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Abstract. In this paper, we address the problem of discovering novel non-coding

RNA (ncRNA) using primary sequence, and secondary structure conservation,

focusing on ncRNA families with pseudo-knotted structures. Our main techni-

cal result is an efficient algorithm for computing an optimum structural align-

ment of an RNA sequence against a genomic substring. This algorithm finds two

applications. First, by scanning a genome, we can identify novel (homologous)

pseudoknotted ncRNA, and second, we can infer the secondary structure of the

target aligned sequence. We test an implementation of our algorithm (PAL), and

show that it has near-perfect behavior for predicting the structure of many known

pseudoknots. Additionally, it can detect the true homologs with high sensitiv-

ity and specificity in controlled tests. We also use PAL to search entire viral

genome and mouse genome for novel homologs of some viral, and eukaryotic

pseudoknots respectively. In each case, we have found strong support for novel

homologs.

1 Introduction

Ribonucleic acid (RNA) is the third, and (until recently) most underrated of the trio of

molecules that govern most cellular processes: the other two being proteins and DNA.

While much of cellular RNA carries a message encoding an amino-acid sequence, other,

’non-coding’ RNA participate directly in performing essential functions. Recent and

unanticipated discoveries of novel ncRNA families [1, 2, 3, 4, 5] point to the possibility

of a ‘Modern RNA world’ in which RNA molecules are as abundant, and diverse as

protein molecules [6]. The analog of the computational gene-finding problem: ”given

genomic DNA, identify all substrings that encode ncRNA” is increasingly relevant,

and relatively unexplored. While potentially abundant, RNA signals are weaker than

proteins making them harder to identify computationally. Possibly, the strongest clue

is from secondary structure. Being single-stranded, the base-pairs stabilize by form-

ing hydrogen bonds, leading to a characteristic secondary and tertiary structure. With

a few exceptions, the base-pairs are non-crossing, and form a tree-like structure. This

recursive structure is the basis for efficient algorithms to predict RNA structure [7, 8].

With this extensive work in structure prediction, it is natural to expect that novel non-

coding RNA could be discovered simply by looking for genomic sub-strings that fold
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into low-energy structures. Unfortunately, that idea doesn’t work. Rivas and Eddy [9]

showed that random DNA (usually with high GC-content) can also ’fold’ into low-

energy configurations, making it unlikely for a purely de novo approach to be success-

ful. Therefore, a comparative approach is employed, often typified by the question:

“Given a query RNA with known structure, and a genome, identify all genomic sub-

strings that match the query sequence and structure”. The query itself can be either a

single molecule or a model (covariance model/stochastic context free grammar) of an

RNA structure. This approach has been quite successful and single queries as well as

covariance based models are routinely used to annotate genomes with ncRNA [10, 11].

Central to these approaches is an algorithm for computing a local alignment between a

query structure and a DNA string. The search itself is simply a scan of the genome to

obtain all high scoring local alignments.

Here we pose a related question: Given a query RNA with known structure, al-

lowing for pseudoknots, and a genome, identify all genomic sub-strings that match

the query sequence and structure. Without being precise, pseudoknots are base-pairs

that violate the non-crossing rule (See Figure 1). While not as common as other sub-

structures (bulges,loops), they are often critically important to function. Pseudoknotted

RNAs are known to be active as ribozymes [12], self-splicing introns [13], and partici-

pate in telomerase activity [14]. They have also been shown to alter gene expression by

inducing ribosomal frame-shifting in many viruses [15]. However, understanding the

extent and importance of these molecules is partially handicapped by the difficulty of

identifying them (computationally). The algorithm presented here will facilitate identi-

fication.

In order to compute a local structural alignment, we must start with a formal defi-

nition of a pseudoknot in Section 2. Many definitions of pseudoknots have been postu-

lated [16, 17, 18, 19, 20], and recent research investigates the power of these definitions

in describing real pseudoknots [21]. We start here with Akutsu’s formalism (simple

pseudoknots) [16], which has a clean recursive structure and encompasses a majority

of the known cases [21, 22]. We also present algorithms that extend this class of al-

lowed pseudoknots (standard pseudoknots). Section 3 describes the chaining procedure

which is key to the alignment algorithm that follows (Section 4). However, the sim-

ple pseudoknots usually do not occur independently, but are embedded in regular RNA

structures. In Section 5, we extend the algorithm to handle these cases. Other exten-

sions are considered in Section 7. It has been brought to our attention that a recent

publication [23] considers the identical problem using the formation of tree adjoining

grammars to model pseudoknots. The pseudoknots considered by them are a restricted

version of our simple pseudoknots. Futhermore, our alignment combines sequence and

structural similarity. A detailed comparison is deferred to the full version of the paper.

The local alignments can be used in two ways. First, they can be used to infer the

structure of the aligned substring that is conserved with the query. We show in Sec-

tion 8.1 that in a majority of the cases, this leads to a perfect prediction of secondary

(pseudoknotted) structure. Next, they can be used to predict novel ncRNA in genomic

sequences. While our algorithms are computationally intensive, they can be used in

combination with database filtering approaches to search large genomic regions. In Sec-

tion 8.2, we validate our approach on real sequences embedded in random sequence.
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Fig. 1. (a) Simple pseudoknot. (b) Standard pseudoknot of degree d. (c) Recursive simple pseudo-

knot. (d) Recursive standard pseudoknot of degree d.

