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Abstract: For a contact manifold, we study a strongly pseudo-convex CR space form with constant holo-

morphic sectional curvature for the Tanaka-Webster connection. We prove that a strongly pseudo-convex CR

space form M is weakly locally pseudo-Hermitian symmetric if and only if (i) dim M = 3, (ii) M is a Sasakian

space form, or (iii) M is locally isometric to the unit tangent sphere bundle T1(H
n+1) of a hyperbolic space

H
n+1 of constant curvature −1.
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1 Introduction

Given a contact manifold (M; η), two fundamental structures are playing crucial roles in its geometry. One is

an associated Riemannian metric g and the other is the Levi form associated with an endomorphism J on the

contact distributionD(= Ker η) such that J2 = −I. Here, J defines an almost CR structureH = {X− iJX : X ∈ D},
that is, each fiber Hp, p ∈ M, is of complex dimension n and H ∩ H̄ = {0}. Then there is a one-to-one

correspondence between the two associated structures by the relation

g = L + η ⊗ η,

where we denote by the same letter L the natural extension (iξL = 0) of the Levi form to a (0,2)-tensor field

on M. For theoretical considerations, it is desirable to have integrability of the almost complex structure J

(on D). If this is the case, we speak of an (integrable) CR structure and of a CRmanifold. Looking at a contact

manifold from the viewpoint of its pseudo-Hermitian CR structure, there exists a canonical affine connection,

different from the Levi Civita connection∇ of an associated metric. This is the Tanaka-Webster connection ∇̂
on a strongly pseudo-convex CR manifold. Using it, in earlier works [9], [13], [15], [16], [17] we started the

intriguing study of interactions between the contact Riemannian structure and the strongly pseudo-convex

pseudo-Hermitian structure.

A normal contact Riemannian manifold is called a Sasakian manifold. A Sasakian structure has another

picture, namely, a contact strongly pseudo-convex CR structure whose characteristic vector field is a Killing

vector field for its associated Riemannianmetric. A Sasakian space form is a Sasakianmanifoldwith constant

holomorphic sectional curvaturewith respect to∇. Thenwefind that a Sasakian space formhas also constant

holomorphic sectional curvaturewith respect to ∇̂. In [14]we defined a contact Riemannian space formwhich

extends a Sasakian space form in the Riemannian view point. Corresponding to that, in [15] we introduced a

notion, say, a strongly pseudo-convex CR space form, which is a contact strongly pseudo-convex CRmanifold

M of constant holomorphic sectional curvature cwith respect to ∇̂, that is,M satisfies for any unit vector field

X orthogonal to ξ

L(R̂(X, JX)JX, X) = c.
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Exploring symmetry of contact manifolds, Takahashi [27] introduced the Sasakian local φ-symmetry as an

odd-dimensional analogue of Hermitian locally symmetric spaces. Then we find that a Sasakian space form

is locally φ-symmetric. On the other hand, a weak local pseudo-Hermitian symmetry on contact strongly

pseudo-convex CR manifolds is defined by the condition

L((∇̂X R̂)(Y , Z)U, V) = 0

for all X, Y , Z, U, V orthogonal to ξ . In Section 5, we prove that a strongly pseudo-convex CR space form M

is weakly locally pseudo-Hermitian symmetric if and only if (i) dimM = 3, (ii)M is a Sasakian space form, or

(iii) M is locally isometric to the unit tangent sphere bundle T1(H
n+1) of a hyperbolic spaceHn+1 of constant

curvature −1. In Section 6,we treat the three-dimensional case. Then,wefind interesting examples of strongly

pseudo-convex CR space forms other than contact Riemannian homogeneous spaces (see, Example 1 and

Example 2).

The author is very thankful to the organizing committee for a nice conference/school RIEMain in Contact,

Cagliari, 18-22 June 2018.

2 Preliminaries

All manifolds in the present paper are assumed to be connected and of class C∞. We start by collecting some

fundamental material about contact Riemannian manifolds and strongly pseudo-convex almost CR mani-

folds. We refer to [1] for further details.

A (2n + 1)-dimensional manifold M2n+1 is a contact manifold if it is equipped with a global one-form η

such that η∧(dη)n ≠ 0 everywhere. Given a contact form η, there exists a unique vector field ξ , which is called

the characteristic vector field or the Reeb vector field, satisfying η(ξ ) = 1 and dη(ξ , X) = 0 for any vector field

X. It is well-known that there also exist a Riemannian metric g and a (1, 1)-tensor field φ such that

η(X) = g(X, ξ ), dη(X, Y) = g(X, φY), φ2X = −X + η(X)ξ , (1)

where X and Y are vector fields on M. From (1), it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY) = g(X, Y) − η(X)η(Y). (2)

A Riemannian manifold M equipped with structure tensors (η, g) satisfying (1) is said to be a contact

Riemannianmanifold or contact metric manifold and is denoted byM = (M; η, g). Given a contact Riemannian

manifoldM, we define a (1, 1)-tensor field h by h = 1
2Lξφ, where Lξ denotes Lie differentiation with respect

to ξ . The operator h is self-adjoint and satisfies

hξ = 0, hφ = −φh, (3)

∇Xξ = −φX − φhX, (4)

for all vector fields X, Y , Z onM, where∇ is the Levi-Civita connection and R theRiemannian curvature tensor

defined by

R(X, Y)Z = ∇X(∇YZ) −∇Y (∇XZ) −∇[X,Y]Z

for all vector fields X, Y , Z. From (3) and (4) we see that ξ generates a geodesic flow. Furthermore, we know

that∇ξφ = 0 in general. From the second equation of (3) it follows also that

(∇ξh)φ = −φ(∇ξh). (5)

Along the characteristic flow ξ , the Jacobi operator ℓ = R(·, ξ )ξ is a symmetric (1, 1)-tensor field. We call it

the characteristic Jacobi operator. From the definition of R by using (4) we have

ℓ = −φ2 + φ∇ξh − h
2. (6)
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From (6) using the 2nd equation of (3) and (5) we have

∇ξh = 1/2(ℓφ − φℓ). (7)

A contact Riemannian manifold for which ξ is Killing is called a K-contact manifold. It is easy to see that a

contact Riemannian manifold is K-contact if and only if h = 0 or, equivalently, ℓ = I − η ⊗ ξ . For a contact

Riemannian manifold M, one may define naturally an almost complex structure J on M ×R by

J(X, f
d

dt
) = (φX − fξ , η(X)

d

dt
),

where X is a vector field tangent toM, t the coordinate of R and f a function onM ×R. If the almost complex

structure J is integrable, M is said to be normal or Sasakian.We note that every Sasakian manifold is also K-

contact, but the converse is only true in dimension 3. A Sasakian structure is characterized by the following

equation:

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (8)

or

R(X, Y)ξ = η(Y)X − η(X)Y (9)

for all vector fields X and Y on M.

