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Abstract The structural analysis of thin composite structures requires robust and effective
shell elements. In this paper the variational formulation is based on a Hu–Washizu functional
with independent displacements, stress resultants and shell strains. For the independent shell
strains an enhanced interpolation part is introduced. This yields an improved convergence
behaviour especially for laminated shells with coupled membrane and bending stiffness. The
developed mixed hybrid shell element possesses the correct rank and fulfills the in–plane
and bending patch test. The formulation is tested by several nonlinear examples including
bifurcation and post–buckling response. The essential feature of the new element is the
robustness in nonlinear computations with large rigid body motions. It allows very large load
steps in comparison to standard displacement models.

1 Introduction

The application of composite materials became very popular in the last decades, especially
in aircraft industries. The advantages of these materials are high strength and stiffness ratios
coupled with a low specific weight. Thus, composites are used in highly loaded light weight
structures. Often the designed constructions are thin shells which are very sensitive against
loss of stability. Therefore the discussion of the stability behaviour is crucial for composite
shell problems besides the description of material phenomena like matrix and fiber cracking
or delamination, see e.g. Ref. [1]. Thus high requirements on the accuracy and robustness of
the finite element models are essential.
Computational shell analysis is based on a stress resultant theory e.g. Ref. [2], or on the so–
called degenerated approach, References [3, 4]. Although the hypotheses underlying the classi-
cal shell theory and degenerated approach are essentially the same, the reduction to resultant
form is typically carried out analytically in the former, and numerically in the latter. Many
of the computational shell models consider transverse shear deformations within a Reissner–
Mindlin theory to by–pass the difficulties caused by C1–requirements of the Kirchhoff–Love
theory. Low order elements based on a standard displacement interpolation are usually char-
acterized by locking phenomena and thus lead to unacceptable stiff results when reasonable
finite element meshes are employed. In shells two types of locking occur: transverse shear
locking in which bending modes are excluded and nearly all energy is stored in transverse
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shear terms, and membrane locking in which all bending energy is restrained and energy is
stored in membrane terms. In attempting to avoid locking, reduced integration methods have
been advocated, Ref. [5]. Use of reduced (or selective reduced) integration is often accompa-
nied by spurious zero energy modes. Hence, authors have developed stabilization techniques
to regain the correct rank of the element stiffness matrix, e.g. References [6, 7, 8].
In case of linear elasticity the Hellinger–Reissner functional can be used as variational basis
for mixed interpolated elements. For nonlinear material behaviour a three field Hu–Washizu
functional with independent displacements, stresses and strains is more appropriate. Within
the so–called enhanced strain formulations the independent stresses are eliminated from the
set of equations using orthogonality conditions and a two field formulation remains, Ref. [9].
For shells this method has been applied enhancing the Green–Lagrangean membrane strains
e.g. in Ref. [10]. An effective method to avoid transverse shear locking is based on assumed
shear strain fields first proposed in Ref. [11], and subsequently extended among others in
References [12, 13, 14]. The variational basis for these methods is given with the Hu–Washizu
functional.
An important issue within the context of developing a finite shell model is the number and
type of rotation parameters on the element. Mostly general shell theories exclude explicit
dependence of a rotational field about the normal to the shell surface which leads to a five
parameter model (three displacements and two local rotations). Use of 5 degree–of–freedom
frame requires construction of special coordinate systems for the rotational parameters. Con-
sidering the so–called drilling degree-of–freedom leads to a finite element discretization with
six nodal parameters. This has some advantages since both displacement and rotation pa-
rameters are associated with a global coordinate frame. On the other hand a larger set of
algebraic equations has to be solved, e.g. Ref. [15].

The new aspects and essential features of the present formulation are as follows:

(i) The nonlinear variational formulation is based on a Hu–Washizu functional using a
material representation with independent displacements, stresses and strains. The as-
sociated Euler–Lagrange equations are the static and geometric field equations, the con-
stitutive equations and the static boundary conditions. The kinematic relations account
for transverse shear deformations and are valid for finite rotations. In this paper the
strain energy is chosen as a quadratic function of the independent shell strains. Based
on a previous publication [16], where appropriate interpolation functions for the inde-
pendent stress resultants and strains are formulated, we present several new theoretical
developments.

(ii) In this paper the strain approximation is modified. The first part with 14 parameters
corresponds to the stress interpolation. The second part with a variable number or
parameters is chosen orthogonal to the stress shape functions. This procedure corre-
sponds to the enhanced strain formulation, Ref. [9]. As result the derived mixed hybrid
quadrilateral element fulfills the membrane and bending patch test and possesses the
correct rank.

(iii) It is shown that the second part of the strain interpolation leads to an improvement of
the element behaviour especially when coupling of the membrane and bending stiffness
occurs. This is the case for laminated shells with certain layer sequences. For this
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purpose the material matrix for laminates assuming transversal isotropic behaviour for
each layer is implemented. An effective procedure to eliminate the stress and strain
parameters on the element level to avoid expensive matrix inversions is developed.

(iv) The element formulation allows the analysis of shells with intersections. The nodal
degrees of freedom are: three global displacement components, three global rotations at
nodes on intersections and two local rotations at other nodes.

(v) The developed element is tested at several shell problems. We investigate the nonlinear
behaviour of thin laminated structures including stability. The essential feature of the
new element is the robustness in nonlinear computations with large rigid body motions.
It allows very large load steps and needs less iterations in comparison to other element
formulations.

2 Hu–Washizu variational formulation

Let B be the three–dimensional Euclidean space occupied by the shell in the reference config-
uration. With ξi and ei we denote a convected coordinate system of the body and the global
cartesian basis system, respectively. The coordinate ξ3 is bounded by hu ≤ ξ3 ≤ h0 and ξ3 = 0
defines the arbitrary reference surface Ω. A director vector D(ξ1, ξ2) with |D(ξ1, ξ2)| = 1 is
defined as a vector perpendicular to Ω. The unit director d of the current configuration is
obtained by an orthogonal transformation of the initial vector D. In the following the sum-
mation convention is used for repeated indices, where Latin indices range from 1 to 3 and
Greek indices range from 1 to 2. Commas denote partial differentiation with respect to the
coordinates ξα.
The shell is loaded statically by surface loads p̄ on Ω and by boundary loads t̄ on the boundary
Γσ. Hence the basic Hu–Washizu functional is introduced

Π(v,σ, ε) =

∫

(Ω)

[W (ε) + σT (εG(v) − ε)] dA −

∫

(Ω)

uT p̄ dA −

∫

(Γσ)

uT t̄ ds → stat. (1)

with the area element of the shell dA = j dξ1 dξ2 where j = |X,1 ×X,2 | . Here, v = [u,ω]T , ε,
and σ denote the independent displacement, strain and stress fields. The displacement vector
of the reference surface follows from u = x − X, where X(ξ1, ξ2) and x(ξ1, ξ2) denote the
position vectors of the initial and current shell reference surface. Furthermore ω is the vector
of rotational parameters. In this paper we assume a strain energy W which is a quadratic
function of the independent strains.
The shell strains based on a Reissner–Mindlin kinematic are organized in a vector

εG(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]
T , (2)

where the membrane strains εαβ, curvatures καβ and shear strains γα can be derived from the
Green-Lagrangean strain tensor

εαβ =
1

2
(x,α ·x,β −X,α ·X,β )

καβ =
1

2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α )

γα = x,α ·d − X,α ·D

(3)
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The work conjugate stress resultants are integrals of the Second Piola–Kirchhoff stress tensor

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T (4)

with membrane forces nαβ = nβα, bending moments mαβ = mβα and shear forces qα.

