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Abstract 

The human natural killer-1 (HNK-1) carbohydrate comprising a sulfated trisaccharide 

(HSO3-3GlcAβ1-3Galβ1-4GlcNAc-) is expressed on N-linked and O-mannose-linked glycans in the 

nervous system and involved in learning and memory functions. Although whole/core glycan 

structures and carrier glycoproteins for the N-linked HNK-1 epitope have been studied, carrier 

glycoproteins and the biosynthetic pathway of the O-mannose-linked HNK-1 epitope have not been 

fully characterized. Here, using mass spectrometric analyses, we identified the major carrier 

glycoprotein of the O-linked HNK-1 as phosphacan in developing mouse brains and determined the 

major O-glycan structures having the terminal HNK-1 epitope from partially purified phosphacan. The 

O-linked HNK-1 epitope on phosphacan almost disappeared due to the knockout of POMGnT1, an 

N-acetylglucosaminyltransferase essential for O-mannose-linked glycan synthesis, indicating that the 

reducing terminal of the O-linked HNK-1 is mannose. We also showed that GlcAT-P was involved in 

the biosynthesis of O-mannose-linked HNK-1 using the gene-deficient mice of GlcAT-P, one of the 

glucuronyltransferases for HNK-1 synthesis. Consistent with this result, we revealed that GlcAT-P 

specifically synthesized O-linked HNK-1 onto phosphacan using cultured cells. Furthermore, we 

characterized the as-yet-unknown epitope of the 6B4 monoclonal antibody (mAb), which was thought 

to recognize a unique phosphacan glycoform. The reactivity of the 6B4 mAb almost completely 

disappeared in GlcAT-P-deficient mice, and exogenously expressed phosphacan was selectively 

recognized by the 6B4 mAb when co-expressed with GlcAT-P, suggesting that the 6B4 mAb 

preferentially recognizes O-mannose-linked HNK-1 on phosphacan. This is the first study to show that 

6B4 mAb-reactive O-mannose-linked HNK-1 in the brain is mainly carried by phosphacan. 
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Introduction 

Over half of the proteins in eukaryotes are covalently substituted by glycans, which play diverse roles 

in numerous biological phenomena (Ohtsubo and Marth 2006). The glycans on glycoproteins have 

been classified into two groups, an Asn-linked N-glycan and Ser/Thr-linked O-glycan. All N-linked 

glycans in mammals have the common core pentasaccharide (with or without core α1,6-fucose) 

structure, while the monosaccharide at the reducing end of O-linked glycans is diverse (including 

GalNAc, Xylose, Mannose, Fucose, GlcNAc, and Glucose) (Moremen et al. 2012). Among them, 

O-mannose-linked glycan, which is a rare structure in mammals, is highly enriched in the brain with 

1/3 of total O-glycans in the brain being estimated as O-mannose-linked ones (Chai et al. 1999). In 

spite of their abundance, carrier glycoproteins and the functions of O-mannose-linked glycans in the 

brain are still poorly understood. 

     We previously investigated glycans in the brain with a focus on the HNK-1 carbohydrate 

(Kizuka and Oka 2012). HNK-1 is highly expressed in the nervous system and is functionally 

involved in cell adhesion, recognition, and migration (Bronner-Fraser 1987, Kunemund et al. 1988). 

The HNK-1 carbohydrate has a unique structure comprising a sulfated trisaccharide 

(HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R) (Chou et al. 1986), which is sequentially biosynthesized by the 

galactosyltransferase β4GalT2 (Kouno et al. 2011, Yoshihara et al. 2009), one of two 

glucuronyltransferases (GlcAT-P and GlcAT-S), and the sulfotransferase HNK-1ST. We succeeded in 

cDNA cloning these HNK-1 related enzymes (Bakker et al. 1997, Seiki et al. 1999, Terayama et al. 

1997) and generating GlcAT-P gene-deficient mice (Yamamoto et al. 2002). These mice were shown 

to almost lack expression of the HNK-1 carbohydrate in the brain, resulting in an aberration in the 

ability of spatial learning and memory. As cellular mechanisms, we showed that long-term 

potentiation in the hippocampus was significantly lower in GlcAT-P-deficient mice than in wild-type 

mice, which may have been due to an impairment in spine maturation and cell surface retention of 

glutamate receptors in developing brains (Morita et al. 2009a, Morita et al. 2009b). These functions 

were shown to be, at least in part, caused by a dysfunction in one of the HNK-1-carrying glycoproteins 

such as GluA2 or Tenascin-R (Morita et al. 2009a, Saghatelyan et al. 2000), which indicated that 

further functional analysis of the HNK-1 glycan required the complete identification of HNK-1 carrier 

glycoproteins in the brain. In addition to GluA2 and Tenascin-R, several other neural cell adhesion 
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molecules such as NCAM, P0, and MAG have already been shown to carry HNK-1 on their N-glycans 

(Kleene and Schachner 2004), and glycan structures with the HNK-1 epitope released from these 

glycoproteins were determined (Kruse et al. 1984, Morita et al. 2009a, Voshol et al. 1996). However, 

although it has already been demonstrated that the HNK-1 carbohydrate is present in 

O-mannose-linked glycans in the brain (Yuen et al. 1997), the major carrier glycoprotein and its 

glycan structure with HNK-1 have not yet been clarified. 

     One of the soluble chondroitin sulfate proteoglycans in the brain, phosphacan, maintained 

HNK-1 mAb reactivity even after treatment with N-glycanase (Maeda et al. 1995), which indicated 

that this molecule was modified with HNK-1 on its O-glycan. Phosphacan has previously been 

referred to as 6B4 proteoglycan and is a secreted-type splice valiant of the receptor protein tyrosine 

phosphatase-β/protein tyrosine phosphatase receptor-type zeta-1 (RPTPβ/PTPRΖ1). It possesses 

abundant chondroitin sulfate and/or keratan sulfate in the brain (Maeda et al. 1992, Maurel et al. 1994) 

and has diverse regulatory functions such as in neuronal migration, adhesion, and neurite promoting 

activity (Grumet et al. 1994, Hayashi et al. 2005, Ohyama et al. 1998, Sango et al. 2003). A recent 

study using knockout mice of POMGnT1, protein O-mannose β1,2-N-acetylglusaminyltransferase 1, 

one of the key enzymes of O-mannose-linked glycan biosynthesis, clearly showed that phosphacan 

was modified with O-mannose glycans as well as glycosaminoglycans (Dwyer et al. 2012). These 

findings suggest that phosphacan is a strong candidate for the major carrier glycoprotein of 

O-mannose-linked HNK-1 in the brain. However, the glycan structure and biosynthetic pathway of 

O-linked HNK-1 on phosphacan remain unclear. 

