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Abstract

The stochastic process algebra PEPA is a powerful modelling formalism for concurrent sys-
tems, which has enjoyed considerable success over the last decade. Such modelling can help
designers by allowing aspects of a system which are not readily tested, such as protocol valid-
ity and performance, to be analysed before a system is deployed. However, model construction
and analysis can be challenged by the size and complexity of large scale systems, which consist
of large numbers of components and thus result in state-space explosion problems. Both struc-
tural and quantitative analysis of large scale PEPA models suffers from this problem, which
has limited wider applications of the PEPA language. This thesis focuses on developing PEPA,
to overcome the state-space explosion problem, and make it suitable to validate and evaluate
large scale computer and communications systems, in particular a content adaption framework
proposed by the Mobile VCE.

In this thesis, a new representation scheme for PEPA is proposed to numerically capture the
structural and timing information in a model. Through this numerical representation, we have
found that there is a Place/Transition structure underlying each PEPA model. Based on this
structure and the theories developed for Petri nets, some important techniques for the struc-
tural analysis of PEPA have been given. These techniques do not suffer from the state-space
explosion problem. They include a new method for deriving and storing the state space and
an approach to finding invariants which can be used to reason qualitatively about systems. In
particular, a novel deadlock-checking algorithm has been proposed to avoid the state-space ex-
plosion problem, which can not only efficiently carry out deadlock-checking for a particular
system but can tell when and how a system structure lead to deadlocks.

In order to avoid the state-space explosion problem encountered in the quantitative analysis of
a large scale PEPA model, a fluid approximation approach has recently been proposed, which
results in a set of ordinary differential equations (ODEs) to approximate the underlying CTMC.
This thesis presents an improved mapping from PEPA to ODEs based on the numerical repre-
sentation scheme, which extends the class of PEPA models that can be subjected to fluid ap-
proximation. Furthermore, we have established the fundamental characteristics of the derived
ODEs, such as the existence, uniqueness, boundedness and nonnegativeness of the solution.
The convergence of the solution as time tends to infinity for several classes of PEPA models,
has been proved under some mild conditions. For general PEPA models, the convergence is
proved under a particular condition, which has been revealed to relate to some famous con-
stants of Markov chains such as the spectral gap and the Log-Sobolev constant. This thesis has
established the consistency between the fluid approximation and the underlying CTMCs for
PEPA, i.e. the limit of the solution is consistent with the equilibrium probability distribution
corresponding to a family of underlying density dependent CTMC:s.

These developments and investigations for PEPA have been applied to both qualitatively and
quantitatively evaluate the large scale content adaptation system proposed by the Mobile VCE.
These analyses provide an assessment of the current design and should guide the development
of the system and contribute towards efficient working patterns and system optimisation.
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Chapter 1

Introduction

1.1 Motivation

In the new era of wireless, mobile connectivity, there has been a great increase in the hetero-
geneity of devices and network technologies. For instance, mobile terminals may significantly
vary in their software, hardware and network connectivity characteristics. Meanwhile, there
is an increased variety of services being offered to meet users’ preferences and needs, for ex-
ample, mobile TV services, and shopping services such as Ebay. The service may embody
functionality and deliver multiple content items to mobile end users in a specific manner. How-
ever, the mismatch between the diversity of content and the heterogeneity of devices presents a
research challenge [LLO2b]. Content adaptation has emerged as a potential effective solution

to cope with the problem of delivering services and content to users in a variety of contexts.

The virtual centre of excellence in mobile communications (Mobile VCE) is addressing this
area in the programme entitled “Removing the Barriers to Ubiquitous Services”. The pro-
gramme has been investigating the tools and techniques essential to hiding complexity in the
heterogeneous communications environment that is becoming a reality. In particular, the work
makes use of agents that manage personal preferences, and control the adaptation of content to
meet the system requirements for a user to view content they have requested. The interaction
between the entities in the user-controlled devices and the network that is required to achieve

this then becomes a significant issue.

Performance modelling provides an important route to gaining insight about how systems will
perform both qualitatively and quantitatively. Such modelling can help designers by allowing
aspects of a system which are not readily tested, such as protocol validity and performance,
to be analysed before a system is deployed. This thesis will discuss and present a high-level
modelling formalism—the stochastic process algebra PEPA developed by Hillston [Hil96]—to
validate and evaluate the potential designs and configurations of a content adaptation framework

proposed by the Mobile VCE.
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Stochastic process algebras are powerful modelling formalisms for concurrent systems, which
have enjoyed considerable success over the last decade. As a process algebra, PEPA is a com-
positional description technique which allows a model of system to be developed as a number
of interacting components which undertake activities. In addition to the system description as-
pects the process algebra is equipped with techniques for manipulating and analysing models,
all implemented in tools [TDGO09]. Thus analysis of the model becomes automatic once the
description is completed. In a stochastic process algebra additional information is incorporated
into the model, representing the expected duration of actions and the relative likelihood of al-
ternative behaviours. This is done by associating an exponentially distributed random variable
with each action in the model. This quantification allows quantified reasoning to be carried
out on the model. Thus, whereas a process algebra model can be analysed to assess whether
it behaves correctly, a stochastic process algebra model can be analysed both with respect to

correctness and timeliness of behaviour.

Once a PEPA model has been constructed two different analysis approaches are accessible from

the single model:

e The model may be used to derive a corresponding (discrete state) continuous time Markov
chain (CTMC) which can be solved for both transient and equilibrium behaviour, allow-
ing the calculation of measures such as expected throughput, utilisation and response

time distributions.

e Desirable properties of the system can be expressed as logical formulae which may be
automatically checked against the formal description of the system, to test whether the
property holds. This can be particularly useful in checking that protocols behave appro-

priately and that certain desired properties of the system are not violated.

However, these two basic types of analysis can be challenged by the size and complexity of
large scale systems. In fact, a realistic system may consist of large numbers of users and other
entities, which results in the size of the state space underlying the system being too large to
allow analysis. This problem is termed the state-space explosion problem. Both qualitative
and quantitative analysis of stochastic process algebras and many other formal modelling ap-
proaches suffer this problem. For instance, the current deadlock-checking algorithm of PEPA
relies on exploring the entire state space to find whether a deadlock exists. For large scale PEPA

models, deadlock-checking becomes impossible due to the state-space explosion problem.



Introduction

For quantitative analysis of PEPA models, a novel approach—fluid approximation—to avoid
this problem has recently been developed by Hillston [Hil05a], which results in a set of ordinary
differential equations (ODEs) to approximate the underlying CTMC. However, this approach
is restricted to a class of models and needs to be extended. Furthermore, the approach gives
rise to some fundamental theoretical questions. For example, whether the solution of the ODEs
converges to a finite limit as time tends to infinity? What is the relationship between the derived
ODEs and the underlying CTMC? etc. Solving these problems can not only bring confidence
in the new approach, but can also provide new insight into, as well as a profound understanding

of, performance formalisms.

Therefore, it is an important issue and this thesis focuses on this topic, to both technically and
theoretically develop the stochastic process algebra PEPA to overcome the state-space explo-
sion problem, and make it suitable to validate and evaluate large scale computer and communi-

cations systems, in particular the content adaption framework proposed by the Mobile VCE.

1.2 Contribution of the Thesis

In this section we outline the work which has been undertaken, highlighting the primary con-
tributions of the thesis. These include both theoretical underpinnings for large scale modelling

and an application to the evaluation of large scale content adaptation systems.

A PEPA model is constructed to approximately and abstractly represent a system while hiding
its implementation details. Based on the model, performance properties of the dynamic be-
haviour of the system can be assessed, through some techniques and computational methods.
This process is referred to as the performance modelling of the system, which mainly involves
three levels: model construction and representation, technical computation and performance
derivation. Our enhancement for PEPA embodies these three aspects, which are illustrated by
Figure 1.1. At the first level, we propose a new representation scheme to numerically describe
any given PEPA model, which provides a platform to directly employ a variety of approaches
to analyse the model. These approaches are shown at the second level. At this level, the current
fluid approximation method for the quantitative analysis of PEPA is expanded, as well as in-
vestigated, mainly with respect to its convergence and the consistency and comparison between
this method and the underlying CTMC. Moreover, a Place/Transition (P/T) structure-based ap-

proach is proposed to qualitatively analyse the model. At the third level, both qualitative and
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quantitative performance measures can be derived from the model through those approaches. In
particular, we demonstrate what kind of performance measures can be derived through the fluid
approximation approach. A stochastic simulation algorithm based on the numerical represen-
tation scheme is proposed to obtain general performance metrics. Moreover, we can determine
some structural properties of the model such as invariance and deadlock-freedom without suf-

fering the state-space explosion problem.

Associated approaches

Fluid
approximations

Aggregated
CTMC

P/T system

Convergence, Consistency,
Comparison

y A

'8 l
: :
E ) :

.
E Deadlock-checking Throughput, Utilisation Throughput, Utilisation '
' Invariance, etc. Response time, -+ Response time,****** H
: :
, .
() )
L]

Structural and performance measures

Figure 1.1: A diagram of the work for PEPA

These achievements, as well as an application to evaluate large scale content adaptation sys-

tems, are detailed in the following:

1. New numerical representation scheme for PEPA: This thesis proposes a new numeri-
cal representation scheme for PEPA. In this scheme, labelled activities are defined to cope
with the difference between actions in PEPA and transitions in the underlying CTMC, so
that the correspondence between them is one-to-one. Modified activity matrices based on
the labelled activities are defined to capture structural information about PEPA models.
Moreover, transition rate functions are proposed to capture the timing information. These

concepts numerically describe and represent a PEPA model, and provide a platform for

4
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conveniently and easily exposing and simulating the underlying CTMC, deriving the fluid
approximation, as well as leading to an underlying P/T structure. These definitions have
been proved consistent with the original semantics of PEPA. An algorithm for automat-
ically deriving these definitions from any given PEPA model has been provided. Some
good characteristics of this numerical representation have been revealed. For example,
using numerical vector forms the exponential increase of the size of the state space with

the number of components can be reduced to at most a polynomial increase.

. Efficient techniques for qualitative analysis of PEPA: Through the numerical represen-
tation of PEPA, we have found that there is a P/T structure underlying each PEPA model,
which reveals tight connections between stochastic process algebras and stochastic Petri
nets. Based on this structure and the theories developed for Petri nets, several powerful
techniques and approaches for structural analysis of PEPA are proposed. For instance,
we give a method of deriving and storing the state space which avoids the problems as-
sociated with populations of components, and an approach to find invariants which can
be used to qualitatively reason about systems. Moreover, a structure-based deadlock-

checking algorithm is proposed, which can avoid the state-space explosion problem.