Introducing θ := [v,σ, ε]T and δθ := [δv, δσ, δε]T the stationary condition reads

δΠ := g(θ, δθ) =

∫

(Ω)

[δεT (∂εW − σ) + δσT (εG − ε) + δεT
Gσ] dA

−

∫

(Ω)

δuT p̄ dA −

∫

(Γσ)

δuT t̄ ds = 0
(5)

with the virtual shell strains δεG = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]
T

δεαβ =
1

2
(δx,α ·x,β +δx,β ·x,α )

δκαβ =
1

2
(δx,α ·d,β +δx,β ·d,α +δd,α ·x,β +δd,β ·x,α )

δγα = δx,α ·d + δd · x,α .

(6)

With integration by parts and applying standard arguments of variational calculus one obtains
the associated Euler–Lagrange equations

1
j
(j nα),α +p̄ = 0 εG − ε = 0

1
j
(j mα),α +x,α ×nα = 0 ∂εW − σ = 0

}
in Ω (7)

with nα := nαβ x,β +qα d + mαβ d,β and mα := d × mαβ x,β. The principle yields the static
field equations with local form of linear and angular momentum, the geometric field equations
and the constitutive equations. Furthermore the static boundary conditions t − t̄ = 0 on Γσ

with t the boundary forces related to nα follow. Finally, the geometric boundary conditions
u − ū = 0 on Γu have to be fulfilled as constraints.

3 Finite Element Equations

3.1 Interpolation of the initial and current reference surface

In this section the finite element equations for quadrilaterals are specified applying the isopara-
metric concept. The local numbering of the corner nodes and midside node can be seen in
Fig. 1.
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Figure 1: Quadrilateral shell element

A map of the coordinates {ξ, η} ∈ [−1, 1] from the unit square to the midsurface in the initial
and current configuration is applied. Thus the position vector and the director vector of the
reference surface are interpolated with bi–linear functions

Xh =
4∑

I=1

NI XI Dh =
4∑

I=1

NI DI NI =
1

4
(1 + ξIξ)(1 + ηIη) (8)

with ξI ∈ {−1, 1, 1,−1} and ηI ∈ {−1,−1, 1, 1}. The superscript h denotes the charac-
teristic size of the element discretization and indicates the finite element approximation. The
nodal position vectors XI and the local cartesian basis systems [A1I ,A2I ,A3I ] are generated
within the mesh input. Here, DI = A3I is perpendicular to Ω and A1I , A2I are constructed in
such a way that the boundary conditions can be accommodated. With (8)2 the orthogonality
is only given at the nodes.
For each element a local cartesian basis ti is evaluated

d̄1 = X3 − X1 d̂1 = d̄1/|d̄1|

d̄2 = X2 − X4 d̂2 = d̄2/|d̄2|

t1 = (d̂1 + d̂2)/|d̂1 + d̂2|

t2 = (d̂1 − d̂2)/|d̂1 − d̂2|

t3 = t1 × t2 .

(9)

One could also use the so-called lamina basis according to Ref. [17], where the base vectors
tα lie as close as possible to the coordinates ξ and η. Hence the Jacobian matrix J is defined

J =

[
Xh,ξ ·t1 Xh,ξ ·t2

Xh,η ·t1 Xh,η ·t2

]
(10)

with

Xh,ξ = G0
ξ + η G1 G0

ξ =
1

4

4∑

I=1

ξI XI

Xh,η = G0
η + ξ G1 G0

η =
1

4

4∑

I=1

ηI XI

G1 =
1

4

4∑

I=1

ξI ηI XI .

(11)
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One can prove that t3 ·G
0
ξ = 0 and t3 ·G

0
η = 0 holds which shows that t3 is normal vector at

the element center. Thus t1 and t2 span a tangent plane at the center of the element. Now
we are able to express the local cartesian derivatives of the shape functions using the inverse
Jacobian matrix J. The tangent vectors X,α and the derivatives of the director vector D,α
are computed considering (8) as follows

Xh,α =
4∑

I=1

NI ,α XI Dh,α =
4∑

I=1

NI ,α DI

[
NI ,1
NI ,2

]
= J−1

[
NI ,ξ
NI ,η

]
. (12)

For arbitrary warped elements one obtains Xh,α = tα at the element center, which can be shown
using above orthogonality conditions. This is important in the context of the present mixed
interpolation. Furthermore a local cartesian system is advantageous to verify complicated
nonlinear constitutive equations. At other points of the element the vectors Xh,α are only
approximately orthogonal.

The current shell middle surface is approximated in the same way

xh =
4∑

I=1

NI xI dh =
4∑

I=1

NI dI

xh,α =
4∑

I=1

NI ,α xI dh,α =
4∑

I=1

NI ,α dI ,

(13)

where xI = XI + uI describes the current nodal position vector and dI = a3I is obtained
by an orthogonal transformation akI = RI AkI , k = 1, 2, 3. The rotation tensor RI is a
function of the parameters ωkI organized in the vector ωI = [ω1I , ω2I , ω3I ]

T and is evaluated
via Rodrigues’ formula

RI = 1 +
sin ωI

ωI

ΩI +
1 − cos ωI

ω2
I

Ω2
I ΩI = skew ωI =

⎡

⎢⎢⎣

0 −ω3I ω2I

ω3I 0 −ω1I

−ω2I ω1I 0

⎤

⎥⎥⎦ (14)

Representation (14) is singularity free for ωI = |ωI | < 2π which can always be fulfilled if after
a certain number of load steps a multiplicative update of the total rotation tensor is applied.

