AUTHOR	Edwards, Keith J.; Whitney, Douglas R.
TITLE	
	Using factor and Configural Analysis.
INSTITUTION	Johns Hopkins Univ., Baltimore. Md. Center for the
	Study of Social Organization of Schools.
SPONS AGENCY	Office of Education (DHEW), Washington, D.C.
REPORT NO	R-103
BUREAU NO	BR-5-1610
Pajb Date	May 71
GRANT	OEG-2-7-061610-0207
NOTE	25p.
EDRS PRICE	EDRS Price MF-\$0.65 HC-\$3.29
DESCRIPTOES	*Factor Analysis, Factor Structure, females, Males,
	```Occupational Chcice, Occupational Guidance, *Occupational Tests, *Personality Assessment, Personality Tests, *Personality Theories, Typology, *Vocational Counseling```
IDENTIFIERS	Configural Analysis, SDS, *Self Directed Search
AESTRACT	
	A sample of 358 men and 360 woren took the
Self- Directed	arch (SDS), a vocational guidance tool developed by
Holland based	his theory of vocational choice. Holland had found
that in tise o	pational doadin the factor loadings on the Realistic,
Investigative	ctistic, Social. Enterprising, and Conventional
scales fit a	gonal paradigm where adjacent types usually had
siailar loadi	and distant types usually had divergent loadings.
Data from thi	mple was subjected to factor and configural analysis
in an attempt	verify the relationships anong Holland's personality
types, to cla	the characteristics of each type, and to extend the
hexagenal mod	to new domains of assessment. The results of the
analyses offe	rong empirical support for the hexag-nal arrangement
of tha person	y types, and also support the organization of the
SDS and Holla	occupational classification. (Author/DG)



STAFF<br>John L. Molland, Director<br>James M. McPartland, Assistant Director

Virginia Bailey	Judith Kennedy
Tiselma Baldwin	Steven Kidder
Zahava D. Blum	Hao-Me 1 Kuo
Judith P. Clark	Samuel Livingston
James S. Coleman	Edward L. McDill
David DeVries	Rebecca 3. Muraro
Keith Edwards	Jeanne $0^{\prime}$ 'Connor
Doris R. Entwisle	Suzanne K. Pleper
Gail Fennessey	Peter H. Rossi
James Fennessey	Leslie Schnuelle
Jean Finnegan	Aage B. Sprensen
Ellen Greenberger	Tulian C. Stanley
Rubie Harris	Mary C. Viernstein
Edward J. Harsch	Diana F. Ward
Robert T. Hogan	Murray A, Webster
John H. Hollifield	Phyllis K. Wilson
Nancy L. Karweit	

# A Structural Analysis of holland's Personality Types <br> Using Eactor and Configural Aralysis 

GRANT NO, OEG-2-7-061610-0207

PROJECT NO. 61610-07

Keith J, Edwards
Johns Hopkins University

Douglas R. Whitney
University of Iowa

REPORT NO, 103

May 1971

Published by the Center for Social Organization of Schools, supported in part as a research and development center by funds from the United States Office of Education, Defartment of Health, Education, and Welfare. the opinicns expressed in this publication do not necessarily reflect the position or policy of the office of [ducation, and no official endorsement by the Office of Education should be inferred.

The Johns Hopkins University

Baltimore, Maryland

## INTRODUCTORY STATEMENT

The Center for Social Organization of Schcols has two primary objectives: to develop a scientific knowledge of how schools affect their students, and to use this knowledge to develop better school practices and organization.

The Center works through five programs to achieve its ubjectives. The Academic Games program has developed simulation games for use in the classroom, and is studying the processes throug' which games teich and evaluating the effects of games on student learning. The Social Accounts program is examining how a student's education affects his actual occupatioual attainment, and how education results in different vocational outcomes for blacks and whites. The Talents and Competencies program is studying the effects of educaicional experience on a wide range of human talents, competencies and personal dispositions, in order to formulate -- and research -- important educational goals other than traditional academic achievement. The School Organization program is currently concerned with the effects of student participation in social and educational decision making the structure of competition ani cooperation, formal reward systems, ability-groupirg in schools, effects of school quality, and applications of expectation theory in the schools. The Careers and Curricula program bases its work upon a theory of career development. It has developed a self-administered vocational guidance device to promote vocational development and to foster satisfying curricular decisions for high school, college, and adult populations.