. Technical and theoretical developments of fluid-flow analysis of PEPA: Based on the
numerical representation scheme, we have proposed a new approach for the fluid approx-
imation of PEPA, which extends the current semantics of mapping PEPA models to ODEs
by relaxing previous restrictions. The derived ODEs through our approach can be con-
sidered as the limit of a family of density dependent CTMCs underlying the given PEPA
model. The fundamental characteristics of the derived ODEs have been established, in-
cluding the existence, uniqueness, boundedness and nonnegativeness of the solution. We
have revealed consistency between the deterministic ODEs and the underlying stochas-
tic CTMC:s for general PEPA models: if the solution of the derived ODEs converges as
time tends to infinity, then the limit is an expectation in terms of the steady-state prob-
ability distributions of the corresponding density dependent CTMCs. The convergence
of the solution of the ODEs has been proved under a particular condition, which relates
the convergence problem to some well-known constants of Markov chains such as the
spectral gap and the Log-Sobolev constant. For several classes of PEPA models, the con-
vergence has been demonstrated under some mild conditions, and the coefficient matrices
of the derived ODEs have been exposed to have the following property: all eigenvalues

are either zeros or have negative real parts. In particular, invariants in the PEPA models
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have been shown to play an important role in the proof of convergence.

4. Performance derivation methods for large scale PEPA models: We have shown what
kind of performance metrics can be derived from a PEPA model through the approach of
fluid approximation and how this can be done. For the measures that cannot be derived by
this approach, we have presented a stochastic simulation algorithm which is based on the
numerical representation scheme. Detailed comparisons between these two approaches,

in terms of both computational cost and accuracy, have been provided.

5. Performance validation and evaluation framework for large scale content adapta-
tion systems: We have proposed a formal approach as well as associated techniques
and methods to validate (e.g. check deadlocks) and evaluate content adaptation systems,
particularly at large scales. We have developed powerful techniques for future quali-
tative analysis, including qualitative reasoning techniques through invariants as well as
structure-based methods for protocol validation, and so on. Quantitative analysis, in
terms of the response time of the system, has been carried out to assess the current design.
In particular, we have shown that the average response time is approximately governed
by a set of corresponding nonlinear algebra equations, based on which scalability and
sensitivity analysis, as well as capacity planning and system optimisation, can be carried

out simply and efficiently.

1.3 Organisation of the Thesis

The remaining chapters of this thesis are organised as follows:

Chapter 2 (Background): This chapter will present some background to the Mobile VCE
project and an introduction to PEPA, as well as some performance analyses for small

scale content adaptation systems.

Chapter 3 (Numerical representation for PEPA): This chapter will demonstrate a numeri-
cal presentation scheme for PEPA. The definitions of labelled activities, which form
a modified activity matrix, and transition rate functions as well as their corresponding
properties will be given. Moreover, this chapter will provide an algorithm for deriving

this scheme from any PEPA model.
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Chapter 4 (Structural analysis for PEPA): This chapter will reveal that there is a P/T struc-
ture underlying each PEPA model. Based on this structure and the theories developed
for Petri nets, structural analysis for PEPA will be carried out. This chapter will provide
powerful methods to derive and store the state space and to find invariants in PEPA mod-
els. In particular, a new deadlock-checking approach for PEPA will be proposed, to avoid

the state-space explosion problem.

Chapter 5 (Fluid analysis for PEPA (I)—through a probabilistic approach): In this chap-
ter, an improved mapping from PEPA to ODEs will be given, which extends the cur-
rent mapping semantics by relaxing certain restrictions. Some fundamental character-
istics such as the existence and uniqueness of the solution of the derived ODEs will
be presented. For PEPA models without synchronisations, the solution of the ODEs con-
verges to a limit which coincides with the stable probability distribution of the underlying

CTMC.

Chapter 6 (Fluid analysis for PEPA (II)—through an analytic approach): This chapter will
present a purely analytical proof of the boundedness and nonnegativeness of the solution
of the derived ODEs from PEPA models. A case study will show the important role of
invariance in the proof of convergence. For a class of PEPA models, i.e. models with two
component types and one synchronisation, we will demonstrate the convergence under

some mild conditions.

Chapter 7 (Deriving performance measures for large scale content adaptation systems): In
this chapter, we will show the kind of performance measures available from the fluid ap-
proximation of a PEPA model and how these measures can be derived. A stochastic simu-
lation algorithm for deriving performance based on the numerical representation scheme
will also be presented. This chapter will present applications of enhanced PEPA to val-
idate and evaluate large scale content adaptation systems. We will carry out scalability
and sensitivity analysis, as well as capacity planning for content adaptation systems, to
assess the performance. The computational cost and accuracy of different approaches
for PEPA analysis, particularly the fluid approximation and the simulation approaches,
will be experimentally compared and studied. In addition, some structural analysis for a

subsystem will be demonstrated.

Chapter 8 (Conclusions): This chapter will conclude the thesis and propose future work.
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The reading order of this thesis is illustrated by Figure 1.2.

( Chapter1 )
Y

( Chapter 2 )
Y

Chapter 4

Chapter 6

Y
( Chapter 8 )

Figure 1.2: Reading order of chapters

1.4 Publication List and Some Notes

This section gives a publication list, with some notes indicating the correspondence between

these papers and the content of this thesis.

1. Jie Ding, J. Hillston, D. Laurenson, Evaluating the response time of large scale content
adaptation systems, accepted by the International Communication Conference (2010),

Cape Town, South Africa.

(This paper presents the simulated results of large scale content adaptation systems. The
analysis of these results is similar to the discussions in Section 7.4 of Chapter 7, although
the results in Section 7.4 are mainly derived through the approach of fluid approxima-

tion.)

2. Jie Ding, J. Hillston, D. Laurenson, Performance modelling of content adaptation for a

personal distributed environment, Wireless Personal Communications: An International
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Journal, Volume 48, Issue 1, Jan. 2009.

(This paper presents the performance modelling of a small scale content adaptation sys-

tem, in which some analysis and discussions appear in Section 2.4 of Chapter 2.)

. Jie Ding, J. Hillston, A new deadlock checking algorithm for PEPA, 8th Workshop on
Process Algebra and Stochastically Timed Activities (PASTA’09), Edinburgh, UK.

(A brief introduction to the numerical representation scheme of PEPA and based on
which some structural analysis of PEPA models, particularly the deadlock-checking method,
have been presented in this paper. These materials are mainly shown in Chapter 3 and

Chapter 4 in this thesis.)

. A. Attou, Jie Ding, D. Laurenson, and K. Moessner, Performance modelling and evalu-
ation of an adaptation management system, International Symposium on Performance
Evaluation of Computer and Telecommunication Systems 2008 (SPECTS’08), Edin-
burgh, UK.

(This paper presents the performance modelling and evaluation for the design of the
entity Adaptation Manager. In the interest of brevity the main content of this paper is not

included in this thesis.)

. Jie Ding, J. Hillston, Convergence of the fluid approximations of PEPA Models, Tth
Workshop on Process Algebra and Stochastically Timed Activities (PASTA’08), Edin-
burgh, UK.

(This paper presents the relationship between the fluid approximation and the density
dependent Markov chains underlying the same PEPA model, as well as the convergence
of the solution of the derived ODEs as time goes to infinity under some conditions. These

results are mainly presented in Chapter 5.)

. Jie Ding, J. Hillston, on ODEs from PEPA models, 6th Workshop on Process Algebra and
Stochastically Timed Activities (PASTA’07), London, UK.

(The fundamental characteristics of fluid approximation of PEPA models including the
existence, uniqueness, boundedness and nonegativeness of the solutions of the ODEs
derived from a class of PEPA models, have been established in this paper, while they are

extended in Chapter 6 in this thesis.)
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Chapter 2
Background

2.1 Introduction

This chapter will give an introduction to the Mobile VCE project and the stochastic process
algebra PEPA, which are shown in Section 2 and 3 respectively. Then, in Section 4, we present
performance measures and performance evaluation for small scale content adaptation systems
which are based on the content adaptation framework proposed by the Mobile VCE. A literature
review of the techniques developed to deal with the state-space explosion problem will be

presented in Section 5. Finally, we conclude this chapter in Section 6.

2.2 Content Adaptation Framework by Mobile VCE

In this section, we will give an introduction to content adaptation and the Mobile VCE project,

as well as describing a content adaptation framework proposed by the Mobile VCE.

2.2.1 Content adaptation

As networks become more sophisticated, both in terms of their underlying technology and
the applications running upon them, it is crucial that users’ expectations and requirements are
anticipated and met. In particular, users are basically not concerned with the technological
aspects of communications. However, at present, they need to be aware of a multitude of
details about equipment and benefits of one communication strategy over another, as well as
how to connect systems together to achieve the communication that they desire. As the number
of possible communication strategies increases, so does the complexity of negotiating the most

appropriate method of delivering content that the user wishes to access.

Users, requesting content from a provider, wish that content to be usable in a specific device or
devices. Currently a content provider may provide a number of formats of a particular content

to suit a selection of devices, or they may only provide a single format of the data. With the
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rapidly growing variety of devices that a user may expect to use for delivering a particular
content, providing content tailored to each device becomes an infeasible task for the content
provider [LL02a]. Thus, in order for a user, who needs the content in a different format, to be
able to make use of that content, a transformation needs to take place. In the wider context, not
only may transformation from one format to another be required, but additionally the content
may need to be modified, for example its bit-rate reduced, in order to meet quality of service
constraints. This process is called content adaptation. The adaptation, itself, may take place
within the domain of the service provider, the domain of the user, or may take place within the

network as a third party service.

Content adaptation can be defined as “the set of measures taken against a dynamically changing
context, for the purpose of maintaining a user experience of the delivered content as close to that
of the original content as possible” [Dey(00]. Several techniques have been developed for con-
tent adaptation. One technique is transcoding, which changes the content coding format while
preserving the same information. For example, to reduce the bit-rate or save device storage, a
JPEG image is transcoded to PNG format. Another main technique is cross-modal adaptation.
This transforms content from one modality to another, such as text to speech adaptation. There
are other techniques for adaptation such as content recomposition for small displays [CWWO07]
where, for instance, useful regions in a video or image are extracted and re-composed in an im-
age or video. Moreover, content adaptation management mechanisms have been incorporated
into content distribution networks [MBC ™00, KM06, EKBS04], to minimize the interference of

adaptation with replication effectiveness [BB].

According to the location where the adaptation takes place, content adaptation techniques can
be classified into three categories [BGGWO02]: provider-based, client-based, and proxy-based.
When the adaptation takes place on provider side (e.g. [MSCS99,PKP03]), the content provider
could have a central control over how the content and service are presented to users. Client-side
adaptation (e.g. [BHR 99, FAD197]) is controlled by the end terminal. The user can impose
his preference of the final result, but adaptation is very limited due to the limitation of devices.
If adaptation occurs on a proxy site (e.g. [CEV00, FGC197, LHOS, YLO3, JTWT07]), it will
reduce the complexity at the client and provider sides but may lose the advantage of end-to-end

security solutions.

