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Abstract

Network embedding (NE) is playing a principal role in network mining, due to its

ability to map nodes into efficient low-dimensional embedding vectors. However, two

major limitations exist in state-of-the-art NE methods: role preservation and uncer-

tainty modeling. Almost all previous methods represent a node into a point in space

and focus on local structural information, i.e., neighborhood information. However,

neighborhood information does not capture global structural information and point

vector representation fails in modeling the uncertainty of node representations. In this

paper, we propose a new NE framework, struc2gauss, which learns node representa-

tions in the space of Gaussian distributions and performs network embedding based

on global structural information. struc2gauss first employs a given node similarity

metric to measure the global structural information, then generates structural context

for nodes and finally learns node representations via Gaussian embedding. Different

structural similarity measures of networks and energy functions of Gaussian embed-

ding are investigated. Experiments conducted on real-world networks demonstrate that

struc2gauss effectively captures global structural information while state-of-the-art

network embedding methods fail to, outperforms other methods on the structure-based

clustering and classification task and provides more information on uncertainties of

node representations.
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1 Introduction

Network analysis consists of numerous tasks including community detection (Fortu-

nato 2010), role discovery (Rossi and Ahmed 2015), link prediction (Liben-Nowell and

Kleinberg 2007), etc. As relations exist between nodes that disobey the i.i.d assump-

tion, it is non-trivial to apply traditional data mining techniques in networks directly.

Network embedding (NE) fills the gap by mapping nodes in a network into a low-

dimensional space according to their structural information in the network. It has been

reported that using embedded node representations can achieve promising perfor-

mance on many network analysis tasks (Cao et al. 2015; Grover and Leskovec 2016;

Perozzi et al. 2014; Ribeiro et al. 2017).

Previous NE techniques mainly relied on eigendecomposition (Shaw and Jebara

2009; Tenenbaum et al. 2000), but the high computational complexity of eigendecom-

position makes it difficult to apply in real-world networks. With the fast development

of neural network techniques, unsupervised embedding algorithms have been widely

used in natural language processing (NLP) where words or phrases from the vocabulary

are mapped to vectors in the learned embedding space, e.g., word2vec (Mikolov et al.

2013a, b) and GloVe (Pennington et al. 2014). By drawing an analogy between paths

consists of several nodes on networks and word sequences in text, DeepWalk (Perozzi

et al. 2014) learns node representations based on random walks using the same mecha-

nism of word2vec. Afterwards, a sequence of studies have been conducted to improve

DeepWalk either by extending the definition of neighborhood to higher-order proxim-

ity (Cao et al. 2015; Grover and Leskovec 2016; Perozzi et al. 2016; Tang et al. 2015b)

or incorporating more information for node representations such as attributes (Li et al.

2017; Wang et al. 2017) and heterogeneity (Chang et al. 2015; Tang et al. 2015a).

Although a variety of NE methods have been proposed, two major limitations exist

in previous NE studies: role preservation and uncertainty modeling. Previous meth-

ods focused only on one of these two limitations and while neglecting the other. In

particular, for role preservation, most studies applied random walk to learn repre-

sentations. However, random walk based embedding strategies and their higher-order

extensions can only capture local structural information, i.e., first-order and higher-

order proximity within the neighborhood of the target node (Lyu et al. 2017). Local

structural information is reflected in community structures of networks. But these

methods may fail in capturing global structural information, i.e., structural roles (Rossi

and Ahmed 2015; Pei et al. 2018). Global structural information represents roles of

nodes in networks, where two nodes have the same role if they are structurally similar

from a global perspective. An example of global structural information (roles) and

local structural information (communities) is shown in Fig. 1. In summary, nodes that

belong to the same community require dense local connections while nodes that have

the same role may have no common neighbors at all (Tu et al. 2018). Empirical evi-

dence based on this example for illustrating this limitation will be shown in Sect. 5.2.

For uncertainty modeling, most previous methods represented a node into a point

vector in the learned embedding space. However, real-world networks may be noisy

and imbalanced. For example, node degree distributions in real-world networks are

often skewed where some low-degree nodes may contain less discriminative infor-

mation (Tu et al. 2018). Point vector representations learned by these methods are
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Fig. 1 An example of ten nodes belonging to (1) three groups (different colors indicate different groups)

based on global structural information, i.e., the structural roles and (2) two groups (groups are shown by

the dashed ellipses) based on local structural information, i.e., the communities. For example, nodes 0, 1,

4, 5 and 8 belong to the same group Community 1 based on local structural perspective because they have

more internal connections. Node 0 and 2 are far from each other, but they are in the same group based on

global structural perspective (Color figure online)

deterministic (Dos Santos et al. 2016) and are not capable of modeling the uncertain-

ties of node representations.

There are a few studies trying to address these limitations in the literature. For

instance, struc2vec (Ribeiro et al. 2017) builds a hierarchy to measure similarity at

different scales, and constructs a multilayer graph to encode the structural similarities.

SNS (Lyu et al. 2017) discovers graphlets as a pre-processing step to obtain the struc-

tural similar nodes. DRNE (Tu et al. 2018) learns network embedding by modeling

regular equivalence (Wasserman and Faust 1994). However, these studies aim only to

solve the problem of role preservation to some extent. Thus the limitation of uncer-

tainty modeling remains a challenge. Dos Santos et al. (2016) and Bojchevski and

Günnemann (2017) put effort in improving classification tasks by embedding nodes

into Gaussian distributions but both methods only capture the neighborhood infor-

mation based on random walk techniques. DVNE (Zhu et al. 2018) learns Gaussian

embedding for nodes in the Wasserstein space as the latent representations to capture

uncertainties of nodes, but they focus only on first- and second-order proximity of

networks same to previous methods. Therefore, the problem of role preservation has

not been solved in these studies.

In this paper, we propose struc2gauss, a new structural role preserving network

embedding framework. struc2gauss learns node representations in the space of Gaus-

sian distributions and performs NE based on global structural information so that it

can address both limitations simultaneously. On the one hand, struc2gauss generates

node context based on a global structural similarity measure to learn node represen-

tations so that global structural information can be taken into consideration. On the

other hand, struc2gauss learns node representations via Gaussian embedding and each

node is represented as a Gaussian distribution where the mean indicates the position

of this node in the embedding space and the covariance represents its uncertainty.

Furthermore, we analyze and compare two different energy functions for Gaussian

embedding to calculate the closeness of two embedded Gaussian distributions, i.e.,

expected likelihood and KL divergence. To investigate the influence of structural infor-

mation, we also compare struc2gauss to two other structural similarity measures for

networks, i.e., MatchSim and SimRank.
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We summarize the contributions of this paper as follows:

– We propose a flexible structure preserving network embedding framework,

struc2gauss, which learns node representations in the space of Gaussian dis-

tributions. struc2gauss is capable of preserving structural roles and modeling

uncertainties.

– We investigate the influence of different energy functions in Gaussian embed-

ding and compare to different structural similarity measures in preserving global

structural information of networks.

– We conduct extensive experiments in node clustering and classification tasks which

demonstrate the effectiveness of struc2gauss in capturing the global structural role

information of networks and modeling the uncertainty of learned node represen-

tations.

The rest of the paper is organized as follows. Section 2 provides an overview of

the related work. We present the problem statement in Sect. 3. Section 4 explains the

technical details of struc2gauss. In Sect. 5 we then discuss our experimental study.

