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Abstract Various bone resorption inhibitors and bone
stimulators have been shown to decrease the risk of
osteoporotic fractures. However, there is still a need for
agents promoting bone formation by inducing positive
uncoupling between bone formation and bone resorp-
tion. In vitro studies have suggested that strontium
ranelate enhances osteoblast cell replication and activity.
Simultaneously, strontium ranelate dose-dependently
inhibits osteoclast activity. In vivo studies indicate that
strontium ranelate stimulates bone formation and
inhibits bone resorption and prevents bone loss and/or
promotes bone gain. This positive uncoupling between
bone formation and bone resorption results in bone gain
and improvement in bone geometry and microarchitec-
ture, without affecting the intrinsic bone tissue quality.
Thus, all the determinants of bone strength are posi-
tively influenced. In conclusion, strontium ranelate, a
new treatment of postmenopausal osteoporosis, acts
through an innovative mode of action, both stimulating
bone formation and inhibiting bone resorption, resulting
in the rebalancing of bone turnover in favor of bone
formation. Strontium ranelate increases bone mass while
preserving the bone mineralization process, resulting in
improvement in bone strength and bone quality.
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Introduction

Various bone resorption inhibitors and bone stimulators
have been shown to decrease the risk of osteoporotic

fractures. However, there is still a need for agents pro-
moting bone formation by inducing positive uncoupling
between bone formation and bone resorption. Strontium
ranelate (Protelos) simultaneously increases bone for-
mation and decreases bone resorption, resulting in the
rebalancing of bone turnover in favor of bone forma-
tion. This unique mode of action leads to positive effects
on bone strength and its determinants and could cer-
tainly explain the clinical effects of strontium ranelate. It
has recently been demonstrated that it reduces both
vertebral and hip fracture risk and so is a good candi-
date [1, 2].

Bone strength and its determinants

The aim of any anti-osteoporotic treatment is to im-
prove bone strength and thus to decrease the risk of
fracture [3–5]. In humans, the approach to evaluating
bone strength is the recording of the fracture rate, which
implies a large group of patients. Thus, a fracture is not
only due to decreased bone mineral mass or alteration in
the microarchitecture but is also related to falls, as a
result of loss of balance, inappropriate protective re-
sponses, or muscle weakness [3–5]. Careful and specific
investigation in animal models of treatments against
osteoporosis with regard to bone strength and its
determinants is therefore of major importance.

Bone strength is determined by bone geometry, cor-
tical thickness and porosity, trabecular bone morphol-
ogy, and intrinsic properties of bone tissue. Bone
strength is indirectly estimated by bone mineral density
(BMD) using dual energy X-ray absorptiometry (DXA).
Since DXA-based BMD accounts for 60–70% of the
variation in bone strength, some important factors are
not captured by DXA in the progression of osteoporosis
and the effects of anti-osteoporotic treatment. Geometry
and trabecular microarchitecture have also to be taken
into account. Thus, the assessment of intrinsic
mechanical quality of bone tissue should provide better
understanding of the role of tissue quality in determining
bone strength.
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More recently, a nanoindentation technique has been
applied to investigate tissue quality by measuring both
hardness and elasticity of dry and wet bone tissue with a
high spatial resolution [6, 7]. Nanoindentation consists
of compressing a pyramidal diamond tip into a material
and simultaneously recording force and displacement
with lN and nm resolution. From the resulting force-
displacement curves, hardness, the maximal force per
unit area, dissipated energy, and indentation modu-
lus—a purely elastic property—can be calculated. The
nanoindentation method allows the mechanical proper-
ties of single bone structural units to be quantified. Few
results are currently available, but local elastic proper-
ties of bone structural units have been found to vary
significantly among individuals and anatomical loca-
tions [7–11]. Little correlation was found between age
and the elastic properties of bone tissue [9, 10]. Nano-
indentation could represent a tool of major importance
for evaluating the tissue quality and for better under-
standing of the mechanism by which treatments of
osteoporosis could improve bone strength. In the future,
this could help to investigate, on bone biopsy, the con-
tribution of tissue quality in the determination of bone
fragility.