Finally, in Section 9, we identify (putative) novel pseudoknotted ncRNA in a search of

viral and eukaryotic genomes.

2 Definitions and Preliminary Information

Let A = a1...an be an RNA sequence. The secondary structure is represented simply

as the set of base-pairs

M = {(i, j)|1 ≤ i < j ≤ n, (ai, aj) is a base pair}

Also, let Mi0,k0
⊆ M be defined by Mi0,k0

= {(i, j) ∈ M |i0 ≤ i < j ≤ k0}.

The secondary structure, in the absence of crossing or interweaving base-pairs is called

regular, and has the following recursive definition.

Definition 1. An RNA secondary structure Mi0,k0
is regular if and only if Mi0,k0

= φ

or ∃(i, j) ∈ Mi0,k0
such that

– Mi0,k0
= Mi0,i−1 ∪ Mi+1,j−1 ∪ Mj+1,k0

∪ {(i, j)} (No base-pairs cross the par-

titions).

– Each of Mi0,i−1, Mi+1,j−1, Mj+1,k0
is regular.

Next, we can define the class of allowed pseudoknots ([16]).

Definition 2. Mi0,k0
is a simple-pseudoknot (see Figure 1(a)) if and only if Mi0,k0

is regular or ∃j1, j2 ∈ N (i0 ≤ j1 < j2 ≤ k0) such that the resulting partition,

D1 = [i0, j1 − 1], D2 = [j1, j2 − 1], D3 = [j2, k0], satisfies the following:
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– Mi0,k0
= (SL ∪ SR), where SL = {(i, j) ∈ Mi0,k0

|i ∈ D1, j ∈ D2} and SR =
{(i, j) ∈ Mi0,k0

|i ∈ D2, j ∈ D3, }.

– SL and SR are regular.

Definition 3. Mi0,k0
is a standard-pseudoknot with degree d (d ≥ 3, see Figure 1(b))

if and only if Mi0,k0
is regular or ∃j1, ..., jd−1 ∈ N (i0 ≤ j1 < ... < jd−1 ≤ k0) which

divide [i0, k0] into d parts, D1 = [i0, j1 − 1], D2 = [j1, j2 − 1], ..., Dd = [jd−1, k0],
and satisfy the following:

– Mi0,k0
=

⋃d−1
l=1 Sl, where Sl ={(i, j) ∈ Mi0,k0

|i ∈ Dl, j ∈ Dl+1}for all 1 ≤ l<d.
– Sl is regular for all 1 ≤ l < d,

Note that a simple-pseudoknot is a standard-pseudoknot of degree 3.

Definition 4. Mi0,k0
is recursive-standard-pseudoknot with degree d (d ≥ 3, see Fig-

ure 1(d)) if and only if Mi0,k0
is a standard pseudoknot of degree d or ∃i1, k1, ..., it, kt

∈ N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the

following:

– (Mi0,k0
−

⋃t
l=1 Mil,kl

) is a standard pseudoknot of degree ≤ d.

– Mil,kl
(1 ≤ l ≤ t) is a recursive standard pseudoknot of degree ≤ d.

A recursive-simple-pseudoknot is a recursive-standard-pseudoknot of degree 3 (Fig-

ure 1(c)). While we can devise algorithms to align recursive-standard-pseudoknots,

they are computationally expensive, and most known families have a simpler struc-

ture. Therefore, we will limit our description and tests to a simpler structure (with a

single level of recursion), defined as follows:

Definition 5. Mi0,k0
is embedded-simple-pseudoknot if and only if ∃i1, k1, ..., it, kt ∈

N (i0 ≤ i1 < k1 < i2 < k2 < ... < it < kt ≤ k0, t ≥ 1), which satisfy the following:

– (Mi0,k0
−

⋃t
l=1 Mil,kl

) is regular.

– Mil,kl
(1 ≤ l ≤ t) is a simple-pseudoknot.

In the full version of the paper, we extend these algorithms to the case of standard-

pseudoknots. The full version of the paper will present the algorithm for the most gen-

eral case (recursive-standard-pseudoknot).

2.1 Structural Alignment Preliminaries

For alignment purposes, we do not distinguish between RNA and DNA, as every sub-

string in the genome might encode an RNA string. Let q[1 · · ·m] and t[1 · · ·n] be two

RNA strings over the alphabet
∑

= {A, C, G, U} where q has a known structure M .

An alignment of q and t is defined by a 2-rowd matrix A, in which row 1 (respectively, 2)

contains q (respectively, t) interspersed with spaces, and for all columns j, A[1, j] �=′ −′

or A[2, j] �=′ −′. For r ∈ {1, 2}, define ιr[i] = i − |{l < i s.t. A[r, l] =′ −′}|. In other

words, if A[1, i] �=′ −′, it contains the symbol q[ι1[i]]. The score of alignment A is

given by

∑

j

γ(A[1, j], A[2, j]) +
∑

i,js.t.(ι1[i],ι1[j])∈M

δ(ι1[i], ι1[j], ι2[i], ι2[j])
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The function γ scores for sequence similarity, while δ scores for conservation of struc-

ture. While this formulation encodes a linear gap penalty, we note here that alignments

of RNA molecules may contain large gaps, particularly in the loop regions, and we

implement affine penalties for gaps (details omitted). Naturally, we wish to compute

alignments with the maximum score.