The possible extensions of struc2gauss are discussed in Sect. 6. Finally, in Sect. 7 we

draw conclusions and outline directions for future work.

2 Related work

2.1 Network embedding

Network embedding methods map nodes in a network into a low-dimensional space

according to their structural information in the network. The learned node representa-

tions can boost performance in many network analysis tasks, e.g., community detection

and link prediction. Previous methods mainly viewed NE as part of dimensionality

reduction techniques (Goyal and Ferrara 2018). They first construct a pairwise simi-

larity graph based on neighborhood and then embed the nodes of the graph into a lower

dimensional vector space. Locally Linear Embedding (LLE) (Tenenbaum et al. 2000)

and Laplacian Eigenmaps (Belkin and Niyogi 2001) are two representative methods in

this category. SPE (Shaw and Jebara 2009) learns a low-rank kernel matrix to capture

the structures of input graph via a set of linear inequalities as constraints. But the

high computational complexity makes these methods difficult to apply in real-world

networks.

With increasing attention attracted by neural network research, unsupervised neural

network techniques have opened up a new world for embedding. word2vec as well

as Skip-Gram and CBOW (Mikolov et al. 2013a, b) learn low-rank representations of

words in text based on word context and show promising results of different NLP tasks.

Based on word2vec, DeepWalk (Perozzi et al. 2014) first introduces such embedding

mechanism to networks by treating nodes as words and random walks as sentences.

Afterwards, a sequence of studies have been conducted to improve DeepWalk either

by extending the definition of neighborhood to higher-order proximity (Cao et al.

2015; Grover and Leskovec 2016; Perozzi et al. 2016; Tang et al. 2015b) or incor-

porating more information for node representations such as attributes (Li et al. 2017;
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Wang et al. 2017) and heterogeneity (Chang et al. 2015; Tang et al. 2015a). Recently,

deeper neural networks have also been introduced in NE problem to capture the non-

linear characteristics of networks, such as SDNE (Wang et al. 2016). However, these

approaches represent a node into a point vector in the learned embedding space and

are not capable of modeling the uncertainties of node representations. To solve this

problem, inspired by Vilnis and McCallum (2014), Gaussian embedding has been

used in NE. Bojchevski and Günnemann (2017) learns node embeddings by leverag-

ing Gaussian embedding to capture uncertainties. Dos Santos et al. (2016) combines

Gaussian embedding and classification loss function for multi-label network classi-

fication. DVNE (Zhu et al. 2018) learns a Gaussian embedding for each node in the

Wasserstein space as the latent representation so that the uncertainties can be modeled.

We refer the reader to Hamilton et al. (2017b), Cui et al. (2018) and Cai et al. (2018)

for more details.

Recent years have witnessed increasing interest in neural networks on graphs. Graph

neural networks (Scarselli et al. 2008) can also learn node representations but using

more complicated operations such as convolution. Kipf and Welling (2016) proposes

a GCN model using an efficient layer-wise propagation rule based on a first-order

approximation of spectral convolutions on graphs. Gilmer et al. (2017) introduces

a general message passing neural network framework to interpret different previous

neural models for graphs. GraphSAGE (Hamilton et al. 2017a) learns node represen-

tations in an inductive manner sampling a fixed-size neighborhood of each node, and

then performing a specific aggregator over it. Embedding Propagation (EP) (Duran

and Niepert 2017) learns representations of graphs by passing messages forward and

backward in an unsupervised setting. Graph Attention Networks (GATs) (Velickovic

et al. 2017) extend graph convolutions by utilizing masked self-attention layers to

assign different importances to different nodes with different sized neighborhoods.

However, most NE methods as well as graph neural networks only concern the

local structural information represented by paths consists of linked nodes, i.e., the

community structures of networks. But they fail to capture global structural informa-

tion, i.e., structural roles. SNS (Lyu et al. 2017), struc2vec (Ribeiro et al. 2017) and

DRNE (Tu et al. 2018) are exceptions which take global structural information into

consideration. SNS uses graphlet information for structural similarity calculation as a

pre-propcessing step. struc2vec applies the dynamic time warping to measure similar-

ity between two nodes’ degree sequences and builds a new multilayer graph based on

the similarity. Then similar mechanism used in DeepWalk has been used to learn node

representations. DRNE explicitly models regular equivalence, which is one way to

define the structural role, and leverages the layer normalized LSTM (Ba et al. 2016) to

learn the representations for nodes. Another related work focusing on global structural

information is REGAL (Heimann et al. 2018). REGAL aims at matching nodes across

different graphs so the global structural patterns should be considered. However, its

target is network alignment but not representation learning. A brief summary of these

NE methods is list in Table 1.
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Table 1 A brief summary of different NE methods

Method Community (local) Role (global) Uncertainty

DeepWalk (Perozzi et al. 2014)
√

LINE (Tang et al. 2015b)
√

GraRep (Cao et al. 2015)
√

PTE (Tang et al. 2015a)
√

Walklets (Perozzi et al. 2016)
√

node2vec (Grover and Leskovec 2016)
√

EP (Duran and Niepert 2017)
√

GraphSage (Hamilton et al. 2017a)
√

struc2vec (Ribeiro et al. 2017)
√

DRNE (Tu et al. 2018)
√

GraphWave (Donnat et al. 2018)
√

DVNE (Zhu et al. 2018)
√ √

SNS (Lyu et al. 2017)
√

Our method
√ √

Note that (1) we only list NE methods for homogeneous networks without attributes, and (2)

node2vec (Grover and Leskovec 2016) aims to capture both local and global structure information but

walk-based sampling strategy does not effectively capture global structure information, as shown in our

experiments in Sect. 5

2.2 Structural similarity

Structure based network analysis tasks can be categorized into two types: structural

similarity calculation and network clustering .

Calculating structural similarities between nodes is a hot topic in recent years and

different methods have been proposed. SimRank (Jeh and Widom 2002) is one of the

most representative notions to calculate structural similarity. It implements a recursive

definition of node similarity based on the assumption that two objects are similar if

they relate to similar objects. SimRank++ (Antonellis et al. 2008) adds an evidence

weight which partially compensates for the neighbor matching cardinality problem.

P-Rank (Zhao et al. 2009) extends SimRank by jointly encoding both in- and out-link

relationships into structural similarity computation. MatchSim (Lin et al. 2009) uses

maximal matching of neighbors to calculate the structural similarity. RoleSim (Jin et al.

2011) is the only similarity measure which can satisfy the automorphic equivalence

properties.

Network clusters can be based on either global or local structural information.

Graph clustering based on global structural information is the problem of role dis-

covery (Rossi and Ahmed 2015). In social science research, roles are represented

as concepts of equivalence (Wasserman and Faust 1994). Graph-based methods and

feature-based methods have been proposed for this task. Graph-based methods take

nodes and edges as input and directly partition nodes into groups based on their struc-

tural patterns. For example, Mixed Membership Stochastic Blockmodel (Airoldi et al.

2008) infers the role distribution of each node using the Bayesian generative model.
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Feature-based methods first transfer the original network into feature vectors and then

use clustering methods to group nodes. For example, RolX (Henderson et al. 2012)

employs ReFeX (Henderson et al. 2011) to extract features of networks and then uses

non-negative matrix factorization to cluster nodes. Local structural information based

clustering corresponds to the problem of community detection (Fortunato 2010). A

community is a group of nodes that interact with each other more frequently than with

those outside the group. Thus, it captures only local connections between nodes.

