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Abstract—Adaptive tracking-by-detection methods are widely used in computer vision for tracking arbitrary objects. Current

approaches treat the tracking problem as a classification task and use online learning techniques to update the object model.

However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples,

and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction) is not

explicitly coupled to the objective for the tracker (estimation of object position). In this paper, we present a framework for adaptive

visual object tracking based on structured output prediction. By explicitly allowing the output space to express the needs of the

tracker, we avoid the need for an intermediate classification step. Our method uses a kernelised structured output support vector

machine (SVM), which is learned online to provide adaptive tracking. To allow our tracker to run at high frame rates, we (a)

introduce a budgeting mechanism that prevents the unbounded growth in the number of support vectors that would otherwise

occur during tracking, and (b) show how to implement tracking on the GPU. Experimentally, we show that our algorithm is able to

outperform state-of-the-art trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional

features and kernels into our framework, which results in increased tracking performance.

Index Terms—tracking-by-detection, structured output SVMs, budget maintenance, GPU-based tracking

✦

1 INTRODUCTION

Visual object tracking is one of the core problems of com-

puter vision, with a wide range of applications that include

human-computer interaction, surveillance and augmented

reality. It also forms an essential part of higher-level vision

tasks such as scene understanding and action recognition.

In some scenarios, the object to be tracked is known in

advance, and it is possible to incorporate prior knowledge

when designing the tracker; in others, however, the target

is arbitrary and only specified at runtime, in which case

the tracker must be able to model the object’s appearance

on the fly and adapt the model during tracking to account

for object motion, lighting conditions and occlusion. Even

when the object is known, having a flexible tracker that can

adapt its model at runtime is attractive and, in real-world

scenarios, often essential for successful tracking.

The tracking-by-detection approach [1], which treats the

tracking problem as one of repeated detection over time,

has become particularly popular recently, partly due to

significant recent progress in object detection (with many of

the ideas being directly transferrable to tracking) and partly

due to the development of methods that allow the classifiers

used by these approaches to be trained online, providing a

natural mechanism for adaptive tracking [2]–[4].
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Traditional approaches to adaptive tracking-by-detection

have tended to train a binary classifier online to distinguish

the target object from the background. This classifier is used

to estimate the object’s location in each new input frame by

searching for the maximum classification score in a local

region around the previous frame’s estimate, typically using

a sliding-window approach. After estimating the new object

location, traditional approaches have tended to generate a

set of binary-labelled training samples with which to update

the classifier. Such approaches thus separate the learning

of the tracker into two distinct parts: (i) the generation and

labelling of samples, and (ii) the classifier update.

Whilst common, this separation is problematic. Firstly, it

is unclear how to generate and label the samples in a princi-

pled manner (the usual approaches rely on predefined rules

such as labelling a sample positive/negative based on its

distance from the estimated object location). Secondly, the

learning process does not explicitly couple the classifier’s

goal (predicting binary sample labels) to the tracker’s goal

(estimating object location), and so the maximum classifier

confidence may not correspond to the best location estimate

(Williams et al. [5] raised a similar point). State-of-the-

art adaptive tracking-by-detection methods have mainly

focused on improving tracking performance by increasing

the robustness of the classifier to poorly-labelled samples

resulting from this approach, e.g. using robust loss func-

tions [6], [7], semi-supervised learning [8], [9], or multiple-

instance learning [3], [10].

In this paper, we take a different approach and frame

the overall tracking problem as one of structured output

prediction, in which the task is to directly predict the change

in object configuration between frames. We present a novel
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Fig. 1: Different adaptive tracking-by-detection paradigms:

given the current estimated object location, traditional ap-

proaches (shown on the right-hand side) generate a set of

samples and, depending on the type of learner, produce

training labels. Our approach (left-hand side) avoids these

steps and operates directly on the tracking output.

and principled adaptive tracking-by-detection framework

called Struck that integrates learning and tracking, avoiding

the need for ad-hoc update strategies (see Figure 1).

Many recent tracking-by-detection approaches, e.g. [2]–

[4] have been inspired by the successes of boosting-based

approaches in object detection. Indeed, elements of such

methods, such as the Haar features used in the very

successful Viola-Jones face detection approach [11], have

become almost standard in tracking-by-detection. However,

a significant amount of successful research in object detec-

tion itself has tended to use SVMs rather than boosting,

since these generalise well, are robust to label noise and

can represent objects flexibly using kernels [12]–[14]. The

approach we present here thus makes use of SVMs rather

than boosting. Since we are interested in structured output

prediction, we make use of the structured output SVM

framework of Tsochantaridis et al. [15]. In particular, we

extend LaRank, the online structured output SVM learning

method proposed by Bordes et al. [16], [17], and adapt it

to the task of adaptive object tracking.

Whilst structured output SVMs have been applied in

computer vision before, most notably for object detection

by Blaschko and Lampert [12], our work differs from such

approaches in having no offline labelled data available for

training (except the object’s location in the first frame) and

relying instead on online learning. This makes a significant

difference, because online learning with kernels suffers

from the so-called curse of kernelisation, whereby the

number of support vectors in the SVM grows unboundedly

as more and more training data is supplied. Since evaluation

of a kernelised SVM is linear in the number of support

vectors in its representation, this growth inevitably inhibits

real-time evaluation of the SVM if steps are not taken

to control the number of support vectors maintained. We

therefore introduce a novel way of limiting the support

vectors we maintain that builds on recent proposals for the

online learning of classification SVMs on a fixed budget

[18], [19]. This approach allows us to achieve large gains

in computational efficiency without significantly degrading

the performance of our tracker.

An earlier version of this paper appeared in [20]. We

extend it here in the following ways:

1) We extend Struck to deal with scale (§4.7.1).

2) We show how Struck can be implemented on the GPU

so as to achieve high frame-rates (§5 and supplemen-

tary material).

3) We evaluate Struck extensively on the recent bench-

mark of Wu et al. [21] (§6), performing experiments

that quantify how tracking performance is affected

by (i) multi-kernel learning, (ii) structured learning,

(iii) parameter changes, and (iv) scale. In particular,

we show that one of our multi-kernel variants of

Struck can in many cases achieve comparable or even

superior tracking performance to the state-of-the-art

KCF tracker of Henriques et al. [22].

4) We include detailed derivations of our SVM formu-

lation to make it easier for others to build on our

approach (supplementary material).

This paper is organised as follows: in §2, we briefly

review related work; in §3, we provide an overview of

traditional approaches to tracking-by-detection; in §4, we

describe the Struck tracker; in §5, we describe our GPU

implementation of Struck; in §6, we evaluate numerous

variants of our CPU and GPU implementations of Struck

on the Wu et al. [21] benchmark and compare them to

state-of-the-art trackers, and in §7 we conclude.

Code for our CPU implementation of Struck can be

found at http://www.samhare.net/research. Our GPU imple-

mentation can be found at https://bitbucket.org/sgolodetz/

thunderstruck.

2 RELATED WORK

Due to the importance of the tracking problem, a wide

variety of different approaches have been proposed to solve

it over the years. Whilst a comprehensive review of tracking

techniques is beyond the scope of this paper, we direct the

reader to [23] for a survey, and also to [21], [24], [25]

for some benchmarks that compare a significant number of

trackers on large datasets. We focus here on a representative

selection of recent trackers.

