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ABSTRACT
We illustrate a new approach to the Contact Map Over-
lap problem for the comparison of protein structures. The
approach is based on formulating the problem as an inte-

ger linear program and then relaxing in a Lagrangian way
a suitable set of constraints. This relaxation is solved by
computing a sequence of simple alignment problems, each
in quad ratic  time, and  near-o p timal Lagrangian multip liers

are found by subgradient optimization. By our approach
we achieved a substantial speedup  over the best existing
metho d s. W e w ere able to  so lve o ptimally  fo r the first time
instances for PDB proteins with about 1000 residues and
2000 contacts. Moreover, within a few hours we compared
780 pairs in a testbed  of 40 large proteins, finding the opti-
mal so lutio n in 150 cases. Finally , w e co mp ared  10,000 p airs
of proteins from a test set of 269 proteins in the literature,
which took a couple of days on a PC.

1. INTRODUCTION
Comparing protein structures is a problem of paramount
importance in structural genomics. In fact, its solution is
instrumental to  the so lutio n o f o ther fundamental questio ns
such as (i) Protein Function Determination and Drug De-
sign; (ii) Assessment of Fold Prediction; (iii) Protein Clus-
tering . W e no w  briefly  elabo rate o n each o f these issues.

(i) The 3D structure of a protein determines for the largest
part how the protein functions and interacts with other
molecules  [4]. Hence, the function of a new protein can of-
tentimes be established by comparing its structure to some
know n ones. Further, the drug design problem consists in
the d isco very o f ad  ho c peptides  w ith structure co mplemen-
tary to that of the proteins they must inhibit or enhance [3].
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( ii)  Given a set o f  “ tentative”  fo ld s fo r a p ro tein, and  a “ co r-
rect”  one (determined experimentally) the structure align-
ment problem must be so lved  to  find  out w hich o f the guesses
is the closest to the right answer. This is the problem faced,
e.g., by the CASP (Critical Assessment of Structure Predic-
tion, [26])  jurors, in the international biannual structure-
prediction exercise, where  the large number of predictions
submitted makes the use of sound algorithms for structure
comparison a compelling need. In particular, such algo-
rithms are at the base of CAFASP [9], a recent fully au-
tomated CASP version.

(iii)  Given a set o f  p ro teins and  their structures, it is po ssible

to  gro up  the pro teins in families based  o n structure similar-
ity. In the last years, a number of protein structures classi-
fication servers have been created which organize the PDB
proteins in related families, such as SCOP [27],  FSSP [17],
HOMSTRAD [25],  CAMPASS [30],  and others.

Pairwise  structure co mp ariso n requires a structure similarity
scoring scheme that captures the biological relevance of the
chemical and physical steric constraints involved in molec-
ular reco gnitio n. No w adays, the mo st used  sco ring schemes
are based on three themes: RMSD (Root Mean Square Devi-
ation) of Rigid-Body Superposition [19],  Distance Map Simi-
larity [18]  and Contact Map Overlap (CMO) [ll].  While the
first two measures require a preset alignment for the equiv-
alenced residues in the two proteins to be given, the  CM0
measure does not require a preset alignment. The CM0  is
based  on the  basic notion of contact between two residues,
which is of fundamental statistical mechanics and chemi-
cal significance, and at the core of many scoring schemes
used in applications of protein structure analysis and sim-
ulation. The CM0  scoring scheme was extensively studied
and empirically validated  by the  Godzik-Skolnick group at
the Scripps Institute [12, 111.

A lmo st all algo rithms fo r the co mp ariso n p ro blem are sim-
ple heuristics of many sorts. Many of them try to optimize
the RMSD (Root Mean Square Deviation) of a subset of
residues in the first structure and a subset in the second
structure (an example of such algorithm is MAXSUB  [29]).
These measures, ho w ever, have many reco gnized  flaw s; mo st

no tably , they  are a p o o r ind icato r o f  similarity  fo r structures
w ith a go o d  lo cal agreement o n so me w ell-d efined  d o mains.
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DALI [IS],  on the  other hand, is an example of heuristic
algorithm based on distance map similarity. For other ex-
amples, one can look at the excellent survey of structure
co mp ariso n algo rithms [21].