This report, prepared for the Careers and Curricula proyram, is a structural analysis of the personality types developed in Holland's theory of vocational choice. The results of the analysis support the organization of Holland's Self-Directed Search, as well as the structure of Kollana's Occupational Classificatico.

## Acknowledgment

The authors would like to thank John Holland and Bert Green Eor comments on earlier drafts of this report, and Richard Mantovani, who assisted with some of the data analyses.

## Abrtract


#### Abstract

A sample of 358 men and 360 women took the Self-Directed Search, a vocational guidance tool developed by Holland based on his theory of vocational choice. Data from the sample were subjected to factor and configural analysis iri an attempt to verify the relationships among Hoiland's personality types, to clarify the characteristics of each type, and to extend Holland's hexagonal model to new domains of assessment.

The results of the analyses offer strong empirical support for the hexagonal arrangement of the personality types, and also support the organization of the SDS and Holland's Occupational Classification.


In a theory of vocational choice, Holland has proposed a typology o.. personality types and model environments (Holland, 1966). The work of Holland and others suggests that the formulations for the personality types have some validity (Holland, 1968; Elton and Rose, 1970; Richards and Seligman, 1968; Walsh and Lacey, 1969; W1111ams, 1970; Morrow 1970; Kristjanson, 1969).

More recently, Holland, Whitney, Cole, and Richards (1969) nave also shown that the relationships(intercorrelations) among the types [as assessed by the Vocational Preference Inventory (VPI)] can be arranged according to a hexagon in which distances between types are inversely proportional to the size of the correlations between them. Cole and Hansen (1971) have also found that this hexagonal model organizes the data from the Strong Vocational Interest Blank, the Minnesota Vocational Interest Inventory, the Ruder Occupational Interest Survey, as well as the VPI. This spatial arrangement facilitates the interpretation of the similarities and differences among types. In addition, the hexagonal model provided a way to create a more useful occupational classification (Holland, Viernstein, Kun, Karweit, and Blum, 1970, and a way to organize and simplify a self-administered vocational guidance system (inland, 1970).

The purposes of the present paper are to take advantage of some new data to verify the relationships observed earlier, to clarify the characteristics of each type, and to extend the hexagonal model
to new domains of assessment. Ninre specifically, positive answers were expected for the following questions:
> 1. If the data from four different domains of assessment are subjected to individual factor analyses, will the same main factors be obtained for each domain? Will the patterns of factor loadings be the sama from one analysis to the next? And wiil types which closely resemble one another have similar loadings on the same factors? Finally, are the main factors bipolar?
2. If we combine data from four differert domans-activities, competencies, self-ratings, and occupations--will that data reproduce the hexagonal modei obtained earlier from a single domain (occupation)?

## Sample and Data

As a part of a college fresiman orientation program at a lage state university, 358 men and 360 women took the Self-Directed Search (SDS) which contains the scales used for the following analyses. No claim for representativeness of the sample can be made since they weite simply the first group of students to go through the orientation program.

The SDS assessment booklet is organized in terms of six
personality types. Separate sections for Activities, Competencies, Occupations, and Self-Ratings determine a person's resemblance to each type; Realistic, Investigative, Artistic, Social, Enterprising, and Conventional. The scales and ratings in the assessment booklet include:

## 8

```
Activities: six scales of eleven items each.
Competencies: six scales of eleven items each.
Occupations: six scales of fourteen items each.
Self-Ratings: two sets of six ratings, each rating
 corresponds to a type.
```

Table 1 includes the intercorrelations for the 30 scales used in the factor and configulal analyses. Correlations for men are shom below the diagenal; those for worren appear above the diagonal.

## METHODS

## Factor Analysis

The intercorrelations among the six scales in each of the four domains were factor analyzed sepisately uring Harman's "minres" solution (Harman, 1967). The word "minres" is a contraction of "minimum residuals" and designates a method of factor analysis involving the minimization of the off-diagonal residuals oi a correlation matrix. The objective of this method is to obtain a factor sclution which "best" (in a least squares sense) reproduces the ohsorved correlations. This techuique has several desirable properties whicit minimize the subjective elements of frctor analysis. Most important, the "minres" solution requires no initial estinate of commalities; they are obtained as a by-product of the method. The investigator need only estimate the number of common factors prior to calculation. In the fresent study, three-and four-factor solutions were examined for each domain.