3 Problem statement

We illustrated local community structure and global role structure in Sect. 1 using

the example in Fig. 1. In this section, definitions of community and role will be pre-

sented and then we formally define the problem of structural role preserving network

embedding.

Structural role is from social science and used to describe nodes in a network from

a global perspective. Formally,

Definition 1 (Structural role) In a network, a set of nodes have the same role if they

share similar structural properties (such as degree, clustering coefficient, and between-

ness) and structural roles can often be associated with various functions in a network.

For example, hub nodes with high degree in a social network are more likely to

be opinion leaders, whereas bridge nodes with high betweenness are gatekeepers to

connect different groups. Structural roles can reflect the global structural information

because two nodes which have the same role could be far from each other and have

no direct links or shared neighbors. In contrast to roles, community structures focus

on local connections between nodes.

Definition 2 (Community structure) In a network, communities can represent the local

structures of nodes, i.e., the organization of nodes in communities, with many edges

joining nodes of the same community and comparatively few edges joining nodes of

different communities (Fortunato 2010). A community is a set of nodes where nodes

in this set are densely connected internally.

It can be seen that the focus of community structure is the internal and local connections

so it aims to capture the local structural information of networks

In this study, we only consider the global structural information, i.e., structural

role information, so without mentioning it explicitly, structural information indicates

the global one and the keyphrases “structural role information” and “global structural

information” are used interchangeably.

Definition 3 (Structural Role Preserving Network Embedding) Given a network G =
(V , E), where V is a set of nodes and E is a set of edges between the nodes, the problem

of Structural Preserving Network Embedding aims to represent each node v ∈ V

into a Gaussian distribution with mean µ and covariance Σ in a low-dimensional space

R
d , i.e., learning a function

f : V → N (x;µ,Σ),

123



Structural role preserving network embedding 1079

Fig. 2 Overview of the struc2gauss framework. struc2gauss consists of three components: similarity cal-

culation, training set sampling and Gaussian embedding

where µ ∈ R
d is the mean, Σ ∈ R

d×d is the covariance and d ≪ |V |. In the space

R
d , the global structural role information of nodes introduced in Definition 1 can be

preserved, i.e., if two nodes have the same role their means should be similar, and

the uncertainty of node representations can be captured, i.e., the values of variances

indicate the levels of uncertainties of learned representations.

4 struc2gauss

An overview of our proposed struc2gauss framework is shown in Fig. 2. Given a

network, a similarity measure is employed to calculate the similarity matrix, then the

training set which consists of positive and negative pairs are sampled based on the

similarity matrix. Finally, Gaussian embedding techniques are applied on the training

set and generate the embedded Gaussian distributions as the node representations and

uncertainties of the representations. Besides, we analyze the computational complexity

and the flexibility of our struc2gauss framework.

4.1 Structural similarity calculation

It has been theoretically proved that random walk sampling based NE methods are

not capable of capturing structural equivalence (Lyu et al. 2017) which is one way to

model the structural roles in networks (Wasserman and Faust 1994). Thus, to capture

the global structural information, we calculate the pairwise structural similarity as a

pre-processing step similar to Lyu et al. (2017) and Ribeiro et al. (2017).

In the literature, a variety of structural similarity measures have been proposed to

calculate node similarity based on the structures of networks, e.g., SimRank (Jeh and

Widom 2002), MatchSim (Lin et al. 2009) and RoleSim (Jin et al. 2011, 2014). How-

ever, not all of these measures can capture the global structural role information and we

will show the empirical evidence in the experiments in Sect. 5. Therefore, in this paper

we leverage RoleSim for the structural similarity since it satisfies all the requirements

of Axiomatic Role Similarity Properties for modeling the equivalence (Jin et al. 2011),

i.e., the structural roles. RoleSim also generalizes Jaccard coefficient and corresponds
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linearly to the maximal weighted matching. RoleSim similarity between two nodes u

and v is defined as:

RoleSim(u, v) = (1 − β) max
M(u,v)

∑

(x,y)∈M(u,v) RoleSim(x, y)

|N (u)| + |N (v)| − |M(u, v)|
+ β (1)

where |N (u)| and |N (v)| are the numbers of neighbors of node u and v, respectively.

M(u, v) is a matching between N (u) and N (v), i.e., M(u, v) ⊆ N (u) × N (v) is a

bijection between N (u) and N (v). The parameter β is a decay factor where 0 < β < 1.

The intuition of RoleSim is that two nodes are structurally similar if their corresponding

neighbors are also structurally similar. This intuition is consistent with the notion of

automorphic and regular equivalence (Wasserman and Faust 1994).

In practice, RoleSim values can be computed iteratively and are guaranteed to

converge. The procedure of computing RoleSim consists of three steps:

– Step 1: Initialize matrix of RoleSim scores R0;

– Step 2: Compute the kth iteration Rk scores for the (k − 1)th iteration’s values,

Rk−1 using:

Rk(u, v) = (1 − β) max
M(u,v)

∑

(x,y)∈M(u,v) Rk−1(x, y)

|N (u)| + |N (v)| − |M(u, v)|
+ β (2)

– Step 3: Repeat Step 2 until R values converge for each pair of nodes.

Note that there are other strategies can be used to capture the global structural role

information except structural similarity, and these possible strategies will be discussed

in Sect. 6. The advantage of RoleSim in capturing structural roles to other structural

measures will also be discussed empirically in Sect. 5.6.

4.2 Training set sampling

The target of structural role preserving network embedding is to map nodes in the

network to a latent space where the learned latent representations of two nodes are

(1) more similar if these two nodes are structurally similar, and (2) more dissimilar if

these two nodes are not structurally similar. Hence, we need to generate structurally

similar and dissimilar node pairs as the training set based on the similarity we learned

in Sect. 4.1. We name the structurally similar pairs of nodes the positive set and the

structurally dissimilar pairs the negative set.

In detail, for node v, we rank its similarity values towards other nodes and then select

top-k most similar nodes ui , i = 1, . . . , k to form its positive set Γ+ = {(v, ui )|i =
1, . . . , k}. For the negative set, we randomly select the same number of nodes {u′

i , i =
1, . . . , k} same to Vilnis and McCallum (2014) and other random walk sampling

based methods (Grover and Leskovec 2016; Tang et al. 2015b; Perozzi et al. 2014),

i.e., Γ− = {(v, u′
i )|i = 1, . . . , k}. Therefore, k is a parameter indicating the number

of positive/negative nodes per node. We will generate r positive and negative sets for

each node where r is a parameter indicating the number of samples per node. The

influence of these parameters will be analyzed empirically in Sect. 5.7. Note that the
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selection of the positive set is similar to that in DeepWalk and the difference is that

we follow the similarity rank to select the positive nodes instead of random walks.

4.3 Gaussian embedding

4.3.1 Overview

Recently language modeling techniques such as word2vec have been extensively used

to learn word representations in and almost all NE studies are based on these word

embedding techniques. However, these NE studies map each entity to a fixed point

vector in a low-dimension space so that the uncertainties of learned embeddings are

ignored. Gaussian embedding aims to solve this problem by learning density-based

distributed embeddings in the space of Gaussian distributions (Vilnis and McCallum

2014). Gaussian embedding has been utilized in different graph mining tasks including

triplet classification on knowledge graphs (He et al. 2015), multi-label classification

on heterogeneous graphs (Dos Santos et al. 2016) and link prediction and node clas-

sification on attributed graphs (Bojchevski and Günnemann 2017).