As far as exact algorithms are concerned, until last year the
situatio n w as that “ In structure co mpariso n, w e d o  no t even

have an algorithm that guarantees an optimal answer for
pairs of structures...”  [8]. In RECOMB 2001, Lancia, Carr,
Walenz and  Istrail [20] p ro po sed  the first rigo ro us algo rithm
for structure comparison, a branch-and-cut procedure  for
finding the largest alignment of two contact maps. The

appro ach, based  o n Integer Linear Pro gramming, exp lo ited
an exponential number of constraints to obtain tight upper
bounds, then used in a branch-and-bound search. The ex-
po nential number o f co nstraints w as d ealt w ith o nly  implic-
itly , v ia a Separat ion A lgorithm w hich d ynamically  generates

only the  constraints that are needed.

Although this algorithm was the first rigorous method for
aligning  structures, capable o f find ing  so lutio ns pro vably  o p -
timal o r w ithin a p ro vable gap  fro m o p timality , the ap p ro ach
has two main drawbacks. Both drawbacks constitute a seri-
ous bottlenck to its practical use, but the first issue is intrin-
sic to the algorithm, while the second is mainly a problem
of software engineering. First and foremost, its USC must
be limited to fairly small proteins, i.c., with up to about 70
residues and roughly twice as many contacts, or otherwise
the amo unt o f time and  memo ry required  fo r the so lutio n be-
co me simply  infcasiblc, even o n a very  po w erful mainframe.
Second, the algorithm is quite complex to implement, and
relics o n the existence and  availability  o f an expensive third-
party component, i.e., a professional LP-solver. For these
reaso ns, as o f to d ay , the algo rithm has no t been mad e avail-
able on a web  server, as was in the authors’  intentions, but
is implemented  o nly  in a pro to type fo rm.

In this paper w e o verco me bo th these pro blems, and  describe
an algo rithm fo r the co ntact map  alignment pro blem w hich
is much faster than [20],  works on large proteins, is easy
to implement and does not require an external LP solver.
Similarly to the previous method, our new algorithm can
be used either to find the optimal solution (via branch and

bo und ), o r a go o d  feasible so lutio n to gether w ith a pro vable
certificate of near optimality, provided via an upper bound
to  the true optimum.

Our algo rithm is based  o n a stro nger integer pro gramming
formulation than that proposed in [20].  A Lagrangian Re-
laxation of the model is then solved via Subgradient Op-
timization, to obtain tight bounds as well as good feasible
so lutio ns. Lagrangian Relaxatio n is a po w erful technique fo r
so lv ing  v ery  large Co mbinato rial Op timizatio n p ro blems [28,
lo].  While Branch-and-Cut has already been employed for
bo th structural as w ell as sequence alignment pro blems (see,
e.g., [22]),  to the best of our knowledge this is the first time
that Lagrangian Relaxatio n techniques are used  fo r an align-
ment algo rithm o f any type.

The algorithm we propose is based on a similar approach
w hich w as successfully used  fo r o ther Binary  Quad ratic Pro -
gramming pro blems, such as the Quad ratic A ssignment Pro b-
lem [7]  or the Quadratic Knapsack Problem [6]. These prob-

lems bear many similarities with the structure alignment
problem. In particular, there are profits p;j in the objec-
tive function which are attained when two binary variables
xi and x~j are both set to 1 in a solution. Analogously, in
the alignment pro blem, w e may have a pro fit in cho o sing  to

align two specific residues  of the proteins and some other
tw o .

We tested our algorithm on real proteins from PDB. We
were able to solve optimally for the first time alignment
problems for proteins with about 1000 residues and 2000

contacts, whereas the largest instances solved to proved op-
timality by the method of [20]  had about 80 residues and
150 contacts. With respect to this method, ours is capable
of computing upper bounds of similar quality within com-
puting times that are orders of magnitude smaller. For this
reaso n, w e w ere able to  co mp are all 780 p airs in a testbed  o f
40 large proteins, suggested by Jeffery Skolnick, within few

hours. In 150 cases, our method found the optimal solution.
Mo reo ver, w e co nsidered  the 269 pro teins mentio ned  in [20]
and compared, within the weekend, a wide fraction of the
(about) 36000 corresponding pairs.

On the negative side, it has to be remarked that the opti-
mal solution of instances associated with substantially dif-
ferent proteins seems completely out of reach not only for
our algorithm (or for the algorithm of [20])  but also with
the other methods currently known in Combinatorial Opti-
mization. Such a situation would be analogous to the case
of the Quadratic Assignment Problem,  for which instances
with 40 nodes (the “ counterpart”  of residues) are quite far
fro m being  so lved  to  o p timality .