Dictionary-based trackers maintain dictionaries of object

templates and aim to represent candidate object regions

in a new frame using combinations of these templates.

A popular idea is to try and represent the candidates

sparsely using ℓ1-norm minimization [26]–[28]. Prediction

from one frame to the next is often done using particle

filtering [29], with a sensor model that assigns higher

confidence to candidates that are more easily represented

by the templates. For example, Xing et al. [28] describe an

approach that combines short-term, medium-term and long-

term dictionaries to achieve a compromise between adap-

tivity (the short-term dictionary will adapt more quickly

to new data) and robustness (the long-term dictionary will
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Fig. 2: The typical structure of a tracking-by-detection tracker (see §3). The dashed box is specific to Struck and indicates

the place in which we add a budget maintenance step to the pipeline (see §4).

remember more of what the object originally looked like).

Wang et al. [27] describe another interesting dictionary-

based approach that aims to learn templates that capture

distinct aspects of the object.

Ensemble-based trackers combine the results of a set of

individual ‘weak’ classifiers to form a strong classifier that

can be used to predict an object’s bounding box in a new

frame. For example, Cao and Xue [30] describe an adap-

tive random forest method that maintains a collection of

candidate decision trees and picks half of them each frame

to form an ensemble. (Other techniques that incorporate

random forests can be found in [31], [32].) Bai et al. [33]

combine weak classifiers trained on 8×8 patches within the

object’s bounding box using weight vectors sampled from

a Dirichlet distribution that is updated over time. Wang

et al. [34] show how to combine an ensemble of different

trackers (including Struck) using a conditional particle filter

approach to try and meld the best features of the trackers.

Segmentation-based trackers [35]–[37] actually segment

(possibly coarsely) the object being tracked in each frame,

so as to try and avoid the problem of drift that occurs when

trackers inadvertently incorporate parts of the background

in their object representation. For example, Duffner and

Garcia [35] describe PixelTrack, an approach that co-trains

a probabilistic segmentation model alongside a pixel-based

Hough model so as to better handle non-rigid deformations

of the tracked object between frames.

Circulant trackers are an interesting recent type of

tracker that exploit the circulant structure of adjacent sub-

windows in an image to achieve extremely fast tracking.

The original such tracker, CSK [38], works by evaluating

a classifier trained using kernel regularised least squares

(KRLS) quickly at all sub-windows around the estimated

target location and maximising the response. Danelljan et

al. [39] build on this by introducing colour attributes to

achieve superior performance on colour sequences. The

current state-of-the-art approach is KCF [22], a kernelised

correlation filter tracker that achieves its best results us-

ing a Gaussian kernel and histogram-of-oriented-gradients

(HOG) features, and runs at 172 FPS.

Since [20], various approaches have used structured

learning in a tracking context. For example, Yao et al. [40]

describe a part-based tracker based on online latent struc-

tured SVMs, which they solve in the primal by extending

the online Pegasos solver to perform structured prediction.

Shen et al. [41] describe a generic boosting framework for

combining weak structured learners, and show how it can

be used to develop a visual tracker that achieves competitive

results. Separately, structured SVMs have proved useful for

solving data association problems in the context of multi-

target tracking [42].

A number of trackers we survey do not fall into any of

the above categories. For example, Pernici and Del Bimbo

[43] describe a tracker called ALIEN based on Nearest

Neighbour classifiers that tracks using an oriented rather

than axis-aligned bounding box, handles occlusions well

and is designed for long-term tracking. Lu et al. [44]

describe an interesting approach based on And-Or graphs

that achieves good tracking performance at the cost of some

speed. Finally, Zhang and van der Maaten [45] describe an

appealing multi-object tracker based on structured SVMs

that can be co-opted for single-object, part-based tracking.

3 TRACKING-BY-DETECTION

In this section, we provide an overview of traditional

adaptive tracking-by-detection trackers, which attempt to

learn a binary classifier to distinguish the target object from

the background.

The typical structure of such a tracker is shown in

Figure 2. Given a sequence of images (I1, I2, ...), in which

It is the image at time t ∈ T , the tracker produces a

sequence (p1,p2, ...) of parameter vectors such that each

pt ∈ P represents the estimated configuration of the target

object in the corresponding image It. In the simplest case,
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a parameter vector might contain only the position of a

2D bounding box of fixed size, but additional components

can be added, e.g. to account for scale, rotation or shape.

The initial parameter vector p1 is usually given, in which

case the tracker’s goal is to estimate pt+1 from pt. To help

with this, it maintains a classifier with a scoring function

g : X → R that can be used to score feature vectors

in a feature space X based on how well they correspond

to the target object. The classifier is trained with binary-

labelled examples of the form (xp

t , ℓ), in which x
p

t denotes

the vector of features extracted from the patch of image

It denoted by p ∈ P , and label ℓ ∈ {+1,−1} specifies

whether the example is a positive or negative one. The

predicted label f(x) for a feature vector x can be computed

as sign(g(x)).

3.1 Learning/Adaptation

Given an estimated object configuration pt in image It,

a traditional tracker will use a three-stage process to gen-

erate a set of training examples from It and update the

classifier. First, a sampler will generate a set of n different

transformations {ȳi} in a search space Y of P → P
transformations around pt, and calculate the corresponding

feature vectors {x
ȳi(pt)
t }. Then, a labeller will choose

labels {ℓi} for the samples to produce a set of labelled

training examples {(x
ȳi(pt)
t , ℓi)}. Finally, these examples

will be used to update the classifier.

3.2 Propagation

In order to propagate the estimated object configuration

from one image to the next, it is assumed that the estimate

pt+1 for the object’s configuration in image It+1 can be

determined by maximising g in a local region around pt.

The tracker will generally iterate over the search space of

transformations1 Y , and pick the transformation yt ∈ Y
that maximises the response of the classifier:

yt = argmax
ȳ∈Y

g
(

x
ȳ(pt)
t+1

)

(1)

It will then set pt+1 = yt(pt).
The form of Y depends on the type of motion be-

ing tracked. For most existing tracking-by-detection ap-

proaches, this is 2D translation, in which case one option is

for it to be of the form {p 7→ p+∆p : ‖∆p‖ < r}, where

r is a search radius. However, we will see in §4 that this

approach can be straightforwardly extended to deal with

other types of motion, e.g. scale can be incorporated by

using parameter vectors of the form (x, y, s), where s ∈ R
+

denotes a factor that can be used to scale the bounding box

around the object, and choosing Y appropriately.