     A unique glycoform of phosphacan is also known to be recognized by the 6B4 mAb, which was 

originally developed against a brain-soluble proteoglycan (Maeda et al. 1995, Maeda et al. 1992). 

Although the 6B4 mAb has been being used to specifically detect phosphacan, the 6B4 epitope itself 

has still not yet been determined. Neither the polypeptide, chondroin sulfate, nor keratan sulfate 

portion of phosphacan is the epitope of the 6B4 mAb (Maeda et al. 1995); however, a recent report 

using POMGnT1 knockout mice revealed that the epitope is included in or includes O-mannose-linked 

glycans (Dwyer et al. 2012). In addition, the epitope of another related mAb, Cat-315, which is 

supposed to be similar to the 6B4 mAb (Dwyer et al. 2012, Hayashi et al. 2005), was shown to 

partially overlap with the epitope of the HNK-1 mAb (Dino et al. 2006). Collectively, it is assumed 
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that the 6B4 epitope may be O-mannose-linked HNK-1 on phosphacan. 

     In the present study, we first identified the major carrier glycoprotein of the O-linked HNK-1 

epitope as phosphacan in developing mouse brains. We also determined the O-linked HNK-1 

structures released from partially purified phosphacan as O-mannose-linked glycans using mass 

spectrometry and POMGnT1 gene-deficient mice. By analyzing GlcAT-P gene-deficient mice and 

overexpressing GlcAT-P, we showed that the HNK-1 epitope was essential for recognition by the 6B4 

mAb and that this mAb preferentially recognized O-mannose-linked HNK-1 expressed on 

phosphacan.  

 

Results 

Expression of N-glycanase resistant HNK-1 carbohydrate in developing mouse brains 

To characterize the glycoproteins carrying the O-linked HNK-1 epitope, we first treated proteins from 

2-week-old mouse brains with N-glycanase (PNGase F), and these proteins were then western blotted 

with the HNK-1 mAb. We simultaneously treated the samples with chondroitinase ABC (CHase 

ABC) to visualize the results clearly because previous reports showed that some of the HNK-1 

carbohydrate was expressed on chondroitin sulfate proteoglycans (CSPGs) (Gowda et al. 1989, 

Krueger et al. 1992). As shown in Figure 1A, several kinds of glycoproteins in brain-soluble and 

membrane fractions carried the HNK-1 epitope, and a smear band was seen over 250 kDa without the 

CHase treatment (lanes 1 and 4). This heterogeneity in the molecular weight was due to chondroitin 

sulfate chains because the CHase treatment made it converge (lanes 2 and 5). Many immunoreactive 

bands disappeared after the PNGase F treatment, which indicated that almost all HNK-1 epitopes on 

glycoproteins smaller than 250 kDa were expressed on N-glycans (lanes 3 and 6). However, the 

HNK-1 epitope carried by a large CSPG molecule over 250 kDa remained even after the PNGase F 

treatment, indicating that this glycoprotein is the major carrier molecule of O-linked HNK-1. In Figure 

1B, the brain-soluble fraction was treated with five kinds of glycosidases to characterize the HNK-1 

carbohydrate on O-glycan in more detail. The results showed that the O-linked HNK-1 epitope on the 

large CSPG was not released even after sequential treatment with sialidase and O-glycosidase, which 

showed that the HNK-1 carbohydrate on this proteoglycan had a unique core glycan structure that was 

resistant to all glycosidases tested here. In a previous report, phosphacan purified from rat brains 
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remained reactive with the HNK-1 mAb after the PNGase F treatment, and the molecular weight of 

phosphacan after the CHase and PNGase F treatment was similar to the band shown in Figure 1B lane 

4 (Maeda et al. 1995), suggesting that the major carrier for O-linked HNK-1 in developing brains is 

phosphacan. Although another CSPG, aggrecan, which has a similar molecular weight to that of 

phosphacan, was also reported to be reactive with the HNK-1 mAb, aggrecan was shown to be weakly 

expressed in developing young brains (Dino et al. 2006, Milev et al. 1998). Therefore, aggrecan is 

unlikely to be the major carrier molecule in the 2-week-old mouse brains shown in Figure 1. We then 

investigated whether phosphacan was the major carrier for O-linked HNK-1. 

 

Identification of phosphacan as the major carrier glycoprotein for O-linked HNK-1 and determination 

of the glycan structure 

To confirm that phosphacan is the major carrier for O-linked HNK-1, we partially purified phosphacan 

according to an already established method (Maeda et al. 1995). A soluble fraction (Fig. 2A, input) 

from 2-week-old mouse brains was applied to DEAE Sepharose (anion exchange column) to enrich 

CSPGs, which possess the rich negative charge of chondroitin sulfate. The eluate from DEAE 

Sepharose (DEAE fraction) was then treated with CHase ABC and PNGase F. The resulting proteins 

were stained with Coomassie Brilliant Blue (CBB) or western blotted with the HNK-1 mAb (Fig. 2A 

and Fig. 2B). The glycoprotein carrying the O-linked HNK-1 epitope over 250 kDa was highly 

enriched by this purification step (compare Fig. 1A, lane 1 to Fig. 2B, lane 1). After CHase and 

PNGase digestion, we found that only single glycoprotein was HNK-1 positive (Fig. 2B, lane 3). 

Together with the finding that only several kinds of proteins were visible in CBB staining after this 

purification (Fig. 2A, lane 3), the major carrier for O-linked HNK-1 was strongly suggested to be 

extremely concentrated in this DEAE fraction. A glycoprotein over 250 kDa was seen as an almost 

single band in CBB staining (Fig. 2A, arrow) whose mobility corresponded with the band shown in 

Figure 2B lane 3, which suggested that this protein may be the major carrier of O-linked HNK-1. To 

identify this protein, we excised the band from CBB-stained polyacrylamide gel, and the extracted 

protein from the band was subjected to proteomic analysis. LC/MS/MS analysis identified the protein 

contained in the excised gel as phosphacan. Moreover, the protein re-extracted from the excised gel 

piece was actually HNK-1 positive (Fig. 2C). From these results, we concluded that the major carrier 
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glycoprotein for O-linked HNK-1 is phosphacan in developing mouse brains. 