1.1 Contact Maps
A contact map [15] of a folded  protein of n residues is a O-
1, n x n matrix C, whose l-elements correspond to pairs
of amino acids in three-dimensional “ contact” . A contact
can be defined in many ways. Typically [24],  one considers
Cij = 1 when the distance of two heavy atoms, one from
the i-th aminoacid and one from the j-th aminoacid of the
protein, is smaller than a given threshold (e.g., 5A). The
framework of the contact map representation of proteins is
very  appealing , since this intuitive and  simple representatio n
is already complex enough to capture the most important
properties of the folding phenomenon. It has been shown
that it is relativ ely  easy  to  go  fro m a map  to  a set o f  p o ssible
structures to which it may correspond [15, 311. This result
has opened the possibility of using contact maps to predict
pro tein structure fro m sequence, by pred icting co ntact maps
from sequence instead .

Besides their use for protein fold prediction, contact maps
are exploited to compare 3D structures. The basic idea is
that, w hen tw o  structures are similar, w e sho uld  expect their
contact maps to be similar as well. Hence, one can use an
indirect method for structure comparison, i.e., contact map
co mpariso n.

We can regard the contact map of a protein p as the adja-
cency matrix of a graph G,. Each residue is a node of G,,
and there is an edge between two nodes if the the corre-
sponding residues are in contact. The Contact Map Overlap

pro blem, calls fo r d etermining  an o rd ered  (i.e., no ncro ssing)
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Figure 1: An alignment of value 5

alignment of some  r&dues in the first protein (nodes in Gr)
and the second protein (nodes in Gz)  which highlights the
largest set  of common contacts as follows: The value of the
alignment is the number of contacts (i.e., edges) in the first
map whose endpoints are aligned with residues that are also
in contact in the  second  map. This value  is called the  over-
lap for the two proteins, and the optimization problem is
to find the maximum overlap. Figure 1 shows two contact
maps and a feasible alignment.

This mcasurc  was introduced  in [12],  and its optimization
was proved NP-hard in [13],  thus justifying the use of so-
phisticated heuristics or enumerative methods.

1.2 CM0 Optimization
In RECOMB 2001, [20]  proposed an algorithm for the CM0
problem, (called LCWI in the sequel), which can find the
optimal alignment of two contact maps. Their approach is
based on an Int eger Linear Programming (ILP) formulation
of the problem, solved by Branch-and-Cut. The formu-
lation exploits an exponential number of clique ineqdity-

cuts. These are constraints saying that, out of a number of
conflicting possible ways of aligning two residues, at most
one way can be chosen in a solution. The exponential num-
ber of constraints is dealt with implicitly, via a Separation
Algorithm which dynamically generates only the constraints
that are needed. The solution of the associated (exponen-
tially large) Linear Program (LP) yields an upper bound on
the optimal CM0 value.

The bound used by LCWI is not the strongest possible for
the CM0 problem, and in fact in this paper we show how to
improve it. Due to the large number of variables/constraints
in the LPs  and to the  use of a bound which is not the most
effective possible, the algorithm LCWI can in fact be used
only to align proteins of up to 70-80 residues. Although a
number of proteins in the pdb (roughly 300) fall within this
range size, most proteins are beyond the capability of this
algorithm, which drastically limits its interest for practical
applications. Furthermore, a bottleneck in the approach
used in LCWI is that, for the solution of many, large LPs,
it requires an external software, taking a long time to run,
while the programmer has no control over this phase of the
solution process.

For these reasons, in this paper we have tried to develop a
new approach for the CM0 problem, pursuing the follow-

ing goals: (i) the approach should be a rigorous procedure,
based on sophisticated mathematical models, which can lead
to the optimal solution of the problem. Furthermore, it
should be capable also of finding good feasible solutions,
with quality certified by an upper bound to the optimum,
computed by the procedure. (ii) It should be able  to solve
problems for proteins of size considerably larger than before,
say 200-300 residues within some minutes on, e.g., a fast PC.
(iii) It should not require the solution of LPs,  because they
are too expensive to afford. The whole procedure should be
easy to implement, e.g., in the C programming language.