The element has to fulfil membrane and bending patch test. The bending patch test –
when using below defined mixed interpolation for the stress resultants and shell strains –
can be fulfilled with substitute shear strains defined in Ref. [13], but not with the bilinear
displacement interpolation inserted in the transverse shear strains (3)3, see Ref. [18] in case of
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a linear plate. Thus the finite element approximation of the Green–Lagrangean strains reads

εh
G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εh
11

εh
22

2εh
12

κh
11

κh
22

2κh
12

γh
1

γh
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(xh,1 ·x

h,1 −Xh,1 ·X
h,1 )

1
2
(xh,2 ·x

h,2 −Xh,2 ·X
h,2 )

xh,1 ·x
h,2 −Xh,1 ·X

h,2

xh,1 ·d
h,1 −Xh,1 ·D

h,1

xh,2 ·d
h,2 −Xh,2 ·D

h,2

xh,1 ·d
h,2 +xh,2 ·d

h,1 −Xh,1 ·D
h,2 −Xh,2 ·D

h,1

J−1

{
1
2
[(1 − η) γB

ξ + (1 + η) γD
ξ

1
2
[(1 − ξ) γA

η + (1 + ξ) γC
η ]

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

The strains at the midside nodes A,B,C,D of the element are specified as follows

γM
ξ = [x,ξ ·d − X,ξ ·D]M M = B,D

γL
η = [x,η ·d − X,η ·D]L L = A,C ,

(16)

where the following quantities are given with the bilinear interpolation (8) and (13)

dA = 1
2
(d4 + d1) DA = 1

2
(D4 + D1)

dB = 1
2
(d1 + d2) DB = 1

2
(D1 + D2)

dC = 1
2
(d2 + d3) DC = 1

2
(D2 + D3)

dD = 1
2
(d3 + d4) DD = 1

2
(D3 + D4)

xA,η = 1
2
(x4 − x1) XA,η = 1

2
(X4 − X1)

xB,ξ = 1
2
(x2 − x1) XB,ξ = 1

2
(X2 − X1)

xC,η = 1
2
(x3 − x2) XC,η = 1

2
(X3 − X2)

xD,ξ = 1
2
(x3 − x4) XD,ξ = 1

2
(X3 − X4) .

(17)

3.2 Interpolation of the stress resultants

The independent field of stress resultants σ is approximated as follows

σh = Nσ σ̂ Nσ =

⎡

⎣
13 0 0 Nm

σ 0 0

0 13 0 0 Nb
σ 0

0 0 12 0 0 Ns
σ

⎤

⎦

Nm
σ = Nb

σ = T0
σ

⎡

⎢⎢⎣

η − η̄ 0

0 ξ − ξ̄

0 0

⎤

⎥⎥⎦ Ns
σ = T̃0

σ

⎡

⎣
η − η̄ 0

0 ξ − ξ̄

⎤

⎦

(18)
where the matrices

T0
σ =

⎡

⎢⎣

J0
11J

0
11 J0

21J
0
21 2J0

11J
0
21

J0
12J

0
12 J0

22J
0
22 2J0

12J
0
22

J0
11J

0
12 J0

21J
0
22 J0

11J
0
22 + J0

12J
0
21

⎤

⎥⎦ T̃0
σ =

⎡

⎣
J0

11 J0
21

J0
12 J0

22

⎤

⎦ (19)
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describe the transformation of contravariant tensor components to the local cartesian coordi-
nate system at the element center. The constants J0

αβ = Jαβ(ξ = 0, η = 0) are the components
of the Jacobian matrix J in eq. (10) evaluated at the element center.
The vector σ̂ ∈ R

14 contains 8 parameters for the constant part and 6 parameters for the
varying part of the stress field, respectively. The interpolation of the membrane forces and
bending moments corresponds to the procedure in Ref. [19], see also the original approach
for plane stress problems with ξ̄ = η̄ = 0 in Ref. [20]. Due to the constants

ξ̄ =
1

Ae

∫

(Ωe)

ξ dA η̄ =
1

Ae

∫

(Ωe)

η dA Ae =

∫

(Ωe)

dA (20)

the linear functions are orthogonal to the constant function which yields partly decoupled
matrices. The area element dA = j dξdη is given with j(ξ, η) = |Xh,ξ ×Xh,η |. Concerning
stability of the discrete system of equations we refer to the discussion in Ref. [16].

3.3 Interpolation of the shell strains

The interpolation of the independent shell strains consists of two parts. The first part with 14
parameters corresponds to the last section, whereas the second part with 2 to 12 parameters
corresponds to the enhanced strain interpolation introduced in Ref. [9]. The functions of the
second part are chosen orthogonal to the stress interpolation. In this context we also refer to
References [21, 22, 23], where mixed-enhanced strain methods have been investigated. Thus
we have

εh = [N1
ε,N

2
ε]

[
ε̂1

ε̂2

]
= Nε ε̂ ε̂1 ∈ R

14 , ε̂2 ∈ R
β β = 2, 4, 6, 8, 10, 12

N1
ε =

⎡

⎣
13 0 0 Nm1

ε 0 0

0 13 0 0 Nb1
ε 0

0 0 12 0 0 Ns1
ε

⎤

⎦ , N2
ε =

⎡

⎣
Nm2

ε 0 0

0 Nb2
ε 0

0 0 Ns2

⎤

⎦

Nm1
ε = Nb1

ε = T0
ε

⎡

⎢⎢⎣

η − η̄ 0

0 ξ − ξ̄

0 0

⎤

⎥⎥⎦ , Nm2
ε = Nb2

ε =
j0

j
(T0

σ)−T Mα , α = 2, 4

Ns1
ε = Ns

σ , Ns2
ε =

j0

j
(T̃0

σ)−T M̃α , α = 2, 4

(21)

with j0 = j (ξ = 0, η = 0) and

T0
ε =

⎡

⎢⎣

J0
11J

0
11 J0

21J
0
21 J0

11J
0
21

J0
12J

0
12 J0

22J
0
22 J0

12J
0
22

2J0
11J

0
12 2J0

21J
0
22 J0

11J
0
22 + J0

12J
0
21

⎤

⎥⎦

.

(22)

M2 =

[
M̃2

01×2

]
, M4 =

[
M̃4

01×4

]
, M̃2 =

⎡

⎣
ξ 0

0 η

⎤

⎦ , M̃4 =

⎡

⎣
ξ 0 ξη 0

0 η 0 ξη

⎤

⎦ (23)
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3.4 Linearized variational formulation

Assuming conservative external loads p̄ and t̄ the linearization of the stationary condition (5)
reads

L [g(θ, δθ), Δθ] := g(θ, δθ) + Dg · Δθ

Dg · Δθ =

∫

(Ω)

[δεT (CΔε − Δσ) + δσT (ΔεG − Δε) + δεT
GΔσ + ΔδεT

Gσ] dA . (24)

with C = ∂2
εW . Hence inserting above interpolations for the displacements, stresses and

strains yields the finite element approximation

L [g(θh, δθh), Δθh] =
numel∑

e=1

⎡

⎣
δv
δε̂
δσ̂

⎤

⎦
T

e

⎧
⎨

⎩

⎡

⎣
kg 0 GT

0 H −F

G −FT 0

⎤

⎦

⎡

⎣
Δv

Δε̂

Δσ̂

⎤

⎦ +

⎡

⎣
f i − fa

f e

f s

⎤

⎦

⎫
⎬

⎭
e

(25)

where numel denotes the total number of finite shell elements to discretize the problem. The
following element matrices are defined

kg =

∫

(Ωe)

kσ dA f i =

∫

(Ωe)

BT σh dA = GT σ̂

H =

∫

(Ωe)

NT
ε CNε dA f e =

∫

(Ωe)

NT
ε (∂εW − σh) dA

F =

∫

(Ωe)

NT
ε Nσ dA f s =

∫

(Ωe)

NT
σ εh

G dA − FT ε̂

G =

∫

(Ωe)

NT
σ B dA ,

(26)

with B = [B1,B2,B3,B4]. Here BI is derived in Appendix A and kσ in Appendix B. Fur-
thermore, the computation of the stress resultants ∂εW and material matrix C is explicitly
described in Appendix C. The vector of the external loads fa corresponds to the standard
displacement formulation. The integrals in (20) and (26) are computed numerically using a
2 × 2 Gauss integration scheme. For the geometrical and physical linear case an analytical
integration of all matrices is possible along with a flat projection, see Ref. [24] on basis of a
Hellinger–Reissner functional.