     We then determined the glycan structures of O-linked HNK-1. Since the DEAE fraction after 

CHase and PNGase digestion contained a single HNK-1 positive protein, namely, phosphacan (as 

described above), the O-linked glycans were released from this DEAE fraction, PA-labeled, and then 

analyzed by LC/MS
n
. Figure 3A upper panel showed the base peak chromatogram obtained by a full 

MS scan (m/z 200–2000) using FT-ICR-MS in negative ion mode. The major molecular ions detected 

by a full MS scan were automatically subjected to data-dependent collision-induced 

dissociation-MS/MS, MS/MS/MS, and MS/MS/MS/MS. We previously determined several N-glycan 

structures having the terminal HNK-1 epitope and demonstrated that an HNK-1-containing glycan 

exhibited the unique HNK-1 diagnostic ion GlcA-Gal-GlcNAc
+
 (m/z 542) in the positive ion mode 

MS/MS spectrum (Kizuka et al. 2008, Morita et al. 2009a, Tagawa et al. 2005). According to the 

diagnostic ion GlcA-Gal-GlcNAc− (m/z 540) in the negative ion mode, only those of oligosaccharides 

carrying the HNK-1 motif were sorted from all MS/MS spectra. Peaks a-e indicated the carbohydrate 

structure of the HNK-1 containing oligosaccharides and these were deduced from the m/z values of 

precursor ions detected by FT-ICR-MS and product ions obtained by MS/MS. The extracted ion 

chromatogram (EIC) of the ion at m/z 878.2 (Peak c) is shown in Figure 3A lower panel as a 

representative spectrum. As typical MS/MS and MS/MS/MS spectra, the product ion spectra of peak c 

are shown in Figure 3B. As peaks d and e were considered to be isomers because precursor ions were 

observed in the same m/z value, the product ion spectra of peaks a, b, and d were shown in 

Supplemental Figure 1. Five kinds of HNK-1 carbohydrates were confirmed and all of these contained 

hexose at the reducing terminal (Fig. 3C). In the MS/MS/MS spectrum of peak a, the diagnostic ion at 

m/z 493.4 corresponding to [NeuNAc+HexNAc]
-
 was detected, indicating that NeuNAc is attached to 

HexNAc  (NeuNAc-Hex-(NeuNAc-)HexNAc- or S-HexA-Hex-(NeuNAc-)HexNAc-) (Fig. 3C and 

Supplemental Fig. 1A). In the MS/MS/MS spectrum of peak b, the detections of the ions at m/z 606.3 

and 686.6 corresponding to [B3-S]
-
 and Y2

-
 indicated that dHex is attached to HexNAc (Fig. 3C and 

Supplemental Fig. 1B). It should be noted here that phosphacan (RPTPß) was known to possess the 

Lewis X epitope (Galβ1-4(Fucα1-3)GlcNAc-) in 2-week-old mouse brains (Nishiwaki et al. 1998, 

Hennen E et al. 2013), suggesting that peak b may contain both the Lewis X and HNK-1 epitopes.   
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The reducing terminal of the O-linked HNK-1 epitope on phosphacan 

The O-linked carbohydrate whose reducing terminal is hexose was only known as O-mannosylated or 

O-glucosylated glycan in mammals. However, we predicted that the reducing terminal identified here 

was O-mannose because the O-glucose type glycan (Xyl-Xyl-Glc) was shown to only be carried by 

EGF domain-rich proteins such as Notch (Rana et al. 2011) and also the HexNAc-Hex and 

HexNAc-(HexNAc)Hex cores in the deduced structures were completely matched with the previously 

identified structures (GlcNAcβ1-2Man and GlcNAcβ1-2(GlcNAcβ1-6)Man) in the brain (Chai et al. 

1999, Yuen et al. 1997). To investigate this possibility, we used gene-deficient mice of POMGnT1, 

which is one of key enzymes for O-mannose type glycan biosynthesis. We prepared soluble fraction 

from 3.5-week-old POMGnT1-deficient mouse brains with sequential digestion of CHase ABC and 

PNGase F, and then western-blotted with the HNK-1 mAb and anti-phosphacan antiserum, which 

reacted with the phosphacan polypeptide. After the digestion of CHase ABC, the HNK-1 

immunoreactive band seen over 250 kDa in wild-type mice was significantly decreased in POMGnT1 

knockout mice (Fig. 4A, lanes 1 and 3). The residual HNK-1 immunoreactivity in POMGnT1 

knockout mice was almost completely disappeared by the PNGase F treatment (Fig. 4A, lanes 3 and 4). 

These results suggested that the HNK-1 epitope seen over 250 kDa was largely expressed on the 

O-mannosylated glycans and partly on the N-glycans. Next, we evaluated the expression levels of 

phosphcan in wild-type and POMGnT1 knockout mice to rule out the possibility that phosphacan was 

absent in POMGnT1 knockout mice. As shown in Fig. 4B, phosphacan seen over 250 kDa was 

expressed at comparable levels both wild-type and POMGnT1 knockout mice but the molecular 

weight of phosphacan was significantly decreased in POMGnT1 knockout mice. These results indicate 

that phosphacan in POMGnT1 knockout mice is sifted in molecular weight due to hypoglycosylation 

of O-mannose glycans and this resulted in the disappearance of the HNK-1 immunoreactivity in 

POMGnT1 knockout mice. Taken together, these lines of evidence indicate that major carrier of 

O-linked HNK-1 epitope is phosphacan and the epitope is expressed on O-mannose glycans. The 

anti-phosphacan-reactive band seen around 150 kDa was significantly increased in POMGnT1 

knockout mice (Fig. 4B). It may be a splicing variant of phosphacan called phosphacan short isoform 

(PSI) (Garwood et al. 2003). Otherwise, it may be a degradated form of over 250 kDa band due to 

hypoglycosylation of O-mannose glycans because the phosphacan band seen over 250 kDa in 
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POMGnT1 knockout mice was slightly decreased compared to that of wild-type mice.  