Next,we recall thenatural relationof contactmetricmanifoldswithCRmanifolds. For a contact Riemann-

ian manifold M, the tangent space TpM of M at each point p ∈ M is decomposed as the direct sum

TpM = Dp ⊕ {ξ}p, where we denote Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp defines a 2n-dimensional

distribution orthogonal to ξ , which is called the contact distribution or the contact subbundle. For a contact

Riemannian structure (η, g), its associated almost CR structure is given by the holomorphic subbundle

H = {X − iJX : X ∈ D}

of the complexification CTM of the tangent bundle TM, where J = φ|D, the restriction of φ to D. We see that

each fiberHp, p ∈ M, is of complex dimension n,H ∩ H̄ = {0} and CD = H ⊕ H̄. The Levi form L is defined

by

L : D × D → F(M), L(X, Y) = −dη(X, JY)

where F(M) denotes the algebra of differentiable functions on M. Since dη(X, Y) = g(X, φY), the Levi form

is Hermitian and positive definite. So, the pair (η, J) is a pseudo-Hermitian strongly pseudo-convex almost

CR structure on M. The associated almost CR structure is integrable if [H,H] ⊂ H. This property does not

hold for a general contact metric manifold. In terms of the structure tensors, integrability is equivalent to the

condition Ω = 0, where Ω is the (1, 2)-tensor field on M defined as

Ω(X, Y) = (∇Xφ)Y − g(X + hX, Y)ξ + η(Y)(X + hX) (10)

for vector fields X, Y on M (see [30, Proposition 2.1]). In this case, the pair (η, J) is called a pseudo-Hermitian

strongly pseudo-convex CR structure and (M; η, J) is called a strongly pseudo-convex integrable pseudo-

Hermitian manifold or a strongly pseudo-convex CR manifold. From (8) and (10), we see that the associated

pseudo-Hermitian structure of a Sasakian manifold is integrable. The same is true for any three-dimensional

contact metric space.

A pseudo-homothetic (or a D-homothetic) transformation of a contact metric manifold [29] is a change of

structure tensors of the form

η̄ = aη, ξ̄ = 1/a ξ , φ̄ = φ, ḡ = ag + a(a − 1)η ⊗ η, (11)

where a is a positive constant. From (11), we have h̄ = (1/a)h. By using the Koszul formula

2g(∇XY , Z) = Xg(Y , Z) + Yg(Z, X) − Zg(X, Y)

− g(X, [Y , Z]) + g(Y , [Z, X]) + g(Z, [X, Y]),
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we have

∇̄XY = ∇XY + C(X, Y), (12)

where C is the (1,2)-tensor defined by

C(X, Y) = −(a − 1)[η(Y)φX + η(X)φY] −
a − 1

a
g(φhX, Y)ξ .

Remark 1. Integrability of the associated almost CR structure is preserved under pseudo-homothetic trans-

formations. In fact, by direct computations, we have

(∇̄X φ̄)Y = (∇Xφ)Y + (a − 1)η(Y)φ2X − (a − 1)/ag(X, hY)ξ .

From this, we easily see that Ω = 0 implies Ω̄ = 0.

3 The generalized Tanaka-Webster connection

Now, we review the generalized Tanaka-Webster connection ∇̂ ([30]) on a contact Riemannian manifold M =

(M; η, g). It is defined by

∇̂XY = ∇XY + η(X)φY + (∇Xη)(Y)ξ − η(Y)∇Xξ

for all vector fields X, Y on M. Together with (4), ∇̂may be rewritten as

∇̂XY = ∇XY + A(X, Y), (13)

where we put

A(X, Y) = η(X)φY + η(Y)(φX + φhX) − g(φX + φhX, Y)ξ . (14)

We see that the generalized Tanaka-Webster connection ∇̂ has the torsion

T̂(X, Y) = 2g(X, φY)ξ + η(Y)φhX − η(X)φhY . (15)

In particular, for a K-contact manifold we get

A(X, Y) = η(X)φY + η(Y)φX − g(φX, Y)ξ . (16)

The generalized Tanaka-Webster connection can also be characterized differently.

Proposition 1 ([30]). The generalized Tanaka-Webster connection ∇̂ on a contact Riemannian manifold M =

(M; η, g) is the unique linear connection satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;

(ii) ∇̂g = 0;

(iii-1)T̂(X, Y) = 2g(X, φY)ξ , X, Y ∈ D;

(iii-2)T̂(ξ , φY) = −φT̂(ξ , Y), Y ∈ D;

(iv) (∇̂Xφ)Y = Ω(X, Y), X, Y ∈ TM.

Wenote that theTanaka-Webster connection ([28], [32])wasoriginally defined for anon-degenerate integrable

pseudo-Hermitianmanifold, inwhich case condition (iv) reduces to ∇̂φ = 0. The above definition is a natural

generalization to the non-integrable case.

Proposition 2. ([9]) The generalized Tanaka-Webster connection is invariant under a pseudo-homothetic

transformation.

Corollary 3. The generalized Tanaka-Webster curvature tensor R̂, its torsion tensor T̂ and their covariant

derivatives ∇̂R̂ and ∇̂T̂ are pseudo-homothetically invariant.
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We take a look at R̂(X, Y)Z = ∇̂X(∇̂YZ) − ∇̂Y (∇̂XZ) − ∇̂[X,Y]Z in some more detail for the general case. First,

we have

Proposition 4.