Table 1 . The futercorrelations dmoag the SDS Scale:


## Configural Analysis

To determine whether or not the hexagonal model adequately described scale inter-relationships across domains, the $30 \times 30$ intercorrelation matrices of Tabie $l$ were subjected to a configural analysis procedure descrited by Cole and Cols (1970). This procedure first locates each of $n$ scaile variabl:s in an $n$-dimensional orthogonal space by the method of principal components. (Here $n=30$. ) Next, a twodimensional cartesian plane is located in $n$-space so that the sum of the squared variable-to-plane perpendicular distances is minimized. In this sense, the projections of the $n$ scales onto the plane represent a "best" two-dimensional characterization of all scaie interrelationships. This analysis was performed separately for men and worm.

RESULTS

Number of Conmon Factors
In factor analytic studies, the number of eigenvalues greater than one is usually taken as an indication of the number of factors to retain for rotation (c.f., Kaiser, 1970). In eight of the ten factor analyses performed in this study, there were three eigenvalues greater than one. The remaining tro correlation matrices had two eigenvalues greater than one. They were the scale interorrrelations for males and fenales in the competencies domin. Tnese results suggest that three factors should be retafin 1 .

Another consideration in the retention of common factors is the percentage of total variance accounted for by the factors to be rotated. In general, retained factors should account for a large
portion of the total variance; Morrison (1967) recommends 75 percent or more. In the present study, the percent of variance accounted for does not reach 75 percent until the fourth factor is included.

Table 2

Percent of Variance Accounted for by Four Factors from Ten Correlation iktrices

Scale Content	Men	Women
Activities	$82 \%$	$8 \%$
Competencies	84	84
Occupations	85	87
Self-Ratings I	82	80
Self-Ratings II	80	81

A third method for determining how many factors to rotate (unique to the rinres factor analysis) is a statistical test on the residual correlations (Harman, 1967). After extracting a given number of factors, a chi-square statistic is calculated based upon the amount of residual correlation or unexplained variance. If the chi-square value is large, fndicating a low probability that the residual variance is zero, nore factors should be retained in the solution. Table 3 gives the chi-square statistics and the correspording probabilities of occurrence for each of the ten residual correlational matrices. The $\Sigma$ values inficate the approximate probability of occurrence for the chi-square value if the true residual variance is zero, and $\underline{m}$ indicates the number of factors.

In six of ten cases, the $p$ values indicate that a tinee-factor solution would be adequate whereas in the other forr, a four-factor solution is suggested.

Table 3
Chi-Square Test on the Residual Variation For Three-and Four-Factor Solutions from Ten Matrices


On the basis of the three methods discussed above, it was decided that the four-factor solution was most meaningful. The proportion of variance accounted for was the major consideration. Soven of the three-factor solutions accounted for onl: $70 \%$ or less of the variance. While the other indices indicate that four factors may be an overestimate, Kaiser (1970) has pointed out that an overestimate of the number of common factors is a conservative error. The factor loading matrices after varimax cotation for each of the four domains are given in Table 4 separately for men a:ld women.