In a ubiquitous environment, the adaptation should be context-aware, i.e. taking into consider-

ation context covering user location and preference, device characteristics, network conditions
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such as bandwidth, delay, QoS, content provider’s digital rights, natural environment charac-
teristics and content properties etc. As pointed out in [DLMOS], context-aware application
and system design has evolved from early ad-hoc application-specific [WHFG92] or toolkit-
based [Dey00] design, to infrastructure-based design [Che04] which supports context-aware
application in distributed and heterogeneous environment. Content adaptation has been widely
acknowledged as one of the most important aspects for context-aware ubiquitous content de-
livery. The techniques of context acquisition and formatting and adaptation decision taking,
have been applied to adaptation management [MSCS99, PKP03,LH05, YL03,JTW+07]. Some

surveys on the content adaptation technologies can be found in [VCHO3, Li06].

2.2.2 Mobile VCE Project

Before presenting a content adaptation framework put forward by the Mobile VCE, we first
introduce the Mobile VCE project. The Mobile VCE is the operating name of the Virtual Cen-
tre of Excellence in Mobile and Personal Communications Ltd, a collaborative partnership of
around 20 of the world’s most prominent mobile communications companies and 7 UK univer-
sities each having long standing specialist expertise in relevant areas. Mobile VCE engages in

industrially-led, long term, research in mobile and personal communications [htt].

Ubiquitous service represents a major future revenue stream for service providers, telecommu-
nication operators and pervasive technology manufacturers, since Bluetooth, WiFi, WiMAX,
UWB and more, are bringing the dream of ubiquitous access closer to reality. The “Removing
the Barriers to Ubiquitous Services” programme aims at hiding the complexity involved in the
communication of the content, and its delivery mechanism, from the user, empowering the user

to access anything, at anytime, from anywhere.

2.2.3 Content adaptation framework by Mobile VCE

This subsection introduces the content adaptation framework proposed by the Mobile VCE.
This introduction is based on the papers [Bus06, BID06, LM06]. For details, please refer to

them.

A design of a content adaptation framework for a personal distributed environment, being de-
veloped under the auspices of the Mobile VCE, has been presented in [Bus06]. The concept
of a Personal Distributed Environment (PDE), developed by the third programme of the Mo-
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Figure 2.1: Logical architecture of content adaptation framework [Bus06]

bile VCE, core 3, is a user-centric view of communications in a heterogeneous environment,
and is defined as those nodes over which a user has control. At the user side, the Personal
Assistant Agent (PAA) is proposed to reduce the perceived complexity of future multi-device
personal area networks by proactively managing the modes, the functions, the applications, and
the connectivity of the user’s devices. In addition, employing the Personal Content Manager
(PCM) can effectively store content throughout the user’s environments, maximizing availabil-
ity and efficiency as well as retrieving the content in the most appropriate manner. The Device

Management Entity (DME) acts as platform for the PAA and PCM to operate over.

The logical architecture for content adaptation based on this concept is depicted in Figure 2.1.
There are two major functional entities within the framework to accomplish the content adap-
tation management, that is, the Adaptation Manager (AM) and the Content Adaptor (CA). The
AM provides the required functionality to assimilate and distill user-related and content-related
contexts into relevant rules so that actions may be determined by the decision logic. The CA
organises the actual adaptation processes based on maintaining a profile of all the available
adaptation mechanisms, contacting external adaptation mechanism providers and consolidat-
ing their capabilities to meet the adaptation requests, passed down from the AM. Semantic
Web-based technologies, such as OWL [OWL] and Description Logic [Des], are used to rep-
resent contextual information and thus facilitate autonomous adaptation decision-making. Web
Service technologies, such as WSDL [OWL], SOAP [OWL], UDDI [UDD], together with Se-
mantic Web Service technologies, such as WSDL-S and OWL-S [OWL], are used to develop
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adaptation mechanisms which carry out the actual content adaptation. The reader may refer
to [AMO7,LMO07, TBIDO0S8] for details of using these technologies within the adaptation man-

agement framework.

The Dispatcher acts as a buffer, transporting the context information from the PAA to the AM,
and delivering the content from the Content/Service Provider (C/S Provider) or the CA to the
PDE, which forms the logical interface between the personal entities and the content and service

adaptation framework as a whole.

2.2.4 The working cycle

A working scenario of the adaptation management based on the logical architecture is illustrated
in Figure 2.2. The operation can be described as follows (for convenience, the component

Dispatcher is omitted in the scenario):

1. When an external content/service request is activated, i.e. the user requests some content

with specific preferences, the PDE will forward this request to the AM.

2. After receiving the request from the PDE, the AM asks for and receives the corresponding

content/service information from the C/S Provider.

3. The AM assimilates and analyses the information from the user and the C/S Provider. If
the C/S Provider can provide the desired content, then the AM requests the C/S Provider
to directly forward the content to the PDE. Otherwise the content needs to be adapted to
satisfy the user’s requirement, so the AM asks for the CA’s information for the purpose

of content adaptation.

4. Based on the collected information from the user, the C/S Provider, and the CA, the
AM ascertains appropriate options for content/service translation from the available op-
tions and constraints. Then the AM makes an adaptation plan and forwards it to the C/S
Provider, which includes the adaptation authorization, adaptation schedule and network

routing.

5. According to the received information from the AM, the C/S Provider makes a choice:
either providing the content to the PDE directly or sending the content with the adaptation

plan to the CA for adaptation.

15



Background

6. After receiving the content with the adaptation plan, the CA starts the content adaptation

and then forwards the adapted content to the PDE after the process is finished.

7. The PDE forwards the received content to the user interface.

In the following, we will use the PEPA language to describe and model the working cycle, and

then to derive the performance measures. But first, we will present an introduction to PEPA.
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Figure 2.2: Working cycle of content adaptation management

2.3 Introduction to PEPA

This section presents an introduction to the PEPA (Performance Evaluation Process Algebra)

language, which was developed by Hillston in the 1990s. For more details about PEPA, please
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refer to [Hil96]. An overview of the history from the origin of process algebras to the current

development of stochastic process algebras (e.g. Bio-PEPA), is presented in Appendix A.

2.3.1 Components and activities

PEPA is a high-level model specification language for low-level stochastic models, which al-
lows a model of a system to be developed as a number of interacting components which un-
dertake activities. A PEPA model has a finite set of components that correspond to identifiable
parts of a system, or roles in the behaviour of the system. For example, the content adaptation
system mentioned in the previous subsection has four types of components: the PDE, the AM,

the CA and the C/S Provider. We usually use C to denote the set of all components.

The behaviour of each component in a model is captured by its activities. For instance, the
component CA can perform “ca_adaptation”, i.e. the activity of content adaptation. In the
PEPA language, each activity has a type, called action type (or simply type), and a duration,
represented by activity rate (or simply rate). The duration of this activity satisfies a nega-
tive exponential distribution' which takes the rate as its parameter. For example, the adap-
tation activity in the above example can be written as (ca_adaptation, req_adaptation), Where
ca_adaptation is the action type and 7. _qdaptation 15 the activity rate. The delay of the adap-
tation is determined by the exponential distribution with the parameter 7.q_qdaptation Or With

1
the mean —————. Therefore, the probability that this activity happens within a period of

Tca_adaptation
time of length ¢ is F'(t) = 1 — e~ '"ca-adaptation The set of all action types which a component

P may next engage in is denoted by A(P) while the multiset of all activities which P may next
fire is denoted by Act(P). Then the sets of all possible action types and all possible activities
are written as .4 and Act respectively. If a component P completes an activity « € A(P) and
then behaves as a component @), then () is called a derivative of P and this transition can be

written as P — Q or P (a_rg Q.

There is a special action type in PEPA, unknown type 7, which is used to represent an unknown
or unimportant action. A special activity rate in PEPA is the passive rate, denoted by T, which

is unspecified.

'In the reminder of this thesis, “negative exponential distribution” is shorted as “exponential distribution” for
convenience.
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2.3.2 Syntax

This subsection presents the name and interpretation of combinators used in the PEPA language,

which express the individual behaviours and interactions of the components.

9

Prefix: The prefix combinator “.” is a basic mechanism by which the first behaviour of a
component is designated. The component (v, r).P, which has action type « and a duration
which satisfies an exponential distribution with parameter r (mean 1/r), carries out the activity
(c, ) and subsequently behaves as component P. The time taken for completing the activity

will be some At, sampled from the distribution.

For example, in the working cycle of the content adaptation system presented in Section 2.2.4,
a component which can launch an external content request and then behaves as PDFEs, can
be expressed by (pde_ext_cont_req, rpde_est_cont_req)-PDE2, where the rate Tpde_cqt_cont_req re-
flects the expected rate at which the user will submit requests for the desired content or service.

We would like to denote this component by PDFE, that is

def

PDE; = (pde_ext_cont_req, Tpde_ext_cont req) - PDEs,

where “% is another combinator which will be introduced below.

“ﬂ”

Constant: The constant combinator assigns names to components (behaviours). In the

above example, i.e., PDE; =4 (pde_ext_cont_req, rpde_ext_cont_req)- PDE2, we assign a name
“PDE,” to the component (pde_ext_cont_req, rpde_est_cont_req)-PDE2. This can also be re-
garded as the constant PDF; being given the behaviour of the component
(pde_ext_cont_req, Tpde_cxt_cont_req)- PDE2. The constant combinator can allow infinite be-

haviour over finite states to be defined via mutually recursive definitions.

Cooperation: Interactions between components can be represented through the cooperation
combinator “ DLQ ”. In fact, P Dﬁ @ denotes cooperation between P and () over action types
in the cooperation set L. The cooperands are forced to synchronise on action types in L while
they can proceed independently and concurrently with other enabled activities. The rate of
the synchronised activity is determined by the slower cooperation. We write P || @ as an

abbreviation for P I @Q when L = 0.

In the working cycle of the content adaptation system, after the generation of the request the

next event is to pass the request to the AM. This event should be represented by a synchronous
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activity because it must be completed cooperatively by both the PDE and the AM. We use
pde_int_cont_req to denote the action type. In the context of the PDE and the AM, the event is

respectively modelled by
PDE, = (pde_int_cont_req, Tpde_int_cont._req)- PDEs

and

AM; < (pde_int_cont_req, T).AMp.

The cooperation between PD FEs and AM; can be expressed by PD FEs B AM;.

{pde_int_cont.req}
Here the notation “T” reflects that for the AM the activity pde_int_cont_req is passive, and the
rate is determined by its cooperation partner—the PDE. If the rate for the AM is not passive
and assigned as 7, i.e., AM; =4 (pde_int_cont_req,r).AMs, then the rate of the shared activity

pde_int_cont_req is determined by the smaller of the two rates, i.e. min{rpge_int_cont_req 7'} -

Moreover, suppose there are two PDEs in the system and there is no cooperation between these
two P D FEj5. This can be modelled by PDE5 || P D Es, which is equivalent to P D E» %ﬂ PDE,.
Their cooperation with the AM through the activity pde_int_cont_req can be represented by
(PDEj5 | PDE5) B AM;. We sometimes use the notation P D E5[M] to represent

{pde_int_cont_req}

PDEy || --- || PDEj.