R̂(X, Y)Z = −R̂(Y , X)Z,

L(R̂(X, Y)Z,W) = −L(R̂(X, Y)W , Z).

The first identity follows trivially from the definition of R̂. Since the connection is metrical with respect to its

associated metric g (∇̂g = 0) the second identity is proved in a similar way as for the case of Riemannian

curvature tensor. Since the Tanaka-Webster connection is not torsion-free, the Jacobi- or Bianchi-identities

do not hold, in general. Before we study the curvature tensor R̂, from (3), (13) and (14) we have

(∇̂Xh)Y =(∇Xh)Y + A(X, hY) − hA(X, Y)

=(∇Xh)Y + 2η(X)φhY + g((φh + φh2)X, Y)ξ (17)

+ η(Y)(φhX + φh2X).

From the definition of R̂, together with (13), taking account of ∇̂η = 0, ∇̂ξ = 0, ∇̂g = 0 and (17), straight-

forward computations yield

R̂(X, Y)Z =R(X, Y)Z + η(Z)
(
Ω(X, Y) − Ω(Y , X) + Ω(X, hY) − Ω(Y , hX)

+ φP(X, Y) + φ(A(X, Y) − A(Y , X)) + φ(A(X, hY) − A(Y , hX))
)

− g
(
Ω(X, Y) − Ω(Y , X) + Ω(X, hY) − Ω(Y , hX) + φP(X, Y) + φ(A(X, Y) − A(Y , X))

+ φ(A(X, hY) − A(Y , hX)), Z
)
ξ − 2g(φX, Y)φZ

− η(X)
(
Ω(Y , Z) + φA(Y , Z)

)
+ η(Y)

(
Ω(X, Z) + φA(X, Z)

)

+ η(A(X, Z))(φY + φhY) − η(A(Y , Z))(φX + φhX)

+ g(φX + φhX, A(Y , Z))ξ − g(φY + φhY , A(X, Z))ξ ,

where we put P(X, Y) = (∇Xh)Y − (∇Yh)X. By using (1), (2), (3) and (14), we have

R̂(X, Y)Z = R(X, Y)Z + B(X, Y)Z, (18)

where

B(X, Y)Z =η(Z)
(
Ω(X, Y) − Ω(Y , X) + Ω(X, hY) − Ω(Y , hX) + φP(X, Y)

)

− g
(
Ω(X, Y) − Ω(Y , X) + Ω(X, hY) − Ω(Y , hX) + φP(X, Y), Z

)
ξ

− η(Z)
{
η(Y)(X + hX) − η(X)(Y + hY)

}

− η(X)Ω(Y , Z) + η(Y)Ω(X, Z)

+ η(Y)g(X + hX, Z)ξ − η(X)g(Y + hY , Z)ξ

+ g(φY + φhY , Z)(φX + φhX) − g(φX + φhX, Z)(φY + φhY)

− 2g(φX, Y)φZ

for all vector fields X, Y , Z in M.

Definition 1. ([16]) The pseudo-Hermitian (or the Tanaka-Webster) Ricci curvature tensor ρ̂ is defined by

ρ̂(X, Y) =
1

2
trace of {V 7→ JR̂(X, JY)V},

where X, Y are vector fields orthogonal to ξ . A strongly pseudo-convex almost CR manifold M is called pseudo-

Einstein if the pseudo-Hermitian Ricci tensor is proportional to the Levi form L.



284 | Jong Taek Cho

Wedefine the pseudo-Hermitian (or the Tanaka-Webster) Ricci operator Q̂ by L(Q̂X, Y) = ρ̂(X, Y). The pseudo-

Hermitian (or the Tanaka-Webster) scalar curvature r̂ is given by

r̂ = trace of {V 7→ Q̂V}.

4 Contact (k, µ)-spaces

Inwhat follows, an important role will be played by a specific class of contactmetricmanifolds, namely those

for which

R(X, Y)ξ = (kI + µh)(η(Y)X − η(X)Y), (19)

where I denotes the identity transformation and (k, µ) ∈ R
2. Such spaces are called (k, µ)-spaces and were

introduced in [2]. As examples, we have Sasakian spaces (k = 1 and h = 0) and also the unit tangent sphere

bundle of spaces of constant curvature b (k = b(2 − b) and µ = −2b). Since the unit tangent sphere bundle

is non-Sasakian when b ≠ 1 [31], this gives us a lot of non-Sasakian examples. Other than the unit tangent

bundles, this class contains non-unimodular Lie groups with left-invariant contact metric structure (see [5]).

Due to an explicit description of the curvature tensor of (k, µ)-spaces in [5], we have

g(R̂(X, Y)Z,W) =g(H(X, Y)Z,W) + (1 −
µ

2
)
{
g(Y , Z)g(X,W) − g(X, Z)g(Y ,W)

+ g(φY , Z)g(φX,W) − g(φX, Z)g(φY ,W) − 2g(φX, Y)g(φZ,W)
}

+
1 − (µ/2)

1 − k

{
g(hY , Z)g(hX,W) − g(hX, Z)g(hY ,W)

+ g(φhY , Z)g(φhX,W) − g(φhX, Z)g(φhY ,W)
}

(20)

for all vector fields X, Y , Z andW orthogonal to ξ , where

g(H(X, Y)Z,W) =g(Y , Z)g(hX,W) − g(X, Z)g(hY ,W)

− g(Y ,W)g(hX, Z) + g(X,W)g(hY , Z)

+ g(φY , Z)g(φhX,W) − g(φX, Z)g(φhY ,W)

− g(φY ,W)g(φhX, Z) + g(φX,W)g(φhY , Z).

(21)

Furthermore, we have ([16])

Proposition 5. A non-Sasakian contact (k, µ)-space (k < 1) is pseudo-Einstein with constant pseudo-

Hermitian scalar curvature r̂ = 2n2(2 − µ).