In order to meet these goals, we have adopted a Lagrangian
Relaxation (LR) approach, where the optimal Lagrangian
multipliers are found by Subgradient Optimization. The
theory of Lagrangian Relaxation is a well  established branch
of Combinatorial Optimization, and has been used succcss-
fully in a large number of applications, in difFerent  domains
[28].  Nowadays, LR is the most successful tool to tackle very
large problems. For instance, the state of the art algorithms
for the  well known Set Covering Problem,  the Combinatorial
Optimization problem most frequently solved in real-world
applications, are based on LR [5].  These algorithms are ca-
pable of finding near-optimal solutions to instances with
millions of variables and thousands of constraints within
minutes on a PC. However, to the best of our knowledge,
this is the first time that a similar approach is used for an
alignment problem arising in Computational Molecular Bi-
ology.

The LR approach is particularly well suited for those cases
in which the formulation of a problem consists of two sets
of constraints: a set of “nice” constraints and a set of “bad”
constraints, whose removal makes the resulting problem,
called the Lagrangian relased problem, easily solvable. The
strategy then consists in removing the bad constraints from
the formulation and putting them in the  objective function,
each weighed by some coefficient (Lagrangian multiplier).
The weight for a constraint represents a penalty which is in-
curred by a solution which does not satisfy that constraint.
To any choice of weights corresponds a (relatively easy)
problem whose solution yields a bound to the original prob-
lem. The core question of LR is then to determine the op-
timal weights, i.e., the Lagrangian multipliers yielding the
best bound. In most cases, the determination of these mul-
tipliers is equivalent to solving a suitable LP, which would
be too time consuming in practice. On the other hand,
near-optimal multipliers can be found by a simple iterative
procedure known as subgradient optimization, in which, at
each iteration, the Lagrangian relaxed problem is solved and
the multipliers are updated based on the corresponding so-
lution.

Besides yielding an upper bound on the  optimal solution of
the original problem, the Lagrangian multipliers (and the as-
sociated modified costs/profits in the objective function) can
be used to drive simple heuristic procedures (in most cases
of greedy nature). These procedures  typically produce sub-
stantially different solutions for different Lagrangian multi-
pliers. Accordingly, if they  arc embedded within an iter-
ative procedure to define near-optimal multipliers, namely
they are called at each iteration with the current multipli-
ers, the best solution found over all iterations tends to be
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near-o p timal.

2. MATHEMATICAL FORMULATION AND

LAGRANGIAN RELAXATION
We can rephrase the CM0  problem in graph-theoretic lan-
guage as follows: We are given two undirected graphs G1 =
(V,,El) and G2 = (&,Ez), with ni  = /Vii  and m;  = I./ &l,
for i = 1,2. A total order is defined on VI = (1,. . . , nl} and
I4 = (1,. . , nz}. For each j E Vi,  we  let Ni(j)  := {Ic E Vi  :
(j, Ic)  E Ei} denote the set of neighbors of j in Gi.

A  no n-cro ssing  map  o f VI in V2 is defined  by any tw o  subsets
of the same size Ic, {il,. ,ik}  2 VI and {jl,. . ,jh}  c V2,
where il < iz < . < ik and jl  < j2 < . . . < jk. In
this map, jh is the image of ih for 1 5 h < / c.  Two edges
(l&l, 11)  E El and (hz,  12)  E Ez  are shared by the map if there
are p,q < Ic  s.t. hl  = i,, 11  = i,, h2  = j, and 12  = j,. Each
pair of shared edges contributes a sharing  to the objective
function. The problem consists in finding the non-crossing
map w hich maximizes the number o f sharings.

Let L = VI x V2.  To avoid confusion with the edges in G1
and Gz, we call the elements in L lines. Clearly, lines rep-
resent mapping of nodes in VI into nodes in V2.  We say
that two lines 1 = (il, iz) and m = (jl, j2)  in L are c o m-

patible if it is feasible to map il to i2 and jl  to j2 at the
same time, i.e., if either il  < jl  and i2 < ~‘2  or il > jl  and
i2  > j2, incompatible otherwise - graphically, incompatibil-
ity  co rrespo nd s to  the tw o  lines cro ssing  o r to uching . W e let
Z  d eno te the (expo nentially  large) co llectio n o f  all maximal
sets of pairwise  incompatible lines 1 c  L,