3.3 Issues

This approach to tracking raises a number of issues. Firstly,

the assumption made in (1) that maximising g provides an

accurate estimate of object configuration is not explicitly

1. In practice, it is often profitable to use different search spaces for
learning and propagation, but we do not distinguish between the two search
spaces here to simplify the presentation.

incorporated into the learning algorithm, since the classifier

is trained only with binary examples and has no infor-

mation about transformations. Secondly, all the training

examples are equally weighted, meaning that a negative

example that overlaps significantly with the current object

configuration is treated the same as one that overlaps very

little. One implication of this is that slight inaccuracy

during tracking can lead to poor labelling of examples,

which is likely to reduce the accuracy of the classifier and

lead to further tracking inaccuracy. Thirdly, the labeller is

usually designed using heuristics, rather than being tightly-

coupled to the classifier. Mistakes made by the labeller

manifest themselves as label noise, and many state-of-

the-art approaches try to mitigate this problem by using

robust loss functions [6], [7], semi-supervised learning [8],

[9], or multiple-instance learning [3], [10]. We argue that

all of these techniques, though justified in increasing the

robustness of the classifier to label noise, are not addressing

the real problem, which stems from separating the labeller

from the learner. Our algorithm does not depend on a

labeller and tries to overcome all of these problems within a

coherent framework by directly linking learning to tracking

and avoiding an artificial binarisation step. Sample selection

is fully controlled by the learner itself, and relationships

between samples such as their relative similarity are taken

into account during learning.

To conclude this section, we describe how a conventional

labeller works, as this provides further insight into our

algorithm. Traditional labellers use a transformation sim-

ilarity function to determine the label of a sample. Such

a function has the form sp : Y × Y → R and can be

used to assign a similarity score to the samples denoted by

a pair of transformations expressed relative to a reference

configuration p. For example, the function defined by

so
p
(yi, yj) =

yi(p) ∩ yj(p)

yi(p) ∪ yj(p)
(2)

measures the degree of overlap between the two bounding

boxes yi(p) and yj(p). For 2D translation, an alternative

function could be defined based on the difference between

the translations.

Let y0 denote the identity (or null) transformation,

i.e. y0(p) = p. Given a transformation similarity function

sp, the labeller determines the label ℓ of the sample gener-

ated by transformation y by applying a labelling function

ℓ = L(sp(y0, y)). Most commonly, this can be expressed

as

L(sp(y0, y)) =







+1 if sp(y0, y) ≥ θu
−1 if sp(y0, y) < θl
0 otherwise,

(3)

in which θu and θl are upper and lower thresholds, re-

spectively. Binary classifiers generally ignore the unlabelled

examples (those with a label of 0) [2], whilst classifiers

based on semi-supervised learning use them in their update

phase [8], [9]. In approaches based on multiple-instance

learning [3], [10], the labeller groups all of the positive

examples into a bag and assigns a positive label to the bag
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instead. Most, if not all, variants of adaptive tracking-by-

detection algorithms use a labeller which can be expressed

in this fashion. However, it is not clear how the labelling

parameters (e.g. the thresholds θu and θl) should be esti-

mated in an online learning framework. Additionally, such

heuristic approaches are often prone to noise and it is not

clear why such a function is in fact suitable for tracking.

In the next section, we derived our structured output algo-

rithm that fundamentally addresses these issues and can be

thought of as generalising these heuristic methods.

4 THE STRUCK TRACKER

4.1 Overview

Our Struck tracker broadly follows the general structure of

a tracking-by-detection approach outlined in the previous

section, but with a couple of key differences.

The first difference is that instead of learning a binary

classifier, we learn a prediction function f : T → Y that

directly estimates the object transformation between con-

secutive images. That is, f(t) is the required transformation

from pt to pt+1. We learn f in a structured output SVM

framework [12], [15], and make use of a scoring function

g : T × Y → R that can be used for prediction via

f(t) = argmax
y∈Y

g(t, y). (4)

The output space of f is now the search space Y , rather

than {+1,−1}. Note the similarity between (4) and (1):

we are still performing an argmax in order to predict the

object transformation, but the scoring function g now has

direct access to the transformation y, allowing it to be

incorporated into the learning algorithm.

The second difference is that we introduce a budgeting

mechanism at the end of the adaptation stage to limit the

number of support vectors we maintain. As we will see

shortly, our approach uses a kernelised SVM, which must

explicitly maintain a set of support vectors (as opposed to

a linear SVM, for which it is sufficient to maintain only a

weight vector). Since kernelised SVM evaluation is linear

in the size of the support vector set, it is crucial that we

limit this size in order to achieve efficient evaluation and

make our tracker run in real time.

4.2 Primal SVM Formulation

To formulate our SVM, we first restrict g to be a linear

function g(t, y) = 〈w,Φ(t, y)〉, in which w is the SVM’s

weight vector and Φ is a function (known as the joint

kernel map) that is used to generalise the SVM to non-linear

kernels in a way that will be described later. When using a

linear kernel, Φ(t, y) = x
y(pt)
t+1 , and g(t, y) = 〈w,x

y(pt)
t+1 〉.

We can learn g in a large-margin framework from a set

of examples {(t1, y1), ..., (tn, yn)} by solving the quadratic

program

min
w

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i, ∀y 6= yi : 〈w, δΦi(y)〉 ≥ ∆(yi, y)− ξi,

(5)

where δΦi(y) = Φ(ti, yi)−Φ(ti, y) and we set C = 100.

Intuitively, an example (ti, yi) specifies that the ‘correct’

transformation of the object from pti to pti+1 is yi.

The optimisation aims to ensure that the value of g(ti, yi)
for the ith training example is greater than g(ti, y) for

y 6= yi, by a margin that depends on a (symmetric) loss

function ∆. This loss funcion should satisfy ∆(y, ȳ) = 0
iff y = ȳ, and increase as y and ȳ become more dissimilar.

The loss function plays an important role in our approach,

as it allows us to address the issue raised previously of

all samples being treated equally. This can be achieved

by making use of the transformation similarity function

introduced in §3.3. For example, as suggested by Blaschko

and Lampert [12], we can base our loss function on

bounding box overlap according to

∆(y, ȳ) = 1− so
p
(y, ȳ), (6)

in which so
p

is the overlap function (2).

The attentive reader will observe that the formulation

above involves a large (indeed, potentially infinite) number

of constraints, and it is by no means clear at this stage

how the SVM can be solved in a computationally-feasible

way. In practice, as we will see in §4.5, we address this

issue by making use of the LaRank solver of Bordes et al.

[16], [17], which optimises the SVM using a sequence of

minimal steps rather than trying to solve it monolithically.

It also bears mentioning that at an implementation level,

we do not actually consider an infinite set of constraints:

in practice, our search space Y of possible transformations

is finite, and we only retain constraints relating to images

in the tracking sequence that are providing one or more

current support vectors to the SVM.

4.3 Dual SVM Formulation

Using standard Lagrangian duality techniques [46], (5) can

be converted into its equivalent dual form

max
α

∑

i,y 6=yi

∆(y, yi)α
y

i −
1

2

∑

i,y 6=yi
j,ȳ 6=yj

α
y

i α
ȳ

j 〈δΦi(y), δΦj(ȳ)〉

s.t. ∀i, ∀y 6= yi : α
y

i ≥ 0

∀i :
∑

y 6=yi

α
y

i ≤ C

(7)

and the scoring function expressed as

g(t, y) =
∑

i,ȳ 6=yi

α
ȳ
i 〈δΦi(ȳ),Φ(t, y)〉. (8)

A derivation for this can be found in the supplementary

material. As in the case of classification SVMs, a benefit of

this dual representation is that because the joint kernel map

Φ only ever occurs inside scalar products, it can be defined

implicitly in terms of an appropriate joint kernel function

k(t, y, t̄, ȳ) = 〈Φ(t, y),Φ(t̄, ȳ)〉. (This is the so-called

kernel trick, which allows us to define non-linear kernels k

for which we do not have an explicit representation for Φ.)