Corollary 6. The standard contact metric structure of T1M(b) of a space of constant curvature b is pseudo-

Einstein. Its pseudo-Hermitian scalar curvature r̂ = 4n2(1 + b).

Let’s recall some of the properties of (k, µ)-spaces which we will make use of later on. Firstly, as proved in [2],

the class of (k, µ)-spaces is invariant under pseudo-homothetic transformations. More precisely, a pseudo-

homothetic transformation with constant a changes (k, µ) into (k̄, µ̄), where

k̄ =
k + a2 − 1

a2
, µ̄ =

µ + 2a − 2

a
. (22)

Remark 2. From these formulas, we see that the values k = 1 and µ = 2 are preserved under D-homothetic

transformations for all a(≠ 1). The case k = 1 corresponds to the class of Sasakian manifolds; for the case

µ = 2, we will find a geometric interpretation further on (see Theorem 12).

Secondly, the associated pseudo-Hermitian structure of a (k, µ)-space is integrable, i.e., these spaces are

strongly pseudo-convex CRmanifolds. This gives us an expression for∇φ via (10). Moreover, also for∇h, we

have an explicit formula [2]:

(∇Xh)Y =
{
(1 − k)g(X, φY) − g(X, φhY)

}
ξ − η(Y)

{
(1 − k)φX + φhX

}
− µη(X)φhY . (23)
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From (23), it follows immediately that a (k, µ)-space satisfies g((∇Xh)Y , Z) = 0 for all vector fields X, Y , Z

orthogonal to ξ , i.e., it is an η-parallel contact metric space. Boeckx and the present author [7] proved that

also the converse holds:

Theorem 7. An η-parallel contact metric space is a K-contact space or a (k, µ)-space.

By (17), we also find that an η-parallel contact metric space is characterized by the condition: L((∇̂Xh)Y , Z) =

0 for all vector fields X, Y , Z orthogonal to ξ .

We finish this section by noticing a very recent result about contact (k, µ)-spaces in the topic of Ricci

solitons. Hamilton’s Ricci flow ([22]) is given by

∂

∂t
gt = −2ρ(gt),

where ρ(gt) denotes the (Riemannian) Ricci curvature tensor for a Riemannian metric gt. Then representing

the self-similar solution of it, the initial data (g, V) is called a Ricci soliton:

1

2
LVg + ρ − λg = 0,

where λ is a constant. In [20], Ricci soliton contact (k, µ)-spaces have been studied. The gradient case is well-

understood, whereas they provided a list of candidates for the non-gradient case. These candidates can be

realized as Lie groups, but one only knows the structures of the underlying Lie algebras, which are hard to

be analyzed apart from the three-dimensional case. In this circumstance, we proved

Theorem 8. ([18]) A simply connected and complete non-Sasakian (k, µ)-space is a Ricci soliton if and only if

(k, µ) = (0, 0) or (0, 4).

This result comes from the following realization of contact (0, 4)-spaces.

Theorem 9. ([19])LetM be the simply connectedand complete (0, 4)-space of dimension2n+1with n ≥ 2. Then

M is isomorphic to some homogeneous real hypersurface of the non-compact real two-plane Grassmannians

G*
2(R

n+3) as a contact metric manifold.

5 Strongly pseudo-convex CR space forms

A holomorphic section is a plane in DpM ⊂ TpM of M which is invariant by J. Then we may consider two

kinds of holomorphic sectional curvature with respect to ∇̂ and ∇, that is, K̂(X, JX) = L(R̂(X, JX)JX, X) and

K(X, JX) = g(R(X, JX)JX, X), respectively for any unit vector field X orthogonal to ξ .

Definition 2. ([15]) Let (M; η, J) be a contact strongly pseudo-convex almost CRmanifold. Then M is said to be

of constant holomorphic sectional curvature c with respect to the generalized Tanaka-Webster connection if M

satisfies K̂(X, JX) = c for any unit vector field X orthogonal to ξ . In particular, for the CR-integrable case we call

M a strongly pseudo-convex CR space form.

Then for a strongly pseudo-convex almost CR manifold M, from (18) we get

g(R̂(X, φX)φX, X) = g(R(X, φX)φX, X) + 3g(X, X)2 − g(hX, X)2 − g(φhX, X)2 (24)

or

K̂(X, φX) = K(X, φX) + 3g(X, X)2 − g(hX, X)2 − g(φhX, X)2.

From this, we easily see that a Sasakian space formM2n+1(c0) of constant holomorphic sectional curvature c0
with respect to the Levi-Civita connection is a strongly pseudo-convex CR space formof constant holomorphic

sectional curvature c = c0 + 3 with respect to the Tanaka-Webster connection.
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We proved

Proposition 10. ([15]) The strongly pseudo-convex CR space form is invariant under a pseudo-homothetic

transformation.

We remark that for a regular (i.e., the foliation defined by the vector field ξ is regular) Sasakian space form

M2n+1(c0), the quotient M
2n+1(c0)/ξ with the induced metric and the complex structure J given by Jπ*X =

π*φX is a complex space form M̃n((c0 + 3)/4), where π : M → M/ξ is the Riemannian submersion. (For a

typical example, we have a Hopf-fibration π : S2n+1 → PnC.)

In [15] we determined the Riemannian curvature tensor explicitly for a strongly pseudo-convex CR space

of pointwise constant holomorphic sectional curvature c = c(p) (p ∈ M). Then from (18) we have

g(R̂(X, Y)Z,W) = g(H(X, Y)Z,W) +
c

4

{
g(Y , Z)g(X,W) − g(X, Z)g(Y ,W)

+ g(φY , Z)g(φX,W) − g(φX, Z)g(φY ,W) − 2g(φX, Y)g(φZ,W)
} (25)

for all vector fields X, Y , Z,W ⊥ ξ . From (25), we obtain

ρ̂(X, Y) =
1

2
(n + 1)cg(X, Y) (26)

for any vector fields X, Y orthogonal to ξ . Then we have

Proposition 11. ([16]) A strongly pseudo-convex CR space form of constant holomorphic sectional curvature c

is pseudo-Einstein with constant pseudo-Hermitian scalar curvature r̂ = n(n + 1)c.