 

GlcAT-P was essential for biosynthesis of the HNK-1 epitope on phosphacan 

Glucuronic acid transfer is the rate-limiting step during the HNK-1 epitope biosynthesis, and one of 

two glucuronyltransferases (GlcAT-P and GlcAT-S) is responsible for this catalysis. We previously 

reported that expression of the HNK-1 carbohydrate was largely absent in the brains of GlcAT-P 

gene-deficient mice (Yamamoto et al. 2002), which led us to speculate that the O-mannose-linked 

HNK-1 epitope on phosphacan was also biosynthesized by GlcAT-P. Soluble and membrane fractions 

from 2-week-old wild-type or GlcAT-P-deficient mouse brains were subjected to glycosidase 

digestion and western blotting (Fig. 5). The results showed that all immunoreactive bands with the 

HNK-1 mAb disappeared due to a deficiency in the GlcAT-P gene (Fig. 5A), which demonstrated that 

the O-mannose-linked HNK-1 epitope on phosphacan was biosynthesized by GlcAT-P as well as other 

N-linked HNK-1 epitopes. Western blotting with anti-phosphacan antiserum showed that protein 

expression levels of phosphacan in GlcAT-P-deficient mice were the same as those in wild-type 

littermates (Fig. 5B). Reactivity seen in Figure 5B in the membrane fraction was considered to be 

membrane-bound phosphacan and/or RPTPβ, which possessed a single transmembrane domain and an 

almost identical extracellular domain to phosphacan. 

     A previous report indicated that the Cat-315 mAb recognized the HNK-1 epitope expressed on 

phosphacan in developing mouse brains (Dino et al. 2006). The 6B4 mAb was also shown to 

recognize a unique phosphacan glycoform with O-mannose glycans (Dwyer et al. 2012, Maeda et al. 

1995). Therefore, we speculated that the 6B4 epitope may be the O-mannose-linked HNK-1 epitope. 

To explore this possibility, brain-soluble and membrane fractions were subjected to glycosidase 

digestion and were detected by western blotting with the 6B4 or Cat-315 mAb (Fig. 5C and 5D). As a 

result, 6B4 and Cat-315 mAb reactive signals were only found over 250 kDa in both soluble and 

membrane fractions, and these reactivities were unchanged by PNGase F digestion. Moreover, these 

signals were completely lost in both fractions from GlcAT-P-deficient mouse brains. These results 

clearly indicated that the 6B4 mAb actually recognized the O-linked HNK-1 epitope as well as the 

Cat-315 mAb. Considering the molecular weight of phosphacan and the reactivities of the 6B4 and 

Cat-315 mAbs against phosphacan reported previously, Figure 5 shows that the 6B4 and Cat-315 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



 

10 

mAbs detected O-linked HNK-1 on phosphacan. Interestingly, N-linked HNK-1 glycans on the other 

carrier glycoproteins were hardly detected with these antibodies. These results demonstrated that the 

6B4 and Cat-315 mAbs somehow preferred the unique O-mannose-linked HNK-1 glycans on 

phosphacan. 

 

GlcAT-P synthesized the O-linked HNK-1 epitope on phosphacan in COS-1 cells 

To support the results presented above, phosphacan and GlcAT-P cDNAs were transfected together or 

alone into COS-1 cells, which did not express the HNK-1 carbohydrate endogenously. Whereas both a 

glucuronyltransferase (GlcAT-P or S) and sulfotransferase (HNK-1ST) are required for HNK-1 

carbohydrate biosynthesis, in our previous report, only GlcAT-P overexpression in COS-1 cells 

allowed them to express the HNK-1 epitope, which may have been due to the endogenous expression 

of HNK-1ST in COS-1 cells (Terayama et al. 1997). A myc tag was fused with phosphacan at its 

C-terminus for detection. Secreted proteins to the culture medium from the single (GlcAT-P or 

phosphacan) or double (GlcAT-P and phosphacan) transfectant were precipitated and subjected to 

treatment with CHase ABC and PNGase F. Figure 6A lower panel showed that myc-tagged 

phosphacan was expressed at similar levels between single (phosphacan) (lanes 4-6) and double 

transfectants (lanes 7-9). By expressing GlcAT-P, cells were forced to express the HNK-1 glycan on 

many secreted endogenous glycoproteins (Fig. 6A upper panel, lanes 1 and 2), and all of these HNK-1 

carbohydrates were removed by PNGase F digestion (Fig. 6A upper panel, lane 3). However, the 

double transfectant expressed PNGase F resistant HNK-1 epitopes over 250 kDa and at around 150 

kDa (Fig. 6A upper panel, arrows). Since these signals were not seen in the single transfectant 

(compare lanes 3 and 9 in Fig. 6A upper panel), these signals were derived from overexpressed 

phosphacan, which demonstrated that the expressed phosphacan was modified by GlcAT-P to carry 

O-linked HNK-1 as in the brain. However, O-linked HNK-1 around 150 kDa was not observed in 

2-week-old mouse brains (Fig. 1A). Although PSI, a splicing variant of phosphacan, was shown to be 

expressed in rodent brains (Garwood et al. 2003), it was unlikely that the carrier protein of O-linked 

HNK-1 at around 150 kDa (Fig. 6A, lower arrow) was PSI because our transfection experiments used 

full length cDNA. We speculated that it was an N-terminal fragment produced by proteolytic 

processing because this band was not detected by the anti-myc polyclonal antibody (pAb), but was by 
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anti-phosphacan antiserum (data not shown). The culture medium from the double transfectant was 

also sequentially treated with sialidase and O-glycosidase in addition to CHase and PNGase (Fig. 6B). 

All glycosidases tested did not reduce the immunoreactivity of phosphacan with the HNK-1 mAb, 

which suggested that the HNK-1 epitope on phosphacan expressed in COS-1 cells had a similar core 

structure to that in the brain. 

     Finally, immunoreactivity of the 6B4 mAb toward phosphacan expressed in COS-1 cells was 

investigated. Phosphacan was more strongly recognized in the brain by the 6B4 mAb than by other 

HNK-1 carrier glycoproteins, which suggested that the epitope of this antibody is the 

O-mannose-linked HNK-1 on phosphacan. To support this result, culture media of the transfectants 

were immunoblotted with the 6B4 mAb (Fig. 6C). As seen in GlcAT-P-deficient mouse brains, 

phosphacan without the co-expression of GlcAT-P was not recognized by the 6B4 mAb (Fig. 6C 

upper panel, lanes 4-6), whereas phosphacan with the HNK-1 epitopes was strongly detected with the 

6B4 mAb, even after the PNGase treatment (Fig. 6C upper panel, lanes 7-9). Although other HNK-1 

positive proteins were also slightly recognized by 6B4 (Fig. 6C upper panel, lanes 1-3), these signals 

disappeared after the removal of N-glycan, suggesting that the 6B4 mAb may potentially recognize 

N-linked HNK-1, at least in the overexpression experiment. Taken together, these results indicate that 

the 6B4 mAb is not completely specific for, but prefers the O-linked HNK-1 carbohydrates expressed 

on phosphacan to N-linked HNK-1 carbohydrates on other carrier proteins. 