The kernel functions we use during tracking are discussed

in Section 4.7.2.
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4.4 Reparameterising the Dual SVM

By reparameterising (7) [16] according to

β
y
i =







∑

ȳ 6=yi

α
ȳ
i if y = yi

− α
y
i otherwise,

(9)

the dual can be considerably simplified to

max
β

−
∑

i,y

∆(y, yi)β
y

i
−

1

2

∑

i,y,j,ȳ

β
y

i
β
ȳ

j
k(ti, y, tj , ȳ)

s.t. ∀i, ∀y : β
y

i
≤ δ(y, yi)C

∀i :
∑

y

β
y

i
= 0,

(10)

where δ(y, ȳ) = 1 if y = ȳ and 0 otherwise. (A detailed

derivation can be found in the supplementary material.)

This also simplifies the scoring function to

g(t, y) =
∑

i,ȳ

β
ȳ
i k(ti, ȳ, t, y). (11)

In this form, we refer to those pairs (ti, ȳ) for which β
ȳ
i 6= 0

as support vectors and those ti included in at least one

support vector as support patterns (note that a support

pattern corresponds to one of the images in the tracking

sequence, and support vectors correspond to samples taken

from those images at particular locations). Note that for

a given support pattern ti, only the support vector (ti, yi)
will have β

yi

i > 0, while any other support vectors (ti, ȳ),
ȳ 6= yi, will have β

ȳ
i < 0. We refer to these as positive and

negative support vectors respectively.

4.5 Learning/Adaptation

To update the SVM, we perform online optimisation of

(10) using the LaRank approach of Bordes et al. [16],

[17]. LaRank is an SVM solver based on the sequential

minimal optimisation (SMO) approach introduced by Platt

[47]. The key idea is that a large quadratic program can

be decomposed into a series of small sub-programs (each

involving only two Lagrange multipliers) that can be solved

analytically.

LaRank adopts such an approach, allowing us to solve

our SVM by performing a sequence of SMO steps (see

Algorithm 1), each of which monotonically improves (10)

with respect to a pair of coefficients β
y+
m and β

y
−

m . Due

to the constraint
∑

y β
y
m = 0, these coefficients must be

modified by opposite amounts, β
y+
m ← β

y+
m + λ, β

y
−

m ←
β
y
−

m − λ. The value of λ is chosen so as to maximally

increase the value of (10): see the supplementary material

for a derivation.

The key to LaRank is in how it chooses the coefficients

to be optimised by each SMO step. For a given m, y+ and

y− are chosen to define the feasible search direction with

the highest gradient, where the gradient of (10) with respect

to a single coefficient β
y
i is given by

∇y
i =−∆(y, yi)−

∑

j,ȳ

β
ȳ
j 〈Φ(ti, y),Φ(tj , ȳ)〉

=−∆(y, yi)− g(ti, y).

(12)

Algorithm 1 SMOSTEP

Require: m, y+, y−, S , β, ∇, C

1: k(++) = k(tm, y+, tm, y+)
2: k(−−) = k(tm, y−, tm, y−)
3: k(+−) = k(tm, y+, tm, y−)

4: λu = ∇
y+
m −∇

y
−

m

k(++)+k(−−)−2k(+−)

5: λ = max(0,min(λu, Cδ(y+, ym)− β
y+
m ))

6: Update coefficients

7: β
y+
m ← β

y+
m + λ

8: β
y
−

m ← β
y
−

m − λ

9: Update gradients

10: for (ti, y) ∈ S do

11: k(+) = k(ti, y, tm, y+)
12: k(−) = k(ti, y, tm, y−)
13: ∇y

i ← ∇
y
i + λ

(
k(−) − k(+)

)

14: end for

Three different update steps are considered, which map very

naturally onto a tracking framework:

• PROCESSNEW Processes a new example (tm, ym).
Since all the βy

ms are initially 0, and only βym
m may

be > 0, y+ = ym. We choose y− = argminy∈Y ∇
y
m.

During tracking, this corresponds to adding the true

label ym as a positive support vector and searching

for the most important sample to become a negative

support vector according to the current state of the

learner, taking into account the loss function. Note,

however, that this step does not necessarily add new

support vectors, since the SMO step may not need to

adjust the βy
ms away from 0.

• PROCESSOLD Processes a random existing support

pattern tm. We choose y+ = argmaxy∈Y ∇
y
m, but

since a feasible search direction requires β
y+
m <

δ(y+, ym)C (since we need to able to increase β
y+
m

without violating the relevant constraint), this maximi-

sation will only involve existing support vectors (since

if y+ 6= ym then β
y+
m < 0, and if y+ = ym then β

y+
m

must be > 0 because tm is a support pattern). As for

PROCESSNEW, y− = argminy∈Y ∇
y
m. During track-

ing, this corresponds to revisiting a frame for which

we have retained some support vectors and potentially

adding another sample as a negative support vector,

as well as adjusting the associated coefficients. Again,

this new sample is chosen to take into account the

current learner state and loss function.

• OPTIMIZE Processes a random existing support pattern

tm, but only modifies coefficients of existing support

vectors. We choose y+ as for PROCESSOLD, and set

y− = argmin
y∈Ym

∇y
m, where Ym = {y ∈ Y | βy

m 6= 0}.

PROCESSNEW and PROCESSOLD steps are both able to

add new support vectors, which gives the learner the ability

to perform sample selection during tracking and discover

important negative samples. This selection involves search-

ing over Y to minimise ∇y
m, which may be a relatively

expensive operation. In practice, we found that for the 2D

translation case, it was sufficient to sample from Y on a
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polar grid, rather than considering every pixel offset. The

OPTIMIZE case only considers existing support vectors, so

is a much less expensive operation.

As suggested by Bordes et al. [17], we schedule these

update steps as follows. A REPROCESS step is defined as a

single PROCESSOLD step followed by nO OPTIMIZE steps.

Given a new training example (ti, yi), we call a single

PROCESSNEW step followed by nR REPROCESS steps. In

practice, we typically set nO = nR = 10, as recommended

in [17], but the effects of changing them can be seen in the

experiments we perform in the supplementary material.

During tracking, we maintain a set of support vectors

S ⊂ T × Y . For each (ti, y) ∈ S , we store the coefficient

β
y
i and gradient ∇y

i , which are both incrementally updated

during an SMO step (see the supplementary material for the

derivation of the gradient update). If the SMO step results

in a β
y
i becoming 0, the corresponding support vector is

removed from S .

4.6 Incorporating a Budget

The kernelised SVM we have described thus far suffers

from the so-called curse of kernelisation (the number of

support vectors it maintains can grow unboundedly over

time). This is problematic for two reasons. Firstly, storage

costs increase linearly with the number of support vectors.

Secondly, evaluating the SVM is linear in the size of the

support vector set: indeed, we can see from (11) that

evaluating g(t, y) involves evaluating scalar products (or

kernel functions) between (t, y) and each support vector.

Moreover, since (12) involves evaluating g, both the PRO-

CESSNEW and PROCESSOLD update steps will become

more expensive as the number of support vectors increases.