For a class of the contact (k, µ)-spaces,whose associatedpseudo-Hermitian structures are integrable as stated

in Section 4, we prove

Theorem 12. Let M be a contact (k, µ)-space. Then M is of constant holomorphic sectional curvature c for the

Tanaka-Webster connection if and only if (1)M is a Sasakian space of constant holomorphic sectional curvature

c0 = c − 3, (2) µ = 2 and c = 0, or (3) dim M=3 and µ = 2 − c.

Proof. If k = 1, then we see that M is Sasakian and of constant holomorphic sectional curvature c0 = c − 3.

Now, we assume that k < 1. Then from (20) and (25) we have

g(R̂(X, Y)Z,W) =g(R̂c′ (X, Y)Z,W) +
c′

4(1 − k)

{
g(hY , Z)g(hX,W) − g(hX, Z)g(hY ,W)

+ g(φhY , Z)g(φhX,W) − g(φhX, Z)g(φhY ,W)
}
,

(27)

where g(R̂c′ (X, Y)Z,W) denotes the curvature form of constant holomorphic sectional curvature c′ (for ∇̂)

and we have put c′ = 4(1 − µ/2). Suppose that M has constant holomorphic sectional curvature c (for ∇̂).

Then from (25) and (27) we have

(c − c′)
{
g(Y , Z)g(X,W) − g(X, Z)g(Y ,W) + g(φY , Z)g(φX,W) − g(φX, Z)g(φY ,W) − 2g(φX, Y)g(φZ,W)

}

−
c′

1 − k

{
g(hY , Z)g(hX,W) − g(X, Z)g(Y ,W)

+ g(φhY , Z)g(φhX,W) − g(φhX, Z)g(φhY ,W)
}
= 0

(28)

for any vector fields X, Y , Z,W orthogonal to ξ . We put Y = Z = ei and summing for i = 1, 2, · · · , 2n, where

{ei , e2n+1 = ξ} is an adapted orthonormal basis. Then we have

(c − c′)(n + 1)g(X,W) +
c′

1 − k
g(h2X,W) = 0.
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From this, we have

(c − c′)(n + 1) + c′ = 0. (29)

On the other hand, from (20) we have

K̂(X, φX) = (4 − 2µ)g(X, X)2 +
2 − µ

k − 1

{
g(hX, X)2 + g(φhX, X)2

}
(30)

for ‖X‖ = 1. We assume hX = λX in (30). Then λ2 = 1− k and (30) yields c(= 2− µ) = c′/2. Thus, together with

(29) we have

c(n − 1) = 0.

Hence, we have either c = c′ = 0 (µ = 2) or dimM = 3. If dimM = 3, thenwe see that g(hX, X)2+g(φhX, X)2 =

1/2(trace of h2). But, since h2 = (k − 1)φ2, from (30) we have µ = 2 − c. Conversely, from (30) we easily find

that the cases: (i) k < 1 and µ = 2, (ii) dimM = 3 and µ = 2−c have constant holomorphic sectional curvature

c = 0 and c = 2 − µ, respectively. Therefore, we have completed the proof.

Corollary 13. ([15]) The standard contact metric structure on a unit tangent sphere bundle T1M(b) of (n + 1)-

dimensional space of constant curvature b has constant holomorphic sectional curvature c for ∇̂ if and only if

b = −1 and c = 0, or n = 1 and b = (c − 2)/2.

Remark 3. The unit tangent sphere bundle T1H
n+1(−1) of a hyperbolic space H

n+1(−1) is a non-Sasakian

example of constant holomorphic sectional curvature for Tanaka-Webster connection, whereas it has not

constant holomorphic sectional curvature for Levi-Civita connection.

As mentioned in Remark 2, the unit tangent sphere bundle T1(H
n+1) of a hyperbolic space Hn+1 of con-

stant curvature −1 is the same under all D-homothetic transformations. Due to Theorem 7 and Theorem 12,

we have

Theorem 14. ([15]) The complete simply connected strongly pseudo-convex η-parallel CR space forms are

equivalent (up to pseudo-homothetic transform) to the following:

(i) Sasakian space forms: the unit sphere S2n+1 with c0 = 1 for c > 0, the Heisenberg group H2n+1 with

c0 = −3 for c = 0, or Bn × R with c0 = −7 for c < 0, where Bn is a simply connected bounded domain in Cn with

the Bergman metric,

(ii) the unit tangent sphere bundle T1(H
n+1) of a hyperbolic spaceHn+1 of constant curvature −1, or

(iii) a (non-Sasakian) unimodular Lie group with a special left-invariant contact metric, SU(2), S̃L(2, R),

the universal covering Ẽ(2) of the group E(2) of rigid motions of Euclidean 2-space, the group E(1, 1) of rigid

motions of the Minkowski 2-space.

6 Pseudo-Hermitian symmetric spaces

Boeckx and the present author [8] proved that a contact Riemannian manifold with Cartan’s local symmetry

(∇R = 0) is locally isometric to either the unit sphere S2n+1(1) or the unit tangent sphere bundle T1M(0) of

Euclidean space. As a pseudo-Hermitian analogue of it, we introduced the so-called Tanaka-Webster parallel

space.

Definition 3. ([9]) Let (M; η, J) be a contact strongly pseudo-convex almost CR manifold. Then M is said to

be a Tanaka-Webster parallel space (in short, T.-W. parallel space) if its generalized Tanaka-Webster torsion

tensor T̂ and its curvature tensor R̂ satisfy ∇̂T̂ = 0 and ∇̂R̂ = 0.

Kobayashi and Nomizu [21] call a connection invariant by parallelism if for any points p and q in M and for

any curve γ from p to q, there exists a (unique) local affine isomorphism f such that f (p) = q and such that

the differential of f at p coincides with the parallel displacement τγ : TpM → TqM along γ. By [21, Corollary

7.6], this is equivalent to the connection having parallel torsion and curvature tensor. In other words, a T.-W.