M times
Choice: The choice combinator “+4” expresses competition between activities. The component
P 4+ @ models a system which may behave either as P or as (). The activities of both P
and () are enabled. Whichever activity completes first must belong to P or (). This activity
distinguishes one of the components, P or (), and the component P + () will subsequently
behave as this component. Because of the continuous nature of the probability distributions,
the probability of P and () both completing an activity at the same time is zero. The choice

combinator represents uncertainty about the behaviour of a component.

For example, in our content adaptation system, after forwarding the request to the AM, the PDE
waits for a response. There are two possible responses, which are represented by two possible
activities: receiving the content from the C/S Provider directly (csp_to_pde) or receiving the

adapted content from the CA (ca_to_pde). This event can be represented by

PDE3 % (csp_to_pde, T).PDE; + (ca_to_pde, T).PDE,.
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The rates T here reflect that for the PDE both activities are passive, and their rates are deter-

mined by their cooperation partners—the C/S Provider and the C' A respectively.

Hiding: The hiding combinator “/” provides type abstraction, without affecting the duration of
the activity. In P/L all activities whose action types are in L appear as the “private” type 7 but
their rates are unaffected. For example, after receiving the content, the PDE will forward it to

the user interface and then go back to its initial state, which is modelled by
PDE, =4 (pde_user_interface, Tpde user_interface)- PDE; .
The activity pde_user_interface may be hidden from the outside, and this can be expressed by
PDE, =4 (pde_user_interface, Tpde user_interface)-PDE1 /{pde_user_interface},

which is equivalent to

PDE4 “ (T’ Tpde,user,interface).PDE1 .

The precedence of the above combinators is as follows:

hiding > prefix > cooperation > choice,
that is, hiding enjoys the highest precedence, prefix comes next followed by cooperation, and
choice has the lowest precedence. We can use brackets to clarify the grouping as in elementary
algebra and to force a different precedence. The syntax may be formally introduced by means

of the following grammar:

S = (,r).S|S+S5|C
P: = S|PXEP|P/L|C

where S denotes a sequential component and P stands for a model component which executes
in parallel. C' represents a constant which denotes either a sequential component or a model

component.

2.3.3 Execution strategies, apparent rate and operational semantics

The dynamic behaviour of a PEPA model whenever more than one activity is enabled, is gov-

erned by a strategy called the race condition. In this strategy, all the enabled activities compete
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with each other but only the fastest succeeds to proceed. The probability of an activity winning
the race is given by the ratio of the activity rate of that activity to the sum of the activity rates of
all the activities engaged in the race. This gives rise to an implicit probabilistic choice between
actions dependent of the relative values of their rates. Therefore, if a single action in a system
has more than one possible outcome, we may represent this action by more than one activity in
the corresponding PEPA model. For example, AM, can perform the action am_assimilation
with the rate 74y,_assimilation, and then behave as AMy or AMy, with the probabilities p and

1 — p respectively. This can be modelled as:

def . . .
AM; = (am_assimilation, p X Tem_assimilation) -AMs

+ (am_assimilation, (1 — p) X T'am_assimilation)-AMg.

Here the component AM, has two separate activities of the same action type. To an external

observer, the sum of the rates of the type am_assimilation in this component will be the same,

that is Tam_assimilation — P X Tam_assimilation + (1 - P) X Tam_assimilation: This is called the

apparent rate of am_assimilation.

In the PEPA language, the apparent rate of action type « in a process P, denoted by 7, (P), is

the overall rate at which « can be performed by P. It is defined as follows:

r ifg=q«
0 iff#«
2. 1a(P+ Q) = 7a(P) +74(Q)

1. ro((B,7r).P) =

ro(P) ifaéL
0 ifael

3. 7o(P/L) =

ra(P)+714(Q)  ifad L

4. ra (P0Q) = min(ro(P),7a(Q)) ifa € L

If more than one activity of a given passive type can be simultaneously enabled by a component,
each unspecified activity rate must also be assigned a weight to reflect the relative probabili-
ties of the possible outcomes of the activities of that action type [Hil96]. For example, the
component

P & (Oé, wlT).Pl + (a, wQT).PQ

will behave as P, or P, with the probabilities i and w2 respectively, after the
w1 + W2 w1 + w2
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passive action « is completed. The comparison and manipulation of unspecified activity rates

are defined as:

r<wTl forall? € RT and for all w € N
wy T <wyT if wy < ws for all wy,wy € N

w1l +wy T = (w1 + wg)T for all wi,wy € N

wil _ wi

0T = ws for all wi,wy € N

We use (a, T) to represent (v, 1T ), and assume that multiple instances have equal probabilities

of occurring if no weights are assigned.

Operational semantics of a process algebra defines the rules of how processes evolve and how
states transition. The formal structured operational semantics of PEPA is presented in Fig-
ure 2.3. These rules are to be interpreted as follows: if the transition(s) above the inference
line can be inferred, then we can deduce the transition below the line. All rules presented in
Figure 2.3 are straightforward and it is not necessary to give an explanation, except for the third
one, i.e. the rule of the cooperation combinator. In this rule, the apparent rate of a shared activity
o in the component £ BI F' i.e. ro (£ BIF), is set to be min{ra(E), 7o ()}, i.e. the smaller
of the apparent rates of that action type in the components £ and F'. The action type o may

have multiple activities which may result in different outcomes. The probability that the activity
1 T2
(
ro(E) "ra(F)
ing (a,71) ((a,72)), the component E (F') behaves as E’ (F’). So, assuming independence

of choice in E and F, the probability of the transition £ b FF &) g/ pa p/jg TL__ "2
o g To(E) 1o (F)

min(ry (E), 7o (F)).

(v, 1) (respectively, (a, 72)) in E (respectively, F') occurs is ). After complet-

1 T2
To(E) ro(F)

and thus the rate of the shared activity is R =

Based on the operational semantics of PEPA, a PEPA model can be viewed as a labelled multi-
transition system. In general a labelled transition system (.5, 7', {i> | t € T}) is composed of
a set of states S, a set of transition labels 7" and a transition relation — defined on S x S for
each ¢ € T'. In PEPA models, an action may represent and result in multiple system transitions.
Thus, as pointed out in [Hil96], PEPA may be regarded as a labelled multi-transition system
(C, Act, {((1_7"2 | (a,r) € Act}), where C is the set of components, Act is the set of activities

and the multi-relation () is given by the rules in Figure 2.3.
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Prefix:
(a,r).E(a—’T? E
Choice:
E+FYE p+rYdp
Cooperation:
(a,r) (a,r)
o F—=F
———(a¢ L), — (¢ 1)
FE l>ﬁ F—SF D{l F E Dﬂ F—FE BLQ F
(a,r1) (a,r2)
EZYVE 22 F
(@€ L), where R=—""—"2 min(ra(E),ra(F)),
B p el g s ra(E) ro(F)

where 7o (E), 7o (F), are the apparent rates of action of type « in the component £ and
F respectively.

Hiding:
(ar) (a,r)
FE FE 1) FE
. @fD o —(acl)
E/L—SE'/L E/L—=FE'/L
Constant: )
L)
A

Figure 2.3: Operational semantics of PEPA
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2.3.4 CTMC underlying PEPA model

The memoryless property of the exponential distribution, which is satisfied by the durations
of all activities, means that there is a CTMC underlying any given PEPA model [Hil96]. By
solving the matrix equation characterising the global balance equations associated with this
CTMC using linear algebra, the steady-state probability distribution can be obtained, from
which performance measures such as throughput and utilisation can be derived. Similarly the
matrix may be used as the basis for transient analysis, allowing measures such as response time
distributions to be calculated. In the next section, we will use the content adaptation example

to illustrate how to derive performance measures from a PEPA model.

2.3.5 Attractive features of PEPA

The most attractive and important features which the PEPA language has whilst other exist-
ing performance modelling paradigms may not, are compositionality, formality and abstrac-
tion [Abo]. Compositionality divides a system into its subsystems with the associated inter-
actions amongst them. Formality gives a precise meaning and description to all terms in the
language. Abstraction builds up complex models from detailed components while disregarding
the internal behaviour when it is unnecessary. For a brief comparison with queueing networks,
Petri nets and their stochastic extensions, please refer to the following Table 2.1. A more de-

tailed comparison can be found in [DHR95, HRRSO01].

Compositionality | Formality | Abstraction
Queueing Networks Yes No No
Petri Nets and Extentions No Yes No
PEPA Yes Yes Yes

Table 2.1: Comparison between PEPA and other paradigms

2.4 Performance Measures and Performance Evaluation for Small

Scale Content Adaptation Systems

This section will present the use of PEPA to analyse the performance of the mechanisms used
to adapt content and services to the users’ needs. The system is based, primarily, on the use of a

personal assistant agent to specify and control what the user needs and constraints are in order
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to receive a particular service or content. This interacts with a content adaptation mechanism
that resides in the network. We will discuss what kind of performance measures are of interest
and how to derive these measures from the system. Performance of the system, as we will see,

depends upon an efficient negotiation, content adaptation, and delivery mechanism.

2.4.1 PEPA model and parameter settings

Based on the architecture and working cycle presented in the previous subsection, this section
defines the PEPA model of the content adaptation system. The system model is comprised of
four components, corresponding to the four major entities of the the architecture, i.e., the PDE,
the AM, the CA and the C/S Provider. Each of the components has a repetitive behaviour,
reflecting its role within the working cycle. There is no need to represent all aspects of the
components’ behaviour in detail, since the level of abstraction is chosen to be sufficient to
capture the time/resource consuming activities. Below, PEPA definitions for the components

are shown.

In Section 2.3.2, we have given the PEPA definition for the PDE. For convenience, we present

it again.

PDE: The behaviour of the PDE begins with the generation of a request for content adaptation,
represented as action pde_ext_cs_req. The rate here reflects the expected rate at which the
user will submit requests for content adaptation. The next event is to pass the request to the
AM, pde_int_cs_req, which is a synchronous activity. After that, the PDE waits for a response.
The model reflects that there are two possible responses, by having two possible activities:
receiving the content from the C/S Provider directly or receiving the adapted content from the
CA, which are represented by csp_to_pde and ca_to_pde respectively. The rates T here indicate
that for the PDE both activities are passive, and their rates are determined by their cooperation
partners—the C/S Provider and the CA respectively—reflecting their relative probabilities. In
each case the final action of the PDE is to send appropriate information to the user interface,

pde_user_inter face. After completing this action, the PDE goes back to the initial state.
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PDE;
PDE,
PDE;

PDE,

AM: After receipt of a request from the PDE, pde_int_cont_req, the AM asks for and receives
the content/service context from the C/S Provider, represented as csp_cc_req and csp_cc_res
respectively. Depending on the received information, there are two choices for the subsequent
action, am_assimilation. The rates of these two competing activities reflect their relative
probabilities. Here the probabilities are equal, thus are 0.5. If the C/S Provider can offer the
desired content without further adaptation, the AM requests the C/S Provider to provide the
content to the PDE directly (am_cont_req) and then goes back to its initial state. Otherwise,
the AM will request the context from the CA, ca_states_req. Based on the response from the
CA (ca_states_res), an adaptation decision and plan will be made (am_decision) and then be

forwarded to the C/S Provider (am_adapt_plan). After that, the AM goes back to its starting

state.