This issue is particularly important in the case of tracking,

as in principle we could be presented with an infinite

number of training examples. It is thus crucial to limit the

number of support vectors maintained in order to achieve

efficient tracking using a reasonable amount of memory.

Recently, a number of approaches have been proposed

for online learning of classification SVMs on a fixed

budget [18], [19], meaning the number of support vectors

cannot exceed a specified limit. If the limit has already been

reached and a new support vector needs to be added, these

approaches identify a suitable support vector to remove and

adjust the coefficients of the remaining support vectors as

necessary to compensate for the removal.

We build on these approaches to devise a budgeting

strategy for our scenario. Like Wang et al. [19], we choose

to remove the support vector that results in the smallest

change to the weight vector w, as measured by ‖∆w‖2.

However, as with the SMO step used during optimisation,

we must also ensure that the
∑

y β
y
i = 0 constraints

remain satisfied: this means that when we remove a support

vector, we must modify the coefficient of one of the other

support vectors for the same support pattern in order to

compensate for the change. In practice, there is only one

positive support vector for each support pattern, so we

restrict our choice of which support vector to remove to

negative support vectors, and modify the coefficient of the

Algorithm 2 Struck tracking loop.

Require: f , t, pt, St
1: Propagate the estimated object configuration

2: yt = f(t)
3: pt+1 = yt(pt)
4: Update the SVM

5: PROCESSNEW(t, yt)
6: MAINTAINBUDGET()
7: for i = 1 to nR do

8: PROCESSOLD()
9: MAINTAINBUDGET()

10: for j = 1 to nO do

11: OPTIMIZE()
12: end for

13: end for

14: return pt+1, St+1

positive support vector for that pattern to compensate for

the removal. A special case occurs when there are only

two support vectors being maintained for a pattern (i.e. the

positive one and a single negative one): in that case, after

removing the negative support vector, we also remove the

positive support vector (whose coefficient is now 0) and the

corresponding pattern. In general, removing the negative

support vector (tr, y) results in the following change to w:

∆w = −βy
rΦ(tr, y) + βy

rΦ(tr, yr). (13)

However, since we only have an explicit expression for Φ

if we are using a linear kernel, we are not in general able

to calculate ∆w explicitly. Instead, we use ‖∆w‖2, which

can be calculated in terms of the joint kernel map k:

‖∆w‖2 = (βy
r )

2 {k(tr, y, tr, y) + k(tr, yr, tr, yr)

− 2k(tr, y, tr, yr)}
(14)

Each time the budget is exceeded, we remove the negative

support vector resulting in the minimum ‖∆w‖2. We

show in the experimental section that this does not impact

significantly on tracking performance, even with modest

budget sizes.

We note in passing that because we do not directly con-

sider positive support vectors for removal during budgeting,

the only way in which a negative support vector can be

removed is if it causes the minimum change in w. Thus,

the
∑

y β
y
i = 0 constraints do not cause us to discard

potentially useful information about the scene background.

However, they can force us to maintain less useful positive

support vectors to balance the useful negatives, which can

in theory take up valuable space in our support vector

budget. We did not observe this to be a problem in practice.

4.7 Practical Considerations

The overall tracking loop for Struck is shown in Algo-

rithm 2. Having learnt/adapted the SVM as just discussed,

we can use it to propagate the estimated object configura-

tion from one image in the tracking sequence to the next

as described in §4.1. However, the formulation discussed
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thus far has been entirely general, and we have not yet

committed ourselves to specific choices for our parameter

vectors, search spaces, kernel functions and image features.

At an implementation level, these are obviously crucial, so

we discuss them now.

4.7.1 Parameter Vectors and Search Spaces

We consider two different types of parameter vector, one

designed to handle only 2D translation, and the other

designed to handle both 2D translation and scale. For

2D translation, we use parameter vectors of the form

(x, y) ∈ N
2, denoting the top-left corner of a fixed-size,

rectangular bounding box around the target object (the size

is obtained from the initial bounding box in the first image).

For our search space, we consider all integer-valued offsets

within a finite search radius r (e.g. r = 30):

Y = {p 7→ p+∆p : ‖∆p‖ < r} (15)

For 2D translation and scale, we use parameter vectors of

the form (x, y, s) ∈ N
2 × R

+, in which the scale factor s

denotes the amount by which to scale the initial fixed-size

bounding box relative to its centre. For our search space,

we consider the same offsets as before, but also relative

scaling factors that scale s from one image to the next.

For example, we might choose possible scaling factors of

{0.95, 0.96, ..., 1.05}, allowing the bounding box to become

at most 5% smaller or larger between consecutive frames.

4.7.2 Kernel Functions

We consider three different types of kernel:

• The linear kernel sets Φ(t, y) = x
y(pt)
t+1 , whence

k(t, y, t̄, ȳ) = 〈x
y(pt)
t+1 ,x

ȳ(pt̄)
t̄+1 〉.

• The Gaussian kernel defines k(t, y, t̄, ȳ) to be

exp(−σ‖x
y(pt)
t+1 − x

ȳ(pt̄)
t̄+1 ‖

2), where σ is the standard

deviation of the Gaussian. (We used σ = 0.2 in our

experiments.)

• The intersection kernel defines k(t, y, t̄, ȳ) to be
1
D

∑D

j=1 min(x
y(pt)
t+1 [j],x

ȳ(pt̄)
t̄+1 [j]), where D is the fea-

ture vector size.

Of these, the linear kernel is especially computationally

attractive because it uses an explicit representation for Φ,

whence the SVM can be evaluated efficiently on a set of

feature vectors by first calculating its weight vector w, and

then computing a dot product of w with each of the feature

vectors. Specifically, we can derive:

g(t, y) =
∑

i,ȳ

β
ȳ
i 〈x

ȳ(pti
)

ti+1 ,x
y(pt)
t+1 〉

=
∑

i,ȳ

β
ȳ
i

∑

j

x
ȳ(pti

)
ti+1 [j]× x

y(pt)
t+1 [j]

=
∑

j

x
y(pt)
t+1 [j]




∑

i,ȳ

β
ȳ
i x

ȳ(pti
)

ti+1





︸ ︷︷ ︸

w

[j]

= 〈w,x
y(pt)
t+1 〉

(16)

However, a disadvantage of this kernel is that it can cope

poorly with data that is not linearly separable in feature

space, so it is not always a good choice when trying to learn

a classifier that incorporates different views of the same

object. To address this problem, non-linear kernels such as

the Gaussian or intersection kernels map feature vectors to

a high-dimensional space in which linear separability may

be easier to achieve. The downside is that we no longer

have an explicit representation for Φ and must evaluate the

SVM in terms of its support vectors (11).

4.7.3 Image Features

We consider three different types of image feature:

• Raw features, obtained by scaling an image patch to

16×16 pixels, normalising the greyscale value of each

pixel into the range [0, 1] and converting the result into

a 256D feature vector by reading the normalised values

in raster order.

• Haar features, inspired by the features used in the

Viola-Jones face detector [11], and calculated as a

weighted combination of box sums over the pixels of

the current image. By default, we use 6 different types

of Haar feature (see Figure 3), arranged at 2 scales on

a 4 × 4 grid, resulting in a 192D feature vector with

each feature normalised to the range [−1, 1].
• Histogram features, obtained by concatenating 16-bin

intensity histograms from a spatial pyramid of 4 levels.