 

Discussion 

N-linked HNK-1 has been known to be expressed on glycoproteins such as P0 and NCAM and the 

structures of those carbohydrates have already been determined (Kruse et al. 1984, Voshol et al. 

1996); however, information on the structure and biosynthesis of O-linked HNK-1 remains limited. 

Previous studies determined the core structure of O-linked HNK-1 as O-mannose glycans without 

identifying the carrier protein (Yuen et al. 1997). In the present study, we enriched the major carrier of 

O-linked HNK-1 from developing mouse brains and clearly identified the major carrier protein as 

phosphacan. Subsequent structural analysis determined the glycan structure of O-linked HNK-1 on 

phosphacan as mono- and bi-antennary O-mannose glycans. 

     The mammalian brain abundantly expresses O-mannose glycans, which account for ~30% of 
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total O-glycans. To date, several molecules have been identified to carry O-mannose glycans in the 

mammalian brain such as neurocan, versican, α-dystroglycan, and CD24 as well as phosphacan 

(Bleckmann et al. 2009, Pacharra et al. 2013, Stalnaker et al. 2011b). Although some of them were 

shown to be HNK-1 positive, most must not be the major carrier for O-mannose-linked HNK-1 in the 

developing brain by comparing their molecular weights with our present results. Our biochemical 

characterization revealed that the major carrier for O-linked HNK-1 had a molecular weight over 250 

kDa. Combining our proteomic identification with the overexpression experiments in cultured cells, 

we concluded that the major carrier molecule for the O-linked HNK-1 epitope was phosphacan in the 

developing mouse brain. This conclusion was confirmed by using POMGnT1 knockout mice. These 

results are consistent with previous studies showing that phosphacan was modified with the HNK-1 

epitope and O-mannose glycans (Dino et al. 2006, Dwyer et al. 2012, Maeda et al. 1995). However, 

why phosphacan is selectively modified with HNK-1 among O-mannosylated proteins has yet to be 

determined. We previously reported that HNK-1 was biosynthesized in a well-regulated fashion by 

several protein complexes in living cells (Kizuka and Oka 2012). Although HNK-1 is selectively 

attached to limited kinds of proteins, in vitro enzymatic analysis of each HNK-1-related enzyme has 

never shown how they specifically act on the correct target proteins. Phosphacan may be endowed 

with a unique tertiary structure or trafficking signal within its polypeptide for preferential modification 

by HNK-1-related enzymes in the Golgi apparatus. 

     We determined the structure of the major O-glycans having terminal HNK-1 as mono- and 

bi-antennary O-mannose glycans using mass spectrometric analysis. A previous study demonstrated 

six structures of HNK-1 immunoreactive O-mannose glycans without sialic acid (Yuen et al. 1997). 

We first identified here sialylated O-mannose glycans with the terminal HNK-1 epitope. It is 

noteworthy that the HNK-1 epitope in bi-antennary structures observed in Fig. 3 peaks a, d, and e was 

only found in one branch, although we could not identify which branch had the HNK-1 epitope. 

2,6-Branched O-mannose is synthesized by the distinct actions of POMGnT1 and a brain-specific 

N-acetylglucosaminyltransferase GnT-IX (Vb) (Inamori et al. 2004, Yoshida et al. 2001). Therefore, 

HNK-1-related enzymes may somehow co-operate with either one of the two enzymes in the Golgi 

apparatus.  A recent study on GnT-IX-deficient mouse brains showed reduced HNK-1 levels on 

RPTPβ, which is a transmembrane-type splicing isoform of phosphacan (Kanekiyo et al. 2013). In 
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addition, we revealed that the overexpression of GnT-IX resulted in increasing the O-linked HNK-1 

epitope on phosphacan using cultured cells (Supplemental Fig. 2). These results suggest the possibility 

that the HNK-1 epitope on phosphacan is O-mannosylated in vitro as well as in vivo, and may be 

preferentially expressed on the β1,6-branch synthesized by GnT-IX. Since the reduced activation of 

astrocytes was observed in GnT-IX knockout mice after myelin injury, O-mannose-linked HNK-1 on 

phosphacan may be involved in the astrocyte activation process in vivo.  

     Phosphacan promotes neurite outgrowth depending on the cell type, such as mesencephalic 

neurons, cortical neurons, and hippocampal neurons from rat embryos, without being affected by 

CHase (Faissner et al. 1994, Garwood et al. 1999). On the other hand, phosphacan also inhibits the 

neurite outgrowth of retinal ganglion cells and the inhibitory effect is promoted by treatment with 

CHase (Inatani et al. 2001). Thus, phosphacan plays various roles in different parts of the brain, and 

some of these may involve O-mannose-linked HNK-1. Determining the carbohydrate structure of 

O-mannose-linked HNK-1 on phosphacan performed in this report would be a basis for analyzing the 

molecular details of phosphacan.  

     The most studied O-mannosylated glycoprotein in mammals is α-dystroglycan (α-DG), which is 

widely expressed, however, its glycosylation status differs among tissues (Barresi and Campbell 2006). 

α-DG has been associated with its extracellular ligands, such as laminin, agrin, and pikachurin, via its 

O-mannosylated glycan (Chiba et al. 1997, Sato et al. 2008), and defects in the O-mannosylation of 

α-DG was shown to cause severe muscular dystrophies, some of which exhibit brain abnormalities 

(Michele et al. 2002). These studies indicate that O-mannosylated glycans play critical roles in 

functioning of the muscle and nervous systems. Interestingly, a previous study reported that the 

HNK-1 carbohydrate was expressed on α-DG (Yamada et al. 1996), even though the structure and 

biosynthetic pathway remain unknown. In addition, our recent report showed that one of the 

HNK-1-related enzymes, HNK-1ST, could regulate the ligand binding ability of α-DG (Nakagawa et 

al. 2012). Several glycosyltransferases (including POMT1/2, and POMGnT1) involved in the 

O-mannosylation of α-DG have already been identified as the genes responsible for muscular 

dystrophy (van Reeuwijk et al. 2005, Yoshida et al. 2001). Although α-DG is not a major 

O-mannosylated protein in the brain (Stalnaker et al. 2011a), HNK-1-related enzymes may also be 

involved in this disease. Further analysis is required to clarify the function of the HNK-1 epitope on 
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α-DG in brain. 