AM,
AM,
AM;
AM,

AM;5
AMg
AMy
AMg
AMy

Similarly we can define the PEPA models for the CA and the C/S Provider respectively.

(pde_ext_cont_req, Tpde_ext_cont_req)-PDE2
(pde_int_cont_req, Tpde_int_cont_req) - PDEs
(csp_to_pde, T).PDE,

(ca_to_pde, T).PDE,

(

pde_user_interface, rpge_user_interface ).PDE;

pde_int_cont_req, T).AMy

CSp_cc_Teq, Tesp cereq) -AMs

csp_cc_res, T).AM,

am_assimilation, 37am_assimitation)-AMs
am_assimilation, 37am_assimitation)-AMog
ca_states_req, Tcaistategj'eq) AMg
ca_states_res, T).AMy

am_decision, r'qm_decision ) -AMs
am_adapt_plan, Tam adapt_plan)-AM;

(
(
(
(
(
(
(
(
(
(

am_cont_req, Tam_cont_req)-AM;
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CA:
CA; £ (ca_states_req, T).CAy
CA, ¥ (ca_states_res, Teq_states.res)-CAs
CAs < (csp_call_ca_adapt, T).CAy
CA, =) (ca_adaptation, veq_adaptation)- CAs
CA; ¥ (ca_to_pde,Tcq topde)- CA1
C/S Provider:
cSP; Z  (csp_ce_req, T).CSPy

(
csp, ¥ (csp_cc_res, Tesp ceres). CSPs
cspy; < (am_cont_req, T).CSP,
(am_adapt_plan, T).CSP5
csp, £ (
- (

ospPs ¥

csp_to_pde, Tesp to_pde)- CSP1

csp_call_ca_adapt, Tcsp_call_caadapt)- CSP1

System Equation: The final part of the definition of the model is the system equation which
specifies how the complete model is constructed from the defined components. It specifies how
many copies of each entity there are present in the system, and how the components interact,
by forcing cooperation on some of the activity types. For our model the system equation is as
shown below, where M represents the number of independent copies of the PDE in the system,
which is a variable of some of our experiments. Similarly, N, P, and () represent the number
of copies of the AM, CA and C/S Provider respectively. Here N, P, and () are set to one in this
chapter, reflecting that there is only one AM, CA and C/S Provider in the model.

PDE; [M] b1 ((AM1 [N] B CAJ[PD =3 CSP; [Q]) ,

where
Ly = {pde_int_cont_req,ca_to_pde,csp_to_pde} ,
Ly = {ca_states_req,ca_states_res},
Ly = {esp-ccreq,csp-ccres,am_cont_req,am_adapt_plan, csp_call_ca_adapt} .

As in all quantitative modelling it is important that the parameters used within the model are
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Action Description Duration | Rate
pde_ext_cont_req user inputs an C/S request 1000 1
pde_int_cont_req PDE forwards the internal C/S request to AM 60 16.7
pde_user_interface | PDE forwards the adapted C/S to user’s interface 83.3 12
am_assimilation AM assimilates the contexts 333.3 3
am_cont_req AM forwards the content request to C/S Provider 60 16.7
am_decision AM makes an adaptation decision 333.3 3
am_adapt_plan AM forwards the adaptation plan to C/S Provider 60 16.7
ca_states_req AM asks for CA’s states 60 16.7
ca_states_res CA transmits information to AM 60 16.7
ca_adaptation CA’s adaptation process 1000 1
ca_to_pde CA transmits the adapted content to PDE 150 6.7
csp_cc_req AM asks for C/S Provider’s context 40 25
csp_cc_res C/S Provider submits the context to AM 40 25
csp_call_ca_adapt | C/S Provider forwards the content to CA for 150 6.7

adaptation
csp_to_pde C/S Provider forwards the content to PDE 150 6.7

Table 2.2: Parameter settings (unit of duration: millisecond)

as realistic as possible if the analysis is to generate useful results. In our model each of the
activities in the model must be assigned an appropriate activity rate. In order to do this we
set similar parameter values to the published measurement results in the literature [CCCO05a,
CCCO05b, CCLO05], which are based on the real implementation of some experimental system.
The resulting parameter values are shown in Table 2.2, together with the intuitive explanation
of each parameter. Note the rate represents how many activities can be completed in unit time,
which in our case is one second. The final additional parameter is the number of independent
PDE entities active within our system. In these initial experiments we assume that this param-
eter has value one, unless otherwise stated. Experiments in this chapter are conducted using
the PEPA Eclipse Plug-in and associated tools. More details on these tools can be found at

http://www.dcs.ed.ac.uk/pepa.

2.4.2 Performance measures and performance evaluation: throughput and util-

isation

In the following, we will discuss the performance measures of interest in the content adap-
tation system: adaptation throughput, utilisation efficiency, and response time. Moreover, a

performance evaluation of the system will be presented.
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As we have mentioned, for any given PEPA model, there is an underlying CTMC. Assume
the state space of this CTMC is .S, and the infinitesimal generator is (), then the steady-state

probability distribution 7 can be found through the global balance equation
Qm =0 2.1

with the normalisation condition

> w(s) =1, 2.2)

seS

where 7(s) is the steady-state probability that the model is in the state s € S.

If the states of a Markov chain are assigned rewards, i.e. a reward structure is associated
with this Markov chain, then this Markov chain is called a Markov reward model [How71].
The performance measures of interest can be represented by using this kind of Markov reward
structure [CH96]. For example, for the CTMC underlying the given PEPA model, we define a
function p : S — R, which associates a reward p(s) to a state s € S. A performance measure

such as throughput or utilisation can be then calculated as the average reward R:

R=E[p] = pls)n(s).

seS

Following [CCE™03, Hil96], the definition of throughput of an activity is the average number
of activities completed by the system during one unit time (one second). We are interested in
the throughput of the activity “ca_adaptation” in the content adaptation system, since it re-
flects how fast the system runs the adaptation. According to the PEPA model, only C'44 can
perform this activity. Therefore, the population of C'A4 and the rate of this activity (notice
that the rate indicates the average number of the activity completed by the component in a unit
time), i.e. 7cq_adaptations determines the reward function of the throughput of ca_adaptation:
p(s) = s[C A4|7cq_adaptation, Where s|C' A4] represents the number of C' Ay in the state s. In par-
ticular, if s[C'A4] = 0, then the reward p(s) is zero. The average throughput of ca_adaptation

is thus given as:

Thr(ca_adaptation) = E[p] = Z 7(8)s[C A4)Tcq_adaptation-
seS

Obviously, this throughput is affected by the steady-state probability distribution 7 and the

29



Background

activity rate 7cq_adaptation (NOtice that rcy qdaptation can also affect ). Intuitively, increasing
the rate of adaptation or decreasing its delay can improve its throughput. From Figure 2.4, it
can be observed that the throughput of adaptation is sensitive not only to its own rate but also

to the rate of AM’s decision when the latter approaches lower rates.

Throughput of CA Adaptation
Throughput of CA Adaptation

0.1 I I I I
0.2 0.4 0.6

I I I L 014 I I I I I I I I L
1 1.2 1.4 1.6 1.8 2 0.5 1 15 2 25 3 3.5 4 4.5 5 5.5

0.8
The Rate of CA Adaptation The Rate of AM Decision

(a) Impact of the Adaptation rate on its throughput  (b) Impact of the AM decision rate on the adaptation
throughput

Figure 2.4: Throughput of the CA adaptation ((M,N, P,Q) = 1)

The system manager’s interests include not only the speed of the system’s operation but also
the system’s utilisation efficiency. Increasing the adaptation rate speeds up the running of the
whole system. However this does not imply that the system is more efficiently utilised. To
illustrate, we introduce the definition of utilisation, i.e. the probability that a component stays
in a local state. For the CA, there are five local states, CA;, i = 1,---,5. C Ay is the state of
waiting for and receiving the context requirement from the AM. The utilisation of the idle state

CA; of the CA in a state s € .5, is defined as the proportion of the population of C'A; in the

CA
total population of the CA, N¢ 4, that is, the corresponding reward function is p(s) = ngﬂ
CA
Thus the average utilisation of C'A; is defined as
. S[CAl] >
Util(CA;1) = E[p] = —— | nw(s). (2.3)
=5 =Y (220 ) vto

seSs

If there are no synchronisations, the probabilities of the CA in its five states are proportional
to their average time for completing the respective activities. In this case we would expect
C A;’s occupancy to be small. However, the CA has to synchronise with other events, which

means that C'A; corresponds to the longest time in this component with a proportion of about
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65.9% (see Figure 2.5 (a)). Moreover, the smaller the adaptation’s duration is, the bigger C'A;’s
proportion (see Figure 2.5 (b)). When the CA operates without any synchronisation delays,

C Ay’s proportion could be 4.23% (or & 60 +1583150 T1o00)» thus the CA has sufficient capacity

to serve more requests, and be better utilised.

CAl

0.639

0,012
0,106

(a) State occupancy of the CA

o
3
o

Proportion of CA1
o o
o o o I
g 2 a =

o
4}

1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
The Rate of CA Adaptation

(b) Proportion of CA idle state occupancy vs adaptation rate

Figure 2.5: Utilisation of the CA

We should point out that for different communication and computer systems, the performance
measures of interest may be different. For example, in the papers [WLH09b, WLH09a] which
present the performance evaluation of mobile networks by PEPA, the metrics of interest in-
clude handover rate and blocking probability. In [RV06, KV05], the authors are interested in
using collision probability and channel utilisation to measure the performance of 802.11 Ad-

Hoc networks. However, these metrics can nevertheless be derived through the Markov reward
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approach. For our content adaptation system, adaptation throughput and system utilisation ef-
ficiency are of interest to the system manager while response time is important to the user.
However, in general the measure of response time cannot be derived through the reward ap-
proach. In the next subsection, we will show how to derive the response time from the content

adaptation model.

2.4.3 Performance measures and performance evaluation: response time

The response time considered here is the duration between the input of a request to the system
and the return of the (adapted) content. This performance metric has a major impact on users’
satisfaction, since it measures the users’ waiting time for the desired content while reflecting

the operation speed of the system.

The service corresponding to the input request can be classified into two cases, according to
whether the CA’s adaptation is needed. See the following two “service flows”, which reflect the
working cycle of the system. In service flow 1, the AM asks the C/S Provider to send the content
to the PDE directly, without the CA’s participation. In service flow 2, the CA’s adaptation and
the interactions between the CA and the other entities are needed. Of course, service flow 2
costs more time. As we mentioned in the PEPA definition of the AM, the probabilities of these

two flows being chosen are set to be equal.