At each level L, the patch is divided into L×L cells,

resulting in a 16
∑4

L=1 L
2 = 480D feature vector.

Some kernel/feature combinations tend to work better than

others. In particular, our raw features worked best with a

linear kernel, our Haar features worked best with a Gaus-

sian kernel and our histogram features worked best with an

intersection kernel. Moreover, the number of features used

mediates a trade-off between tracking performance and

speed: in general, it is possible to achieve better tracking

performance using larger feature vectors in exchange for a

decrease in the speed of the tracker. In our experiments,

we found that our Gaussian/Haar combination achieved a

reasonable compromise between tracking performance and

speed; however, we obtained better performance using the

multi-kernel approach described in the following section

(which uses larger feature vectors), and better speed by

combining a linear kernel (which is a natural fit to the

GPU architecture) with raw features (which are cheap to

compute). To quantify the difference that larger feature

vectors can make, our supplementary material contains an

additional experiment in which we investigate the effects

of using more Haar features than described here.

4.7.4 Multiple-Kernel Learning (MKL)

In addition to experimenting with individual kernels, we

investigated combining kernels to implement a basic form

of multiple-kernel learning (MKL). The idea is to average

the results of a number of kernels k(i) on potentially

different sets of features:

k(t, y, t̄, ȳ) =
1

Nk

Nk∑

i=1

k(i)(t, y, t̄, ȳ)
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Fig. 3: The different types of Haar feature used by Struck.

The numbers in the boxes are the (unnormalised) weights

used when calculating the features. Note that no feature

requires more than four boxes, which makes for efficient

evaluation on the GPU (see §5.4).

It has been shown [48] that in terms of performance, full

MKL (in which the relative weighting of the different

kernels is learned from training data) does not greatly

improve upon this simple approach.

We found experimentally (see §6.3) that MKL was able

to yield substantial improvements in tracking performance,

enough for our mklHGHI tracking variant (which combines

a Gaussian kernel with an intersection one on Haar and

histogram features) to outperform the state-of-the-art KCF

tracker [22] on the Wu et al. [21] benchmark. However,

since the larger feature vectors involved have a significant

impact on the speed of our tracker, simpler variants may

be preferable for tasks for which a reasonable compromise

between performance and speed must be achieved.

5 THUNDERSTRUCK

To investigate the speed potential of an optimised imple-

mentation of Struck, we implemented a CUDA version of

it called ThunderStruck. In this section, we briefly describe

some of the key features of this implementation (additional

details can be found in the supplementary material). Its

speed is compared to the original CPU version in §6.5.

5.1 SVM Representation

A Struck SVM maintains two separate sets of data: the

features computed for patches associated with the sup-

port patterns (some of the previously-seen frames), and a

record of which patches are in the current set of support

vectors, together with their corresponding β coefficients

and gradient values. Since GPU code is easier to optimise

when using fixed-size arrays and it is possible to use a

finite budget of support vectors without degrading tracking

performance, we chose to use a fixed-size representation

for our SVM data in ThunderStruck (see Figure 4). We

use a single large GPU-based array to store all of the

features for every patch within every support pattern. We

use a smaller array of indices to specify the current support

vectors: each element of this array either refers to a patch

or is −1 to indicate the absence of a support vector. The

corresponding β coefficients and gradient values are stored

in the similarly-sized arrays betas and gradients , such that

features

svIndices

betas

gradients

0 2 -1 ... p -1 p + 1 ...

0.02 -0.02 # ... 0.03 # -0.03 ...

patch 0 patch 1 patch 2 ... patch p - 1 patch p patch p + 1 ...

-0.4 -0.4 # ... -0.2 # -0.2 ...

Fig. 4: The representation of the SVM in ThunderStruck.

the β value for support vector k is stored in betas[k] and

the gradient value is stored in gradients[k]. Since access to

the three support vector arrays is required on both the CPU

and GPU, we store mirrored copies of them in both places

to minimise costly memory transfers over the CPU-GPU

bus (note that the storage cost involved is low due to the

small size of the arrays).

Addition and removal of support vectors can be imple-

mented via a simple ID allocator that maintains a set of

used IDs and a set of free ones. The IDs index into the

svIndices , betas and gradients arrays. To add a support

vector, we allocate a free ID and use the corresponding

elements in the arrays; to remove one, we deallocate the

ID, causing it to be returned to the free set, and set the

corresponding element of svIndices to −1.

5.2 SVM Evaluation

We focus on the key part of SVM evaluation using the linear

kernel here, and defer both how to calculate the SVM’s

weight vector w and how to implement other kernels to

the supplementary material. For the linear kernel, we first

calculate w and then compute a straightforward dot product

of w with each of the samples. Each thread block in our

implementation evaluates the SVM for a single sample

(see Figure 5). Individual threads multiply corresponding

elements of the SVM’s weight vector and the sample’s

feature vector and store the results in shared memory

(accessing shared memory is hundreds of times faster than

accessing global memory). The result of the dot product is

then computed in shared memory using a reduction.

5.3 Budget Maintenance

As a result of the fixed-size SVM representation we use,

the way in which we maintain our support vector budget

for ThunderStruck has to differ slightly from that described

in §4.6. In particular, instead of removing a support vector

when the budget is exceeded, we now remove a support

vector at the point at which we need to add a new one

but have no available space in the arrays. We found this

to be an equivalent scheme that made little difference to

the results; however, it would nevertheless be possible to

implement a version of the original scheme for fixed-size

arrays by adding additional space at the ends of the arrays

and maintaining the budget after adding a support vector.
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Sample/Block 1

Threads

1 2 k

Sample/Block 2

Threads

1 2 k

sampleFeatures ...

...

...

⊗

weights

=

sharedFeatureResults

REDUCE (+)

sampleResults

Fig. 5: To evaluate an SVM with a linear kernel efficiently

using CUDA, we use a thread block for each sample and

compute a dot product between the sample’s features and

the SVM’s weight vector. Each dot product is computed

using a pointwise multiplication followed by a reduction in

shared memory. The coloured boxes indicate where the data

is stored (cyan = global memory, green = shared memory).

The coloured arrows distinguish between thread blocks.

5.4 Feature Calculation

Prior to calculating features, we transfer the current frame

and any derived images that are best computed on the CPU

(e.g. an integral image, for computing Haar features) across

to the GPU as CUDA textures. To calculate raw features,

we use a variant of the approach in the original Struck that

is a better fit for the GPU architecture. Rather than scaling

a patch to 16 × 16 pixels and then densely sampling the

result, we instead sample from a 16×16 uniform grid placed

over the unscaled patch: this allows us to avoid resizing

patches on the GPU, whilst producing equivalent results.

We compute each raw feature on a separate CUDA thread

and calculate the features for all patches in parallel.

To calculate Haar features, we observe that each Haar

feature we use can be calculated as the weighted combi-

nation of at most four box sums over the pixels of the

current frame (see Figure 3). The sum of each box can be

calculated efficiently using the integral image for the frame

[11]. We can thus compute all of the Haar features without

needing to branch on feature type on the GPU by making

each CUDA thread calculate a single feature and assigning

zero weights to boxes that are unnecessary for features of

particular types.