Gaussian embedding trains with a ranking-based loss based on the ranks of positive

and negative samples. Following Vilnis and McCallum (2014), we choose the max-

margin ranking objective which can push scores of positive pairs above negatives by

a margin defined as:

L =
∑

(v,u)∈Γ+

∑

(v′,u′)∈Γ−

max(0, m − E(zv, zu) + E(zv′, zu′)) (3)

where Γ+ and Γ− are the positive and negative pairs, respectively. E(·, ·) is the energy

function which is used to measure the similarity of two distributions, zv and zu are the

learned Gaussian distributions for nodes v and u, and m is the margin separating

positive and negative pairs. In this paper, we present two different energy func-

tions to measure the similarity of two distributions for node representation learning,

i.e., expected likelihood and KL divergence based energy functions. For the learned

Gaussian distribution zi ∼ N (0;µi ,Σi ) for node i , to reduce the computational

complexity, we restrict the covariance matrix Σi to be diagonal and spherical in this

work.

4.3.2 Expected likelihood based energy

Although both dot product and inner product can be used to measure similarity between

two distributions, dot product only considers means and does not incorporate covari-

ances. Thus, we use inner product to measure the similarity. Formally, the integral of

inner product between two Gaussian distributions zi and z j (learned Gaussian embed-

dings for node i and j respectively), a.k.a., expected likelihood, is defined as:

E(zi , z j ) =
∫

x∈R

N (x;µi ,Σi )N (x;µ j ,Σ j )dx = N (0;µi − µ j ,Σi + Σ j ). (4)
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For simplicity in computation and comparison, we use the logarithm of Eq. (4) as the

final energy function:

EE L (zi , z j ) = log E(zi , z j ) = log N (0;µi − µ j ,Σi + Σ j )

=
1

2

{

(µi − µ j )
T (Σi + Σ j )

−1(µi − µ j ) + log det(Σi + Σ j ) + d log(2π)

}

(5)

where d is the number of dimensions. The gradient of this energy function with respect

to the means µ and covariances Σ can be calculated in a closed form as:

∂EE L(zi , z j )

∂µi

= −
∂E(zi .z j )E L

∂µ j

= −∆i j

∂EE L(zi , z j )

∂Σi

=
∂E(zi .z j )E L

∂Σ j

=
1

2
(∆i j∆

T
i j − (Σi + Σ j )

−1), (6)

where ∆i j = (Σi + Σ j )
−1(µi − µ j ) (He et al. 2015; Vilnis and McCallum 2014).

Note that expected likelihood is a symmetric similarity measure, i.e., EE L(zi , z j ) =
EE L(z j , zi ).

4.3.3 KL divergence based energy

KL divergence is another straightforward way to measure the similarity between two

distributions so we utilize the energy function EK L(zi , z j ) based on the KL divergence

to measure the similarity between Gaussian distributions zi and z j (learned Gaussian

embeddings for node i and j respectively):

EK L(zi , z j ) = DK L(zi , z j )

=
∫

x∈R

N (x;µi ,Σi ) log
N (x;µ j ,Σ j )

N (x;µi ,Σi )
dx

=
1

2

{

tr(Σ−1
i Σ j ) + (µi − µ j )

T Σ−1
i (µi − µ j ) − log

det(Σ j )

det(Σi )
− d

}

(7)

where d is the number of dimensions. Similarly, we can compute the gradients of this

energy function with respect to the means µ and covariances Σ :

∂EK L(zi , z j )

∂µi

= −
∂EK L(zi .z j )

∂µ j

= −∆′
i j

∂EK L(zi , z j )

∂Σi

=
1

2

(

Σ−1
i Σ jΣ

−1
i + ∆′

i j∆
′T
i j − Σ−1

i

)

∂EK L(zi , z j )

∂Σ j

=
1

2

(

Σ−1
j − Σ−1

i

)

(8)
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where ∆′
i j = Σ−1

i (µi − µ j ).

Note that KL divergence based energy is asymmetric but we can easily extend to a

symmetric similarity measure as follows:

E(zi , z j ) =
1

2
(DK L(zi , z j ) + DK L(z j , zi )). (9)

4.4 Learning

To avoid the means to grow too large and ensure the covariances to be positive defi-

nite as well as reasonably sized, we regularize the means and covariances to learn the

embedding (Vilnis and McCallum 2014). Due to the different geometric characteris-

tics, two different hard constraint strategies have been used for means and covariances,

respectively. Note that we only consider diagonal and spherical covariances. In par-

ticular, we have

‖µi‖ ≤ C, ∀i (10)

cmin I ≺ Σi ≺ cmax I , ∀i . (11)

The constraint on means guarantees them to be sufficiently small and constraint on

covariances ensures that they are positive definite and of appropriate size. For example,

Σi i ← max(cmin, min(cmax ,Σi i )) can be used to regularize diagonal covariances.

We use AdaGrad (Duchi et al. 2011) to optimize the parameters. The learning

procedure is described in Algorithm 1. Initialization phase is from line 1 to 4, context

generation is shown in line 7, and Gaussian embeddings are learned from line 8 to 14.

Algorithm 1 The Learning Algorithm of struc2gauss

Input: An energy function E(zi , z j ), a graph G = (V , E), embedding dimension d, constraint values C

for mean and cmax and cmin for covariance, learning rate α, and maximum epochs n.

Output: Gaussian embeddings (mean vector µ and covariance matrix Σ) for nodes v ∈ V

1: for all v ∈ V do

2: Initialize mean µ for v

3: Initialize covariance Σ for v

4: Regularize µ and Σ with constraint in Eq. (10) and (11)

5: end for

6: while not reach the maximum epochs n do

7: Generate positive and negative sets Γ+ and Γ− for each node

8: if use expected likelihood based energy then

9: Update means and covariances based on Eq. (6)

10: end if

11: if use KL divergence based energy then

12: Update means and covariances based on Eq. (8)

13: end if

14: Regularize µ and Σ with constraint in Eq. (10) and (11)

15: end while
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4.5 Computational complexity

The complexity of different components of struc2gauss are analyzed as follows:

1 For structural similarity calculation using RoleSim, the computational complexity

is O(kn2d), where n is the number of nodes, k is the number of iterations and d is

the average of y log y over all node-pair bipartite graph in G (Jin et al. 2011) where

y = |N (u)| × |N (v)| for each pair of nodes u and v. The complexity O(y log y)

is from the complexity of the fast greedy algorithm offers a 1
2

-approximation of

the globally optimal matching.

2 To generate the training set based on similarity matrix, we need to sample from the

most similar nodes for each node, i.e., to select k largest numbers from an unsorted

array. Using heap, the complexity is O(n log k).

3 For Gaussian embedding, the operations include matrix addition, multiplication

and inversion. In practice, as stated above, we only consider two types of covariance

matrices, i.e., diagonal and spherical, so all these operations have the complexity

of O(n).

Overall, the component of similarity calculation is the bottleneck of the framework.

One possible and effective way to optimize this part is to set the similarity to be 0 if

two nodes have a large difference in degrees. The reason is: (1) we generate the context

only based on most similar nodes; and (2) two nodes are less likely to be structural

similar if their degrees are very different.