For 1 = (i, j) E L we introduce a binary variable ~1 equal
to 1 if and only if i is mapped to j in the noncrossing
matching. We also let X denote be the set of incidence
vectors z E (0, l}L of all noncrossing matchings in L.  For
1 = (il, ia),  m = (j,,  jz) E L,  WC  let ulm = 1 if (il, j,) E El
and (iz,jz)  E ES!,  al, = 0 otherwise. The objective function
in o ur first fo rmulatio n co ntains terms o f the fo rm UI~Z~~,,
indicating that a contribute of a sharing is achieved if the
three terms in the pro d uct take the value 1, i.e., a pro fit o f 1
is attained if both ZI and zm are equal to 1. In fact, in order
to illustrate our method, it is necessary to introduce sepa-
rately products Z~Z m and xmxl  in the objective function. To
this end, we define separate profits bl, for xlxrn  and b,l for
z,,x~. Of course, we have to ensure bl, +b,l  = a~~(= a,l)
for all 1,  m  E L.  For instance, a valid (initial) choice is
bl, = b,l  = al,/ 2.  Later, it will be clear how crucial is for
our method to split al, into bl, and b,l “ optimally” , even
if we will not fix this splitting a priori, but rather use a sort
o f iterative metho d  to  find  it.

The problem can now be stated as

maxI  c hmxm (1)
IEL n&EL

subject to

x E x. (2)
Actually, we know how to represent X with linear con-
straints. Recalling the definition of 1, (2) is equivalent to

z > 0, integer. (4)

Problem (l), (3), (4) is a Binary Quadratic Program. Note in
passing that, although the convex hull of the vectors in X is
given by  (3) and  the no nnegativ ity  co nstraints and  therefo re
the integrality  co nd itio ns co uld  be remo ved  if  (1) w ere linear,
in this case we must keep these conditions (it is false in
general that the maximization of a quadratic function over
a po lyto pe has a so lutio n w hich is a vertex o f the po lyto pe).

2.1 Linearization and strengthening
To linearize (1) we use a standard technique, introducing
v ariables ylm, for 1,m  E L,  and replacing the product xlxrn

by ylm . Note that we introduce separately ylm and yml. (In
practice, the number of y variables that we will have to in-
troduce explicitly is much smaller, namely 21E1  IIEzl,  as  it
can be assumed  w itho ut lo ss o f generality  that the remaining
variables take the value 0. Ho w ever, fo r the sake o f illustra-

tio n w e w ill d escribe the mo d el as if  all the y  v ariables w ere
present.) The new (linear) objective function becomes

Mo reo ver, the no nlinear relatio n ylm = zlxm.  can be rep laced
by the linear constraints

yh 5 xm,  Vl,m  E L (5)

Ylm =yml,  Ql,mEL,l<m, (6)

where “<”  denotes an (arbitrarily defined) total ordering
of the lines in order to avoid repeating the same constraint
twice. In particular, note that no condition is required to
enforce ylm (and y,l)  to 1 if both xl and xm  are 1, since
the maximization will guarantee this condition (actually, if
al, = 0, XI = xm  = 1 and ylnl  = ynll = 0, setting ylm =
yrnl  = 1 yields a fcasiblc solution of the  same value). In
fact, we do not USC (5) but stronger linear conditions. For
this purpose, we adopt a standard procedure used in the
convexification of ILPs [l, 23, 21.

If we multiply a constraint (3) associated with set 1 by x,,
for some m E L and replace x~z~,,  by ylm,  we get

Note that, if ‘rn E I, we can write xm  instead of ymn,  as the
variables are restricted to be binary, getting Clcl,fm)  yirn  5

0, i.e., the trivial condition that all yml  must be 0 if 1 and
m  are incompatible. By doing the above for all constraints
in (3) and variables x,, m E L,  we get our new model:

subject to

ylm  = ymlr Ql, m  E L,  1 < m (10)
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2,  y > 0, integer. (11)

Note that relations (5) are not required, as their are implied
by (9). An interesting property of the above formulation is
that the problem obtained by removing constraints (10) is as
difficult as the maximization of a linear function subject to
(2) (or, equivalently, (3) and (4)). This property is common
to other binary quadratic programs, such as the Quadratic
Assignment Problem [7] and the Quadratic Knapsack Prob-
lem [6].  Below, we illustrate the situation in detail for our
problem.

