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STRONGLY π-REGULAR RINGS

HAVE STABLE RANGE ONE

PERE ARA

(Communicated by Ken Goodearl)

Abstract. A ring R is said to be strongly π-regular if for every a ∈ R there
exist a positive integer n and b ∈ R such that an = an+1b. For example,
all algebraic algebras over a field are strongly π-regular. We prove that every
strongly π-regular ring has stable range one. The stable range one condition is
especially interesting because of Evans’ Theorem, which states that a module
M cancels from direct sums whenever EndR(M) has stable range one. As
a consequence of our main result and Evans’ Theorem, modules satisfying
Fitting’s Lemma cancel from direct sums.

Introduction

Let R be a ring, associative with unity. Recall that R has stable range one
provided that, for any a, b ∈ R with aR + bR = R, there exists y ∈ R such that
a+by is invertible in R. See [17] and [18]. In this note we will prove that strongly π-
regular rings have stable range one. As a consequence we shall obtain that modules
satisfying Fitting’s Lemma (over any ring) cancel from direct sums.

A ring R is said to be strongly π-regular if for each a ∈ R there exist a positive
integer n and x ∈ R such that an = an+1x. By results of Azumaya [3] and
Dischinger [8], the element x can be chosen to commute with a. In particular,
this definition is left-right symmetric. Strongly π-regular rings were introduced by
Kaplansky [12] as a common generalization of algebraic algebras and artinian rings.

In [13], Menal proved that a strongly π-regular ring whose primitive factor rings
are artinian has stable range one. In [11], various results concerning algebraic
algebras and strongly π-regular rings were obtained. In particular, Goodearl and
Menal showed that algebraic algebras over an infinite field have stable range one
[11, Theorem 3.1] (in fact they showed the somewhat stronger condition called unit
1-stable range), and, in [11, p.271], they conjectured that any algebraic algebra
has stable range one. Our Corollary 5 proves this conjecture. Further, they ask
whether all strongly π-regular rings have stable range one [11, p.279], proving that
the answer is affirmative in several cases. For instance, the strongly π-regular ring
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R has stable range one when either R is a von Neumann regular ring [11, Theorem
5.8] or every element of R is a sum of a unit plus a central unit [11, Corollary 6.2].

More recently, Yu [20],[21] and Camillo and Yu [5] proved that strongly π-regular
rings have stable range one under some additional hypothesis. For example they
show that a strongly π-regular ring such that every power of a regular element is
regular, has stable range one [5, Theorem 5], generalizing [11, Theorem 5.8].

Goodearl and Menal also proved that a strongly π-regular ring has stable range
one if and only if every nilpotent regular element of any corner of the ring is unit-
regular in that corner [11, Theorem 6.1]. We will prove that in fact every nilpotent
regular element of every exchange ring is unit-regular.

Let R be any ring. An element a ∈ R is said to be regular if there exists b ∈ R
such that a = aba. It is easy to see that a is regular if and only if the right
annihilator of a (“the kernel of a”) and the right ideal generated by a (“the image
of a”) are both direct summands of RR. The element a ∈ R is said to be unit-regular
if there exists an invertible element u ∈ R such that a = aua. It is easy to see that
a is unit-regular if and only if a is regular and rann(a) ∼= E as right R-modules,
where E denotes a complement of aR in RR (“the kernel of a” is isomorphic to
“the cokernel of a”).

An element a ∈ R is said to be strongly π-regular if there exists a positive
integer n and b ∈ R such that an = an+1b and ab = ba. The ring R is said to be
strongly π-regular if every element of R is strongly π-regular. By combining results
of Dischinger [8] and Azumaya [3], one obtains the characterization of strongly π-
regular rings as either the left π-regular rings or the right π-regular rings; see [11,
p. 300] or [5, Lemma 6].

A right R-module M has the exchange property (see [7]) if for every module AR
and any decompositions

A = M ′ ⊕N =
⊕
i∈I

Ai

with M ′ ∼= M , there exist submodules A′i ⊆ Ai such that

A = M ′ ⊕ (
⊕
i∈I

A′i).

M has the finite exchange property if the above condition is satisfied whenever the
index set I is finite. Clearly a finitely generated module satisfies the exchange
property if and only if it satisfies the finite exchange property.

Following [19], we say that a ring R is an exchange ring if RR satisfies the (finite)
exchange property. By [19, Corollary 2], this definition is left-right symmetric.