The careful investigation of all of these determi-
nants of bone strength (bone tissue included) should
be considered in the pathophysiology of osteoporosis
and in the mechanisms of action of anti-osteoporotic
drugs.

Effects of inhibitors of bone resorption
on bone strength and its determinants

Most of the clinical studies on inhibitors of bone
resorption like estrogen, selective estrogen receptor
modulators (SERMs), or bisphosphonates have shown
an association between the increment in areal BMD and
the decreased risk of fracture, but the modifications are
not always commensurate [12–14]. Indeed, while BMD
seems to be a good predictor of bone strength, it could
be confusing in certain conditions of treatment. Ra-
loxifene and alendronate treatment are both associated
with a reduction in vertebral fracture close to 50%, but
the effect on BMD of treatment with raloxifene (+3%)
is less pronounced than that of treatment with alendr-
onate (+8%) [12, 15–17]. In a recently reported animal
study [18], the administration of inhibitors of bone
resorption (SERMs or bisphosphonate) restored the
mechanical resistance and the areal mineral density after
ovariectomy, but did not correct cancellous bone mass.
These agents, by differently modulating bone turnover
through different mechanisms, could increase the
intrinsic properties of bone and cancellous bone archi-
tecture rather than the cancellous bone mass. These
findings thus imply that not only bone quantity but also
intrinsic properties of bone and cancellous architecture
play an important role in the mechanical resistance to
fracture [18].

One parameter, which should also be considered, is
the degree of mineralization. Increased bone strength is
observed on bisphosphonate therapy, without significant
modification of bone mass or trabecular volume as
evaluated by histomorphometry [19–21]. A more
homogeneous degree of mineralization is observed,
which could account for the increment in BMD and
bone strength. The rate of bone remodeling could also
be implicated. Clinical studies indicate that markers of
bone remodeling could be independent predictors of the
risk of fracture [22]. By different distribution of stress in
relation to the volume of bone in a phase of remodeling,
a high remodeling rate could jeopardize mechanical
strength. Alternatively, decreased bone remodeling
could influence trabecular bone geometry and the degree
of mineralization of the matrix formed on treatment.

Effects of stimulators of bone formation on bone
strength and its determinants

Fluoride treatment induced a major increase in BMD
(+10%/year) but did not reduce the incidence of frac-
ture [23–29]. Overall analysis of the current preclinical
studies indicates that fluoride does not improve bone
strength in several animal models including rats, mini-
pigs, and rabbits, although it can increase spinal bone
mass as in humans, at least in the so-called ‘‘good
responders.’’ Several possible explanations have been
proposed for the discrepancy, among them the severity
of osteoporosis at the beginning of treatment, the
absolute daily doses, the dosing schedule, and the
duration of treatment. Thus, the quality of the crystal
obtained on fluoride treatment might also be responsible
for this poor effect on bone strength despite a positive
effect on bone mass.

Other stimulators of bone formation [30–40] such as
insulin-like growth factor 1 (IGF-I), growth hormone,
or parathyroid hormone (PTH) stimulate the periosteal
apposition and increase the external diameter of long
bones. This expansion of the outer diameter of long
bone is associated with a marked increase in bone
strength. When associated with an inhibitor of bone
resorption, an increase in cortical thickness can also be
observed and corresponds to an inhibition of endosteal
bone resorption [31, 32], thereby participating in the
improvement in bone strength. An expansion of bone
diameter could also be observed in humans. Thus, dur-
ing growth, bone diameter is influenced by the nutri-
tional environment, as for example by calcium/
phosphate salt supplements [41].