288 | Jong Taek Cho

parallel space is one for which the Tanaka-Webster connection ∇̂ is an invariant connection by parallelism.

Then we have

Theorem 15. ([9]) A contact metric space M is a Tanaka-Webster parallel space if and only if M is a Sasakian

locally φ-symmetric space or a non-Sasakian (k, 2)-space.

As an odd-dimensional analogue of Hermitian locally symmetric spaces, Takahashi [27] introduced the

Sasakian local φ-symmetry.

Definition 4. A Sasakian manifold is said to be locally φ-symmetric space if M satisfies

g((∇XR)(Y , Z)U, V) = 0 (31)

for all X, Y , Z, U, V orthogonal to ξ .

Geometrically, the above condition (31) corresponds to the fact that the characteristic reflections (i.e., reflec-

tions with respect to the integral curves of ξ ) are local automorphisms of the Sasakian structure. In fact, it is

already sufficient that the reflections are local isometries [4]. From this context, we may consider two gener-

alizations of the notion of local φ-symmetry to the larger class of contact Riemannian spaces. The first one, in

[3], defines locally φ-symmetric contact metric space to the one for which the curvature property (31) holds. A

second generalization was proposed by Boeckx and Vanhecke [11]: a contact Riemannian manifold is called

locally φ-symmetric in the strong sense if its characteristic reflections are local isometries. Indeed, we find

that the second generalization is a priorimore restrictive than the first (cf. [10]). Now, in the pseudo-Hermitian

view point, we define strongly or weakly locally pseudo-Hermitian symmetric spaces. Namely,

Definition 5. Let (M; η, J) be a contact strongly pseudo-convex almost CR manifold. Then M is said to be a

strongly locally pseudo-Hermitian symmetric space if all characteristic ∇̂-reflections are affine mappings, i.e.,

they preserve the Tanaka-Webster connection ∇̂.

Then we have

Theorem 16. ([9]) A contact metric manifold M is locally pseudo-Hermitian symmetric in the strong sense if

and only if M is either a Sasakian locally φ-symmetric space or a non-Sasakian (k, µ)-space.

Definition 6. ([9]) Let (M; η, J) be a contact strongly pseudo-convex almost CR manifold. Then M is said to

be a weakly locally pseudo-Hermitian symmetric space if M satisfies

L((∇̂X R̂)(Y , Z)U, V) = 0

for all X, Y , Z, U, V orthogonal to ξ .

Proposition 17. ([9]) A Sasakian manifold is a weakly locally pseudo-Hermitian symmetric space if and only

if it is locally φ-symmetric.

Proposition 18. ([9]) A non-Sasakian (k, µ)-space is a weakly locally pseudo-Hermitian symmetric space.

Proposition 19. A locally pseudo-Hermitian symmetric space has constant Tanaka-Webster scalar curvature

r̂.

Proof. First, we note that g(∇̂VX, ξ ) = 0 for any vector fields V , X, Y ⊥ ξ . Suppose that (M; η, J) is locally

pseudo-Hermitian symmetric. Then

(∇̂V ρ̂)(X, Y) =
1

2

2n∑

i=1

L((∇̂V R̂)(X, JY)Jei , ei) = 0,

i = 1, · · · , 2n. And V(r̂) = ∇̂V r̂ =
∑2n

i=1(∇̂V ρ̂)(ei , ei) = 0. Hence we have ei(r̂) = φei(r̂) = 0, and then

[ei , φei](r̂) = 0. But [ei , φei] =
∑n

j=1 g([ei , φei], ej)ej + g([ei , φei], ξ )ξ . Thus, we have η([ei , φei])ξ (r̂) =

−2dη(ei , φei)ξ (r̂) = 2ξ (r̂) = 0, where we have used the second condition of (1).
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Then we prove

Theorem 20. Let (M; η, J) be a strongly pseudo-convex CR space form of constant holomorphic sectional cur-

vature c. Then M is weakly locally pseudo-Hermitian symmetric if and only if (i) dim M = 3, (ii)M is a Sasakian

space form, or (iii)M is locally isometric to the unit tangent sphere bundle T1(H
n+1) of a hyperbolic spaceHn+1

of constant curvature −1.

Proof. Suppose that a strongly pseudo-convex CR space form (M2n+1; η, J) is locally pseudo-Hermitian sym-

metric in the weak sense. Then from (25) we have (n − 1)g((∇̂Xh)Y , Z) = 0 for any vector fields X, Y , Z or-

thogonal to ξ . By using Theorem 14 we have that M is a Sasakian space form, or locally isometric to the unit

tangent sphere bundle T1(H
n+1) of a hyperbolic space Hn+1 of constant curvature −1, if n > 1. Conversely,

by Proposition 17 and 18 a Sasakian space form and a non-Sasakian contact (k, µ)-space are weakly locally

pseudo-Hermitian symmetric. For n = 1, we see that every strongly pseudo-convex CR space form is weakly

locally pseudo-Hermitian symmetric (see, Theorem 25 in Section 7). This completes the proof.

7 The three-dimensional case

In this section, we study three-dimensional strongly pseudo-convex CR space forms and weakly pseudo-

Hermitian symmetric spaces.

Homogeneous contact Riemannian 3-manifolds

A contact Riemannian manifold (M; η, g) is said to be homogeneous if there exists a connected Lie group

acting transitively as a group of isometries on it which preserves η. Perrone proved that 3-dimensional simply

connected homogeneous contact Riemannian manifolds are Lie groups together with left invariant contact

metric structures. Moreover, such homogeneous spaces are classified by the pseudo-Hermitian scalar curva-

ture r̂ and the torsion invariant |τ|, where τ = Lξ g, as follows:

Proposition 21. ([25]) Let (M; η, g) be a 3-dimensional simply connected homogeneous contact Riemannian

manifold. Then M is a Lie group G together with a left invariant contact metric structure (η, g).

