need to be studied in detail
to determine how metamorphism and partial melting
affected the isotopes of the metasedimentary source
rock and ultimately strongly peraluminous magmas
derived from such source rocks.

For all these time-variant isotope systems, Archean
and Proterozoic SPGs are uniquely situated to offer a
complementary archive to the existing sedimentary re-
cord. First, SPGs have the unique capability to hom-
ogenize large packages of sedimentary rocks, giving an
‘average’ composition throughout this critical time in
Earth history. This helps to eliminate some of the sam-
pling and preservation bias inherent in the sedimentary
record. Second, the source rock sediments for SPG for-
mation are often those deposited on continental slopes
or in the deep ocean, which represent different lithofa-
cies from the cratonal sequences that are traditionally
analyzed in sedimentary studies.
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