5.5 Multi-Threading on the CPU

Whilst it does not represent an improvement to the speed

of the tracker itself, it is worth observing that we were

able to obtain a further improvement in the speed of the

ThunderStruck system as a whole by running the tracker

on one CPU thread whilst rendering the output on another.

This allows the tracker to process the next frame whilst the

current one is still being rendered. This improvement could

clearly also have been made to the CPU version of Struck.

6 EXPERIMENTS

We evaluate our CPU and GPU implementations of Struck

on the full 50-video benchmark of Wu et al. [21]. In the

main paper, we perform experiments at a single scale,

first using only individual kernels (§6.2), and then com-

bining multiple kernels (§6.3) as described in §4.7.4. We

also perform experiments showing the difference structured

learning makes in improving tracking performance relative

to a baseline classification SVM (§6.4), and evaluate our

implementations for speed (§6.5). Further experiments in-

vestigating multi-scale tracking and the effects of changing

various parameters of our approach can be found in the

supplementary material, together with a study comparing

our approach to the state-of-the-art KCF tracker [22] and

more details on the effects of structured learning.

6.1 Benchmark

The Wu dataset consists of numerous test videos from the

recent literature. In their paper, the authors performed a

large-scale evaluation that compared 29 trackers (including

the CPU version of Struck, SCM [49], TLD [50] and ASLA

[51]). Their key ideas were (a) to perturb the initialisation

of the trackers in both time and space to improve the

robustness of the evaluation, and (b) to evaluate the trackers

on sequences that had been annotated to highlight tracking

challenges, e.g. fast motion, occlusion, or changes in scale

or illumination. Trackers were evaluated using a variety

of different tests, in each case using location error (the

percentage of frames whose predicted bounding boxes were

within a fixed pixel threshold of the ground truth bounding

boxes) as a precision measure, and overlap (the percentage

of frames whose predicted bounding boxes overlapped

the ground truth bounding boxes by more than a fixed

threshold) as a success measure. These measures were

calculated for a range of thresholds in each case. The

trackers were ranked in terms of precision using a fixed

location error threshold of 20 pixels, and in terms of success

using the area under the curve (AuC) approach.

Three different types of test were performed to compare

the trackers’ performance: (a) one-pass evaluation (OPE),

which initialises the trackers with the ground truth bounding

box from the first frame of each sequence, (b) temporal

robustness evaluation (TRE), which initialises the trackers

at another starting frame in the sequence, and (c) spatial

robustness evaluation (SRE), which shifts or scales the

ground truth bounding box in the first frame. Overall

performance tests of all three types were performed for

each tracker on all of the available sequences; further tests

were also performed to compare the trackers’ performance

when restricted to specific types of sequence, e.g. those

with a significant amount of fast motion or occlusion.

6.2 Single-scale, single-kernel tracking

For our initial experiments, we tested single-scale (i.e. 2D

translation only), single-kernel CPU and CUDA variants of

Struck on the entire dataset using the TRE and SRE tests

and various different feature/kernel/budget combinations.
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Tracker Variant Features Kernel Budget Success Precision
TRE SRE TRE SRE

Struck fkbRL100 Raw Linear 100 0.471 0.400 0.651 0.569
Struck fkbRL25 Raw Linear 25 0.446 0.377 0.611 0.529
Struck fkbHG100 Haar Gaussian 100 0.504 0.434 0.706 0.628
Struck fkbHG25 Haar Gaussian 25 0.479 0.406 0.665 0.579

ThunderStruck fkbRL100 Raw Linear 100 0.459 0.384 0.633 0.546
ThunderStruck fkbRL25 Raw Linear 25 0.367 0.308 0.494 0.421
ThunderStruck fkbHG100 Haar Gaussian 100 0.490 0.417 0.681 0.602

ThunderStruck fkbHG25 Haar Gaussian 25 0.410 0.350 0.562 0.479

Baseline – Haar Gaussian 100 0.473 0.401 0.656 0.567

ASLA – – – – 0.485 0.421 0.620 0.577
SCM – – – – 0.513 0.420 0.652 0.575
TLD – – – – 0.448 0.402 0.624 0.573

KCF – – – – 0.556 0.463 0.774 0.683

TABLE 1: The tracking performance of single-scale, single-kernel Struck and ThunderStruck variants on the Wu et al.

[21] benchmark using various feature/kernel/budget combinations. We used search radii of 30 pixels for propagation and

60 pixels for learning, and set nR and nO, the numbers of reprocessing and optimisation steps used for LaRank, to 10.

For these experiments, we searched for the target object

in each new frame using a fixed search radius of 30
pixels around the previous object location. For learning the

SVM, we used a larger search radius of 60 pixels to help

ensure stability, and sampled potential transformations from

a polar grid with 5 radial and 16 angular divisions, giving

81 potential transformations in total (including the identity

transformation).

Table 1 shows the results obtained by our two imple-

mentations for various combinations of parameters, along

with published results from the best-performing methods

in the original Wu benchmark, and the results we obtained

for the state-of-the-art KCF tracker [22]. It can be seen

from these results that Struck fkbHG100, which uses Haar

features, a Gaussian kernel and a budget of 100 support

vectors, outperforms methods like ASLA, SCM and TLD

on all but the TRE success tests, in some cases by a con-

siderable margin. The corresponding CUDA variant of our

tracker (ThunderStruck fkbHG100) achieves slightly lower

tracking performance than this due to differences in the way

in which the budget maintenance step is implemented (see

§5.3), but compensates for this by a significant increase in

speed (see §6.5). The Struck fkbHG25 results demonstrate

that it is possible to achieve reasonable tracking perfor-

mance using a relatively small number of support vectors.

Although Struck fkbHG100 achieves excellent results in

comparison to trackers such as ASLA, SCM and TLD, the

KCF tracker substantially outperforms it. We believe a key

advantage KCF has is its relative computational efficiency

in comparison to Struck, which gives it the freedom both

to use better features than Struck fkbHG100 (it uses HOG

rather than Haar features) and to sample densely around

the object without encountering speed or memory issues. Of

these, we believe that the features make the more significant

difference: when we tried densely sampling around the

object, we found that it made little difference to the overall

results. By contrast, as our experiments in the next section

demonstrate, when we used more effective features as part

of a multi-kernel learning (MKL) approach, we achieved

significant improvements in tracking performance, allowing

the mklHGHI variant of our tracker to outperform KCF on

all but the TRE success tests of the Wu benchmark.

6.3 Single-scale, multi-kernel tracking

In order to examine the effects of the multi-kernel learning

(MKL) approach we articulated in §4.7.4, we compared

a number of multi-kernel variants of our Struck tracker

(using various combinations of features and kernels) with

the corresponding single-kernel variants by running them

on the entire Wu benchmark. The results are shown in

Table 2. For all variants, we set the unrelated parameters

to default values to ensure a fair comparison (specifically,

we used a support vector budget of 100, a learning radius

of 60 pixels and a propagation radius of 30 pixels, and set

nR and nO, respectively the numbers of reprocessing and

optimisation steps used for LaRank, to 10).