If G is unimodular, then G is one of the following:

• the Heisenberg group H3 if r̂ = |τ| = 0;

• SU(2) if 4
√
2r̂ > |τ|;

• Ẽ(2) if 4
√
2r̂ = |τ| > 0;

• S̃L(2,R) if −|τ| ≠ 4
√
2r̂ < |τ|;

• E(1, 1) if 4
√
2r̂ = −|τ| < 0.

The Lie algebra g of G is generated by an orthonormal basis {e1, e2 = φe1, e3 = ξ}with commutation relation:

[e1, e2] = 2e3, [e2, e3] = c2e1, [e3, e1] = c3e2.

If G is non-unimodular, then the Lie algebra g of G satisfies the commutation relations:

[e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = γe2, (32)

where e3 = ξ , e1, e2 ∈ Ker η, e2 = φe1, α ≠ 0 and 4
√
2r̂ < |τ|.

For a unimodular Lie group G we compute the holomorphic sectional curvature for ∇̂: K̂ = c3 + c2, and for a

non-unimodular Lie group G we have K̂ = γ − α2 (cf. [16]). Then we have

Proposition 22. A homogeneous contact Riemannian 3-manifold is weakly locally pseudo-Hermitian symmet-

ric.
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Here, we note that a non-unimodular Lie group G is weakly locally φ-symmetric (that is,

g((∇XR)(Y , Z)V ,W) = 0 for all X, Y , Z, V ,W orthogonal to ξ ) if and only if γ = 0 (the Sasakian case)

or γ = 2 ([6]).

Unit tangent sphere bundles of surfaces

It is known that the tangent bundle of a Riemannian manifold admits an almost complex structure J

which is compatible with the Sasaki metric ḡ and further (J, ḡ) is an almost Kähler structure (cf. Chapter 9

in [1]). LetM be a 2-dimensional Riemannian manifold, TM its tangent bundle equipped with (J, ḡ) and T1M

its unit tangent sphere bundle of M(i.e., the set of all unit tangent vectors of M) with the projection map

π : T1M → M. Let (x1, x2) be local isothermal coordinates on M such that the Riemannian metric G is given

by

G = f 2((dx1)2 + (dx2)2),

where f is a positive-valued function on M. Then, we compute the Gaussian curvature κ of M:

κ = −
∆0 log f

f 2

where ∆0 is the Laplacian with respect to Euclidean metric. For any point Z ∈ T1M in TM, we let

(x1, x2, u1, u2) be a local coordinate system around Z such that (u1, u2) is the fiber coordinate with f 2((u1)2+

(u2)2) = 1. Then N = u1 ∂
∂u1

+ u2 ∂
∂u2

is a unit normal and position vector for the point Z of T1M. Denote by g′

the metric of T1M induced from ḡ(Sasaki metric) on TM. Define φ′, ξ ′, η′ by

JN = −ξ ′, JX = φ′X + η′(X)N (33)

for any vector field X on T1M. Thenwe get g′(X, φ′Y) = 2dη′(X, Y). By a simple rectification, namely, η = 1
2η

′,

ξ = 2ξ ′,φ′ = φ and g = 1
4 g

′,wehave a contactmetric tangent sphere bundle T1M = (T1M; η, g). (cf. [1, p.177]).

Also, taking account of (33) and the definitions of J and g, we have a local orthonormal framefield {e1, e2, e3}
such that

e3 = ξ = 2
∑

ijk

(ui
∂

∂xi
− {ijk}ujuk ∂

∂ui
),

e1 = 2
∑

i

vi
∂

∂ui
,

e2 = φe1 = −2
∑

ijk

(
vi

∂

∂ui
− {ijk}ujvk ∂

∂ui

)
(34)

for i, j, k = 1, 2,where (v1, v2) = (−u2, u1) and {ijk}denote theChristoffel symbols of Riemannian connection

of M. Then, we have

[e1, e2] = 2e3, [e2, e3] = 2κe1, [e3, e1] = 2e2. (35)

Put

Γijk = g(∇ei ej , ek) for i, j, k = 1, 2, 3.

Then we have Γijk = −Γikj. Using the Koszul formula, we have

Γ123 = 2 − κ, Γ213 = Γ321 = −κ, all other Γijk being zero. (36)

From (36) we see that e1, e2, e3 are all geodesic vector fields, i.e., self-parallel vector fields and div ei = 0

(i = 1, 2, 3). We compute

he1 = −(κ − 1)e1 he2 = (κ − 1)e2. (37)

Then, from (35) and (36), we have K(p) = κ2, p ∈ M. Moreover, from (24) and (37) we have K̂(p) = 2(κ + 1).

Thus, we have
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Proposition 23. The standard contact metric structure of unit tangent sphere bundle T1M of a 2-dimensional

Riemannian manifold M is a strongly pseudo-convex CR space form if and only if the Gaussian curvature of M

is constant. In particular, K̂ = 0 if and only if M is a hyperbolic surface of constant Gaussian curvature −1.

For a general study, let (M; η, g) be a contact Riemannian 3-manifold. We consider on M the maximal open

set U1 on which h ≠ 0 and the maximal open subset U2 on which h is identically zero. Suppose that M is

non-Sasakian. Then U1 is non-empty and there is a local orthonormal frame field {ξ , e, φe} on U1 such that

h(e) = λe, h(φe) = −λφe for some positive function λ. The covariant derivative is then of the following form

(see [12, Lemma 2.1]):

∇ξ ξ = 0, ∇ξ e = −aφe, ∇ξφe = ae,

∇eξ = −(λ + 1)φe, ∇φeξ = (1 − λ)e,

∇ee =
1

2λ
{(φe)(λ) + σ(e)}φe, ∇φeφe =

1

2λ
{e(λ) + σ(φe)}e, (38)

∇eφe = −
1

2λ
{(φe)(λ) + σ(e)}e + (λ + 1)ξ ,

∇φeφe =
1

2λ
{e(λ) + σ(φe)}φe + (λ − 1)ξ .