The key ideas are as follows: First, note that regular and pseudoknotted structures

have a recursive formulation. Therefore, the problem of structurally aligning an RNA

structure against a subsequence, can be decomposed into the problems of (recursively)

aligning its sub-structures against the appropriate sub-sequences, and combining the

results. For regular-structures, the structure is tree-like, and the recursion follows the

nodes of the tree. For simple-pseudoknots, the structure is more complex, and will be

described in Section 4. The structure for embedded-simple-pseudoknots is simply a

combination of the two (See Section 7).

However, it is not sufficient to consider structural elements alone, as we wish to

score for sequence conservation as well. The recursive structure described only contains

a subset of the nucleotides that participate in structure. Therefore, we employ a second

trick of introducing spurious structural elements (base-pairs) to M . The augmented

structure M ′ must have the following properties:

– Each nucleotide i appears in M ′.

– |M ′| = O(m), so that the size of the structure does not increase too much.

– The recursive structure of M is maintained.

Pseudoknots and regular structures have very different recursive structure, and require

different augmentation procedures. In Section 3, we present chaining, a novel augmen-

tation procedure for simple pseudoknots. An augmentation for regular structures, bina-

rization was presented in [24], and is implicit in the covariance models used to align

regular RNA [25]. Here, we extend binarization to include chaining for embedded-

simple-pseudoknots (Figure 5). These augmentations are used in the alignment algo-

rithms for simple (Section 4), and embedded-simple-pseudoknots (Section 5).

3 Chaining

Before describing the chaining procedure, we revisit the problem of aligning a simple

pseudoknot to a genomic sub-string. Unlike regular structures, we cannot partition the

genome into contiguous substrings, because of interweaving base pairs. Thus, we need

a new substructure for simple pseudoknot structures.

We start by defining a total ordering among the base pairs of a simple pseudoknot.

Recall (Definition 3) that a simple-pseudoknot structure Mi0,k0
can be divided into 3

parts: D1 = [i0, j0 − 1], D2 = [j0, j
′
0 − 1], D3 = [j′0, k0]. (See Figure 2(a)) For each

base pair (i, j) ∈ M , exactly one of i and j is in D2 part. We define an ordering of

the base pairs in M by sorting the coordinate in D2. Formally, define D2(i, j) for all

(i, j) ∈ M as follows: D2(i, j) = i if (i, j) ∈ SR, and D2(i, j) = j otherwise. For

each (i, j), (i′, j′) ∈ M ,

(i, j) ≥p (i′, j′) iff D2(i, j) ≥ D2(i
′, j′)
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Fig. 2. (a) Base pairs in a simple pseudoknot are ordered according to the index of the endpoint

along [j0, j
′

0]. Therefore, (i1, j1) > (i2, j2) > (j3, k3) > (i4, j4) > (j5, k5) > (j6, k6) >

(i7, j7). (b) Subpseudoknot structure.

As distinct base-pairs do not share any coordinates, ≥p defines a total ordering on

the actual base-pairs, and can be used to define a partial order on substructures that

we can recurse on. Define a subpseudoknot P(i, j, k) as the union of two subintervals

P(i, j, k) = [i0, i] ∪ [j, k] (Figure 2 (b)). Denote the triple (i, j, k) as the frontier for

P(i, j, k). Note that i0 is implicit from the context. Suppose that we are aligning frontier

(i′, j′, k′) of the query against frontier (i, j, k) of the target, with the score represented

by B[i, j, k, i′, j′, k′]. A naive algorithm would need to consider O(m3n3) pairs of

frontiers. We improve this as follows: consider the special case of (i′, j′) ∈ M where

(i′, j′) ∈ SL. The following recursion gives the score for B (proof omitted).

Theorem 1

B[i, j, k, i
′

, j
′

, k
′] = max{ MATCH,INSERT,DELETE} (1)

MATCH = B[i − 1, j + 1, k, i
′ − 1, j

′ + 1, k
′] + δ(q[i′], q[j′], t[i], t[j])

+γ(q[i′], t[i]) + γ(q[j′], t[j]), (2)

DELETE = max

���
��

B[i − 1, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′], t[i]) + γ(q[j′],′ −′),

B[i, j + 1, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′ −′) + γ(q[j′], t[j]),

B[i, j, k, i′ − 1, j′ + 1, k′] + γ(q[i′],′ −′) + γ(q[j′],′ −′)

(3)

INSERT = max

���
��

B[i − 1, j, k, i′, j′, k′] + γ(′−′, t[i]),

B[i, j + 1, k, i′, j′, k′] + γ(′−′, t[j]),

B[i, j, k − 1, i′, j′, k′] + γ(′−′, t[k])

(4)

Note that in every sub-case of MATCH and DELETE, we move from the query frontier

(i′, j′, k′) to the frontier (i′ − 1, j′ + 1, k), because if either i′ or j′ is not used, we

cannot score for the pair (i′, j′). In the INSERT case, we stay at the frontier (i′, j′, k′).
The situation is symmetric when (j′, k′) ∈ SR ⊆ M , but is not defined when (i′, j′) �∈
M ∧ (j′, k′) �∈ M . The key idea for the chaining procedure is that we can define a
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unique frontier to move to in all cases, and still ensure that each nucleotide is touched

by at least one frontier. By starting with a fixed frontier, and always moving to a fixed

child, we only have O(m) frontiers to consider.