5 Experiments

We evaluate struc2gauss in different tasks in order to understand its effectiveness in

capturing structural information, capability in modeling uncertainties of embeddings

and stability of the model towards parameters. We also study the influence of different

similarity measures empirically. The source code of struc2gauss is available online.1

5.1 Experimental setup

5.1.1 Datasets

We conduct experiments on two types of network datasets: networks with and without

ground-truth labels where these labels can represent the global structural role informa-

tion of nodes in the networks. For networks with labels, to compare to state-of-the-art,

we use air-traffic networks from Ribeiro et al. (2017) where the networks are undi-

rected, nodes are airports, edges indicate the existence of commercial flights and labels

correspond to their levels of activities. For networks without labels, we select five real-

world networks in different domains from Network Repository.2 A brief introduction

to these datasets is shown in Table 2. Note that the numbers of groups for networks

1 https://bitbucket.org/paulpei/struc2gauss/src/master/.

2 http://networkrepository.com/index.php.
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Table 2 A brief introduction to data sets

Type Dataset # nodes # edges # groups

With labels Brazilian-air 131 1038 4

European-air 399 5995 4

USA-air 1190 13,599 4

Without labels Arxiv GR-QC 5242 28,980 8

Advogato 6551 51,332 11

Hamsterster 2426 16,630 10

Anybeat 12,645 67,053 15

Epinion 26,588 100,120 18

without labels are determined by Minimum Description Length (MDL) (Henderson

et al. 2012).

5.1.2 Baselines

We compare struc2gauss with several state-of-the-art NE methods.

– DeepWalk (Perozzi et al. 2014): DeepWalk (Perozzi et al. 2014) learns node rep-

resentations based on random walks using the same mechanism of word2vec by

drawing an analogy between paths consists of several nodes on networks and

word sequences in text. The structural information is captured by the paths of

nodes generated by random walks.

– node2vec (Grover and Leskovec 2016): It extends DeepWalk to learn latent

representations from the node paths generated by biased random walk. Two hyper-

parameters p and q are used to control the random walk to be breadth-first or

depth-first. In this way, node2vec can capture the structural information in net-

works. Note that when p = q = 1, node2vec degrades to DeepWalk.

– LINE (Tang et al. 2015b): It learns node embeddings via preserving both the local

and global network structures. By extending DeepWalk, LINE aims to capture

both the first-order, i.e., the neighbors of nodes, and second-order proximities, i.e.,

the shared neighborhood structures of nodes.

– Embedding Propagation (EP) (Duran and Niepert 2017): EP is an unsupervised

learning framework for network embedding and learns vector representations of

graphs by passing two types of messages between neighboring nodes. EP, as one

of graph neural networks, is similar to graph convolutional networks (GCN) (Kipf

and Welling 2016). The difference is that EP is unsupervised and GCN is designed

for semi-supervised learning.

– struc2vec (Ribeiro et al. 2017): It learns latent representations for the structural

identity of nodes. Due to its high computational complexity, we use the combina-

tion of all optimizations proposed in the paper for large networks.

– graph2gauss (Vilnis and McCallum 2014): It maps each node into a Gaussian

distribution where the mean indicates the position of a node in the embedded

space and the covariance denotes the uncertainty of the learned representation.
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Bojchevski and Günnemann (2017) and Dos Santos et al. (2016) extend the original

Gaussian embedding method to network embedding task.

– DRNE (Tu et al. 2018): It learns node representations based on the concept of

regular equivalence. DRNE utilizes a layer normalized LSTM to represent each

node by aggregating the representations of their neighborhoods in a recursive way

so that the global structural information can be preserved.

– GraphWave (Donnat et al. 2018): It leverages heat wavelet diffusion patterns to

learn a multidimensional structural embedding for each node based on the diffusion

of a spectral graph wavelet centered at the node. Then the wavelets as distributions

are used to capture structural similarity in graphs.

For all baselines, we use the implementation released by the original authors. For our

framework struc2gauss, we test four variants: struc2gauss with expected likelihood

and diagonal covariance (s2g_el_d), expected likelihood and spherical covariance

(s2g_el_s), KL divergence and diagonal covariance (s2g_kl_d), and KL divergence and

spherical covariance (s2g_kl_s). Note that we only use means of Gaussian distributions

as the node embeddings in role clustering and classification tasks. The covariances are

left for uncertainty modeling.

For other settings including parameters and evaluation metrics, different settings

will be discussed in each task.

5.2 Case study: visualization in 2-D space

We use the toy example shown in Fig. 1 to demonstrate the effectiveness of struc2gauss

in capturing the global structural information and the failure of other state-of-the-art

techniques in this task. The toy network consists of ten nodes and they can be clustered

from two different perspectives:

– from the perspective of the global role structure, they belong to three groups, i.e.,

{0, 1, 2, 3} (yellow color), {4, 5, 6, 7} (blue color) and {8, 9} (red color) because

different groups have different structural functions in this network;

– from the perspective of the local community structure, they belong to two groups,

i.e., {0, 1, 4, 5, 6, 8} and {2, 3, 6, 7, 9} because there are denser connections/more

edges inside each community that outside the community.

Note that from the perspective of role discovery, these three groups of nodes can be

explained to play the roles of periphery, star and bridge, respectively.

In this study, we aim to preserve the global structural information in network embed-

ding. Figure 3 shows the learned node representations by different methods. For shared

parameters in all methods, we use the same settings by default: representation dimen-

sion: 2, number of walks per node: 20, walk length: 80, skipgram window size: 5. For

node2vec, we set p = 1 and q = 2. For graph2gauss and struc2gauss, the number

of walks per node is 20 and the number of positive/negative nodes per node is 5. The

constraint for means C is 2 and constraints for covariances cmin and cmax are 0.5 and

2, respectively. From the visualization results, it can be observed that:

– Our proposed struc2gauss outperforms all other methods. Both diagonal and spher-

ical covariances can separate nodes based on global structural information and

123



Structural role preserving network embedding 1087

(a) DeepWalk. (b) LINE (c) graph2gauss

(d) node2vec (e) struc2vec (f) struc2gauss KL + diag

(g) struc2gauss KL + spher (h) struc2gauss EL + diag (i) struc2gauss EL + spher

Fig. 3 Latent representations in R
2 learned by a DeepWalk, b LINE, c GraRep, d node2vec, e struc2vec,

f struc2gauss using KL divergence with diagonal covariance, g struc2gauss using KL divergence with

spherical covariance, g struc2gauss using KL divergence with diagonal covariance, h struc2gauss using

expected likelihood with diagonal covariance, and i struc2gauss using expected likelihood with spherical

covariance

struc2gauss with spherical covariances performs better than diagonal covariances

since it can recognize star and bridge nodes better.

– Methods aim to capture the global structural information performs better than

random walk sampling based methods. For example, struc2vec can solve this

problem to some extent. However, there is overlap between node 6 and 9. It has been

stated that node2vec can capture the structural equivalence but the visualization

shows that it still captures the local structural information similar to DeepWalk.

– DeepWalk, LINE and graph2gauss fail to capture the global structural informa-

tion because these methods are based on random walk which only captures the

local community structures. DeepWalk is capable to capture the local structural

information since nodes are separated into two parts corresponding to the two

communities shown in Fig. 1.
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5.3 Structural role clustering

The most common network mining application based on global structural information

is the problem of role discovery and role discovery essentially is a clustering task.

Thus, we consider this task to illustrate the potential of node representations learned

by struc2gauss. We use the latent representations learned by different methods (in

struc2gauss, we use means of learned Gaussian distribution) as features and K-means

as the clustering algorithm to cluster nodes.