     Knockout of POMGnT1, in which O-mannosylation is disturbed, also revealed the loss of the 

6B4 and Cat-315 epitopes, which indicated that the epitopes of these mAbs are included in or include 

O-mannosylated gylcans (Dwyer et al. 2012). Although the Cat-315 epitope was estimated to be 

O-linked HNK-1 glycan (Dino et al. 2006), there is no evidence to suggest that the 6B4 epitope 

overlaps with the HNK-1 epitope. In the present study using GlcAT-P-deficient mice, we clearly 

demonstrated that the 6B4 epitope includes the HNK-1 glycan. Moreover, previous studies and our 

structural analysis further indicated that the 6B4 and Cat-315 mAbs preferentially recognize the 

O-mannose-linked HNK-1 epitope on phosphacan. The major protein reactive with the Cat-315 mAb 

in the mouse brain was shown to switch from phosphacan (or RPTPβ) to aggrecan along with brain 

development (Dino et al. 2006). Our present study demonstrated that the major carrier of 

O-mannose-linked HNK-1 is phosphacan in the developing mouse brains; however, it may be 

different in adult brains. It would be interesting to analyze the glycan structure of HNK-1 on aggrecan 

in mature brains. 

     This is the first report to show that the O-mannose-linked HNK-1 epitope is mainly carried by 

phosphacan in developing mouse brains and is biosynthesized by GlcAT-P. Based on these findings, 

future studies should clarify how this carbohydrate is specifically biosynthesized for phosphacan in the 

Golgi apparatus and how it functionally works to maintain the complicated network system in 

mammalian brains. 

 

Materials and methods 

Materials 

The HNK-1 mAb (a hybridoma cell line was purchased from the American Type Culture Collection), 

Cat-315 mAb (Millipore), anti-myc pAb (Abcam), and anti-FLAG pAb (Sigma-Aldrich) were used as 

primary antibodies. The rabbit anti-GlcAT-P pAb was generated as described previously (Kizuka Y et 

al. 2009). Anti-phosphacan antiserum was raised in rabbits against recombinant full-length 

phosphacan, which was expressed in and purified from COS-1 cells. The 6B4 mAb was developed as 

described previously (Maeda et al. 1992). HRP-conjugated anti-mouse IgG, HRP-conjugated 

anti-mouse IgM, and HRP-conjugated anti-rabbit IgG (Zymed Laboratories) were used as secondary 
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antibodies. Chondroitinase ABC (CHase ABC) protease free and keratanase were from Seikagaku 

Corporation. N-glycosidase F (PNGase F), sialidase, and O-glycosidase were from Roche. The 

pcDNA-I/rat phosphacan plasmid was constructed as described (Nishiwaki et al. 1998). The 

pcDNA3.1/human GnT-IX was kindly provided from Drs. N. Taniguchi and S. Kitazume (Inamori K 

et al. 2003). Generation of POMGnT1-deficient mice has been described previously (Miyagoe-Suzuki 

Y et al. 2009). 

 

Expression Plasmids 

Construction of the plasmid encoding full-length rat GlcAT-P (pIRES/P) was described previously 

(Kizuka et al. 2006). To express myc-tagged rat phosphacan, full-length rat phosphacan cDNA 

(pcDNA-I/phosphacan) was subcloned into pcDNA3.1/myc-His B (Invitrogen) as follows. First, 

pcDNA-I/phosphacan was digested with EcoRV and NotI, and the resulting fragment (phosphacan 

cDNA) was subcloned into pcDNA3.1/myc-HisB (pcDNA3.1/phosphacan), which had been digested 

with the same enzymes. The sequence near the 3’-end of rat phosphacan cDNA was amplified by PCR 

with the primers (5’-ggcacttactggtctaccaac-3’ and 5’-tcattcgaaacctgcctctgaactgttgga-3’) to create a 

3’-NspV site instead of the stop codon. The amplified fragment was then digested with ApaI and 

NspV, and was cloned into pcDNA3.1/phosphacan, which had been digested with the same enzymes. 

To express FLAG-tagged human GnT-IX, full-length human GnT-IX (pcDNA3.1/human GnT-IX) 

was amplified by PCR with the primers (5’-aaagcggccgcgatcacagtcaacccagatgg-3’ and 

5’-aaatctagatcacaggcagccctggcacaag-3’), digested with NotI and XbaI, and then the resulting fragment 

(GnT-IX cDNA) was subcloned into p3xFLAG-CMV-10 (Sigma-Aldrich), which had been digested 

with the same enzymes. 

 

Preparation of soluble and membrane fractions from mouse brain 

A whole brain from a 2-week-old mouse was homogenized using a polytron homogenizer in 9 

volumes of 20 mM Tris-HCl (pH 7.4) containing 150 mM NaCl, 1 mM EDTA, and protease inhibitors 

(Nakalai Tesque, Japan). The homogenate was centrifuged at 1,000 x g for 10 min to remove nuclei. 

The supernatant was centrifuged at 105,000 x g for 1 h. The resulting supernatant and pellet were 

soluble and membrane fractions, respectively. 
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Cell culture and transfection 

COS-1 cells and HEK293 cells were cultured in DMEM supplemented with 10% fetal bovine serum at 

37ºC until 50-70% confluency. Cells were transfected with the expression plasmids using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol after the culture medium 

was replaced with Opti-MEM I (GIBCO). After 6 hours of transfection, Opti-MEM I was replaced 

with ASF Medium 104 (Ajinomoto). Cells were incubated for another 2 or 4 days to obtain a culture 

medium containing secreted proteins. 

 

Glycosidase digestion 

In the case of the brain-soluble fraction and culture medium, proteins were first precipitated by ethanol 

as follows: 2.5 volumes of ethanol were added and incubated for 20 min at -20ºC. After centrifugation 

at 13,000 x g for 10 min, the precipitate was washed with 70% ethanol, and centrifuged again. The 

resulting precipitate was used as a starting material. The membrane fraction itself or 

ethanol-precipitated proteins were suspended with 100 mM Tris-HCl (pH 7.4) containing 30 mM 

sodium acetate, 5 mM EDTA, and protease inhibitors, followed by incubation with 20 mU of 

chondroitinase ABC (CHase) or 250 mU of keratanase for 1 h at 37ºC. The reaction mixture was 

ethanol-precipitated again similar to above for sequential digestion with PNGase F. The resulting 

precipitated proteins were denatured with phosphate-buffered saline (PBS) with 0.5% SDS, 1% 

2-mercaptoethanol, and 4 mM EDTA at 100˚C for 5 min. The solution was then diluted with 4 

volumes of PBS. After the addition of Nonidet P-40 (0.5% at the final concentration), 2 U of PNGase 

F was added, and the solution was incubated for 16 h at 37ºC. For additional digestion with 50 mU of 

sialidase or 10 mU of O-glycosidase, these enzymes were combined with PNGase F and incubated as 

above.  