TABLE 4
Factor Loading Matrices from SDS Scales
Separately by Domain

	Mndes				Framea				
	activities								
	I	II	III	IV		I	II	III	IV
R	0.43	0.03	0.09	0.02	R	$\underline{-0.30}$	0.02	0.02	$\underline{-0.39}$
I	$0 . \varepsilon_{12}$	-0.02	-0.02	0.10	1	-0.88	-0.08	0.03	-0.19
A	0.08	-0.15	-0.02	0.66	A	-0.04	-0.07	-c.01	-0.33
S	0.02	-0.63	0.13	0.09	S	-0.08	-0.58	0.08	0.04
E	-0.06	-0.85	0.06	0.14	E	-0.04	-0.78	-0.02	-0.30
C	0.13	-0.19	0.97	-0.02	C	-0.03	-0.08	0.99	0.01
corpetencies									
	I	II	III	IV		1	11	III	IV
R	-0.6. ${ }^{\text {a }}$	-0.05	0.18	0.04	R	0.58	0.10	0.10	0.12
I	-0.75	0.03	-0.05	-0.16	I	0.76	0.09	0.00	0.07
A	-0.11	-0.14	0.07	-0.44	A	$\overline{0.20}$	0.20	0.02	0.96
S	0.09	-0.45	0.05	-0.51	S	0.06	0.64	0.10	$\overline{0.12}$
E	-0.07	-0.87	0.11	-0.30	E	0.17	0.86	0.06	0.09
C	-0.11	-0.10	0.90	-0.12	C	-0.11	0.15	0.98	0.02
OCCUPATIONS									
	1	11	III	IV		I	11	11.1	$1{ }^{1}$
R	0.48	. 0.26	0.04	. 0.04	R	0.:4	-0.09	0.01	0.27
I	0.79	-0.04	-0.07	0.13	I	0.75	-0.15	-0.10	-0.0i
A	0.06	0.07	-0.14	0.68	A	0.48	0.16	-0.28	0.38
S	0.02	0.24	$\underline{-0.75}$	0.18	S	0.09	-0.08	-0.91	0.14
E	0.01	0.68	-0.20	0.25	E	0.13	-0.36	-0.14	0.59
C	0.21	0.81	-0.16	-0.06	c	0.11	-0.83	-0.05	0.16

SELF RATINGS I

	I	II	III	IV		I	11	111	IV
R	-0.49	-0.02	-0.22	-0.02	R	0.52	-0.15	0.06	-0.05
I	-0.86	0.25	0.16	-0.01	I	0.84	0.27	-0.04	0.04
A	0.02	0.03	0.07	0.65	A	0.03	0.11	-0.02	-0.99
S	0.07	-0. 32	0.77	0.12	S	-0.02	-0.08	-0.49	-0.01
E	0.12	-0.55	0.23	0.01	$\varepsilon$	-0.03	-0.51	-0. 56	0.01
C	0.03	-0.55	0.06	-0.05	c	-0.00	-0.41	-0.10	0.06

self ratings il

R	-0.30	-0.20	0.07	0.09	R	0.30	-0.02	.0.14	-0.02
1	-0.82	-0.00	-0.03	-0.05	I	0.60	0.07	0.08	0.12
A	-0.03	. 0.04	-0.12	0.99	A	-0.05	0.04	0.06	-0.49
S	0.04	-0.20	-0.93	0.13	S	-0.09	-0.25	0.63	0.03
E	-0.03	-0.66	-0.22	-0.02	E	-0.04	-0. 59	0.29	0.03
C	.0.12	-0.58	-0.03	0.06	C	-0.00	-0.81	0.08	0.05

## Scale Code

$R=$ Realistic
$A=$ Artistic
$\mathrm{E}=$ Enterfrising
= Investigative
$S=\operatorname{Social}$
C = Conventional

Interpretation of Factors -- by Domain
The patterns of loadings varied somewhat among the four domains but were similar within a given domaln between men and vomen. The results can be divided into two groups. The first group includes the four loading matrices from the activities and the competencies domains. The second group includes the occupations and the self-rating domalns.

Group One. The first factor is clearly identified by the Realistic and Investigative scales. These scales have loadings above .43 on the factor with one exception ( $R$ in activities for women) and do not have loadings above .19 on any other factors (with the exception of $R$ in activities for women). In addition, no other scale has a loading on Factor I higher than 20 .

The second factor is dominated by the Social and Enterprising variables. These two scales have a clear and simple structure. Their loadings on Factor II are all above 45 with most of them above .60 while their loadings on the other faccors are almost all below. 30 . Finally, no other scale has a loading above .20 on Factor II.

The third factor in the solutions for activities and competencies for buth sexes is essentially a one-variable factor with the Conventional scale loading on Factor III above . 90.

The last factor in this group is less clearly idearified. Ir two ases (activities-males and competencies-female), it is a single variable factor with the Artistic scale loading above .65 . In the other two instances (activities-female and competencies-male) there is a loading on Factor IV above. 30 for at least one other scale in addition to Artistic.

Group Two. The second group of factor solutions consists of the factor loading matrices for the occupations and the self-rating donajns. From Table 4 , it can be seen that on Factor 1 the Realistic and Investigative scales azeagain quite factorially distinct. Factor IV, which is dominated by the Artistic scale in each of the six solutions, is a replica of the Factor IV identified earlier. However, the fourth factor in these later solutions is much more distinct.

The remaining two factors in this group-Factors II and Iil-are somewhat different from the cortesponding factors in the first group in that the Social scaie is now loading by itself and the Enterprising and Conventional s ales are togethex. Examining the loadings for the se variables, we see again that the simple structure is quite evident.