2.2 Decomposition and Lagrangian relaxation
PROPOSITION  1. The problem defined by (7), (a), (9),

and (11) can be solved in O(IE1IIE21)  time.

PROOF. After the removal of equations  (lo),  each variable
yltn appears only in the constraints (9) associated with x,
(besides being constrained to be nonnegative and integer
by (11)). For each m E L,  this implies that, if variable
Z~ takes the value 0 all variables ylrn take the same value,
whereas, if variable z,,~ takes  the  value  1, the optimal choice
of ylnL  for 1 E L amounts to solving the following:

m a x chnwm (12)
1EL

subject to

~ylrn<l,  VIEZsuchthatm@I (13)
IEI

x2/lm<0,  VIEZsuchthatmEI
IEI

(14)

y >_ 0, integer. (15)

In other words, the profit achieved if xm. = 1, say pm,  is
given by the optimal solution of (12)-(15). This is a simple
alignment problem that can be solved in quadratic time by
dynamic programming, as explained below. Once profits pm
have been computed  for all m E L, we can find the optimal
solution to our problem (without (10)) by solving

m a x c pdh7l
mEL

(16)

subject to

(17)

z > 0, integer,

which is again an alignment problem.

(18)

Overall, an optimal solution (Z,  3)  of the relaxed problem is
obtained by:

- (i) For each m E L, computing an optimal solution &,(Z  E
L) to problem (12)-(15), letting pm  be the associated
profit;

(ii) Computing an optimal solution 5 to problem (16)-

(18);

(iii) Letting glrn  := ?jr, . %,(I, m E L).

In particular, note that variable ylnr  takes the value 1 in the
solution of the overall problem if and only if it takes the
value 1 in the solution of (12)-(15) and x, takes the value
1 in the solution of (16)-(18).

We conclude the proof by analyzing the running time of
the method. Of course, we can explicitly consider ylm  with
I = (ii, iz)  and m = (ji, jz)  only if 1  and m are compati-
ble, (ii, ~‘1) E El and (i,,jz) E Ez,  since the other ylms  can
be assumed to be 0 without loss of generality. Accordingly,
for each m = (i, j)  E L we can solve (12)-(15) by simply
considering the subgraphs of Gi and Gz induced, respec-
tively, by Ni(i)  and Ns(j)  - the sets of neighbors of i and
j. For these subgraphs, we have to find the largest-weight
(w.r.t.  weights b) noncrossing matching, without taking any
line incompatible with m. This means that we should find
(separately) the largest-weight (w.r.t. weights 5)  noncross-
ing matching among the “left” neighbors of i and j as well
as among the “right” neighbors  of i and j. This can be
done in time  0( ] Ni  (i)  ] ] NZ  (j)  1) by dynamic programming,
see, e.g., [14].  For the solution of (16)-(18), we can again
use dynamic programming, with running time O(lVlljVzl).

The overall complexity is

O (lv,llv,l  + c  c  lN~(~)ll~zWl)  = ~W~IIW~
iCV1 jEV2

cl

Although the quality of the upper bound that we obtain
by solving the relaxation without constraints (10) is typ-
ically quite poor, we can get much better bounds with a
perfectly identical approach by relaxing these constraints in
a Lagrangian way. This amounts to assigning a Lagrangian
multiplier Xl, to each constraint (10) and adding to the
original objective function (7) a linear combination of con-
straints (lo),  each weighed by the associated Lagrangian
multiplier, obtaining the Lagrangian objective function

maxx  C  bhyh  + C x L(yh  - 2/d) (19)

IEL  rnEL IEL  n&EL:

l<m

The corresponding Lagrangian relaxed problem requires the
maximization of (19) subject to (S),  (9),  and (11). The
resulting value is an upper bound on the optimal value of
(7)-(11) since, for each feasible solution of the latter, the
contribution to (19) of the new term is null.

Defining for convenience X,1 := -Xi,  for 1 < m  (and
x .- 0), (19) can be rewritten asmm .-

Then, one can see immediately that the effect of Lagrangian
relaxation is to re-distribute the profit al,  between the two
terms in the objective function associated with yrln  and yml.
Clearly, the Lagrangian relaxed problem can be solved as
described in Proposition 1, after replacing 01,  by bl,,,  + Xi,
for I, m E L. Let U(X) be the resulting upper  bound.
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The best  upper bound that can be obtained by Lagrangian
relaxation is U(X’)  := minx  U(X), where X’ denotes the best
Lagrangian multipliers. By the above discussion, finding X’
is the same as splitting profits al,  between bl,  and b,l
so that the optimal value of the relaxation considered in
Proposition 1 is minimized.