Our results demonstrate that by combining the right

features and kernels, it is possible to achieve significant

improvements in tracking performance. In particular, the

mklHGHI variant of our tracker, which combines a Gaus-

sian kernel with an intersection kernel on Haar and his-

togram features, achieves state-of-the-art results on the Wu

benchmark, outperforming even KCF. This improvement

in tracking performance is bought at the expense of using

larger feature vectors, which leads to a roughly eight-fold

decrease in the speed of the tracker when compared to

Struck fkbHG100 (see §6.5). However, given the increases

in speed obtained by ThunderStruck, we believe that a

careful implementation of Struck mklHGHI on the GPU

could run at a decent frame rate.

6.4 Effects of structured learning

To investigate the effects of structured learning on the per-

formance of our tracker, we compared the results of Struck

fkbHG100 against a baseline classification SVM with the

same parameters (Haar features, Gaussian kernel, budget of

100) on the Wu benchmark. To achieve this, we modified

our tracking framework to train the learner using binary

rather than structured examples. In each frame, a single

positive example was generated from the estimated object
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Fig. 6: Example frames from benchmark sequences, comparing the results of Struck (variant mklHGHI) with KCF [22],

SCM [49] and ASLA [51]. Videos of these results can be found at https://goo.gl/cJ1Dg7.

Tracker Variant Features/Kernels Feature Count Success Precision
TRE SRE TRE SRE

Struck mklHGRL Haar/Gaussian + Raw/Linear 448 0.476 0.401 0.660 0.575
Struck mklHGHI Haar/Gaussian + Histogram/Intersection 672 0.545 0.469 0.785 0.707

Struck mklHIRL Histogram/Intersection + Raw/Linear 736 0.494 0.418 0.690 0.606
Struck mklHGHIRL Haar/Gaussian + Histogram/Intersection + Raw/Linear 928 0.495 0.422 0.692 0.610

Struck fkbHG100 Haar/Gaussian 192 0.504 0.434 0.706 0.628
Struck fkbHI100 Histogram/Intersection 480 0.517 0.455 0.734 0.679

Struck fkbRL100 Raw/Linear 256 0.471 0.400 0.651 0.569

KCF – – – 0.556 0.463 0.774 0.683

TABLE 2: Comparing the tracking performance of some single-kernel variants of Struck with variants that use multiple

kernel learning (MKL). For all variants, we use a learning search radius rL of 60 pixels, a propagation search radius

rP of 30 pixels and a support vector budget of 100, and set nR and nO, respectively the numbers of reprocessing and

optimisation steps used for LaRank, to 10. We show the results of the KCF tracker for comparison purposes.

configuration, and negative examples were generated by

sampling from Y and keeping examples that overlapped the

estimated object configuration by less than 0.5 (i.e. θu = 1
and θl = 0.5 in the labelling function described in §3.3).

The results of the baseline classifier are shown in Ta-

ble 1. In comparison with those for Struck fkbHG100,

they demonstrate that for the Wu benchmark as a whole,

our structured learning framework achieves meaningful im-

provements over a traditional classification-based approach.

Indeed, we show in the supplementary material that our

structured learner improves upon the baseline for each in-

dividual attribute-based subset of the benchmark. However,

the improvements achieved did vary with the attributes of

the sequences tested. In particular, for sequences exhibiting

fast motion or in which some part of the target leaves

the view, we found that the structured learner did not

significantly improve upon the baseline. We investigate this

further in the supplementary material.

6.5 Timings

To investigate the speed improvements yielded by using

the GPU, and to quantify the effects on tracking speed of

changing various parameters of our trackers, we timed a

number of variants of both Struck and ThunderStruck on

the entire Wu benchmark (see Table 3). The machine we

used had a 12-core Intel i7-4960X CPU, running at 3.6
GHz, and an NVIDIA GeForce GTX Titan Black GPU, and

we ran our experiments under Ubuntu 14.04. In all cases,

we suppressed rendering and text output so as to time only

the speed of the actual tracking process.

Our results demonstrate that in a head-to-head compari-

son between similar variants of Struck and ThunderStruck,

our GPU variants achieve significantly higher average

frame rates. In particular, our default fkbHG100 variant

of ThunderStruck (Haar features, a Gaussian kernel with

σ = 0.2 and a budget of 100 support vectors) runs at an

average of 93.9 FPS, whilst our ro5 5 variant, which is
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Tracker Variant Average FPS

Struck fkbRL100 20.9
Struck fkbHG100 20.8
Struck mklHGHI 2.4

ThunderStruck fkbRL100 146.3

ThunderStruck fkbHG100 93.9

ThunderStruck ro5 5 125.1
ThunderStruck sHG95 105 1 19.9

TABLE 3: Comparing the average speed (in frames per

second) of a number of variants of Struck and Thunder-

Struck over the entire Wu benchmark. For details of the

parameters used and the tracking performance obtained for

each variant, see the corresponding experiments sections.

similar to fkbHG100 but uses fewer LaRank optimisation

steps, is even faster, running at an average of 125.1 FPS.

Even faster tracking can be obtained using ThunderStruck

fkbRL100 (raw features, a linear kernel and a budget of 100
support vectors), but with a sizeable decrease in tracking

performance (see Table 1).

By contrast, our multi-kernel mklHGHI variant of Struck

achieves high performance values (see §6.3), but is com-

paratively slow. Our current multi-kernel implementation is

CPU-only, and given the speed improvements demonstrated

by ThunderStruck, we believe it could be speeded up

significantly using the GPU; however, the larger feature

vectors and more complicated kernels used by mklHGHI

mean that it will always be slower than simpler variants.

The effect that incorporating scale has on speed can be

seen by comparing ThunderStruck sHG95 105 1 (a multi-

scale variant that uses 11 possible scaling factors) with

ThunderStruck fkbHG100. Although the multi-scale variant

is nearly five times slower, owing to the much greater

number of object configurations it must consider during

the propagation step, it remains real-time at nearly 20 FPS.

7 CONCLUSION

In this paper, we have presented Struck, an adaptive

tracking-by-detection framework based on structured out-

put prediction. From a learning point of view, we take

advantage of the well-studied large margin theory of SVMs,

which brings benefits in terms of generalisation and ro-

bustness to noise (both in the input and output spaces).

Unlike prior methods based on classification, our algorithm

does not rely on a heuristic intermediate step for producing

labelled binary samples with which to update the classifier,

which is often a source of error during tracking. Our

approach uses an online structured output SVM learning

framework, making it easy to incorporate image features

and kernels. To prevent unbounded growth in the number

of support vectors, and allow real-time performance, we

introduced a budget maintenance mechanism for online

structured output SVMs. We have experimentally shown

the benefits of structured output prediction by comparing

our approach with a baseline classification SVM.

In comparison with the state-of-the-art KCF tracker, the

conventional single-kernel variants of Struck achieve lower

tracking performance. However, by incorporating larger

feature vectors into a multi-kernel tracking approach, we

have shown that we are able to outperform KCF and achieve

state-of-the-art results on the popular Wu et al. benchmark.

From a speed perspective, we have shown how Struck

can be implemented on the GPU using CUDA. This

improves upon the already real-time performance of the

original unoptimised CPU implementation of Struck to

achieve high frame-rates.
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