From Definition 2, there exist indices j1, j2 which divide the simple pseudoknot

structure into D1, D2 and D3. We choose (j1 − 1, j1, k0) as the root frontier. Note

that P(j1 − 1, j1, k0) represents the entire simple-pseudoknot (See Figure 3(a)). We

maintain the invariant that if (i, j, k) is a frontier and j participates in a base-pair, then

the base-pair must be ’below’ or within the frontier. In other words, if (i′, j) ∈ SL,

then i′ ≤ i. Likewise, if (j, k′) ∈ SR, then k′ ≤ k. For a frontier (i, j, k), we have

different cases: for example, if (i′, j) ∈ SL, we add spurious base pairs (i, j), (i −
1, j), . . . (i′, j). These base pairs define an ordered set of frontiers (i, j, k) ≥ (i −
1, j, k) ≥ . . . , (i′, j, k) ≥ (i′ − 1, j + 1, k). Likewise, if (j, k′) ∈ SR, we add spurious

base-pairs (j, k), (j, k − 1), . . . , (j, k′), which define the frontiers (i, j, k) ≥ . . . ≥
(i, j + 1, k′ − 1). The chaining algorithm, with a complete listing of cases is described

in Figure 3. The output of chaining is a directed path of ’frontiers’. The number of

nucleotides in a frontier (i, j, k) is given by the expression ((i−i0 +1)+(k−j+1)) ≤
m. Further, this number decreases by at least 1 for each adjacent frontier. Thus the

CHAINING(i, j, k)
1 if i = i0 − 1 and j > k

2 then return NIL

3 if (i, j) ∈ S

4 then v = CHAINING(i − 1, j + 1, k);
5 return CREATENODE(i, j, solid, move(1, 1, 0), v)
6 if (j, k) ∈ S

7 then v = CHAINING(i, j + 1, k − 1);
8 return CREATENODE(j, k, solid, move(0, 1, 1), v)
9 if j ∈ VL

10 then v = CHAINING(i − 1, j, k);
11 return CREATENODE(i, j, empty, move(1, 0, 0), v)
12 if j ∈ VR

13 then v = CHAINING(i, j, k − 1);
14 return CREATENODE(j, k, empty, move(0, 0, 1), v)
15 if i ∈ VL

16 then v = CHAINING(i, j + 1, k);
17 return CREATENODE(i, j, empty, move(0, 1, 0), v)
18 if k ∈ VR

19 then v = CHAINING(i, j + 1, k);
20 return CREATENODE(j, k, empty, move(0, 1, 0), v)
21 if i > i0
22 then v = CHAINING(i − 1, j, k);
23 return CREATENODE(i, j, empty, move(1, 0, 0), v)
24 if i = i0
25 then v = CHAINING(i − 1, j + 1, k);
26 return CREATENODE(i, j, empty, move(1, 1, 0), v)
27 if i = i0 − 1
28 then v = CHAINING(i, j + 1, k);
29 return CREATENODE(j, k, empty, move(0, 1, 0), v)

j1j1-1

i0

k0

j2

P(j1-1,j1, k0)

P(j1-1,j1, k0-1 )

P ( j1-1,j1, k0-2 )

P(j1-1,j1, k0-3 )

P(j1-1,j1, k0-4 )

P(j1-1,j1+1, k0-5 )

P(j1-2,j1+1, k0-5 )

P(j1-3,j1+2, k0-5 )

(a)

(b)

Fig. 3. The chaining procedure on a simple pseudoknot structure Mi0,k0
. (a) Solid base pairs are

the actual base pairs, dotted ones are the spurious base pairs. (b) Chain structure representing

the simple pseudoknot structure Mi0,k0
. Solid nodes represents a sub-pseudoknot with frontier

(i, j, k) where (i, j) or (j, k) is an actual base pair. Empty nodes represents a sub-pseudoknot

with frontier (i, j, k) where neither (i, j) nor (j, k) is an actual base pair.
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(a) ALIGN-SP(M ′, t[1...n])
1 // M ′ is the chain representing the simple pseudoknot region to be aligned in query q
2 for all intervals (i0, k0) in t[1...n]
3 do for all (i, j, k), i0 ≤ i < j ≤ k ≤ k0

4 do for all nodes v ∈ M ′

5 do if v ∈ ML

6 then B[i, j, k, v] = max

�����
����

B[i − 1, j + 1, k, child(v)] + δ(q[lv ], q[mv ], t[i], t[j])
+γ(q[lv], t[i]) + γ(q[mv], t[j]),

B[i − 1, j, k, child(v)] + γ(q[lv], t[i]) + γ(q[mv],′ −′),
B[i, j + 1, k, child(v)] + γ(q[lv],′ −′) + γ(q[mv], t[j]),
B[i, j, k, child(v)] + γ(q[lv],′ −′) + γ(q[mv],′ −′)