It is interesting to compare upper bound U(X*)  to the other
upper bounds proposed for the problem by [20].  Both are
associated with LP relaxations. The first LP relaxation in-
volves the  same variables as ours and, restated according
to our notation, is given by (7) subject to (8),  (lo),  the
nonnegativity conditions on the variables, and

c Ylm 5 xm, V,m = (il, iz)  E L, j E K \ {il} (21)
1661  (j)

c Yltn 2 xm, vm = (ill&)  E L,j  E vz \ {iz} (22)

lCb(j)

where 61(j)  (resp., 62(j))  denotes the set of lines in L inci-
dent with node j E Vi  (resp., j E Vz).  This LP relaxation
is the one actually solved in [20].  Let Ui  denote the corre-
sponding upper bound value. The other relaxation, which is
only mentioned in [20]  and whose solution seems at present
completely out of reach even for very small size instances,
involves the y variables only and is defined by (7) subject to
(lo),  the nonnegativity conditions, conditions ylrn = 0 for
1,  nz  incompatible, and the constraints

c Ylm  5  1,  VP E  P, (23)
(l*m)EJJ

where P denotes the (exponentially large) collection of all
maximal sets P C L x L such that, for all (1, m), (p, q) E P,
at least two lines among I, m,p, q are incompatible (i.e., for
every feasible solution, either ylm  = 0 or yp4  = 0). This
latter formulation is an Independent Set formulation of our
problem, and constraints (23) are the corresponding Clique
inequalities (see [20]).  We let U2 denote the upper bound
corresponding to the value of this latter LP.

PROPOSITION 2. Ur 1 U(X*)  2 U2  and both inequalities
can be tight.

PROOF. It is easy to observe that the optimal solution
of the relaxed problem (lQ),  (8),  (Q),  and (11) does not
change  if the integrality constraints are removed. In this
case, it is known [lo]  that U(X*)  coincides with the optimal
solution value of the LP relaxation defined by (7)-(Q)  plus
the nonnegativity conditions. This bound is stronger than
Ul  since (21) and (22) arc a special case of (9) (both Si(j)
and S,(j)  belong to Z). This shows Ul  2 U(X’).

To show that U(X*)  > UZ,  we prove that every feasible solu-
tion of the LP relaxation yielding Uz is also feasible for the
LP relaxation yielding U(X*).  Indeed, consider a nonnega-
tive 5 satisfying (23),  and define

Clearly, all constraints (9)  are satisfied by (?i?,$.  What re-
mains to be shown is that all constraints (8) are satisfied by

%. For a generic I E 1,  we have

To see that this cannot be more than 1, consider for each
1 E L an arbitrary clique Q(Z) E Z with I @ Q(1). It is easy
to check that the set defined by {(q, 1) : I E I,q  E Q(l)}
belongs to ‘P. Since 5 satisfies (23),  the claim follows.

The proof is concluded by showing examples  in which the
two inequalities in the statement are tight. This is deferred
to the full paper. 0

Our approach determines a near-optimal X by a standard
subgradient optimization procedure; see Held and Karp [16].
Subgradient optimization has the advantage of being easy
to implement and has proved effective in many other ap-
plications. The procedure generates a series X0,  X’, X2,.  . .
of multipliers, where X0 := 0 (with bl,  = b,l = al,/2  for
1,  m E L), and, for k 2 0, A”+’ is defined from Xk as follows.
Let (5,  jj) denote an optimal solution of the Lagrangian re-
laxed problem associated with Xk. The corresponding sub-
gradient vector is given by

Slm := g, - jiml,  l,mEL,l<m.