We continue with L[g(θh, δθh), Δθh] = 0 , where δθh �= 0 and obtain

kg Δv + GT Δσ̂ + f i − fa = r

HΔε̂ − FΔσ̂ + f e = 0

GΔv − FT Δε̂ + f s = 0 ,

(27)

where r denotes the vector of element nodal forces.
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Since the stresses and strains are interpolated discontinuously across the element boundaries
the parameters Δε̂ and Δσ̂ can be eliminated from the last two equations

Δε̂ = H−1 (FΔσ̂ − f e)

Δσ̂ = Ĥ [GΔv + (f s + FTH−1f e)] Ĥ = (FT H−1 F)−1 .
(28)

Inserting (28) in (27)1 yields the tangential element stiffness matrix ke
T and the element

residual vector f̂

L [g(θh, δθh), Δθh] =
numel∑

e=1

δvT (ke
T Δv + f̂) = 0

ke
T = GT ĤG + kg

f̂ = GT [σ̂ + Ĥ (f s + FT H−1 f e)] − fa

(29)

The explicit computation of H−1 is not necessary. Concerning an effective elimination of the
stress and strain parameters on the element level we refer to Appendix D. The linear element
matrix possesses with six zero eigenvalues the correct rank.
The global matrices are obtained by standard assembly procedures

KT = A
e=1

numel

ke
T F̂ = A

e=1

numel

f̂ . (30)

where A denotes the assembly operator. The solution of the global system of equations yields

the increment of the global displacement vector ΔV = −K−1
T F̂ and thus the increments ΔuK

and ΔβK at each node. Here, one has to consider transformation

ΔωK = T3K ΔβK T3K =

⎧
⎨

⎩

13 for nodes on shell
intersections

[a1K , a2K ](3×2) for all other nodes

(31)

which is discussed in Appendix A. Thus the element possesses six degrees of freedom at nodes
on intersections and five at all other nodes. In this context we also refer to References [25, 26].
The update of the nodal displacements is performed in a standard way on the system level,

uK ⇐= uK + ΔuK

ωK ⇐= ωK + ΔωK

σ̂ ⇐= σ̂ + Δσ̂ ε̂ ⇐= ε̂ + Δε̂ , (32)

whereas the stress and strain parameters are updated on the element level using (28). For this
purpose the matrices which are necessary for the update have to be stored for each element.
For linear elasticity with C = constant follows H = constant. Considering (28)1 one can see
that f e = 0 holds for the equilibrium state. Thus with (26)

f e = H ε̂ − Fσ̂ ≡ 0 (33)

holds for the whole iteration process.
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4 Examples

The derived element formulation has been implemented in an extended version of the general
purpose finite element program FEAP, see Zienkiewicz and Taylor, Ref. [27].

4.1 Membrane and bending patch test

First we investigate the element behaviour within a constant membrane and bending patch
test as is depicted in Fig. 2, see also Ref. [28]. A rectangular plate of length a and width b
is supported at three corners. We consider in–plane loading and bending loading denoted by
load case 1 and 2, respectively. Both, membrane and bending patch test are fulfilled by the
present element with constant normal forces nx = 1, ny = nxy = 0 (load case 1) and constant
bending moments mx = my = mxy = 1 (load case 2).

y x

1

2

3

4

5

6

7

8

a

b

a = 40
b = 20
h = 0.1

E = 106

ν = 0.3

Load case 1 2
Node Fx Fz m̄x m̄y

1 -20 -2 20 -10
2 0 0 20 10
3 0 0 -20 10
4 -20 0 -20 -10

Figure 2: Rectangular plate, patch of 5 elements

4.2 Annular plate

This example, which is shown in Figure 3, has been introduced in Ref. [29]. The annular
plate is loaded at its free edge with a load λ · p̄; the other edge is clamped. Here, λ denotes
the load factor and p̄ = 0.1 a constant load. The geometrical and material data are:

E1 = 40 · 106

E2 = 1 · 106

G12 = G23 = 0.6 · 106

ν12 = 0.25

R1 = 6
R2 = 10
h = 0.04

h1 = h2 = h3 = h/3The analysis is based on a 6 × 30 mesh for the stacking sequences [0◦, 90◦, 0◦], [90◦, 0◦, 90◦]
and [45◦,−45◦, 45◦]. Here, 0◦ and 90◦ means circumferential direction and radial direction,
respectively. Here, 4/4/0 denotes the number of interpolation parameters for membrane,
bending and shear, see Eq. (21). The results are plotted in Figs. 4 - 5 for the respective
layer sequences. As can be seen there is good agreement with the displacement model, Ref.
[30]. For the [45◦,−45◦, 45◦] stacking sequence the present element shows a weaker behaviour.
Adding the interpolation functions of the second part leads to further improvements. In Tab.
1 a convergence study is presented for the displacements uA and uB at a load level λ = 1.
This example shows clearly the better convergence behaviour of the element itself and the
superior behaviour of the refined strain interpolation. It is emphasized that for the considered
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B

l·p
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Figure 3: Annular plate
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Figure 4: Load displacement curves for [0◦, 90◦, 0◦] and [90◦, 0◦, 90◦] stacking sequences

layer sequence coupling between membrane and bending occurs. The numerical investigations
show, that the use of two additional parameters for membrane as well as bending terms are
sufficient. Four parameters together with the matrix M4 as well as the application of the
concept to the transverse shear strains lead not to a significant improvement of the element
behaviour.
For the [0◦, 90◦, 0◦] stacking sequence the load can be applied within one single load step,
see Tab. 2 in case of a 6 × 30-mesh, whereas the displacement model, Ref. [30], requires
4 load steps to calculate the final configuration. Similar results hold for the other stacking
sequences. The superior iteration behaviour is shown also in Tab. 3 for two load steps
of the same problem. The present formulation needs only about one third of the number
of iterations. This demonstrates clearly the robustness of the new developed mixed hybrid
element. Finally Fig. 6 shows a plot of the deformed configuration.
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Figure 5: Load displacement curves for [45◦,−45◦, 45◦] stacking sequence