7 if v ∈ MR

8 then B[i, j, k, v] = max

�����
����

B[i, j + 1, k − 1, child(v)] + δ(q[mv ], q[rv ], t[j], t[k])
+γ(q[mv], t[j]) + γ(q[rv], t[k]),

B[i, j, k − 1, child(v)] + γ(q[mv],′ −′) + γ(q[rv], t[k]),
B[i, j + 1, k, child(v)] + γ(q[mv], t[j]) + γ(q[rv ],′ −′),
B[i, j, k, child(v)] + γ(q[mv],′ −′) + γ(q[rv],′ −′)

9 if v ∈ MS and move(v) = (1, 0, 0)

10 then B[i, j, k, v] = max

�
B[i − 1, j, k, child(v)] + γ(q[lv], t[i]),
B[i, j, k, child(v)] + γ(q[lv],′ −′)

11 if v ∈ MS and move(v) = (0, 0, 1)

12 then B[i, j, k, v] = max

�
B[i, j, k − 1, child(v)] + γ(q[rv], t[k]),
B[i, j, k, child(v)] + γ(q[rv],′ −′)

13 if v ∈ MS and move(v) = (0, 1, 0)

14 then B[i, j, k, v] = max

�
B[i, j + 1, k, child(v)] + γ(q[mv], t[k]),
B[i, j, k, child(v)] + γ(q[mv],′ −′)

15 B[i, j, k, v] = max

���
��

B[i, j, k, v]
B[i − 1, j, k, v] + γ(′−′, t[i]),
B[i, j + 1, k, v] + γ(′−′, t[j]),
B[i, j, k − 1, v] + γ(′−′, t[k])

16

17 BSP [i0, k0, iSP , kSP ] = maxj=i+1,k=k0
{B(i, j, k, ROOT(M ′))}

(b) IMPROVED ALIGN-SP()
1 for all v ∈ M ′

2 do for i0 = 1 to n − 1
3 do for i = i0 − 1 to n − 1
4 do for j = n + 1 downto i + 1
5 do for k = j − 1 to n
6 do Compute B[i, j, k, v]

Fig. 4. (a) Align-SP procedure for alignment of a simple pseudoknot structure to a target se-

quence t[1...n]. (b) Improved Align-SP procedure.

number of nodes in the chain is O(m). We still need to consider O(n3) target frontiers

in aligning, for a complexity of O(mn3).

4 Alignment Algorithm for Simple-Pseudoknots

Figure 4(a) describes the algorithm ALIGN-SP for aligning a simple-pseudoknot to a

DNA substring. Its input is a chain of query sub-pseudoknots, which is aligned to all

sub-pseudoknots P(i, j, k) of the target sequence t[1 . . . n]. Let ML (respectively MR)

be the set of solid nodes representing subpseudoknots P(i, j, k) where (i, j) ∈ SL

(respectively, (j, k) ∈ SR). Let MS be set of the nodes representing subpseudoknots

P(i, j, k) where neither (i, j) �∈ SL, and (j, k) �∈ SR.

As an example, suppose we are aligning sub-pseudoknot P(i, j, k) in t to the sub-

chain rooted at v. Let B[i, j, k, v] be the score of the optimal alignment. First, we have
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BINARIZE-SP(i, j)
1 if (i, j) is a simple pseudoknot structure

2 then return CHAINING(i, j, pseudo − node, Nil);
3 if i = j

4 then return CREATENODE(i, j, empty, Nil);
5 if (i, j) ∈ M

6 then v = BINARIZE-SP(i + 1, j − 1);
7 return CREATENODE(i, j, solid, v);
8 if (k, j) ∈ M for some i < k < j

9 then

10 vl = BINARIZE-SP(i, k − 1);
11 vr = BINARIZE-SP(k, j);
12 (A empty node with 2 children, vl and vr.)

13 return CREATENODE(i, j, empty, vl, vr);
14 if i < j

15 then v = BINARIZE-SP(i, j − 1);
16 return CREATENODE(i, j, empty, v);
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Fig. 5. Binarization procedure revised for embedded-simple-pseudoknots and an illustration. (a)

An embedded-simple-pseudoknot with spurious base pairs added. (b) Resulting binary tree. Solid

nodes correspond to actual base pairs while empty (circular) nodes correspond to spurious base

pairs. A ’✷’ represents a pseudonode and subtree rooted at a pseudonode is formed by Chaining

procedure.

cases involving insertion of target nucleotides: t[i], t[j], and t[k], as described by the

recurrence in Figure 4(a)(Line 15). Next, we have the cases corresponding to match

or deletion of v. We consider the case v ∈ ML corresponding to the subpseudoknot

P(lv, mv, rv) in q. The following cases can occur

1. (t[i], t[j]) is a pair in t corresponding to the pair (q[lv], q[mv]) in q.

2. q[lv] is substituted with t[i] and q[mv] is deleted.

3. q[mv] is substituted with t[j] and q[lv] is deleted.

4. q[lv] and q[mv] are both deleted.

The corresponding recurrences are shown on Line 6 of the procedure. The other

cases are handled in an analogous fashion and are described in Figure 4.