 

SDS-PAGE and Western Blotting 

Proteins were separated by 3-10% or 5-20% gradient SDS-PAGE with the buffer system of Laemmli 

and were then transferred to nitrocellulose membranes. After blocking with 5% nonfat dry milk in 

PBS containing 0.05% Tween 20, the membranes were incubated with the primary antibodies, 
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followed by the HRP-conjugated secondary antibodies, and protein bands were then detected with 

Super Signal West Pico (Pierce) using the Luminoimage Analyzer LAS-3000 (Fuji). 

 

Purification and identification of the HNK-1 carrier glycoprotein 

To identify the major carrier glycoprotein of the O-linked HNK-1 epitope, 10 mouse brains were 

excised from 2-week-old C57/BL6 mice. We purified the glycoprotein using an anion exchange 

column as described previously (Maeda et al. 1995) with slight modifications. Briefly, the soluble 

fractions were prepared, and the concentrations of NaCl and urea were then adjusted to 0.1 M and 7 M, 

respectively. The sample was applied to the DEAE column (DEAE Sepharose Fast Flow, GE 

Healthcare), which had been equilibrated with 20 mM Tris-HCl (pH 7.4) containing 1 mM EDTA, 0.1 

M NaCl, and 7 M urea. After washing with 20 mM Tris-HCl (pH 7.4) containing 1 mM EDTA, 0.25 

M NaCl, and 7 M urea, the objective glycoprotein was eluted with 20 mM Tris-HCl (pH 7.4) 

containing 1 mM EDTA, 0.4 M NaCl, and 7 M urea. The eluate precipitated with ethanol was digested 

with CHase ABC and PNGase F as above. Purified proteins after digestion were separated by 

SDS-PAGE and stained with Coomassie Brilliant Blue. The objective band (~250 kDa) were excised 

and cut into pieces. The gel pieces were treated with 20 mM Tris/HCl (pH 8.0) containing 1% SDS to 

extract the glycoprotein. The extracted glycoprotein was digested with trypsin, and the peptide 

fragments were determined by liquid chromatography/tandem mass spectrometry (LC/MS/MS). 

 

Protein identification by LC/MS/MS 

The tryptic digest was analyzed by LC/MS/MS using LC (Paradigm MS4 HPLC system, Michrom 

BioResources, Auburn, CA) and ion trap-type mass spectrometer (LTQ; Thermo Fisher Scientific, 

Waltham, MA). The analytical column was a reversed-phase capillary column (Magic C18, 50 × 0.2 

mm, 5 µm, Michrom BioResources). The mobile phase was 0.1% formic acid containing 2% 

acetonitrile (A buffer) and 0.1% formic acid containing 90% acetonitrile (B buffer). The peptides were 

eluted at a flow rate of 2 µl/min with a gradient of 5−65% of B buffer in 50 min. The analytical 

conditions for MS/MS were as follows: an electrospray voltage of 2.0 kV in the positive ion mode and 

a collision energy of 35% for MS/MS. The spectra data obtained by MS/MS were subjected to 

database search analysis with the TurboSEQUEST algorithm (BioWorks; Thermo Fisher Scientific) 
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using the NCBInr database. Static modification of carboxymethylation (58.0 u) at Cys was used as 

modified parameters for the database search analysis. The SEQUEST criterion, known as peptide 

probability, was set to 0.001 for identification of the proteins. 

 

Preparation of O-glycans 

The purified glycoprotein treated with CHase ABC and PNGase F to remove chrondroitin sulfate and 

N-glycans was precipitated with ethanol, and was then lyophilized. O-glycans were released by 

hydrazinolysis and pyridylaminated according to the procedure described previously (Natsuka and 

Hase 1998) with modifications. Briefly, O-glycans were released by hydrazinolysis at 60ºC for 6 h and 

reacetylated using saturated sodium bicarbonate solution and acetic anhydride at 4ºC for 30 min. After 

desalting with Dowex 50W-X2 (H
+
) (Muromachi Technos Co.) followed by lyophilization, O-glycans 

were pyridylaminated with 2-aminopyridine. To remove excess reagents, the reaction products were 

subjected to gel filtration on a column of TSK-gel G2500 PW XL (TOSOH) with 10 mM ammonium 

acetate (pH6.0) at a flow rate of 1 ml/min. Pyridylaminated sugar chains were collected, lyophilized, 

and determined by liquid chromatography/multiple stage mass spectrometry (LC/MS
n
). 

 

LC/MS
n 
of O-glycans 

PA-labeled O-linked glycans were separated on a graphitized carbon column (Hypercarb, 150 × 0.075 

mm, 5 µm; Thermo Fisher Scientific, Waltham, MA) at a flow rate of 200 nL/min in a nanoFrontier 

nLC (Hitachi High-Tech, Tokyo, Japan). The mobile phases were 5 mM ammonium bicarbonate 

containing 2% acetonitrile (A buffer) and 5 mM ammonium bicarbonate containing 80% acetonitrile 

(B buffer). The glycans were eluted with a linear gradient of 2–80% of B buffer for 60 min. Mass 

spectrometric analysis was performed using a Fourier transform ion cyclotron resonance/ion trap type 

mass spectrometer (FT-ICR/IT-MS, LTQ-FT; Thermo Fisher Scientific). The electrospray voltage for 

mass spectrometry was 2.0 kV in the negative ion mode, and the collision energy was 25% for the 

MS/MS, MS/MS/MS, and MS/MS/MS/MS experiments. The resolution of FT-ICR-MS was 50,000, 

and the scan range was m/z 200–2,000.  
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protein O-mannose β1,2-N-acetylglusaminyltransferase 1; RPTPβ, receptor protein tyrosine 

phosphatase-β. 
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Legends to figures 

Figure 1. The O-linked HNK-1 epitope was mainly carried by a chondroitin sulfate proteoglycan 

in developing mouse brains. (A) Soluble (lanes 1-3) and membrane fractions (lanes 4-6) of 

2-week-old mouse brains were treated without (-) (lanes 1 and 4) or with (+) (lanes 2, 3, 5, and 6) 

chondroitinase ABC (CHase ABC) and N-glycosidase F (PNGase F) (lanes 3 and 6), and were then 

immunoblotted with HNK-1 mAb. (B) A soluble fraction of 3-week-old mouse brains with sequential 

digestions with CHase ABC (lanes 2-6), keratanase (lanes 3-6), PNGase F (lanes 4-6), sialidase (lanes 

5 and 6), and O-glycosidase (lane 6) was analyzed by western blotting with the HNK-1 mAb. 