Every strongly π-regular ring is an exchange ring [16, Example 2.3]. A great
deal is known about strongly π-regular rings and exchange rings; see for example
[4], [15], [16], [20] and [1].

The results

The following technical lemma is the key to obtain our main results.

Lemma 1. Let R be an exchange ring and let a be a regular element of R. Let
K denote the right annihilator of a, and E be a complement of aR in RR. Then
there exist right ideals Ai, A

′
i, Bi, B

′
i, Ci, C

′
i, for i ≥ 1, such that the following

conditions are satisfied:

(1) R = K⊕(
⊕i

j=1(Aj⊕Bj))⊕Ci for all i ≥ 1. Hence, Ci ∼= Ai+1⊕Bi+1⊕Ci+1.
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(2) E ∼= (Ai ⊕Bi)⊕ (A′i ⊕B′i) for all i ≥ 1.
(3) K ∼= A′i ⊕B′i ⊕ C′i for all i ≥ 1.
(4) A′i ⊕B′i = Ai+1 ⊕A′i+1 for all i ≥ 1.
(5) aR = C1⊕C′1 and, for i ≥ 1, aAi⊕aBi = Bi+1⊕B′i+1 and aCi = Ci+1⊕C′i+1.

Hence, Ci+1 ⊆ ai+1R.

Proof. Write R = K ⊕ L = E ⊕ aR. By using the exchange property we obtain
A1, C1, A

′
1, C

′
1 such that R = K ⊕A1 ⊕ C1, and E = A1 ⊕A′1, and aR = C1 ⊕ C′1.

Note that K⊕A1⊕C1 = A′1⊕C′1⊕A1⊕C1, and so K ∼= A′1⊕C′1. Set B1 = B′1 = 0.
Now assume that, for some n ≥ 1, we have constructed right ideals Ai, A

′
i, Bi,

B′i, Ci, C
′
i, with i ≤ n, satisfying the desired conditions. We will construct An+1,

A′n+1, Bn+1, B′n+1, Cn+1, C′n+1. Using (4) repeatedly and the fact that B′1 = 0,
we obtain

(6) A′1 ⊕ (
⊕n−1

i=1 B
′
i+1) = (

⊕n
i=2Ai)⊕A′n ⊕B′n.

From (1) we have aR = (
⊕n

i=1(aAi ⊕ aBi)) ⊕ aCn. By using this and relations
(5) and (6) we obtain

R = E ⊕ aR = A1 ⊕A′1 ⊕ (
n⊕
i=1

(aAi ⊕ aBi))⊕ aCn

= (A1 ⊕B1)⊕A′1 ⊕ (
n−1⊕
i=1

(Bi+1 ⊕B′i+1))⊕ aAn ⊕ aBn ⊕ aCn

= A1 ⊕ (
n⊕
i=1

Bi)⊕ (A′1 ⊕ (
n−1⊕
i=1

B′i+1))⊕ aAn ⊕ aBn ⊕ aCn

= A1 ⊕ (
n⊕
i=1

Bi)⊕ (
n⊕
i=2

Ai)⊕ (A′n ⊕B′n)⊕ aAn ⊕ aBn ⊕ aCn

= (
n⊕
i=1

(Ai ⊕Bi))⊕ (A′n ⊕B′n)⊕ aAn ⊕ aBn ⊕ aCn.

Now applying the exchange property to the decompositions

R = K ⊕ (
n⊕
i=1

(Ai ⊕Bi))⊕ Cn

= (
n⊕
i=1

(Ai ⊕Bi))⊕ (A′n ⊕B′n)⊕ (aAn ⊕ aBn)⊕ aCn,

we obtain a decomposition

R = K ⊕ (
n⊕
i=1

(Ai ⊕Bi)) ⊕An+1 ⊕Bn+1 ⊕ Cn+1

such that

An+1 ⊕A′n+1 = A′n ⊕B′n
for some right ideal A′n+1, while

Bn+1 ⊕B′n+1 = aAn ⊕ aBn
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for some right ideal B′n+1, and

Cn+1 ⊕ C′n+1 = aCn

for some right ideal C′n+1. So we obtain (1), (4) and (5).

Since (
⊕n+1

i=1 (Ai⊕Bi))⊕Cn+1 is a common complement of both K and A′n+1⊕
B′n+1 ⊕ C′n+1, we obtain (3).