Table 1: Displacements uA und uB at load level λ = 1 for different elements and meshes and
a [45◦,−45◦, 45◦] stacking sequence

Mesh Ref. [30] Present
0/0/0 2/0/0 0/2/0 2/2/0 2/2/2

uA uB uA uB uA uB uA uB uA uB uA uB

1 × 8 5.82 8.44 7.03 10.17 7.52 10.72 7.81 10.95 8.14 11.39 8.14 11.39
3 × 15 6.46 8.83 7.91 10.68 8.20 11.11 8.10 10.87 8.40 11.31 8.40 11.31
6 × 30 7.87 10.55 8.35 11.20 8.46 11.37 8.40 11.26 8.52 11.43 8.52 11.43
12 × 60 8.35 11.16 8.50 11.39 8.53 11.44 8.51 11.40 8.55 11.46 8.55 11.46
24 × 120 8.52 11.40 8.55 11.46 8.56 11.47 8.56 11.46 8.56 11.47 8.56 11.47

Mesh Present
4/0/0 0/4/0 4/2/0 2/4/0 4/4/2 4/4/4

uA uB uA uB uA uB uA uB uA uB uA uB

1 × 8 7.54 10.74 7.83 10.96 8.16 11.41 8.15 11.40 8.17 11.42 8.17 11.42
3 × 15 8.20 11.11 8.10 10.87 8.40 11.31 8.40 11.31 8.40 11.31 8.40 11.31
6 × 30 8.46 11.37 8.40 11.26 8.52 11.43 8.52 11.43 8.52 11.43 8.52 11.43
12 × 60 8.53 11.44 8.51 11.40 8.55 11.46 8.55 11.46 8.55 11.46 8.55 11.46
24 × 120 8.56 11.47 8.56 11.47 8.56 11.47 8.56 11.47 8.56 11.47 8.56 11.47

Table 2: Iteration of residual of present element for one single load step Δλ = 1, [0◦, 90◦, 0◦]
stacking sequence and 6 × 30-mesh

No. of Iteration Residual
1 1.5634719E − 01
2 3.9275413E + 06
3 9.3384687E + 05
4 9.4213733E + 04
5 3.3242161E + 04
6 4.9264341E + 02
7 4.7236750E + 02
8 1.5163524E + 00
9 3.6369628E − 05
10 6.2602028E − 09
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Table 3: Iteration of residual for different elements for two load steps, [0◦, 90◦, 0◦] stacking
sequence and 6 × 30-mesh

No. of Step1 λ = 0 → λ = 0.1 Step2 λ = 0.1 → λ = 0.5
Iteration Ref. [30] present Ref. [30] present

1 1.5634719E − 02 1.5634719E − 02 6.2538877E − 02 6.2538877E − 02
2 2.6020011E + 04 2.5746859E + 04 2.8926444E + 04 2.9767495E + 04
3 6.5793165E + 02 4.9387080E + 03 9.4757811E + 02 2.8315083E + 03
4 3.3721291E + 02 1.1463284E + 02 9.6921690E + 03 1.6466046E + 02
5 2.7141014E + 02 1.4038872E + 00 8.3131313E + 02 9.7474188E − 02
6 2.2423866E + 02 3.3273954E − 04 2.9796023E + 03 3.5539688E − 08
7 2.2580338E + 01 7.4140298E − 09 1.9342202E + 02
8 4.6324640E + 02 2.4089526E + 03
9 2.2074665E + 00 3.5820831E + 01
10 1.2513383E + 03 7.4108309E + 02
11 6.0837124E − 01 2.6058553E + 00
12 2.1726471E + 02 2.0458148E + 03
13 2.2742620E − 02 1.5187721E + 00
14 1.8081783E + 02 1.0776742E + 02
15 1.4264002E − 02 4.3457229E − 02
16 7.3421111E − 01 1.8600614E + 02
17 9.0950213E − 05 1.4454398E − 02
18 1.0599305E − 04 4.6287252E − 01
19 6.7454164E − 09 3.1868428E − 05
20 6.3065865E − 06
21 5.9716093E − 09

-3.879E-01 min

4.559E-01

1.300E+00

2.144E+00

2.987E+00

3.831E+00

4.675E+00

5.519E+00

6.363E+00

7.207E+00

8.050E+00

8.894E+00

9.738E+00

1.058E+01

1.143E+01 max

Figure 6: Vertical displacement and deformed mesh at load factor λ = 1 for the [45◦,−45◦, 45◦]
stacking sequence and a 6 × 30-mesh
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4.3 Hyperboloidal shell under two pairs of opposite loads

This problem was defined in Ref. [29], see also Ref. [30]. The hyperboloidal shell is loaded by
two pairs of opposite loads. Considering symmetry only one eighth of the shell is discretized
with a 16×16 element mesh, see Fig. 7. The shell is analyzed for two sets of laminate schemes.
Both are of cross ply type with [0◦, 90◦, 0◦] and [90◦, 0◦, 90◦] stacking sequences, where 0◦

describes a fiber orientation in circumferential direction and 90◦ in meridian direction. The
radius of the hyperboloidal shell is described by R(x3) = R1

c

√
c2 + (x3)2 with c = 20√

3
and

the load is P = 5. The geometrical and material parameters are

E1 = 40 · 106

E2 = 1 · 106

G12 = G23 = 0.6 · 106

ν12 = 0.25

R1 = 7.5
R2 = 15.0
H = 20.0
h = 0.04

We compute the displacements of the depicted points A,B,C and D of the shell midsurface.
The load deflection curves are plotted in Figures 8 to 11. As can be seen there is a good
agreement with the results obtained with the shell model developed in Ref. [30]. The essential
advantage of the present model is the robustness in the nonlinear equilibrium iterations. In
Figs. 10 and 11 marks on the curves describe the maximal possible load steps for the respective
element formulation. As the diagrams show the present element allows much larger load steps
in comparison to the displacement model. The deformed configurations for a load factor
λ = 30 in Fig. 12 are characterized by large displacements and finite rotations.

H

B

A

C

D

x

x

x

R

R

2

1
2

1

3

P

P

Figure 7: Hyperboloidal composite shell
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4.4 Stability analysis of a stiffened cylindrical panel

With the last example we test the applicability of the present element to a more complicated
industrial problem. The composite cylindrical panel, see Fig. 13, named PSC5 was produced
by Israel Aircraft Industries (IAI) and tested by Abramovich, Weller et.al., see References
[34, 35]1.