Parameters For these baselines, we use the same settings in the literature: repre-

sentation dimension: 128, number of walks per node: 20, walk length: 80, skipgram

window size: 10. For node2vec, we set p = 1 and q = 2. For graph2gauss and

struc2gauss, we set the constraint for means C to be 2 and constraints for covariances

cmin and cmax to be 0.5 and 2, respectively. The number of walks per node is 10, the

number of positive/negative nodes per node is 120 and the representation dimension

is also 128.

Evaluation metrics To quantitatively evaluate clustering performance in labeled

networks, we use Normalized Mutual Information (NMI) as the evaluation metric.

NMI is obtained by dividing the mutual information by the arithmetic average of

the entropy of obtained cluster and ground-truth cluster. It evaluates the clustering

quality based on information theory, and is defined by normalization on the mutual

information between the cluster assignments and the pre-existing input labeling of the

classes:

N M I (C,D) =
2 ∗ I(C,D)

H(C) + H(D)
, (12)

where obtained cluster C and ground-truth cluster D. The mutual information I(C,D)

is defined as I(C,D) = H(C) − H(C|D) and H(·) is the entropy.

For unlabeled networks, we use normalized goodness-of-fit as the evaluation metric.

goodness-of-fit can measure how well the representation of roles and the relations

among these roles fit a given network (Wasserman and Faust 1994). In goodness-of-

fit, it is assumed that the output of a role discovery method is an optimal model, and

nodes belonging to the same role are predicted to be perfectly structurally equivalent.

In real-world social networks, nodes belonging to the same role are only approximately

structurally equivalent. The essence of goodness-of-fit indices is to measure how just

how approximate are the approximate structural equivalences. If the optimal model

holds, then all nodes belonging to the same role are exactly structurally equivalent.

In detail, given a social network with n vertices V = {v1, v2, . . . , vn} and m roles,

we have the adjacency matrix A = {Ai j ∈ {0, 1}|1 ≤ i, j ≤ n} and the role set

R = {R1, R2, . . . , Rm}, where vi ∈ R j indicates node vi belongs to the j th role, as

obtained using DyNMF. Note that R partitions V , in the sense that each v ∈ V belongs

to exactly one Ri ∈ R. Then the density matrix ∆ is defined as:

∆i j =

{

∑

vk∈Ri ,vl∈R j
Akl/(|Ri | · |R j |), if i �= j

∑

vk∈Ri ,vl∈R j
Akl/(|Ri | · (|R j | − 1)), if i = j .

(13)
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Table 3 NMI for node clustering in air-traffic networks using different NE methods

Brazil-air Europe-air USA-air

DeepWalk (Perozzi et al. 2014) 0.1303 0.0458 0.0766

LINE (Tang et al. 2015b) 0.2215 0.1563 0.1275

node2vec (Grover and Leskovec 2016) 0.2516 0.1722 0.0945

EP (Duran and Niepert 2017) 0.2283 0.1405 0.1007

graph2gauss (Vilnis and McCallum 2014) 0.1204 0.1109 0.0896

struc2vec (Ribeiro et al. 2017) 0.3758 0.2729 0.2486

DRNE (Tu et al. 2018) 0.5244 0.2766 0.2918

GraphWave (Donnat et al. 2018) 0.5040 0.3230 0.2452

s2g_el_d 0.5615 0.3234 0.3188

s2g_el_s 0.5396 0.2974 0.2967

s2g_kl_d 0.5527 0.3145 0.3212

s2g_kl_s 0.5675 0.3280 0.3217

In struc2gauss, el and kl mean expected likelihood and KL divergence, respectively. d and s mean diagonal

and spherical covariances, respectively. The highest values are in bold

We also define block matrix B based on the discovered roles. In fact, there are several

criteria which can be used to build the block matrix including perfect fit, zeroblock,

oneblock and α density criterion (Wasserman and Faust 1994). Since real social net-

work data rarely contain perfectly structural equivalent nodes (Faust and Wasserman

1992), perfect fit, zeroblock and oneblock criteria would not work well in real-world

data and we use α density criterion to construct the block matrix B:

Bi j =

{

0, if ∆i j < α

1, if ∆i j ≥ α
(14)

where α is the threshold to determine the values in blocks. α density criterion is based

on the density of edges between nodes belong to the same role and defined as

α =
∑

1≤i, j≤n

Ai j/(n(n − 1)). (15)

Based on the definitions of density matrix ∆ and block matrix B, the goodness-of-fit

index e is defined as

e =
∑

1≤i, j≤m

|Bi j − ∆i j |. (16)

To make the evaluation metric value in the range of [0, 1], we normalize goodness-of-fit

by dividing r2 where r is number of groups/roles. For more details about goodness-

of-fit indices, please refer to Wasserman and Faust (1994).

Results The NMI values for node clustering on networks with labels are shown

in Table 3 and the normalized goodness-of-fit values for networks without labels are
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Fig. 4 Goodness-of-fit of global structure preserving embedding baselines and struc2gauss with different

strategies on three real-world networks. Lower value means better performance

shown in Fig. 4. Note that random walk and neighbor based embedding methods,

including DeepWalk, LINE, node2vec, EP and graph2gauss, aim at capturing local

structural information and so are incapable of preserving structural roles. Hence, for

simplicity, we will not compare them to these role preserving methods on networks

without clustering labels.

From these results, some conclusions can be drawn:

– For both types of networks with and without clustering labels, struc2gauss

outperforms all other methods in different evaluation metrics. It indicates the effec-

tiveness of struc2gauss in capturing the global structural information.

– Comparing struc2gauss with diagonal and spherical covariances, it can be

observed that spherical covariance can achieve better performance in node clus-

tering. This finding is similar to the results of word embedding in Vilnis and

McCallum (2014). A possible explanation could be: spherical covariance requires

the diagonal elements to be the same which limits the representation power of

covariance matrices but on the contrast enhance the representation power of the

learned means. Since we only use means to represent nodes, the method with

spherical covariance matrix could learn more relaxed means which leads to better

performance.

– For baselines, struc2vec, GraphWave and DRNE can capture the structural role

information to some extent since their performance is better than these random

walk based methods, i.e., DeepWalk and node2vec, and neighbor-based method,

i.e., EP and graph2gauss, while all of them fail in capturing the global structural

information for node clustering.

5.4 Structural role classification

Node classification is another widely used task for embedding evaluation. Different

from previous studies which focused on community structures, our approach aims to

preserve the global role structures. Thus, we evaluate the effectiveness of struc2gauss
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Fig. 5 Average accuracy for structural role classification in Europe-air network

in role classification task. Same to the node clustering task in Sect. 5.3, we use the latent

representations learned by different methods as features. Each dataset is separated into

training set and test set (we will explore the classification performance with different

percentages of training set). To focus on the learned representation, we use logistic

regression as the classifier.

Structural role classification as a supervised task, the ground-truth labels are

required. Thus we only use two air-traffic networks for evaluation. We compare our

approach to the same state-of-the-art NE algorithms as baselines used in Sect. 5.3, i.e.,

DeepWalk, LINE, node2vec, EP, graph2gauss, struc2vec, GraphWave and DRNE.