Now we will prove (2). We have

E ∼= (An ⊕Bn)⊕ (A′n ⊕B′n)

∼= aAn ⊕ aBn ⊕An+1 ⊕A′n+1

= Bn+1 ⊕B′n+1 ⊕An+1 ⊕A′n+1

= (An+1 ⊕Bn+1)⊕ (A′n+1 ⊕B′n+1).

This completes the inductive step.

Theorem 2. Let R be an exchange ring and let a be a nilpotent regular element of
R. Then a is unit-regular.

Proof. Assume that an+2 = 0 for some n ≥ 0. Let Ai, A
′
i, Bi, B

′
i, Ci, C

′
i be right

ideals as in Lemma 1. Then Cn+1 ⊆ K by (5) of Lemma 1, and so Cn+1 = 0 by
(1). By (5), we have C′n+1 = aCn ∼= Cn so that, using (1), we obtain C′n+1

∼= Cn ∼=
An+1 ⊕Bn+1 ⊕ Cn+1 = An+1 ⊕Bn+1. Now using this fact and (2), (3), we have

K ∼= A′n+1 ⊕B′n+1 ⊕ C′n+1

∼= (A′n+1 ⊕B′n+1)⊕ (An+1 ⊕Bn+1) ∼= E.

We conclude that a is unit-regular.

Theorem 3. Let R be an exchange ring and let a be a regular element of R. If a
is strongly π-regular, then a is unit-regular.

Proof. Let a be a regular, strongly π-regular element of R. Let b ∈ R be such
that an = an+1b for some n ≥ 1, and ab = ba. Set e = anbn and note that
e is idempotent. Moreover, ea = ae is invertible in eRe, with inverse anbn+1,
and a(1 − e) = (1 − e)a ∈ (1 − e)R(1 − e) is a regular nilpotent element with
(a(1−e))n = 0. Since (1−e)R(1−e) is an exchange ring [19, Theorem 2], it follows
from Theorem 2 that a(1− e) is unit-regular in (1− e)R(1− e). Consequently, a is
unit-regular in R.

Theorem 4. Strongly π-regular rings have stable range one.

Proof. By [16, Example 2.3], any strongly π-regular ring is an exchange ring. So
the result follows from Theorem 3 and [5, Theorem 3]. Alternatively, one can use
Theorem 2 and [11, Theorem 6.1].

Our next result proves the conjecture made by Goodearl and Menal in [11, p.271].

Corollary 5. Any algebraic algebra over a field has stable range one.

Proof. Clearly, an algebraic algebra over a field is strongly π-regular. So, the result
follows from Theorem 4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STRONGLY π-REGULAR RINGS HAVE STABLE RANGE ONE 3297

A module M is said to satisfy Fitting’s Lemma if for each f ∈ EndR(M) there
exists an integer n ≥ 1 such that M = Ker(fn) ⊕ fn(M). By [2, Proposition
2.3], M satisfies Fitting’s Lemma if and only if EndR(M) is strongly π-regular. It
was proved in [6] that modules satisfying Fitting’s Lemma have power cancellation.
Theorem 4 enables us to improve this result, as follows.

Corollary 6. Let M be a module satisfying Fitting’s Lemma. Then M cancels
from direct sums.

Proof. By [2, Proposition 2.3], E := EndR(M) is a strongly π-regular ring. Now,
Theorem 4 gives that the stable range of E is one and, by Evans’ Theorem
[9, Theorem 2], M cancels from direct sums.

Now we will obtain some cancellation results for finitely generated modules over
certain strongly π-regular rings. We need the following concept, introduced by
Goodearl [10].

Definition ([10]). An element u of a ring R is said to be right repetitive provided
that for each finitely generated right ideal I of R, the right ideal

∑∞
n=0 u

nI is finitely
generated. The ring R is right repetitive if each element of R is right repetitive.

Note that every algebraic algebra is (right and left) repetitive.

Corollary 7. Let R be a strongly π-regular, right repetitive ring. Then any cyclic
right R-module cancels from direct sums.

Proof. Apply [14, Theorem 19], Theorem 4 and Evans’ Theorem [9, Theorem 2].

Corollary 8. If R is a ring such that all matrix rings Mn(R) are strongly π-regular
and right repetitive, then any finitely generated right R-module cancels from direct
sums.

Proof. Apply [10, Theorem 8], Theorem 4 and Evans’ Theorem [9, Theorem 2].
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