On PTH treatment, an increased bone area can even
be detected. An excess of growth hormone, as in acro-
megaly, increases bone size. Thus, an expansion of bone
size is possible in adults, but the specific role of this
modification in the risk of fracture remains to be
established. These modifications of bone mass and size
also resulted in a major increase in BMD and
improvement in microarchitecture.
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Effect of the innovative agent strontium ranelate
on bone strength and its determinants

In vitro studies have suggested that strontium ranelate
enhances osteoblast cell replication and activity [42].
Simultaneously, strontium ranelate dose-dependently
inhibits osteoclast activity [43, 44]. In vivo studies in
various rodent models like intact animals, model of
immobilization, or ovariectomy-induced osteoporosis,
suggest the same effects: strontium ranelate stimulates
bone formation and inhibits bone resorption in mice and
rats [45–49] and prevents bone loss and/or promotes
bone gain, as investigated by histomorphometry, DXA,
and biomechanics [50].

In intact female rats, a 2-year period of exposure to
strontium ranelate mixed in the diet induced a dose-
dependent increase in bone mechanical properties at the
level of the vertebral body, which contains a large pro-
portion of trabecular bone, and at the level of the mid-
shaft femur, which mainly contains cortical bone [50].
The increase in bone strength was related to a dose-
dependent increase in bone mass and bone volume and
can also be due to an improvement in bone tissue
quality. The increase in trabecular bone volume, tra-
becular number, trabecular thickness, and cortical
thickness, as assessed at the tibia level by histomorph-
ometry, is in agreement with a net gain in bone tissue
mass. Strontium ranelate improves bone geometry by
increasing external diameter and cortical thickness of the
long bone through periosteal apposition.

The increment in bone mechanical properties was
characterized by an increase in ultimate strength but also
by a dramatic improvement in energy to failure, which
was essentially due to an increment in plastic energy.
Such modifications observed on strontium ranelate
treatment are in good agreement with an improvement
in intrinsic bone quality and also in trabecular bone
mass, leading to greater bone resistance. These results
strongly suggest that new bone formed following
strontium ranelate treatment is able to withstand greater
deformation before fracture, while possessing similar
elastic properties to normal bone. Furthermore, a 2-year
exposure to strontium ranelate did not cause any alter-
ation in bone mineralization, as assessed by histo-
morphometry, or bone stiffness. Recent data indicate
that intrinsic bone tissue quality in rats treated lifelong
with strontium ranelate was similar to that of intact rats
of the same age [51]. The same results are obtained at the
level of mineralization, which is not affected by bone
balance and bone mass. It has been shown that the
distribution of strontium ranelate in bone is dependent
on the dose, the duration of exposure, gender, and
skeletal site. Strontium is distributed in calcified matrix
and is easily exchangeable from bone mineral, being
slightly linked to mature crystals through ionic substi-
tutions. Strontium is heterogeneously distributed in
bone with a higher concentration in new than in old
bone, in both trabecular bone and cortical bone [52].

This positive uncoupling between bone formation
and bone resorption results in bone gain and
improvement in bone geometry and microarchitecture
and, consequently, improvement in bone strength.
These observations in animals fully predict what is
observed in postmenopausal women. Indeed, strontium
ranelate treatment stimulates bone formation and de-
creases bone resorption in postmenopausal osteopo-
rotic women, resulting in a decrease in vertebral and
hip fracture rates [1, 2]. Thus, strontium ranelate is the
first anti-osteoporotic agent combining both a stimu-
lation of bone formation and an inhibition of bone
resorption for an optimal effect on all the determinants
of bone strength.

Conclusion

Strontium ranelate, a new treatment of postmenopausal
osteoporosis, acts through an innovative mode of action,
both stimulating bone formation and inhibiting bone
resorption, resulting in a rebalancing of bone turnover in
favor of bone formation.

Strontium ranelate increases bone mass while pre-
serving the bone mineralization process, resulting in
improvement in bone strength and bone quality.
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