Same to Tu et al. (2018), we also compare to four centrality measures, i.e., closeness

centrality, betweenness centrality, eigenvector centrality and k-core. Since the com-

bination of these four measures perform best (Tu et al. 2018), we only compare the

classification performance of the combination as features in this task. The parameters

of baselines and struc2gauss, we use the same settings in Sect. 5.3.

The average accuracies for structural role classification in Europe-air and USA-air

are shown in Figs. 5 and 6. From the results, we can observe that:

– struc2gauss outperforms almost all other methods in both networks except DRNE

in Europe-air network. In Europe-air network, struc2gauss with expected likeli-

hood and spherical covariances, i.e., s2g_el_s, performs best. struc2gauss with

KL divergence and spherical covariances, i.e., s2g_kl_s, achieves the second best

performance especially when the training ratio is larger than 0.7. struc2gauss with

diagonal covariances, i.e., s2g_el_d and s2g_kl_d, are on par with GraphWave,

DRNE and struc2vec and outperform other methods. In the USA-air network,

struc2gauss with different settings outperforms all baselines. This indicates the

effectiveness of struc2gauss in modeling the structural role information. Although

not the same combination of energy function and covariance form performs best

in two networks, different variants of struc2gauss are always the best.

– Among the baselines, only struc2vec, GraphWave and DRNE can capture the struc-

tural role information so that they achieve better classification accuracy than other
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Fig. 6 Average accuracy for structural role classification in USA-air network

baselines. DRNE performs the best among these baselines since it captures regular

equivalence. GraphWave and struc2vec are the second best baselines because they

also aim to capture structural roles.

– Random walk and neighbor based NE methods only capture local community

structures so they perform worse than struc2gauss, GraphWave, DRNE and our

proposed struc2gauss. Node that methods such as DeepWalk, LINE and node2vec,

although considering the first-, second- and/or higher-order proximity, still are not

capable of modeling structural role information.

5.5 Uncertainty modeling

Mapping a node in a network into a distribution rather than a point vector allows

us to model the uncertainty of the learned representation which is another advantage

of struc2gauss. Different factors can lead to uncertainties of data. It is intuitive that

the more noisy edges a node has, the less discriminative information it contains, thus

making its embedding more uncertain. Similarly, incompleteness of information in

the network can also bring uncertainties to the representation learning. Therefore, in

this section, we study two factors: noisy information and incomplete information.

To verify these hypotheses, we conduct the following experiment using Brazil-air

and Europe-air networks. For noisy information, we randomly insert certain number

of edges to the network and then learn the latent representations and covariances.

The average variance is used to measure the uncertainties. For Brazil-air network, we

range the number of noisy edges from 50 to 300 and for Europe-air it ranges from 500

to 3000. For incomplete information, we randomly delete certain number of edges

to the network to make it incomplete and then learn the latent representations and

covariances. Similarly, for Brazil-air network, we range the number of removed edges

from 50 to 300 and for Europe-air it ranges from 500 to 3000. The other parameter

settings are same to Sect. 5.3.
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Fig. 7 Uncertainties of

embeddings with different levels

of noise

(a) Average variance with different
numbers of noisy edges on Brazil-air.

(b) Average variance with different
numbers of noisy edges on Europe-air.

The results are shown in Figs. 7 and 8. It can be observed that (1) with more

noisy edges being added to the networks and (2) with more removed edges from the

networks, average variance values become larger. struc2gauss with different energy

functions and covariance forms have the same trend. This demonstrates that our pro-

posed struc2gauss is able to model the uncertainties of learned node representations.

It is interesting that struc2gauss with expected likelihood and diagonal covariance

(s2g_el_d) always has the lowest average variance while struc2gauss with KL diver-

gence and diagonal (s2g_kl_d) always has the largest value. This may result from

the learning mechanism of different energy functions when measuring the distance

between two distributions. To clarify the results, we also list the NMI for the cluster-

ing task in Tables 4 and 5. Compared to the original Gaussian embedding method, we
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Fig. 8 Uncertainties of

embeddings with different levels

of incompleteness

(a) Average variance with different
numbers of removed edges on Brazil-air.

(b) Average variance with different
numbers of removed edges on Europe-air.

again show the effectiveness of our method in preserving structural role and modeling

uncertainties.

5.6 Influence of similarity measures

As we mentioned not all structural similarity measures can capture the global struc-

tural role information, to validate the rationale to select RoleSim as the similarity

measure for structural role information, we investigate the influence of different sim-

ilarity measures on learning node representations. In specific, we select two other

widely used structural similarity measures, i.e., SimRank (Jeh and Widom 2002) and

MatchSim (Lin et al. 2009), and we incorporate these measures by replacing RoleSim

in our framework. The datasets and evaluation metrics used in this experiment are

123



Structural role preserving network embedding 1095

Table 4 NMI for node clustering in Brazil-air network with different numbers of noisy edges

# noisy edges 0 50 100 150 200 250 300

graph2gauss 0.1204 0.1032 0.0903 0.0913 0.0852 0.0833 0.0683

s2g_el_d 0.5615 0.5165 0.5161 0.5122 0.4810 0.4754 0.4787

s2g_el_s 0.5396 0.4338 0.4180 0.4152 0.4102 0.3956 0.3924

s2g_kl_d 0.5527 0.5186 0.5036 0.4940 0.4824 0.4736 0.4103

s2g_kl_s 0.5527 0.5310 0.5214 0.4951 0.4895 0.4621 0.4651

Table 5 NMI for node clustering in Europe-air network with different numbers of noisy edges

# noisy edges 0 500 1000 1500 2000 2500 3000

graph2gauss 0.1109 0.0776 0.0727 0.0716 0.0634 0.0702 0.0613

s2g_el_d 0.3234 0.1767 0.1634 0.1694 0.1492 0.1431 0.1413

s2g_el_s 0.2974 0.1613 0.1505 0.1432 0.1452 0.1285 0.1042

s2g_kl_d 0.3145 0.2664 0.2014 0.1854 0.1802 0.1634 0.1361

s2g_kl_s 0.3280 0.3024 0.2930 0.1504 0.1514 0.1414 0.1367

the same to Sect. 5.3. For simplicity, we only show the results of struc2gauss using

KL divergence with spherical covariance in this experiment because different variants

perform similarly in previous experiments.

The NMI values for networks with labels are shown in Tables 6 and the goodness-

of-fit values are shown in Fig. 9. We can come to the following conclusions:

– RoleSim outperforms other two similarity measures in both types of networks with

and without clustering labels. It indicates RoleSim can better capture the global

structural information. Performance of MatchSim varies on different networks and

is similar to struc2vec. Thus, it can capture the global structural information to

some extent.

– SimRank performs worse than other similarity measures as well as struc2vec

(Table 3). Considering the basic assumption of SimRank that “two objects are sim-

ilar if they relate to similar objects”, it computes the similarity also via relations

between nodes so that the mechanism is similar to random walk based methods

which have been proved not being capable of capturing the global structural infor-

mation (Lyu et al. 2017).