Service flow 1

start activity =
pde_int_cont_req — csp_cccreq — cSp.ccres —  am_assimilation —

am_cont_req — csp_to_pde

= stop activity

Service flow 2

start activity =

pde_int_cont_req — cspccreq — csp_ccres —  am_assimilation —
ca_states_.req — ca_states_res — am_decision — am_adapt_plan —
csp_call_ca_adapt — ca_adaptation — ca_to_pde

= stop activity

Clearly, we cannot derive the response time from a PEPA model through the reward approach,
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since the response time is a random variable, which is specified by the duration of the service
flow and thus is related to multiple states rather than a single one. However, an associated tool
for PEPA, ipc/Hydra [BDGK, BK04], can help to obtain the response time based on the state
space and the equilibrium probability distributions. In this chapter, all experiments related to

the response time are carried out using this software.

The cumulative distribution functions of the system’s response time under our previous param-
eter setting are demonstrated in Figure 2.6. Figure 2.6 (a) shows that the response time has a
strong dependence on the content adaptation rate, when the adaptation rate is less than one, cor-
responding to an average adaptation time of one second. Conversely, Figure 2.6 (b) shows that
the AM’s rate of decision making has little effect on the response time of the system, unless the
rate is less than 1.5. From a system perspective, if complexity in the AM can be traded off with
complexity in the CA, perhaps by a more involved process of selecting adaptation parameters,

the response time could be lowered.

The effect of increasing the adaptation rate on system performance has been illustrated in Figure
2.9 (a). As adaptation rate increases, the adaptation throughput increases, while the response
time and the utilisation efficiency decrease. Thus, an improved user experience, as measured
by response time, can be obtained through improving the adaptation rate, at the expense of

increased redundancy in the CA.

A full network would comprise many PDEs that co-exist and share system resources. This has
the effect of changing the load on system components, altering throughput and waiting times.
Figure 2.8 (a) shows that the CA’s waiting time decreases as the number of PDEs increases, due
to more frequent requests being received, while Figure 2.8 (b) illustrates that the throughput of
adaptation is increasing, due to the number of requests that are being served. For example,
four PDEs result in more than 0.45 adaptations per second being completed compared with 0.2

adaptations in the case of one PDE.

On the other hand, more PDEs, which make other components more busy, results in longer user
waiting times or the system’s response time in general (see Figure 2.7). Figure 2.9 (b) illus-
trates the effect of increasing the number of PDEs being supported by a system on adaptation
throughput, response time and utilisation of the CA. It shows that there is a trade-off between
the response time that can be achieved and the load placed on the adaptation process in terms

of achieved throughput and utilisation. This information can be used in the planning process to
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Cumulative Distribution Function

Rate of CA Adaptation Time

(a) Response time vs adaptation rate

Cumulative Distribution Function

Rate of AM Decision Time

(b) Response time vs AM decision rate

Figure 2.6: Response time as a function of adaptation rate and AM decision rate
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Response Time vs Number of PDEs
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Figure 2.7: Response time changes with the number of PDEs
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Figure 2.8: Throughput and utilisation changes with the number of PDEs
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Figure 2.9: Adaptation rate and the number of PDEs’ impact on the system performance
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appropriately dimension a system to achieve its potential.

As illustrated by Figure 2.9, as well as the reward equation, R = Y __¢ p(s)7(s), the system
performance is affected by the activity rates and the populations of components (in the reward
equation, these two factors determine the steady-state probability distribution 7). But we do
not know how these factors explicitly and analytically impact on the performance. As we will
see in Chapter 7, the performance is governed by a set of nonlinear algebra equations in the
sense of approximation. Based on those nonlinear equations, we clearly know how the system
will perform when the rates or populations change. Since these equations can be easily derived
according to the corresponding PEPA model, the performance optimisation based on them will

be much simpler and more convenient.

2.4.4 Enhancing PEPA to evaluate large scale content adaptation systems

The previous subsections have presented the performance analysis for the content adaptation
framework proposed by the Mobile VCE. Furthermore, for the architecture design of the com-
ponent adaptation manager, we have shown in [ADLMO08] that the adaptation gateway of this
entity is a potential bottleneck for the system, suggesting that concurrent handling of adaptation
requests should be adopted. In the aforementioned papers [Dey00, CCC05a, CCC05b, CCLO05],
some performance analyses, especially the distribution of the response time have also been

presented.

However, these analyses are based on small scale systems, i.e., not many users and servers
are taken into consideration. A realistic system may comprise a large number of users and
entities. Modelling systems at large scale can provide some insights about the system perfor-
mance which cannot be obtained via small scale modelling. For example, as we will see from
Figure 7.7(a) and Figure 7.7(b) in Chapter 7, the throughput of activities will remain flat after
some critical points in terms of the numbers of users, reflecting no improvement of performance
after the system resources are fully utilised. This important fact cannot be illustrated by results

such as those shown in Figure2.8 (b), which are based on small scale modelling.

Performance evaluation for large scale content adaptation systems has been considered in [DHL].
In this paper, the Monte Carlo simulation method is adopted to derive the response time from
the system model. But the computational complexity, mainly in terms of the convergence speed

of simulation, is very high and thus it is not possible to make real-time performance monitoring
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or prediction available.

In order to efficiently carry out performance evaluation as well as qualitative validation for large
scale content adaptation systems, we have to find appropriate approaches. In the following
chapters we will present our enhancement and investigations for PEPA. The new techniques
will be utilised to assess large scale content adaptation systems, which will be presented in

Chapter 7.

2.5 Related work

In the past fifteen years, many techniques dealing with the state-space explosion problem have
been developed for performance modelling paradigms including the stochastic process algebra

PEPA. This section presents a brief overview on these techniques, with a focus on PEPA.

2.5.1 Decomposition technique

For a Markov process with large state space, it is often not possible to get the exact solution or
the equilibrium distribution because there are not enough time and storage resources to generate
the states and the transition rates, or to solve the associated balanced equation. One approach
proposed to deal with this problem is that the solution of the single system can be formed
by a set of solutions which correspond to a set of subsystems. This approach is introduced
by Simon and Ando in [SA61] and called the decomposition / aggregation approach to the
solution of CTMC. A variety of decompositional techniques have been proposed to aid in
the solution of large Markov processes. According to the paper [Hil98] written by Hillston,
these decompositional techniques can be classed into two categories: product form solution
and aggregated decomposed solution. The following introduction to these techniques is mainly

based on the paper [Hil98].

2.5.1.1 Product form solutions

If a Markov process can be decomposed into subsystems which behave as if they are statisti-
cally independent, and the equilibrium distribution of this Markov process can be written as a
product of the equilibrium distributions of those subsystems, then this Markov process is said

to have product form solution or product form distribution. Clearly product form solutions are
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an efficient mechanism in deriving the performance from a Markovian model since there is no

need to generate the entire state space of the model.

Product form distributions have been widely used in the analysis of queueing networks [BCMP75]
and Petri nets. Based on earlier work on product form criteria for stochastic Petri nets [BS94,
HLT89, HT91], preliminary work on deriving product form criteria for stochastic process al-
gebras such as PEPA has been reported by Sereno in [Ser95]. In this paper, the method to
characterise the class of models which have a product form is based on the routing processes,
and relies on vector representations of the state and the action of a model. In this approach,
the routing process is a defined Markov chain in which the states correspond to the actions of
the PEPA model, and its balance equations correspond to the traffic equations of a queueing
network. As pointed out in [Ser95], if the state space of this process can be partitioned into

equivalence classes of enabling actions, then a product form solution exists.

A product form in the context of stochastic Petri nets, where the decomposition is carried out
over subnets, has been investigated by Lazar and Robertazzi in [LR91]. The results in [LR91]
are generalised by Boucherie in [Bou94] to characterise a class of Markov processes. The
processes belonging to this class can be formed as the product of a set of Markov processes
which compete over a set of resources. In [HT99], Hillston and Thomas characterise this class
of Markov processes in the PEPA language: these models consist of independent components,
which give rise to the constituent Markov processes of the underlying Markov processes, and
these components are connected indirectly through synchronisation with resource components.
In this paper, the cases in which these models exhibit a product form solution have been identi-
fied, so that the components of the model are solved in isolation, these partial solutions subse-

quently being combined to give a solution of the complete model.

A new derived combinator for PEPA has been presented and used to construct models which
have an insensitive structure by Clark and Hillston in the paper [CHO2]. This structure is
characterised by an underlying CTMC that is insensitive, that is, its steady-state distribution
depends on the distribution of one or more of the random variables representing residence in
a state only through their mean. In this structure, a particular set of activities are therefore
not necessarily assumed to be exponentially distributed. The identified model structure has
a product form solution, which does not match the previous criteria for the currently known

stochastic process algebra product form classes [CHO2].
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Not all PEPA models have product form solution, because the necessary structural conditions
are stringent. Some classes of models have been transformed into new models which are prod-

uct form, based on modifications of the PEPA expressions representing them [THOO].

Product-form solutions in Markovian process algebras such as PEPA can be constructed using
the Reversed Compound Agent Theorem (RCAT), as shown by Harrison in [Har03]. The RCAT
is a compositional result used to determine the reversed processes. From a reversed process,
a product form solution for the joint state probabilities follows directly. Therefore, the RCAT
provides an alternative methodology for finding product-form solutions in PEPA. The RCAT
has been generalised by the same author in two ways in [Har04]. The first generalisation was,
by relaxing two conditions of the original RCAT, to yield a more general result that applies to
a wider class of concurrent systems. Another generalisation was “obtained and used to derive
the equilibrium state probabilities in a similar staged queue with processor sharing queueing
discipline”, which lead to a non-product form solution for a class of queueing networks with
global state-dependence. Some further investigation and application of non-product forms can
be found in [Har06] and [ThoO6]. More recently, a type of product-form was obtained by
Fourneau et al. in [FPS07] for a pair of CTMCs, expressed as stochastic automata networks,
which did not have synchronised transitions but in which the rate of a transition in either chain
depended on the current state of the other chain. The conditions derived in [FPSO7] for a
product-form to exist at equilibrium, have been obtained alternatively in [Har09] using a special

case of RCAT.

2.5.1.2 Aggregated decomposed solutions

In addition to the product form solution, there is another decomposed solution technique that
is suggested by the stochastic process algebra model structure, called the aggregated decom-
posed solution. This approach involves a stochastic representation of the interactions between
components, and the solution of the single model is obtained by a set of solutions of submodels

using an aggregated version of the original model.

Work on time scale decomposition in PEPA, based on Courtois’s near complete decompos-
ability [Cou77], has been presented by Hillston and Mertsiotakis in [HM95]. Time scale de-
composition is a popular aggregated decomposition technique, which decomposes a CTMC
so that short term equilibrium is reached within single partitions, and partition changes occur

only rarely as the process approaches its long term equilibrium [SA61, HM95]. The work re-

39



Background

ported in [HM95] is inspired by related work on time scale decomposition of stochastic Petri
nets [ARI89, BT93], and relies on a classification of all actions relative to some threshold rate.
Later work to tackle the problem of hybrid components which enable both fast and slow actions
is presented in [Mer98, Mer97]. The slow behaviour of the hybrid was extracted into a separate

shadow component, making the original component passive with respect to these actions.