Sumnary. There is a marked similarity between the results for men and women on all factors, and among the four donains for two of the f.ur factors. The other two factors have a somewhat different composilion in the activity and competency domains than they do in the occupations and self-rating domalris, but these differences are not great. None of the factors found in the above analysis were bipolar.

Interpretation of Factors -- Across Domains
Factor analysis is a relative tool, the results of which depend on the number and types of variables in t'he analysis. In the case of Holland's SDS, the data obtained from the scales within each of four domains are used together to create summary indices. Thus a more accurate factor analytic study would involve a simultaneous
analysis of the 30 scales listed in Table 1.
The first four factors derived from the 30 by 30 colrelation matrices for both males and females are given in Table 5. Factor $f$ includes almost all the Realistic and Investigative scales and most: loadings are above . 50 for both men and women. Further, no cther scale loads above . 27 on this factor. Factor II has a similar pattern of loadings for the Sorial and Enterprising scales. Factor III is dominated solely by the Conventional scale from fach of the domains with the one exception of the large loading (.58) for the interprising scale in occupations for males. The fourth factor is characterized by substantial loadings for the A:tistic scale across all four domains. Clezrly, the 30 variables taken as an aggregate yield factor loadings which are more consistent across domains than when the domains were analyzed separately. While the separate analyses are useful for examining the validity of holland's theory, the aggregate solution i.s a more accurate picture of the structure of the S[S.

It is of interest to note that six factors were extracted from the 30 variable correlation matrix to determine if the six scales each identified a unique factor. :e Sccial and Enterprising scales did not split into two separate factors for either ren or woren. Tlie same was true for the Realistic and Investigative scales for women culy. The $R$ and $I$ scales for men did, however, split irto :wo factors. While a post hoc explanation of the differences between men and woren for the $R$ and $I$ scales could be offered, retention of the four-factor solution was considered to be more consistent with the other resilts.


Irterpretation of the Configural Analysis
The reduction of information from an $n$-dimensional space to a two-dimensional space nearly always reults in the loss of information about the original relationships anong variables. In the earlier uses of configural analysis (c.f., Cole \& Cole, (1970); Cole \& Hansen (1971)) this loss of information was not substantial because the plane was used to represent relationships ainong only 5 or 6 variables. In this study, nowever, the two dimensions represented by the planes of Figure 1 only accourted for $36 \%$ (for men) and $29 \%$ (for women) of the variation among the 30 variables. This information loss imposes some limitations on the interpretation of the results of the configural analysis. Within these limitations, however, the results seen instructive.

We see from Figure 1 that the hexagonal model identified in previous research for the occupational scales is approximately replicated across all domains. This configuration was more distinct for men than for women. The coordinates for each of the scales are listed in Table 6.

It is interesting to note that while the factors identified earlier are not bipolar, the scales appear to form bipolar axes when projected into two dimensions. It should be remembered that a large portion of variation exists in dimensions other than those represented on the plane. Consequently, variables whose projections are c!ose together on the plane may be farther apart in $n$-space. On the horizontal axis, the Realistic and Lnvestigative scales are the bipolar opposites of the Social and Enterprising scales. Along the vertical axis, the Artistic scale is the bipolar opposite of the Conventional scale.

Figure l. Spatial Configurations of 30 SDS Scales


TABLE 6
Planar Coordinates for 30 SDS Scales
from the Configural Analysis


Note: The planar dimension accounted for $36 \%$ of the total variation for men and $29 \%$ for vomen.

The congruence between the configural analysis and the factor analysis is seen in that scales wht.ch are opposites on the hexagon (e.g. A and C) never load on the same common factor (see Table 4). Scales close together on the hexagon, however, tend to have loadings on the same factor, and the closer together they are on the hexagon the more consistently they tend to load on the same factor.

## SOME IMPLICATIONS

The congruence of results for different item domains suggests that the construct personality type may include a person's dctivities, competericies, occupations, and self-ratings. That is, personality 'ypes can be assessed in one cs more of fou: donains, and Holland's fizst operational definitions of the types based on the VPI scales probably can be inte...ianged with definitions based on other domains with only minor errors. This conclusion is also apparent when the uriginal correlational matrix is examined. That matrix indicates that the 30 scales have relatively clear patterns of convergent and discrimanant validity.