5.7 Parameter sensitivity

We consider two types of parameters in struc2gauss: (1) parameters also used in

other NE methods including latent dimensions, number of samples per node and

number of positive/negative nodes per node; and (2) parameters only used in Gaussian

embedding including mean constraint C and covariance constraint cmax (note that

we fix the minimal covariance cmin to be 0.5 for simplicity). In order to evaluate

how changes to these parameters affect performance, we conducted the same node
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Table 6 NMI for node clustering in air-traffic networks of Brazil, Europe and USA using struc2gauss with

different similarity measures

Brazil-air Europe-air USA-air

SimRank 0.1695 ± 0.013 0.0524 ± 0.009 0.0887 ± 0.025

MatchSim 0.3534 ± 0.024 0.2389 ± 0.020 0.0913 ± 0.013

RoleSim 0.5675 ± 0.032 0.3280 ± 0.019 0.3217 ± 0.023

Results in bold represent the best performance

Fig. 9 Goodness-of-fit of

struc2gauss with different

similarity measures. Lower

values are better

clustering experiment on the labeled USA-air network introduced in Sect. 5.3. In the

interest of brevity, we tune one parameter by fixing all other parameters. In specific,

the number of latent dimensions varies from 10 to 200, the number of samples varies

from 5 to 15 and the number of positive/negative nodes varies from 40 to 190. Mean

constraint C is from 1 to 10, and covariance constraint cmax ranges from 1 to 10.

The results of parameter sensitivity are shown in Figs. 10 and 11. It can be observed

from Fig. 10a, b that the trends are relatively stable, i.e., the performance is insensitive

to the changes of representation dimensions and numbers of samples. The performance

of clustering is improved with the increase of numbers of positive/negative nodes

shown in Fig. 10c. Therefore, we can conclude that struc2guass is more stable than

other methods. It has been reported that other methods, e.g., DeepWalk (Perozzi et al.

2014), LINE (Tang et al. 2015b) and node2vec (Grover and Leskovec 2016), are

sensitive to many parameters. In general, more dimensions, more walks and more

context can achieve better performance. However, it is difficult to search for the best

combination of parameters in practice and it may also lead to overfitting. For Gaussian

embedding specific parameters C and cmax , both trends are stable, i.e., the selection

of these contraints have little effect on the performance. Although with larger mean

constraint C , the NMI decreases but the difference is not huge.
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(a) Representation dimensions vs. NMI.

(b) Number of samples per node vs. NMI.

(c) Number of positive/negative nodes per node vs. NMI.

Fig. 10 Parameter sensitivity study
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(a) mean constraint C vs. NMI.

(b) covariance constraint cmax vs. NMI.

Fig. 11 Parameter sensitivity in Gaussian distributions

5.8 Efficiency and effectiveness study

As discussed above in Sect. 4.5, the high computational complexity is one of the major

issues in our method. In this experiment, we empirically study this computational issue

by comparing the run-time and performance of different global structural preserving

baselines and a heuristic method to accelerate the RoleSim measures. The heuristic

method, named Fast struc2gauss, is introduced in Sect. 4.5: we set the similarity to

be 0 if two nodes have a large difference in degrees to avoid more computing for

dissimilar node pairs. For simplicity, we only test struc2gauss with KL and spherical

covariance. Also, we only consider embedding methods that can preserve the structural

role information as baselines, i.e., GraphWave, struc2vec and DRNE.

We conduct the experiments on the larger networks without ground-truth labels

because on smaller networks the run-time differences are not significant. The run-time

comparison is shown in Table 7 and the performance comparison is shown in Table 8.

Note that NA in these tables because these methods reported a memory error and did
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Table 7 Run-time for different structural role preserving network embedding methods

GraphWAVE struc2vec DRNE struc2gauss Fast struc2gauss

Arxiv 90.68s 10+h 159.43s 2h 886.93s

Advogato 172.13s 10+h 191.52s 4h 1962.68s

Hamsterster 24.25s 10+h 85.93s 1h 456.24s

Anybeat NA NA 1094.64s 13h 5h

Epinion NA NA 2938.83s 20h+ 12h

Table 8 Performance (goodness-of-fit) of different structural role preserving network embedding methods

GraphWAVE struc2vec DRNE struc2gauss Fast struc2gauss

Arxiv 0.5435 0.3674 0.6822 0.1880 0.1983

Advogato 0.3938 0.2751 0.6102 0.1852 0.2012

Hamsterster 0.3385 0.1878 0.5939 0.1666 0.1790

Anybeat NA NA 0.5639 0.1597 0.1622

Epinion NA NA 0.4978 0.2270 0.2452

not obtain any results. To make a fair comparison, all these methods are run in the same

machine with 128GB memory and GPU have not been used for DRNE. From these

results, it can be observed: (1) although the computational issue still exists, our method

can achieve good performance compared to state-of-the-art structural role preserving

network embedding methods such as GraphWAVE and struc2vec. (2) Although DRNE

is much fast, its performance is worse than our method and other baselines. Moreover, it

is incapable of modeling uncertainties. (3) Fast struc2gauss can effectively accelerate

RoleSim computing and achieve comparable performance in role clustering.

6 Discussion

The proposed struc2gauss is a flexible framework for node representations. As shown

in Fig. 2, different similarity measures can be incorporated into this framework and

empirical studies will be presented in Sect. 5.6. Furthermore, other types of methods

which model structural information can be utilized in struc2gauss as well.

To illustrate the potential to incorporate different methods, we categorize different

methods for capturing structural information into three types:

– Similarity-based methods. Similarity-based methods calculate pairwise similar-

ity based on the structural information of a given network. Related work has been

reviewed in Sect. 2.2.

– Ranking-based methods. PageRank (Page et al. 1999) and HITS (Kleinberg 1999)

are two most representative ranking-based methods which learns the structural

information. PageRank has been used for NE in (Ma et al. 2017).
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– Partition-based methods. This type of methods, e.g., role discovery, aims to par-

tition nodes into disjoint or overlapping groups, e.g., REGE (Borgatti and Everett

1993) and RolX (Henderson et al. 2012).

In this paper, we focus on similarity-based methods. For ranking-based methods,

we can use a fixed sliding window on the ranking list, then given a node the nodes

within the window can be viewed as the context. In fact, this mechanism is similar

to DeepWalk. For partition-based methods, we can consider the nodes in the same

group as the context for each other.

7 Conclusions and future work

Two major limitations exist in previous NE studies: i.e., structure preservation and

uncertainty modeling. Random-walk based NE methods fail in capturing global

structural information and representing a node into a point vector are not capable of

modeling the uncertainties of node representations.

We proposed a flexible structure preserving network embedding framework,

struc2gauss, to tackle these limitations. On the one hand, struc2gauss learns node

representations based on structural similarity measures so that global structural infor-

mation can be taken into consideration. On the other hand, struc2gauss utilizes

Gaussian embedding to represent each node as a Gaussian distribution where the

mean indicates the position of this node in the embedding space and the covariance

represents its uncertainty.

We experimentally compared three different structural similarity measures for net-

works and two different energy functions for Gaussian embedding. By conducting

experiments from different perspectives, we demonstrated that struc2gauss excels in

capturing global structural information, compared to state-of-the-art NE techniques

such as DeepWalk, node2vec and struc2vec. It outperforms other competitor methods

in role discovery task and structural role classification on several real-world networks.

It also overcomes the limitation of uncertainty modeling and is capable of capturing

different levels of uncertainties. Additionally, struc2gauss is less sensitive to differ-

ent parameters which makes it more stable in practice without putting more effort in

tuning parameters.

In the future, we will explore faster RoleSim measures for more scalable NE meth-

ods, for example, fast method to select k most similar nodes for a given node. Also,

it is a promising research direction to investigate different strategies to model global

structural information except structural similarity in NE tasks. Besides, other future

investigations in this area include learning node representations in dynamic and tem-

poral networks.
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