Decision free processes is another approach to the decomposition of a class of stochastic pro-
cess algebra models. In this approach, the model is partitioned into components, and they are
then recombined so that one component is fully represented while the other is reduced to a
minimal form, usually consisting of a single transition. For the work about the application of

this approach to throughput approximation, see [Mer98, MS96, MS97].

There are several other kinds of decomposition techniques including the technique based on the
notion of near-independence and the technique of decomposition via synchronisation points.
Components are considered by Ciardo and Trivedi to be near-independent if they operate in
parallel and rarely interact [CT91]. Following the basic idea that near-independent components
can be solved independently in conjunction with a graph model which represents the dependen-
cies, a near-independence based decomposition technique was proposed for stochastic reward
nets [CT91]. It has been suggested by Bohnenkamp and Haverkort in [BH97] that this tech-
nique could be adapted for stochastic process algebra models. In the proposed approach the
dependence between parallel components was recognised as the actions on which they coop-
erate. In [BH99] Bohnenkamp and Haverkort considered, within a stochastic process algebra
framework, a class of models in which there was a fixed number of sequential processes run-
ning in parallel and synchronising on the same global set of actions. Within this class of models

their solution technique is exact with respect to throughput and local steady-state probabilities.

2.5.2 Tensor representation technique

Another technique which has been taken to exploit the model compositionality is the use of
Kronecker algebra. Kronecker algebra representations were first developed by Plateau in the
context of stochastic automata networks [Pla84, Pla85], to analytically represent the genera-
tor matrix of the Markov process underlying a stochastic automata network model. This tech-
nique can relieve the state-space explosion problem arising in the numerical solution of Markov
chains since the solution can be achieved via this tensor expression of submatrices and the com-

plete matrix does not need to be generated. More recently, Kronecker-based solution techniques
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have been developed for various Petri net based formalisms, see [Don94,Kem96,CM99,DK00].

Analogous to the representation of a stochastic automata network, it has been demonstrated
by Hillston and Kloul in [HKO1] that PEPA models can be represented analytically using Kro-
necker algebra and solved without constructing the complete generator matrix. Furthermore,
this Kronecker representation has been combined with the aggregation technique to deal with
larger models [HKO07]. However, as pointed out in [HKO07], these techniques “can be viewed as
shifting the problem rather than avoiding it, in the sense that there are still fundamental limits

on the size of model which can be analysed”.

In addition, this tensor representation technique has also been applied to an extension of PEPA
(see [ERO00]) and other stochastic process algebras such as Markovian process algebra [Buc94]

and TIPP [RS94].

2.5.3 Abstraction and stochastic bound techniques

Smith discussed another way to analyse large scale PEPA models in his series of papers [Smi09a,
Smi09b,Smi09c], i.e. using abstraction — constructing a smaller model that bounds the proper-
ties of the original. Abstract Markov chains [FLW06,KKLWO07] and stochastic bounds [FLQO04,
SD83] are two techniques used for producing bounded abstractions of a CTMC: the former can
be used to bound transient properties, and the latter for various monotone properties such as
the steady-state distribution [Smi09a]. These two techniques are originally specified and used
in the context of Markov chains, but have been extended, based on a Kronecker representation
for the generator matrix of a PEPA model [HKO1], so that they can be applied compositionally
to PEPA models [Smi09b]. An algorithm for constructing a compositional upper bound of a

PEPA component has also been presented in [Smi09b].

2.5.4 Fluid approximation technique

The techniques reported above are based on the discrete state space. However, as the size of
the state space is extremely large, these techniques are not always strong enough to handle the
state-space explosion problem. To avoid this problem Hillston proposed a radically different
approach in [HilO5a] from the following two perspectives: choosing a more abstract state rep-
resentation in terms of state variables, quantifying the types of behaviour evident in the model;

and assuming that these state variables are subject to continuous rather than discrete change.
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This approach results in a set of ODEs, leading to the evaluation of transient, and in the limit,

steady state measures.

An interpretation as well as a justification of this approximation approach has been demon-
strated by Hayden in his dissertation [HayO7a]. In [Hay07a, HBO8], generation of similar sys-
tems of coupled ODEs for higher-order moments such as variance has been addressed. Ad-
ditionally, the dissertation [HayO7a] discusses how to derive stochastic differential equations

from PEPA models.

More recently, some extensions of the previous mapping from PEPA to ODEs have been pre-
sented by Bradley et al. in [BGHO7]. In particular, passive rates are introduced into the fluid
approximation. In the recent paper [HB10], different existing styles of passive cooperation
in fluid models are compared and intensively discussed. Moreover, a new passive fluid se-
mantics for passive cooperation, which can be viewed as approximating the first moments of
the component counting processes, has been provided, with a theoretical justification. The
paper [BHM109] considers the application of this fluid approximation approach with modi-
fications in the context of epidemiology. In this paper, the notions of side and self-loops are
added to the activity matrix, and the rates are calculated differently, for the purpose of deriving
from PEPA models the most commonly used ODEs in the context of epidemiology. In [Tri09]
by Tribastone, a new operational semantics is proposed to give a compact symbolic representa-
tion of PEPA models. This semantics extends the application scope of the fluid approximation
of PEPA by incorporating all the operators of the language and removing earlier assumptions

on the syntactical structure of the models amenable to this analysis.

The fluid approximation approach has also been applied to timed Petri nets to deal with the
state-space explosion problem [SR05, MRS06]. The comparison between the fluid approx-
imation of PEPA models and timed continuous Petri nets has been demonstrated by Galpin
in [Gal08]. This paper has established links between two continuous approaches to modelling
the performance of systems. In the paper, a translation from PEPA models to continuous Petri
nets and vice versa has been presented. In addition, it has been shown that the continuous ap-
proximation using PEPA has infinite server semantics. The fluid approximation approach has
also been used by Thomas to derive asymptotic solutions for a class of closed queueing net-
works [Tho09]. In this paper, an analytical solution to a class of models, specified using PEPA,
is derived through the ODE approach. It is shown that “this solution is identical to that used for

many years as an asymptotic solution to the mean value analysis of closed queueing networks”.
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Moreover, the relationship between the fluid approximation and the underlying CTMCs for a
special PEPA model has been revealed by Geisweiller et al. in [GHS08]: the ODEs derived
from the PEPA description are the limits of the sequence of underlying CTMCs. It has been
shown in [Gil05] by Gilmore that for some special examples the equilibrium points of the ODEs
derived from PEPA models coincide the steady-state probability distributions of the CTMCs

underlying the nonsynchronised PEPA models.

In addition, there are several papers which discuss how to derive response time from the fluid
approximation of PEPA models. In [BHKSO08], by constructing an absorption operator for the
PEPA language, Bradley et al. allow general PEPA models to be analysed for fluid-generated
response times. Clark et al. demonstrate in [CDGHO08] how to derive expected passage response
times using Little’s law based on averaged populations of entities in an equilibrium state. This
technique has been generalised into one for obtaining a full response-time profile computing
the probability of a component observing the completion of a response at a given time after
the initiation of the request, see [Cla09]. Moreover, an error in the passage specification in the

approach taken in [BHKSO08] has been uncovered and rectified in [Cla09] by Clark.

The ODE method associated with the PEPA language has demonstrated successful application
in the performance analysis of large scale systems. In Harrison and Massink’s paper [HMO09],
quantitative models of a class of ubiquitous systems, including a guidance system to assist
out-patients in a hospital, are considered and analysed using PEPA and the associated ODE
approximation approach. The analyses provide insight into the impact of a ubiquitous system
design on the congestion experienced by users in different traffic situations. This paper shows
that “the ODE approach is an attractive alternative to simulation to explore the effect on visitor

flows for different design options during early design phases”.

Zhao and Thomas’s paper [ZT08] considers a PEPA model of a key distribution centre. By
combining successive internal actions into a single action with a modified rate, the system be-
haviour is approximated by a simpler model, a queueing network model which gives explicit
performance measures. The fluid approximation was derived from the simplified models and
compared to the queueing approximation in [TZ08,ZT09]. A limitation of the fluid approxima-

tion approach has been pointed out in [ZT09]: not all desired metrics can be obtained.

The work on the fluid approximation of PEPA reported above mainly deals with some exten-

sions to make this approach more applicable or demonstrates its applications in some specific
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areas. However, there are not many discussions on the fundamental problems, such as the exis-
tence, uniqueness, boundedness and nonnegativeness of the solution, as well as the its asymp-
totic behaviour as time tends to infinity, and the relationship between the derived ODEs and the
underlying CTMCs for general PEPA models. As for applications, the basic problem of what
kind of performance metrics can and cannot be derived through this approach, has also not
been discussed generally and in detail. This thesis will focus on these topics and give answers

to these problems.

2.6 Summary

In this chapter, we have introduced the content adaptation framework proposed by the Mobile
VCE as well as the PEPA language. For small scale content adaptation systems based on
this framework, the PEPA modelling and evaluation have been presented. Some parts of this
work have been published as a joint work in the Journal of Wireless Personal Communications,
see [DHLO9]. This chapter has also presented a review of the related work on dealing with
the state-space explosion problem in the current performance modelling paradigms, with an

emphasis on the PEPA language.
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Chapter 3

New Representation for PEPA: from
Syntactical to Numerical

3.1 Introduction

This chapter defines a numerical presentation scheme for PEPA, for the purpose of applying
powerful mathematical tools and methods for both qualitative and quantitative analysis of large
scale PEPA models with repeated components. In this presentation scheme, a state of a system
is represented by a numerical vector, with each entry being a non-negative integer recording
the population of the components in the corresponding local derivative. Any transition between
states is indicated by a labelled activity, or equivalently, a transition vector. All the transition
vectors form an activity matrix, which captures the structural information of the given model.
The average duration of labelled activities or transitions are specified by transition rate functions

that are defined to capture the timing information of the system.

The fact that the structural and timing information is captured means that the representation can
provide a platform to directly employ mathematical methods such as linear programming and
differential equations to analyse a PEPA model. This chapter presents a technical preparation
including the definitions and some fundamental investigations of the new representation, for

the further study of PEPA appearing in the following chapters.

The remainder of this chapter is structured as follows. Section 3.2 gives the definition of the
numerical vector form which is used to represent the states of PEPA models. The efficiency of
this form is demonstrated. Labelled activities and activity matrices are defined in Section 3.3
while Section 3.4 defines transition rate functions. The consistency between these definitions
and PEPA language is formulated as propositions. An algorithm is given for automatically
deriving the labelled activities, activity matrix and transition rate functions from any PEPA
model. Section 3.5 presents an initial discussion of how to utilise some efficient approaches to

investigate PEPA models. Finally, a summary is presented in Section 3.6.
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3.2 Numerical Vector Form

The numerical vector form, proposed by Hillston in [Hil96] as a model aggregation technique
to represent the states of PEPA models with repeated components, can efficiently decrease
the size the underlying state space from exponential to at most polynomial in the number of

components. This section discusses the definition and efficiency of the numerical vector form.