Here, a is a smooth function and σ = ρ(ξ , ·)where ρ denotes the Ricci tensor. By using (14) we also calculate

the (1,2)-tensor field A:

A(ξ , ξ ) = 0, A(e, ξ ) = (1 + λ)φe, A(φe, ξ ) = −(1 − λ)e,

A(ξ , e) = φe, A(e, e) = 0, A(φe, e) = (1 − λ)ξ , (39)

A(ξ , φe) = −e, A(e, φe) = ξ , A(φe, φe) = 0.

Using (38) and (39), we get the following expressions for ∇̂ from (13):

∇̂ξ ξ = 0, ∇̂ξ e = (1 − a)φe, ∇̂ξφe = −(1 − a)e,

∇̂eξ = 0, ∇̂ee =
1

2λ
{(φe)(λ) + σ(e)}φe, ∇̂eφe = −

1

2λ
{(φe)(λ) + σ(e)}e, (40)

∇̂φeξ = 0, ∇̂φee = −
1

2λ
{e(λ) + σ(φe)}φe, ∇̂φeφe =

1

2λ
{e(λ) + σ(φe)}e.

From this, we calculate the Tanaka-Webster curvature tensor:

R̂(ξ , e)e = ∇̂ξ ∇̂ee − ∇̂e∇̂ξ e − ∇̂[ξ ,e]e

=
(
ξ (p) + e(a) + (1 + λ − a)q

)
φe,

R̂(ξ , e)φe = −
(
ξ (p) + e(a) + (1 + λ − a)q

)
e,

R̂(ξ , φe)e = −
(
ξ (q) − φe(a) − (1 − λ − a)p

)
φe, (41)

R̂(ξ , φe)φe =
(
ξ (q) − φe(a) − (1 − λ − a)p

)
e,

R̂(e, φe)e = −
(
e(q) + φe(p) − (p2 + q2) + 2(1 − a)

)
φe,

R̂(e, φe)φe =
(
e(q) + φe(p) − (p2 + q2) + 2(1 − a)

)
e,

R̂(·, ·)ξ = 0,

where we have put p = 1
2λ (φe(λ) + σ(e)), q =

1
2λ (e(λ) + σ(φe)). Thus, we have

Proposition 24. A three-dimensional contactmetric space (M; η, g) is a strongly pseudo-convex CR space form

if and only if it is a Sasakian space form on U2 and K̂ := e(q) + φe(p) − (p2 + q2) + 2(1 − a) is constant on U1.

From (40) and (41) we compute

(∇̂e R̂)(e, φe)e = ∇̂e(R̂(e, φe)e) − R̂(∇̂ee, φe)e

− R̂(e, ∇̂eφe)e − R̂(e, φe)∇̂ee

= −e
(
e(q) + φe(p) − (p2 + q2) + 2(1 − a)

)
φe,

(∇̂φe R̂)(e, φe)e = −φe
(
e(q) + φe(p) − (p2 + q2) + 2(1 − a)

)
φe.
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Now, suppose that M is weakly locally pseudo-Hermitian symmetric, then

0 = e
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)
,

0 = φe
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)
.

In that case, we also have, using the second condition of (1):

0 = [e, φe]
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)

= η([e, φe])ξ
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)

= −2dη(e, φe)ξ
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)

= 2ξ
(
e(q) + φe(p) − p2 − q2 + 2(1 − a)

)
.

Since, in dimension 3, a Sasakian space form coincides with a Sasakian locally φ-symmetric space ([4]), we

have

Theorem 25. A three-dimensional contact metric space (M; η, g) is a strongly pseudo-convex CR space form if

and only if it is a weakly locally pseudo-Hermitian symmetric space.

Example 1. ([26]) Let M1 = {(x, y, z) ∈ R3(x, y, z) | x ≠ 0} be a contact three-manifold endowed with the

contact form η = xydx + dz. Its characteristic vector field is given by ξ = ∂/∂z. Take a frame field

e1 = −
2

x

∂

∂y
, e2 =

∂

∂x
−
4z

x

∂

∂y
− xy

∂

∂z
, e3 = ξ

and define aRiemannianmetric g such that {e1, e2, e3} is orthonormalwith respect to it. Moreover, we define

φ by φe1 = e2, φe2 = −e1 and φξ = 0. Then (η, g) is a contact metric structure. The structure operator h

satisfies he1 = e1, he2 = −e2. The components of the Ricci operator are ρ13 = ρ31 = −2
x , ρ22 = −8 and the

other components are zero. Then we obtain: a = 2, λ = 1, p = −1
x , q = 0. This yields K̂ = e1(q) + e2(p) − p

2 −

q2 + 2(1 − a) = −2(< 0), that is, M1 is a strongly pseudo-convex CR space form with a negative holomorphic

sectional curvature. Note that M1 is locally φ-symmetric in the weak sense.

Example 2. ([23]) On Cartesian 3-space R3(x, y, z), we define a contact 1-form η by

η = dx + 2ye−zdz.

And define a frame field {e1, e2, e3 = ξ} by

e1 = −2y
∂

∂x
+ (2x − yez)

∂

∂y
+ ez

∂

∂z
, e2 =

∂

∂y
, ξ =

∂

∂x
.

Then we define a Riemannian metric g by the condition that {e1, e2, e3} is orthonormal with respect to it.

One can see that g is an associated metric to η. As usual, the endomorphism field φ is defined by φe1 = e2,

φe2 = −e1 and φe3 = 0. A direct computation shows that h = ω1⊗ e1 −ω
2⊗ e2. The components of the Ricci

operator are ρ23 = ρ32 = 2ez. Other components are zero. Then we obtain: a = 0, λ = 1, p = 0, q = ez. This

yields K̂ = e1(q)+e2(p)−p
2−q2+2(1−a) = 2(> 0), that is,M2 = (R3; η, g) is a strongly pseudo-convexCR space

formwith a positive holomorphic sectional curvature and also a weakly locally pseudo-Hermitian symmetric

space. But, it is not locally φ-symmetric (in the weak sense). Indeed we compute g((∇e1R)(e1, e2)e1, e2) =

8ez = ̸ 0.

Remark 4. Example 1 and Example 2 are non-homogeneous andweakly locally pseudo-Hermitian symmetric

spaces.
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