 

Figure 2. The glycoprotein carrying O-linked HNK-1 was partially purified with 

DEAE-Sepharose. (A) A soluble fraction of 2-week-old mouse brains (Input) was applied to the 

DEAE column. The eluate (DEAE fraction, lane 1) was subjected to the CHase ABC (lanes 2 and 3) 

and PNGase F treatment (lane 3). Purified samples were stained with CBB. An arrow indicates the 

major carrier protein for O-linked HNK-1. (B) DEAE fractions (lane 1) with sequential digestions 

with CHase ABC (lanes 2 and 3) and PNGase F (lane 3) were immunoblotted with the HNK-1 mAb. 

(C) The protein excised from the gel ((A), arrow) was re-extracted (re-extracted fraction) and stained 

with CBB (left pannel) or immunoblotted with the HNK-1 mAb (right pannel) to confirm that the 

band actually contained the protein with O-linked HNK-1.  

 

Figure 3. The glycan structures of O-linked HNK-1 were determined. (A) Upper panel: the 

basepeak chromatogram of PA-labeled O-linked glycans from phosphacan obtained by Fourier 

transform ion cyclotron resonance/ion trap mass spectrometry (m/z 200−2,000) in the negative ion 

mode. Peaks a−e: O-linked HNK-1 glycans. Lower panel: the extracted ion chromatogram (EIC) of 

the ion at m/z 878.2. (B) MS/MS and MS/MS/MS spectra of peak c (m/z 878.2). (C) Deduced 

structures of O-linked HNK-1 glycans.  

S, sulfate group; HexA, hexuronic acid; Hex, hexose; HexNAc, N-acetylhexosamine; NeuNAc, 

N-acetylneuraminic acid; Hex-PA, Hex labeled with 2-aminopyridine. 

 

Figure 4. The reducing terminal of the O-linked HNK-1 epitope on phosphacan was O-mannose. 
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Soluble fractions prepared from 3.5-week-old wild-type (WT, lanes 1 and 2) or POMGnT1-deficient 

(KO, lanes 3 and 4) mouse brains were digested without (-) (lanes 1 and 3) or with (+) (lanes 2 and 4) 

PNGaase F followed by the treatment of CHase ABC (lanes 1-4), and then immunoblotted with the 

HNK-1 mAb (A), anti-phosphacan antiserum (B). 

 

Figure 5. The O-mannose-linked HNK-1 epitope was biosynthesized by GlcAT-P and 

preferentially recognized by the 6B4 and Cat-315 mAbs. Soluble (lanes 1-6) and membrane (lanes 

7-12) fractions of 2-week-old wild-type (WT, lanes 1-3 and 7-9) or GlcAT-P-deficient (GlcAT-P KO, 

lanes 4-6 and 10-12) mouse brains were treated without (-) (lanes 1, 4, 7, and 10) or with (+) CHase 

ABC (lanes 2, 3, 5, 6, 8, 9, 11, and 12) and PNGase F (lanes 3, 6, 9, and 12), and were then 

immunoblotted with the HNK-1 mAb (A), anti-phosphacan antiserum (B), 6B4 mAb (C), or Cat-315 

mAb (D). 

 

Figure 6. Co-expression of GlcAT-P and phosphacan produced the 6B4-reactive O-linked 

HNK-1 epitope in COS-1 cells. (A) Proteins secreted from COS-1 transfectants (single transfection 

of GlcAT-P (lanes 1-3), phosphacan cDNA (lanes 4-6) or double transfection of both cDNAs (lanes 

7-9)) were precipitated by ethanol, and were then treated without (-) (lanes 1, 4, and 7) or with (+) 

CHase ABC (lanes 2, 3, 5, 6, 8, and 9) and PNGase F (lanes 3, 6, and 9). The proteins were 

immunoblotted with the HNK-1 mAb (upper panel) or anti-myc pAb (lower panel). Arrows indicated 

the full length and a cleaved N-terminal fragment of phosphacan. (B) Proteins secreted from the 

double transfectant were subject to sequential digestion with CHase ABC (lanes 2-5)), PNGase F 

(lanes 3-5), sialidase (lanes 4 and 5) and O-glycosidase (lane 5), and were then immunoblotted with 

the HNK-1 mAb. (C) Samples were prepared as in (A), and were immunoblotted with the 6B4 mAb 

(upper panel) or anti-myc pAb (lower panel).  
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-H2O 

Supplemental Figure 1. Deduced structures of O-linked HNK-1 glycans. 	

(A) MS/MS and MS/MS/MS spectra of peak a (m/z 912.0). (B) MS/MS, MS/MS/MS and MS/MS/

MS/MS spectra of peak b (m/z 1024.3). (C) MS/MS, MS/MS/MS and MS/MS/MS/MS spectra of 

peak d (m/z 766.7).	
S, sulfate group; HexA, hexuronic acid; Hex, hexose; HexNAc, N-acetylhexosamine; NeuNAc, N-

acetylneuraminic acid; Hex-PA, Hex labeled with 2-aminopyridine.	
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Supplemental Figure 2. HNK-1 epitope was synthesized on GlcNAcβ1-6Man branch.  	

(A) Proteins secreted from HEK293 transfectants (double transfection of GlcAT-P and phosphacan 

cDNAs (lanes 1 and 2) or triple transfection of both cDNAs and GnT-IX (lanes 3 and 4)) were 

precipitated by ethanol. The proteins were digested without (-) (lanes 1 and 3) or with (+) (lanes 2 

and 4) PNGase F followed by the treatment of CHase ABC (lanes 1-4), and then immunoblotted 

with the HNK-1 mAb and anti-myc pAb. Myc-tagged phosphacan was expressed at similar levels 

between double (lanes 1 and 2) and triple transfectant (lanes 3 and 4). The HNK-1 immunoreactivity 

seen over 250 kDa was increased by overexpression of GnT-IX (compared lane 1 to lane 3 or lane 2 

to lane 4). (B) HEK293 transfectants (double transfection of GlcAT-P and phosphacan cDNAs (lane 

1) or triple transfection of both cDNAs and GnT-IX (lane 2)) solubilized with 1% SDS were 

immunoblotted with anti-FLAG pAb and anti-GlcAT-P pAb.	
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