H h k

B -B
-b2

-b1b1
b2

0

R

Dimensions of the panel in mm Nominal
Values

Skin middle surface radius R 938
Arc-length of the panel 2B 680
Overall length of the panel H 720
Skin thickness s 1.0
Ply thickness t 0.125
Number of stringers 5
Stringer distance b1-0,b2-b1 136
Free edge distance B-b2 68
Free length of panel h 660
Length of the lateral edge
supports k 640

Figure 13: Composite panel PSC5 of IAI

In the test performed the uppermost and lowermost 30 mm of the panel was inside a frame
filled with gypsum. The vertical edges of the panel was supported by a sliding support to
keep the edges straight and preventing radial motion at the edges. Vertical displacement was
controlled by the testing-machine at the upper edge of the stiffened panel, while the lower
edge of the panel was fixed. The axial load was thus introduced directly into both the skin
and the stiffeners.
The chosen finite element mesh consist of 72 elements in the longitudinal direction, 50 in

1 c©IAI Tel Aviv and Technion, I.I.T., Haifa, Israel
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the circumferential direction and two elements in the height direction of the stringer blades
giving a total of 4320 elements and 4453 nodes. The elements are positioned in the middle
surface of the skin and the stringer blades. The eccentric position of the stringer foot is taken
into account. This is possible with the present shell formulation since it allows consideration
of an arbitrary reference surface. In the model the boundary conditions are applied to the
nodes being 30 mm or less from the upper or lower edges of the panel and to the nodes at
the vertical edges on the left and right side of the panel. In the skin all nodes being 30 mm
or less from the upper or lower edges are prevented from radial motion. Nodes in the skin,
at the skin-stiffener junction being 30 mm or less from the upper or lower panel edges, are
also prevented from motion in the circumferential direction. The nodes at the vertical edges
on the left and right side being more than 30 mm from the upper or lower edges of the panel
are prevented from radial displacement. Vertical displacement was prescribed at the upper
edge, while vertical displacement was prevented at the lower edge. The composite material is
assumed to be linear elastic transversal isotropic with the following nominal values.

E1 = 147300 MPa
E2 = 11800 MPa
ν12 = 0.3

G12 = 6000 MPa
G23 = 3770 MPa

10

Stringer blade

15

10
10

Skin

Skin+stringer foot Skin+stringer foot

Skin
[90◦/45◦/ − 45◦/0◦]S

Skin and stringer foot
[90◦/45◦/ − 45◦/0◦]S +(1 − 3) × [90◦/90◦/ − 45◦/45◦]

Stringer blade
[45◦/ − 45◦/90◦/90◦]3S

Figure 14: Stacking sequences, position and dimensions of stringers of panel PSC5

The position and the dimensions of the stringers as well as the stacking sequences for the
skin, the 3 gradations of the stringer foot and the stringer blade are defined in Fig. 14. Here,
0◦ describes a fiber orientation in circumferential direction and 90◦ in vertical direction. The
+45◦-direction is defined in an inside view of the panel in mathematical positive sense.
From the experiment it is known that the buckling behaviour of the panel is characterized
by a nearly linear prebuckling behaviour, which is followed by a local skin buckling and an
adjacent global buckling behaviour with two or more global buckles until collapse. A first
static analysis has been performed using an arc–length–scheme together with accompanying
actions like e.g. inspection of the determinant, see e.g. Ref. [36]. Results could only be
achieved until the first buckling load at the end of the prebuckling region. Here, a cluster
of zero eigenvalues associated with local buckling patterns occurs at nearly the same load,
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which leads always to divergence in the equilibrium iterations. Two methods are available to
overcome these problems. Either one can add artificial damping forces or one can choose a
transient quasistatic analysis, which has been done here. The extension of the finite element
formulation for dynamical loads is a standard procedure. The variation of the Lagrange
function L = T − V must be zero within the time range

δI = δ

T∫

0

L dt = 0 . (34)

Here, T is the total kinetic energy of the shell, which consists of the translatoric part of
the reference surface and the rotatoric part of the un-extensible director vector. The total
potential energy V corresponds to Eq. (1). After variation and adjacent partial integration
with respect to the time it follows the variational form including the inertia terms. Introducing
the shape functions for displacements, stresses and strains and the assembly procedure, one
ends up with a system of equations for the unknown discrete displacements, velocities and
accelerations. Out of the field of time integration schemes we choose the well known HHT–
algorithm, Ref. [37], with α = 0.05, where numerical damping is included. A total prescribed
displacement of u = 3 mm is calculated in 500 equal time steps of 0.012 sec. with ρ =
1.6·10−6N sec2/mm4. The total axial load P with respect to the prescribed axial displacement
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Figure 15: Axial load – axial deflection uz of panel PSC5

uz of the top of the panel is depicted in Fig. 15. The curve is characterized by a nearly linear
prebuckling behaviour, see Fig. 161. Due to the panel design skin buckling occurs before
global buckling, see Figs.162. A good agreement between experiment and the numerical
modeling of the associated load can be seen. The further deformation pattern is governed by
two global buckles, see Fig.162−4, which changes dynamically to three buckles, see Fig.165+6,
within the calculated range.
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1) uz = 0.924 mm 2) uz = 0.966 mm
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5) uz = 2.40 mm 6) uz = 3.00 mm

Figure 16: Radial displacements at vertical displacements uz = 0.924, 0.966, 1.146, 1.72, 2.4
and 3.00 mm
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5 Conclusions

The paper deals with the structural analysis of laminated shells using a mixed hybrid shell
element. Using a three field variational principle appropriate interpolation functions for the
independent mechanical fields are described. The approximation of the shell strains is im-
proved introducing additional interpolation functions. The numerical tests show that two
parameters for membrane as well as for bending terms are sufficient for the second interpola-
tion part. The element performance has been illustrated by several numerical examples which
include bifurcation and post–buckling response. Especially for large rigid body motions the
new formulation allows very large load steps and requires essentially less equilibrium iterations
in comparison to displacement based elements.
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Appendix

A First variation of the shell strains

The first variation of the shell strains is derived from (15) and (16)

δεh
G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκh
12

δγh
1

δγh
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxh,1 ·x
h,1

δxh,2 ·x
h,2

δxh,1 ·x
h,2 +δxh,2 ·x

h,1

δxh,1 ·d
h,1 +δdh,1 ·x

h,1

δxh,2 ·d
h,2 +δdh,2 ·x

h,2

δxh,1 ·d
h,2 +δxh,2 ·d

h,1 +δdh,1 ·x
h,2 +δdh,2 ·x

h,1

J−1

{
1
2
[(1 − η) δγB

ξ + (1 + η) δγD
ξ

1
2
[(1 − ξ) δγA

η + (1 + ξ) δγC
η ]

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

with
δγM

ξ = [δx,ξ ·d + x,ξ ·δd]M M = B,D

δγL
η = [δx,η ·d + x,η ·δd]L L = A,C ,

(36)

where δx,ξ , δx,η , δd are evaluated at the midside nodes considering (17).
The virtual vectors δxh,α and δdh,α using (13) are determined