5 Alignment Algorithm for Embedded-Simple-Pseudoknots

We consider now the special case of aligning recursive-simple-pseudoknots in which

simple-pseudoknots are embedded in a regular structure. This is by far the most com-

mon occurrence of pseudoknots. While it is relatively easy to extend our algorithms to

handle the full generality of recursive-pseudoknots, the complexity increase makes the

algorithms untractable for real problems. Thus, this special case offers a compromise

between generality and practicality.

The first step in the procedure is to binarize the query RNA, so that every nucleotide

is in a base-pair, and can be represented by a binary tree of size O(m) [24]. The main

difference is that we invoke the chaining procedure whenever a simple-pseudoknot is

encountered. Thus, in the binary tree, the simple pseudoknot substructure appears as a

chain rooted at a pseudo-node.
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After the binary tree structure M ′ of query sequence q is created, target sequence

t is aligned to this tree. The following procedure ALIGN aligns a given subsequence

(t[i . . . j]) in target sequence to a subtree of M ′. The scores of optimal alignments are

stored in matrix A. The entry A[i, j, v] keeps the optimal alignment of the subproblem

of aligning a subsequence (t[i], t[j]) to the subtree rooted at the node v, in other words

to the subinterval (q[lv], q[rv]) of the query sequence.

6 Complexity

In Align-SP, lines 3 − 15 runs in O(n3) time to align all subpseudoknots in target to a

node. Those lines are executed for each subinterval (i0, k0) in target and for each node

in the query tree. Then, time complexity of procedure Align-SP becomes O(mn5).
However, we do not need to compute O(n3) scores for each subinterval (i0, k0). Since

k0 does not appear in the recurrences of Align-SP procedure and B[i, j, k] does not

depend on B[i′, j′, k′] such that k′ > k, B[i, j, k] does not depend on k0. Thus, it

is enough to compute O(n3) scores for each i0 as shown in Figure 4(b). Then, total

running time of Align-SP is O(mn4).
In Align procedure in Figure 6, we first call Binarization-SP procedure which runs

in O(m) time. We also call Align-SP procedure whenever we encounter with a pseudo-

node in the binary tree formed. Let mp be the length of the pseudoknot regions in

q[1 · · ·m], m1 and m2 be the number of the nodes with one child and two children in

the binary tree of q representing the regions with regular structure. Then, the total run-

ning time of Align procedure will be O(mpn
4 +m1n

2 +m2n
3). It is useful to note that

very often, mp, m2 ∈ o(m), and so the true complexity is better than the worst case

complexity. Also, in computing good alignments, we can often bound the gap-lengths.

ALIGN(q[1...m], t[1...n])
1 M ′ = BINARIZE-SP(Q)

2 for all intervals (i, j) in t and all nodes v in M
3 do if v is NIL

4 then A[i, j, NIL] =
�j

l=i
γ(t[l],′ −′)

5 if v is a pseudo node

6 then A[i, j, v] = return ALIGN-SP(i, j, v)
7 if v ∈ M

8 then A[i, j, v] = max

�������
������

A[i + 1, j − 1, child(v)] + δ(t[i], t[j], q[lv], q[rv])
A[i, j − 1, v] + γ(′−′, t[j])
A[i + 1, j, v] + γ(′−′, t[i])
A[i + 1, j, child(v) + γ(q[lv], t[i]) + γ(q[rv],′ −′)
A[i, j − 1, child(v)] + γ(q[lv],′ −′) + γ(q[rv], t[j])
A[i, j, v] + γ(q[lv],′ −′) + γ(q[rv],′ −′)

9 if v ∈ M ′ − M and v has one child

10 then A[i, j, v] = max

�����
����

A[i, j − 1, child(v)] + γ(q[rv], t[j])
A[i, j, child(v)] + γ(q[rv],′ −′)
A[i, j − 1, v] + γ(′−′, t[j])
A[i + 1, j, v] + γ(′−′, t[i])

11 if v ∈ M ′ − M and v has two children

12 then A[i, j, v] = max
i≤k≤j

{A[i, k − 1, left child(v)] + A[k, j, right child(v)]}

Fig. 6. Alignment Algorithm for aligning an embedded-simple-pseudoknot q[1...m] to a target

sequence t[1...n]
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To take advantage of this, we employ a banding procedure (details not shown). A dis-

cussion of scoring matrices and gap penalties is deferred to the full-version of the paper.

7 Alignment Algorithm for Standard Pseudoknots

It is possible to extend the algorithm for aligning a simple pseudoknot to an alignment

algorithm for a standard pseudoknot with degree d > 3. In the full version of the paper,

we present an extension of our algorithm for standard pseudoknot structures with degree

4, and achieve the following result:

Theorem 2 The optimal alignment for a standard pseudoknot with degree 4 can be

computed in O(mn4) time which is identical to the degree 3 case (simple pseudoknots).

In general, standard pseudoknots of degree 2k − 1 and 2k can be aligned in O(mn2k)
time.

8 Results

A C++ implementation of the algorithm given for simple pseudoknots (PAL) is done.

PAL takes an RNA query and target sequence, and returns all high scoring structural

local alignments in the target sequence. All tests were performed on a PC (3.4 Ghz,

1 GB RAM) unless otherwise stated. The structure of the target sub-sequence is in-

ferred from the alignment (Ex: Figure 8). In order to assess the performance of PAL, we

tested 6 RNA families from Rfam database: UPSK, Antizyme, Parecho CRE, Corona-

FSE, Corona-pk3 and IFN-gamma. Each of these families has an embedded-simple-

pseudoknot structure. General information about these families are shown in Table 1.