The number of types might be reduced to four, since four factr s tr:ount for more than $80 \%$ of the varionce within each domain. because the 6 Eypes are not bipolar, a reduction to three is clearly unwar:anted. In contrast, a previous diagonal factor analysis by Richards suggests that each type contributes unique variance independent of the remaining 5 types (Holland, 1968). Perhaps the most tenable conclusion is that the most useful number of types is at least 4 and no more than $\mathcal{E}$.

## 22

16

The factor loadings reproduce some of the hexagonal relationships observed carlier (Holland, et al. 1969): adjacent types usually have similar loadings and distant types usually have divergent loadings. In addition, when the original correlations in lable $l$ are arranged according to the hexagonal model (10 hexagons), the average correlations for the three distances within each hexagon are as predicted 10 of 10 times. The correlations around the perimeter of the hexagon have the highest average; the correlations between every other type are lower; and the three correlations between opposite types have the 1 owest average correlation. Thesc results ard the successful application of the hexagonal model to the Strong, Kuder, MVII, and the ACT Uncational Interest Profile by Cule and Hanson (1971) strongly suggest that the hexagonal arrangement of the personality types has strong empirical support as well as some useful generality.

Einally, the results lend support to the way in which the Self-Directed Search (Holland, 1970), a simulated vocational counseling experience, is structured. That is, the personal assessment uses the scales in the present factor and configural analyses and is arranged in the hexagonal order (RIASEC). Likewise, the arringement of the occupational classification developed by Holland, Vicrinstein, Kuo, Karweit, and Blum(1970) is supported by the present situdy.

## kEE ERENCES

Cole, N.s. and Cole, J.W.L. An analysis of spatial configuration and its application to research in higher education. ACT Research Report No. 35. Iowa City: The American College Testing Program, 1970.

Cole, Nancy S. and Hanson, Gary R. An analysis of the structure of vocational interests. ACT Research Report No. 40, Iowa City: The American College Testing Program, 1971.

Elton, C.F. and Rose, H.A. Male occupational constancy and change: its prediction according to Holland's theory. Journal of Counseling Psychology, 1970,17 , No. 6.

Harmin, Harry li. Modern factor analysis (secoud edition). Chicago: University of Chicago Press, 196?.

Holland, J.L. The psychology of vocational choice: A theory of personality types and model environments. Waltham, Massachusetts: Blaisdell, 1966. (b)

Holland, J.L. ACT guidance proflle manual. Iowa City: The American College Testing Program, 1968. (a)

Holland, J.L. Explorations of a theory of vocation choice: VI. A Longitudinal study using a sample of typical college students. Journal of Applied Psychology monographs, 1968, 52, No. 1. (b)

Holland, J.L. The self-directed search. Consulting Psychologists Pcess, Palo Alto, California, 1970. (a)

Holland, J.L., Viernstein, M.C., Kuo, H., Karweit, N.C., Blum, 2.D., A psychological classification of occupations. Center for Social Organization of Schools, Report No. 90, Johns Hopkins University, November, 1970.
: 0 lland, J.l., Whitney, D.R., Cole, N.S. and Richards, J.M., Jr. An empirical occupational classification derived from a theory of personality and intended for practice and research. ACT Kescarch Report No. 29. Iowa City: The American College Testing Program, 1969.

Kaiser, lienry F. A second generation little jiffy, Psychometrika 35:401-415, December 1970.
kristjanson, R.W. Personality types and their hypothesized attributes: an application of Holland's vocational chsice theory. M.A. thesis, University of North [akota, Grand Forks, North Dikota, 1969.

Morrison, Donaldf. Multivariate statistical methods. Miew York: McGrawHill, 1957.

## 24

Morrow, J.M., Jr, Satisfaction with choice of college major: A. test of Holland's theory of vocational choice. Ph, D. dissertation, University of North Carolina, Chapel Hill, 1970.

Richards, J.M. Jr. and Seligman, R. Faculty and curriculum as measures of college environment. Paper presented at APA convention, San Francisco, 1968.

Walsh, W.B. and Lacey, D.W. Derceived change and Holland's theory. Journel of Counseling Psychology, 1969, 16, 348-352.

Williams, C.M. Personality factors, value patterns, and occupational choices of male graduate students. Ph. D. dissertation, University of North Dakota, Grand Forks, 19\%0.