δxh,α =
4∑

I=1

NI ,α δuI δdh,α =
4∑

I=1

NI ,α δdI , (37)

with the virtual nodal displacements δuI and

δdI = δwI × dI = WT
I δwI WI = skewdI (38)

where according to Ref. [31]

δwI = HI δωI , HI = 1 +
1 − cos ωI

ω2
I

ΩI +
ωI − sin ωI

ω3
I

Ω2
I . (39)

At nodes which are not positioned on intersections a drilling stiffness is not available and a
transformation of the virtual rotation vector to the local coordinate system is necessary:

δωI = T3I δβI T3I =

{
13 for nodes on shell intersections

[a1I , a2I ](3×2) for all other nodes

δβI =

{
[δβxI , δβyI , δβzI ]

T for nodes on shell intersections

[δβ1I , δβ2I ]
T for all other nodes

(40)

where δβαI denote local rotations. Next combining (38) – (40) we obtain

δdI = TI δβI TI = WT
I HIT3I (41)
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Finally we are able to summarize the finite element approximation of the virtual shell strains
(35) considering (36) - (41)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκh
12

δγh
1

δγh
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
4∑

I=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI ,1 xT,1 0

NI ,2 xT,2 0

NI ,1 xT,2 +NI ,2 xT,1 0

NI ,1 dT,1 NI ,1 bT
I1

NI ,2 dT,2 NI ,2 bT
I2

NI ,1 dT,2 +NI ,2 dT,1 NI ,1 bT
I2 + NI ,2 bT

I1

J−1

{
NI ,ξ dT

M

NI ,η dT
L

}
J−1

{
NI ,ξ ξI bT

M

NI ,η ηI bT
L

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
δuI

δβI

]

δεh
G =

4∑

I=1

BI δvI

(42)

with bIα = TT
I x,α , bM = TT

I xM,ξ and bL = TT
I xL,η . The allocation of the midside nodes

to the corner nodes is given by

(I,M,L) ∈ {(1, B,A); (2, B, C); (3, D,C); (4, D,A)} . (43)

B Second variation of the shell strains

The linearized virtual shell strains read

Δδεh
G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δδεh
11

Δδεh
22

2Δδεh
12

Δδκh
11

Δδκh
22

2Δδκh
12

Δδγh
1

Δδγh
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxh,1 ·Δxh,1

δxh,2 ·Δxh,2

δxh,1 ·Δxh,2 +δxh,2 ·Δxh,1

δxh,1 ·Δdh,1 +δdh,1 ·Δxh,1 +xh,1 ·Δδdh,1

δxh,2 ·Δdh,2 +δdh,2 ·Δxh,2 +xh,2 ·Δδdh,2

δxh,1 ·Δdh,2 +δxh,2 ·Δdh,1 +δdh,1 ·Δxh,2 +δdh,2 ·Δxh,1
+xh,1 ·Δδdh,2 +xh,2 ·Δδdh,1

J−1

{
1
2
[(1 − η) ΔδγB

ξ + (1 + η) ΔδγD
ξ

1
2
[(1 − ξ) ΔδγA

η + (1 + ξ) ΔδγC
η ]

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

with
ΔδγM

ξ = [δx,ξ ·Δd + Δx,ξ ·δd + x,ξ ·Δδd]M M = B,D

ΔδγL
η = [δx,η ·Δd + Δx,η ·δd + x,η ·Δδd]L L = A,C

(45)
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The second variation of the current orthogonal base system has been derived in Ref. [31]

hI · ΔδdI = δwI · MI ΔwI

MI(hI) =
1

2
(dI ⊗ hI + hI ⊗ dI) +

1

2
(tI ⊗ ωI + ωI ⊗ tI) + c101

tI = −c3 bI + c11 (bI · ωI) ωI

c10 = c̄10 (bI · ωI) − (dI · hI)

c̄10 =
sin ωI − ωI

2ωI (cos ωI − 1)

c3 =
ωI sin ωI + 2 (cos ωI − 1)

ω2
I (cos ωI − 1)

c11 =
4 (cos ωI − 1) + ω2

I + ωI sin ωI

2 ω4
I (cos ωI − 1)

(46)

with an arbitrary vector hI ∈ R
3 and bI = dI × hI .

Thus, we are able specify the product ΔδεhT
G σh with the independent stress resultants σh =

[n11, n22, n12,m11,m22,m12, q1, q2]T using (44) - (46)

ΔδεhT
G σh =

4∑

I

4∑

K

δvT
I kσIK ΔvK

=
4∑

I

4∑

K

[
δuI

δβI

]T
[

n̂IK1 (m̂IK + q̂uw
IK)TK

(m̂IK + q̂wu
IK)TT

I δIK M̂I(hI)

] [
ΔuK

ΔβK

] (47)

where kσIK is determined with

n̂IK = n11 NI ,1 NK ,1 +n22 NI ,2 NK ,2 +n12 (NI ,1 NK ,2 +NI ,2 NK ,1 )

m̂IK = m11 NI ,1 NK ,1 +m22 NI ,2 NK ,2 +m12 (NI ,1 NK ,2 +NI ,2 NK ,1 )

q̂uw
IK = 1

2
(qξ NI ,ξ f 1

IK + qη NI ,η f 2
IK)

q̂wu
IK = 1

2
(qξ NK ,ξ f 1

IK + qη NK ,η f 2
IK)

M̂I = TT
3I HT

I MI(hI)HI T3I

hI = m11 NI ,1 xh,1 +m22 NI ,2 xh,2 +m12 (NI ,2 xh,1 +NI ,1 xh,2 )

+ qξ NI ,ξ ξIx
M,ξ +qη NI ,η ηIx

L,η

[f 1
IK ] =

⎡

⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤

⎥⎥⎦ [f 2
IK ] =

⎡

⎢⎢⎣

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤

⎥⎥⎦

[
qξ

qη

]
= J−T

[
q1

q2

]
.

(48)
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C Stresses and Material Law

We consider a laminate with NLAY layers of total thickness h. Hence the thickness coordinate
ξ3 lies for an arbitrary reference surface in the range hu ≤ ξ3 ≤ ho. It is assumed that the
constitutive behaviour of each layer can be described using a transversal isotropic material
law. Thus we use a homogenized material law with averaged stresses for the fiber matrix
composite. In the following the subscript G indicates components with respect to the element
coordinate system ti according to (9), whereas the subscript L denotes tensor components
with respect to the orthogonal layer basis ai

a1 = c t1 + s t2

a2 = −s t1 + c t2

a3 = t3

(49)

where c = cos ϕ, s = sin ϕ and a1 is related to the fiber direction. Introducing the coefficients
Tij = ti · aj

[Tij] =

⎡

⎣
c −s 0
s c 0
0 0 1

⎤

⎦ (50)

the transformation of the strain components from the global to the local coordinate system
Ẽkl = TikEijTjl can be written in matrix notation