Table 1. 6 Simple Pseudoknotted RNA families. Avg Id stands for the average sequence identity

between two seed members, n for the number of seed members, L for the length, LP for the

length of the pseudoknot region and t for the average time PAL takes for the alignment of a pair.

RNA Family Rfam Id Avg Id n L LP t(sec)

UPSK RF00390 92.78% 4 23 − 23 ∼ 22 0.0

Antizyme RF00381 83.07% 13 57 − 59 ∼ 54 12.8

Parecho CRE RF00499 81.99% 5 102 − 115 ∼ 33 1.4

Corona-FSE RF00507 67.44% 18 79 − 85 ∼ 76 31.5

Corona-pk3 RF00165 69.42% 14 62 − 64 ∼ 56 19.9

IFN-gamma RF00259 89.83% 5 166 − 169 ∼ 113 51.7

8.1 Predicting Structure with PAL

To test structural inference, we select a pair of members from a family as the query

and target. PAL is used to align the query to the target. The inferred structure of the

target is compared against the annotated structure in the Rfam database. We evaluate

the predicted structure by computing TP (true positives), FP (false positives) and FN
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(false negatives), defined as follows: TP is the number of base pairs in inferred target

structure that are correct: FP is the number of base pairs in the inferred structure that

are not in the true structure, and FN is number of base pairs in the true structure that

are not inferred. We define Specificity = TP / (TP + FP) and Sensitivity = TP / (TP +

FN). Good performance is indicated by both being close to 1. Table 2 summarizes the

result of testing each pair in the 6 families. As the results show, PAL is a strong predictor

of structure, with mean sensitivity and specificity of 0.95. We also investigated the few

cases in which the prediction was away from the mean. In most of those cases, the target

had stem loops that were longer than the query. As they were not aligned to the query

structure, they were not inferred. In practice, we would augment the inferred structure

by a local extension of stem loops in both directions. A second source of errors was

incorrect annotation in Rfam. Other than these two scenarios, the structure inference

was essentially correct.

There is a second caveat in these results which is not apparent. Many (but not all)

of the sequences have high sequence similarity, which might be making the alignment

task easier. We believe this is because a sequence search tool like Blast is used to fish

out candidates, which are then manually aligned, and experimentally validated. We will

show in the following sections that our tool can pick out candidates that BLAST cannot

find, and also align them structurally. Also, in the cases where there isn’t high sequence

similarity, the structure inference was just as good.

Table 2. Pairwise tests: Statistics for Specificity and Sensitivity values. Mean is the average of

Specificity (Sensitivity) values and median is the mid-point of Specificity (Sensitivity) values

over all seed member pairs in an RNA family.

Specificity Sensitivity

RNA Family Mean StdDev Median Range Mean StdDev Median Range

UPSK 1.000 0.000 1.000 (1.000-1.000) 1.000 0.000 1.000 (1.000-1.000)

Antizyme 0.991 0.020 1.000 (0.941-1.000) 0.991 0.020 0.941 (0.941-1.000)

Parecho 0.951 0.052 0.976 (0.848-1.000) 0.938 0.053 0.952 (0.844-1.000)

Corona-FSE 0.944 0.100 1.000 (0.737-1.000) 0.937 0.105 1.000 (0.737-1.000)

Corona-pk3 0.971 0.053 1.000 (0.765-1.000) 0.968 0.056 1.000 (0.722-1.000)

IFN-gamma 0.937 0.092 1.000 (0.782-1.000) 0.934 0.093 1.000 (0.782-1.000)

8.2 Searching for Structural Homologs

In this test, we use one of the members of an RNA family as a query, and look for

its homolog in a large random sequence, with the other members inserted. Figure 7(a)

shows the results for the Corona-FSE family, in which 17 members were embedded in

a 19kb random sequence. The windowed scores are shown by solid lines. The actual

positions of the remaining 17 members are denoted by ’*’. We note that the true hits

are easily the highest scoring regions along the sequence, and that all true positives

score higher than all the false hits. The lowest scoring TP has a score of 988 and the

highest scoring FP has a score of 606. Moreover, the random sequence scores do not
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Fig. 7. Use of PAL as a pseudoknot RNA search tool (a) Score plot for Corona-FSE homologue

search. ’*’ denotes actual positions of the members and ’+’ denotes the members located by

Blastn. (b) Comparison against BLAST on other families.

show a large variation. We do not compute P -values on the hits, but in future work,

we will use the distribution of scores on random, or genomic sequence (with differing

GC-content) to compute the P -value. In general, the distribution is not understood, and

we will either use a non-parametric value such as the Chebyshev’s inequality [26], or

perhaps the Gumbel distribution, which has been shown to be a good approximation

to the actual distribution [11]. In contrast, Blastn (E-value 10, Word-size 7) is able to

locate only 4 of the members. These results also show the significance of the secondary

structure for searching homologue in addition to the primary structure. We repeat the

same experiment for RNA families, UPSK, Antizyme, Parecho, Corona-FSE, Corona-

pk3 and IFN-gamma. In all cases, PAL locates all members as the topmost hits (See

Figure 7(b)). We agree that Blast is not the most appropriate tool for comparison as other

tools such as RSEARCH, and our own tool FastR can search for structural homologs

of RNA [11, 26]. However, these other tools cannot align psuedoknotted RNA and the

search must be followed up with a correct alignment to determine homologs. Also, the

complexity of these methods often force a use of Blast to determine initial candidates.