Using the technique proposed in [16],  WC compute the new
multipliers by

i

cl if slrn =  0
A”+’ .-

lm .- max(X[“, -7,  -bl,)  i f  slm  =  1

min(XI”,  + 7,  bd) i f  slm  =  - 1

for 1.m  E L, 1  < m. Here, the step size y is defined by

U B - L B
Y=P

c 1 ,m  s:7n

where /-L  is a suitable parameter, while UB and LB are the
values of the best upper bound and feasible solution found
so far, respectively. In our implementation, p is initially
set to 1, and halved if the upper bound does not decrease
within 50 iterations (halving ~1 is customary within subgra-
diem  optimization). The number of iterations is limited by
max{1000,10~max{]E~],  [Ez]}},  since we experimentally ob-
served that afterwards no substantial improvement occurs.
The overall complexity of the upper  bound computation is
therefore O(I&]IE2]max{IE11, IEzl}).

The heuristic procedure that we use to compute feasible
solutions to the problem is very simple: WC simply take  the
5 vector corresponding to the Lagrangian relaxed  solution,
found at each iteration. The associated value is of course
given by (1).

3. COMPUTATIONAL EXPERIMENTS
The algorithm has been implemented in C and run on a Pen-
tium PC. Initial heuristic solutions were computed by using
the heuristic algorithms mentioned in [20],  and in particular
the Genetic Algorithms which were shown effective for this
problem. To test our algorithm, we used contact maps ofD
real proteins  from PDB, with a threshold of 5.4 for each con-
tact. The number of available proteins is very large (about
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1

2
3
4
5
6
7
8
9

10+

# inst.
4 2 2
5 5
9 3

1 5 1
1 2 8
2 0 8
2 7 4
3 4 5
3 3 5
4 0 1

7 5 8 8

avg. n

56.90

55.69

56.61
56.18
56.12
56.10
56.50
56.11
55.98
55.98
57.45

Gap

0

avg. m
98.42
80.28
82.14
80.09
79.95
79.80
81.11
80.77
82.41
85.13
98.52

Table 1: Results for 10,000 pairs of small proteins

15,000),  hence we had to select a subset of all possible pairs
for our experiments.

First of all, we considered the 269 proteins mentioned in
[20]  and compared, in a week-end on a PC, the first 10,000
(in alphabetical order) of the (about) 36,000 corresponding
pairs. Computing the upper bounds for all these instances
with the  method  of [20]  would have taken  more  than a year,
assuming an average time of 1 hour/problem.  For all in-
stances for which the upper bounds of [20]  were available,
the  upper bounds computed with our method turned out to
bc at least as good (actually in most cases the two bounds
coincided). Note that we are not finding the best Lagrangian
multipliers  and hence, in principle,  our upper bound may bc
worse than Ui.  Table 1 subdivides  the  10,000 instances ac-
cording to the final value of the gap (column Gap) between
the upper bound and the value of the best solution found.
This means that 422 instances were solved to optimality.
Columns avg. n and avg. nr (resp. max n and max m)  give
the average (rcsp.  maximurn) number of residues and con-
tacts in the instances associated with each gap value. The
fact that for 3/4 of the instances the gap is 10 or larger
reflects the present difficulty to solve instances associated
with substantially different proteins, even of relatively small
size. On the other hand, our code can find optimal maps
for pairs of similar proteins, even of very large size, within
few seconds. For instance, within less than one minute WC

could optimally align 1hkbA  to IhkcA,  that have 891 (resp.
887) contacts and 1944 (resp. 1973) residues, and lqba to
lqbb, that have 849 (resp. 848) contacts and 1925 residues.

Finally, in a few hours we compared all 780 pairs in a testbed
of 40 large proteins suggested by Jeffery Skolnick and men-
tioned in [20],  within few hours. These proteins have up to
250 residues and 593 contacts. In 150 cases, our method
found the optimal solution. Table 2 reports the list of the
pairs for which the optimal solution was found (marked by
0)  - the 40 proteins are classified into 4 families and pro-
teins of the same family appear consecutively in the rows
and columns of the table.
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1 1bOOA 1llrnlC

2 1dbwA 124tmyA

3 lnat 134tmyB

4 lntr 143chy

5 1qmpA 15lbawA

6 1qmpB 161byoA

7 1qmpC 171byoB

8 1qmpD 181kdi

9 1rnlA 19lnin

10 1rnlB 20lpla

212b3iA

222pcy

232plt

241amk

25law2A
26lbSbA

27lbtmA

28 1htiA

29ltmhA

301treA

311tri

323ypiA

338timA

34lydvA

35 lb71A
36lbcfA

371dpsA

381fha

391ier

40lrcd

Table 2: Pairs of proteins of the Skolnick data set

optimally aligned
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