⎡

⎢⎢⎢⎢⎣

Ẽ11

Ẽ22

2Ẽ12

2Ẽ13

2Ẽ23

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

c2 s2 sc 0 0
s2 c2 −sc 0 0

−2sc 2sc c2 − s2 0 0
0 0 0 c s
0 0 0 −s c

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

E11

E22

2E12

2E13

2E23

⎤

⎥⎥⎥⎥⎦

EL = Tk EG

(51)

where the index k refers to layer k. The strain energy is an invariant function

Ws =
1

2
ET

LCL EL =
1

2
ET

GCG EG (52)

and yields with (51) the transformation for the symmetric constitutive matrix

CG = TT
k CL Tk =

[
Ck 0

0 C̃k

]
(53)

with components

C11G = c4C11L + 2s2c2 (C12L + 2C33L) + s4C22L

C22G = s4C11L + 2s2c2 (C12L + 2C33L) + c4C22L

C12G = s2c2 (C11L + C22L − 4C33L) + (s4 + c4) C12L

C13G = c3s (C11L − C12L − 2C33L) + s3c (C12L − C22L + 2C33L)
C23G = s3c (C11L − C12L − 2C33L) + c3s (C12L − C22L + 2C33L)
C33G = s2c2 (C11L + C22L − 2C12L − 2C33L) + (s4 + c4) C33L

C̃11G = c2C44L + s2C55L

C̃22G = s2C44L + c2C55L

C̃12G = sc (C44L − C55L) .

(54)
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The elements of the material matrices of a layer k depend on the elastic constants Ei, Gik

and νik of a three-dimensional material law with transversal isotropy, see e.g. Tsai [32],

C11L =
E1

1 − ν12 ν21

C22L =
E2

1 − ν12 ν21

C12L =
ν12E2

1 − ν12 ν21

C33L = G12

C44L = κ G12

C55L = G23 = κ
E2

2 (1 + ν23)
.

(55)

where, κ denotes the shear correction factor. For simplicity we choose only one value, the
one for isotropic material behaviour κ = 5/6. The potential character of the strain energy
requires ν12/E1 = ν21/E2. Thus, we consider 5 independent material constants.
Next the relation between the Green-Lagrangian strains at a layer point with coordinate ξ3

and the shell strains is written in matrix notation

⎡

⎢⎢⎢⎢⎣

E11

E22

2E12

2E13

2E23

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 0 0 ξ3 0 0 0 0
0 1 0 0 ξ3 0 0 0
0 0 1 0 0 ξ3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

κ11

κ22

2κ12

γ1

γ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EG = A ε

(56)

We insert the corresponding equation for the virtual strains in the virtual work expression of
the body δW i =

∫
Ω

∫
(ξ3)

δET
GSG µ̄ dξ3d Ω with the vector of stresses

SG = [S11, S22, S12, S13, S23]T , (57)

where Sij denote the contravariant components of the Second-Piola Kirchhoff stress tensor
and µ̄ is the determinant of the so–called shifter tensor. Since we use an orthogonal basis
system at the element center µ̄ = 1 holds only at the center. The numerical tests however
show that µ̄ = 1 can be set for the whole element and convergence against the correct solution
is given. Here, the constraint S33 = 0 is identically enforced. The virtual work expression
yields the vector of the stress resultants

∂εW =

(ho)∫

(hu)

ATSG µ̄ dξ3 (58)
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with SG = CG EG. The linearization considering the kinematic equation (49) yields

C = ∂2
εW =

(ho)∫

(hu)

AT ∂SG

∂EG

∂EG

∂ε
µ̄ dξ3 =

(ho)∫

(hu)

AT CG A µ̄ dξ3 (59)

where the thickness integration in (51) can be carried out analytically. One obtains for a
laminate with NLAY layers

C =

⎡

⎣
Cm Cmb 0

CmbT Cb 0

0 0 Cs

⎤

⎦

with Cm =
NLAY∑

k=1

Ck hk

Cb =
NLAY∑

k=1

Ck [
(hk)

3

12
+ hk (ξ3

sk)
2 ]

Cmb =
NLAY∑

k=1

Ck hk ξ3
sk

Cs =
NLAY∑

k=1

C̃k hk .

(60)

In (60) hk is the thickness of the k-th layer, ξ3
sk is the distance from the midpoint of the

considered layer to the reference surface. As can be seen the material law is characterized by
the well known coupling effect between membrane and bending terms. Finally from (58) we
obtain the vector of the stress resultants

∂εW = C ε . (61)

It is important to note that in the Hu–Washizu functional (1) the independent strains ε enter
into the constitutive model, and thus in (61).

D Effective elimination of the stress and strain param-

eters

Due to the orthogonality of the interpolation functions Nσ and N2
ε one obtains

F =

∫

(Ωe)

[
N1

ε

N2
ε

]T

NσdA =

[
F1

0

]
F1 =

[
Ae 18 0

0 f

]
f (6×6) =

⎡

⎢⎣
fm 0 0

0 f b 0

0 0 f s

⎤

⎥⎦ . (62)

Using an approximation for j the submatrices in f can be integrated analytically, see Ref.
[16].
It is not necessary to perform the double inversion in Ĥ = (FTH−1F)−1. After some algebraic
manipulations considering (62) one obtains

Ĥ = (FTH−1F)−1 = F−1
1 H̄11 F−T

1 (63)
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Here, H̄11 is the result of a static condensation applied to the following linear system of
equations [

H11 H12

H21 H22

] [
X1

X2

]
=

[
f e
1

f e
2

]
(64)

with Hαβ =
∫

(Ωe)

Nα
ε CNβ

ε dA, which yields

H̄11 X1 = f̄ e
1 H̄11 = H11 − H12 H−1

22 H21 f̄ e
1 = f e

1 − H12H
−1
22 f e

2 (65)

where the condensed matrices are obtained within a Gauss elimination procedure, see Ref.
[33].
Furthermore, using (62) and (65) the matrix product ĤFT H−1 f e can be reduced as follows

ĤFTH−1f e = F−1
1 f̄ e

1 (66)

Finally we obtain the increment of the strain parameters Δε̂ = [Δε̂1, Δε̂2]
T as follows. Con-

sidering (27)3 and (62) it holds (f s + GΔv) = FT Δε̂ = FT
1 Δε̂1 and thus

Δε̂1 = F−T
1 (fs + GΔv) (67)

Solving equation (27)2 for Δε̂2

[
H11 H12

H21 H22

] [
Δε̂1

Δε̂2

]
=

[
F1Δσ̂ − f e

1

−f e
2

]
(68)

yields
Δε̂2 = H−1

22 (−f e
2 − H21 Δε̂1) , (69)

as result of the back-substitution with −f e
2 and Δε̂1, thus completing the Gauss elimination

procedure, see Ref. [33]. Summarizing, besides the condensation of four parameters the only
inverse matrix which has to be computed is F−1

1 , which means little effort due to its diagonal
structure.
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