In the next section, we show that our tool used in conjunction with RNA filters can

efficiently search large genomes.

9 Searching Genomes for Pseudoknots

While PAL is accurate in fishing for structural homologs, it is computationally inten-

sive, making genome scale searches intractable. However, there has been much recent

research (including our own work) on computational filters for RNA, which quickly

eliminate much of the database, while retaining the true homologs [27, 26]. We used

PAL in conjunction with sequence based filters [28] to search genomes, for the 3 most

interesting families.
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Query: Human chromosome 12, minus, 66839786 – 66839618
Subject: Mouse chromosome 10, plus, 118018890-118019061

.......AAAAAAA<<<<<<<< ..<<<<<. . <<<<<....<<<<<<<<..
Query: CAUUGUUCUGAUCAUCUGAAGA---------UCAGCUAU--U--AGAAGAGAAAGAUCAGUUA

|| +**++ +*+*+++* ||+***+ | ** ** | * **** |
Sbjct: CA-----GAGAGGUGCAGGCUAUAGCUGCCAUCGGCUGACCUAGAGAAG--ACACAUCAGCU-

.......AAAAAAA<<<<<<<<...........<<<<<......<<<<<....<<<<<<<<..

<<<..<<<<....aaaaaaa .......>>>>.>>>>>>>>>>>...>>>>>.>>>>>....>
Query: AGUCCUUUGGACCUGAUCAG-CUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUU

++*||****|| ++**+ ||||| |**++|++* ++*+ *| ** ** +***+ *
Sbjct: GAUCCUUUGGA--CCCUCUGACUUGAGACAGAAGUUCUGGGCUUCUCCUCCUGCGGCC----U

<<<..<<<<....aaaaaaa........>>>>.>>>>>>>>>>>...>>>>>.>>>>>....>

>>.>>>>><<<<<<<.. <<<<<.....>>>>>...<<<<....>>>>... >>>>>>>
Query: CUCUCGGAAACGAUGAA--AUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUG---CAUCGUU

++|**+**+ *+***|| * +*|| *+ * |||****|| |****|| ***+* *
Sbjct: AGCUCUGAGACAAUGAACGCUACACA--CUGCAUCUUGGCUUUGCAGCUCUUCCUCAUGGCU

>>.>>>>><<<<<<<....<<<<<.....>>>>>...<<<<....>>>>......>>>>>>>
Start codon

Fig. 8. Structural alignment of the Human Interferon-γ pseudoknot against mouse upstream ge-

nomic DNA. The structure of the query is denoted by parenthesis <, >” , and ”A,a” for the

pseudoknot. The symbols describe the conservation: (*) sequence and structure is conserved. (+)

structure is conserved but not sequence. (|) sequence is conserved, but not structure.

The Corona-FSE family (RF00507) is a conserved pseudoknot in Coronaviruses

which can promote ribosomal frameshifting [29]. We searched the entire Viral genome

(79 Mb) for homologs of this family in 33.8 CPU hours on 1.6GHz AMD Opteron

Grid, and identified 11 novel members of the sub-family. Like other known members,

these are found in coronaviruses, murine hepatitis virus, and Avian flu viruses. Only 2
of the 11 were similar enough in sequence to be identified by BLAST. The alignments

can be retrieved from (http://www.cse.ucsd.edu/∼bdost/RF00507.htm). A similar result

was obtained for Corona-pk3. This family has a conserved ∼ 55nt pseudoknot structure

which has been shown to be necessary for viral genome replication [30]. We identified

20 novel members of this family with significant scores (See http://www.cse.ucsd.edu/

∼bdost/RF00165.htm). Only 1 of the 20 was similar enough in sequence to be identified

by BLAST.

The Interferon-gamma family is an interesting example of a pseudoknot that is

found in the 5’UTR of the Interferon-gamma gene. It regulates translation of the down-

stream gene by binding to the kinase PKR, a known regulator of IFN-gamma trans-

lation [31]. After its discovery in 2002, the pseudoknot was found to be conserved in

many mammals. Its presence in rodents was speculated, but the homolog was not lo-

cated. We searched in mouse and rat genomic DNA, and in the complete gene of gerbil.

In all 3 species, we clearly identified the homologs as the top-scoring alignment. The

alignment of human and mouse pseudoknots are shown in Figure 8. The conserved

location in the two species, just upstream of the start codon, and conservation of key el-

ements validates the hit. We are working with collaborators on experimental validation,

and to locate more members of this family.

In conclusion, we demonstrate that the algorithm for aligning pseudoknots, imple-

mented as PAL represents a viable tool for searching for novel homologs, and for struc-
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tural inference. We hope that our tool will help increase the impact and influence of

pseudoknotted RNA in cellular function. PAL and supplemental data are available upon

request.
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