3.2.1 State-space explosion problem: an illustration by a tiny example

Let us first consider the following tiny example. A User-Provider system is composed of
two types of entities: User and Provider. The communication between them is through a
shared activity task;. After task, is fired, User; becomes U sery while Provider; becomes
Providery simultaneously. Users can fire tasko and then go back to Usery. Providers will
become Provider; when reset is fired. The PEPA model for this User-Provider system is

illustrated below:

Model 1. PEPA Model of User-Provider System
PEPA Definition for U ser:

Usery d:ﬁ(taskzl, a).Users

Usery d:ef(taskg, b).User;

PEPA Definition for Provider:

Providery d:ef(taskl, a).Providersy

Providery E(reset, d). Provider,

System Equation:

Useri]|---||Usery B4 Providery||- - - ||Provider;
{task1}

M copies N copies

The system equation in a PEPA model specifies how many copies of each entity are presented
in the system, and how the components interact, by forcing cooperation on some of the activity
types. In Model 1, the exact numbers of independent copies of the User and Provider, i.e.

M and N respectively, are both considered as variables. According to the semantics of PEPA
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originally defined in [Hil96], the size of the state space of the CTMC underlying Model 1 is
2M+N - That is, the size of the state space increases exponentially with the numbers of the
users and providers in the system. Consequently, the dimension of the infinitesimal generator
of the CTMC is 2M+N x 2M+N The computational complexity of solving the global balance
equation to get the steady-state probability distribution and thus derive the system performance,
is therefore exponentially increasing with the numbers of the components. When M and/or N
are large, the calculation of the stationary probability distribution will be infeasible due to
limited resources of memory and time. The problem encountered here is the so-called state-

space explosion problem.

Not only quantitative but also qualitative analysis suffers from the state-space explosion prob-
lem. For example, it is impossible to explore the entire state space with limited resources to
check whether there is a deadlock. In fact, even the derivation and storage of the state space

can become a problem since it is very large.

Fortunately, a model aggregation technique introduced by Gilmore et al. in [GHRO1] and by

Hillston in [Hil05a] can help to relieve the state-space explosion problem.

3.2.2 Definition of numerical vector form

We have introduced in 2.3.3 that in PEPA the state representation is in fact a labelled multi-
transition system. This is also termed the derivation graph. The usual state representation in
PEPA models is in terms of the syntactic forms of the model expression. Thus, as pointed
out in [HilO5a], each node in the derivation graph is a distinct syntactic form and each arc
represents a possible activity causing the state change. Clearly, if the action types are ignored,

the derivation graph can be considered to be the state transition diagram of a CTMC.

When a large number of repeated components are involved in a system, the state space of the
CTMC can be large, as Model 1 shows. This is mainly because each copy of the same type
of component is considered to be distinct, resulting in distinct Markovian states. The multiple
states within the model that exhibit the same behaviour can be aggregated to reduce the size of
the state space as shown by Gilmore et al. [GHRO1] using the technique based on a vector form.
The derivation graph is therefore constructed in terms of equivalence classes of syntactic terms.
“At the heart of this technique is the use of a canonical state vector to capture the syntactic form

of a model expression”, as indicated in [Hil05a], “if two states have the same canonical state
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vector they are equivalent and need not be distinguished in the aggregated derivation graph”.

Rather than the canonical representation style, an alternative numerical vector form was pro-
posed by Hillston in [HilO5a] for capturing the state information of models with repeated com-
ponents. In the numerical vector form, there is one entry for each local derivative of each type
of component in the model. The entries in the vector are the number of components currently
exhibiting this local derivative, no longer syntactic terms representing the local derivative of the
sequential component. Following [HilO5a], hereafter the term local derivative refers to the local
state of a single sequential component, whereas derivative is used for a global state represented

in its syntactic form. The definition of numerical vector form is given below.

Definition 3.2.1. (Numerical Vector Form [Hil05a]). For an arbitrary PEPA model M with
n component types C;, i = 1,2,--- ,n, each with d; distinct local derivatives, the numerical
vector form of M, m(M), is a vector with d = )", d; entries. The entry m[C} ] records
how many instances of the jth local derivative of component type C; are exhibited in the current

state.

According to Definition 3.2.1, the discrimination between any two system states is characterised
by the two system vectors. That is, if the two vectors are different then the two states are

considered different, otherwise they are the same.

For a sequential component C; with the local derivatives C;, , Cj,, - - -, C;, , define

where m is the system vector. So m(C;) is a subvector of m, which can be considered the
restriction of the system vector in the context of the sequential component C’;. For convenience,
m(C;) is called the state vector of the sequential component C; or the state vector of component
type C;, or just C;’s vector for short.
Remark 3.2.1. Obviously m(Cij) > 0 for each C;;. At any time, each sequential component
d;
Jj=
the population of C; in the system. In other words, if there are M; copies of the sequential

stays in one and only one local derivative. So the sum of m(C;), i.e. ) 51, m[C; ], specifies

component C; in the system, then Z?;l m|[C;.] = M; for any system state.

The entries in the system vector or a sequential component’s vector are no longer syntactic

terms representing the local derivative, but the number of components currently exhibiting this
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local derivative. This model-aggregation technique can significantly reduce the size of the state

space, i.e. the number of the system states.

3.2.3 Efficiency of numerical vector form

By adopting the new representation technique, the number of the states of the system can be re-
duced to only increase (at most) polynomially with the number of instances of the components.
This fact is stated in the following Proposition 3.2.1. Before turning to this conclusion a lemma

is introduced, which will be used in the proof of the proposition.

Lemma 3.2.1.

d
#< (ar,a9, - ,ad):Zai:m,aj €ZT(j=1,2,---,d) p =
j=1

where #A is defined as the cardinality of the set A, i.e. the number of elements of A; Z™ is the
set of nonnegative integers. This a well-known combinatorial formula. Readers are referred to
Theorem 3.5.1 in [Bru98] for reference. Lemma 3.2.1 specifies how many solutions satisfy the

condition
a1, ag, - .- aad207 a; EZ(]: 172a"' ad)a

d
Zj:l aj =m.

Apply Lemma 3.2.1 to the vector of C; defined in the last subsection,

where, by Remark 3.2.1, provided there are M; copies of C; in the system, m(C;) satisfies

m[CZ1]7m[Cl2]7 7m[cidi] €z, G.1)
p .
Zj:l m[C’lj] = Mz

M; +d; — 1 _ . M;+d; — 1 .

Then there are at most solutions, i.e. states in terms of
di —1 di—1

. : Mi+di—1 ).

C’ in the system. The phrase “at most” used here is to reflect that is an upper
di —1

bound of the exact number of the states in terms of Cj, since the possible synchronisations in
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the PEPA model have not been taken into account in the restrictions (3.1) and thus the current

restrictions may allow extra freedom for the solutions. This argument leads to the following

Proposition 3.2.1. Consider a system comprising n types of component, namely C1,Co, - - - ,Cy,
with M; copies of the component of type C; in the system, where C; has d; local derivatives,

fori=1,2,--- n. Then the size of the state space of the system is at most

o Mi+di—1

[

< H (ml +d; — 1)d171 .

i=1 di—1 i=1
M;+d; —1 .
Proof. For each component type Cj, there are at most solutions for the
di —1
. " M;+d; —1
system vector. So the total number of states of the system is at most [ [\,
di —1
Notice
M; +d; — 1 M, +d;— 1) (M; +d; —2)---(M; +1 L
1) i d DO o) 5D e
d; — 1 (dl - 1)'
SO
o Mi+di—1 -
Y <[ +d; — )%
i=1 di —1 i=1
This completes the proof. O

Proposition 3.2.1 gives an upper bound, e.g. [ [\, (M; + d; — 1)%~1, for the size of the state
space of the given system. In this term, n and d; are fixed in the PEPA definition for the system,
while M; can be considered as variables which refer to the numbers of the repeated components.
This bound guarantees that the size of the state space increases at most polynomially with the
number of instances of the components. Since the state space of a model is the foundation
for both qualitative and quantitative analysis, the size of the state space mainly determines
the computational complexity of the state-space-based algorithms for analysing the system.
For example, since the current deadlock-checking algorithm needs to explore the entire space
to find whether there is a deadlock, so the efficiency, of course, depends on the size of the
state space. As for quantitative analysis, the performance measures such as throughput and
utilisation, obviously suffer the size of the state space because they derive from the equilibrium

probabilities distributed on each state in the space. Compared to the exponential increase of
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state space size, the benefit brought by the new representation is very significant. An illustration
of the state space represented in the numerical vector form for the previous example, is given

in the next subsection.

3.2.4 Model 1 continued

This subsection presents the state space for Model 1 in Section 3.2.1:

User) Z(tasky,a).Users
Usery Z(tasky, b).User
Providery dé(taskl, a).Providersy
Providery Z(reset, d). Provider,

User [M] X , Provideri[N].
1

{task

In the model, there are two component types, U ser and Provider; each has two local deriva-
tives, Usery, Usery and Provider;, Providery respectively. According to Definition 3.2.1,
the system vector m has four entries representing the instances of components in the total four

local derivatives, that is
m = (m[User,], m[Users], m[Provider], m[Providers))"
Let M = N = 2, then the system equation of Model 1 determines the starting state:
m = (M,0,N,0)" =(2,0,2,0)T :=s;.

After firing the synchronised activity task;, then one instance of User; and one copy of
Provider; become Usery and Providery simultaneously and respectively. Then the system
vector becomes sy = (1,1, 1,1)7, reflecting each local derivative being occupied by one com-

ponent. By enabling activities or transitions, all reachable system states can be manifested as

follows:
S1 = (2707270)T7 S2 = (1717171)T7 S3 = (1717270)T7
se=(1,1,0,2)", s5=(0,2,1,1)", s¢=(2,0,1,1)7, (32)
s7=(0,2,0,2)7, sg=(0,2,2,0)7, s9=(2,0,0,2)T.
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T
ry (2,0,2,0) wiz
(2,0,1,1)" taskl (11,2,0)"
e | A
task1
(2002 (LLL1) skl (0,2,2,0)"
\ reV wz /
task2 (1’ Lo, 2)T task1 (0’ 21, l)T reset
w rV
(0,2,0,2)

Figure 3.1: Transition between States (a revised version of the one in [Hil05a])

The transition relationship between these states is illustrated by Figure 3.1. As shown in (3.2)
and Figure 3.1, there are nine states in the state space of Model 1, i.e. the size of the state space

is 9. An upper bound of the size given by Proposition 3.2.1 is

M+2-1 N+2-1
2-1 2-1

=(M+1)x(N+1).

Since M = N = 2 considered here, the upper bound is (2+ 1) x (2+ 1) = 9, coinciding with
the size of the state space. Therefore, the bound given in Proposition 3.2.1 is sharp and can be

hit in some situations.

It is a significant improvement to reduce the size of the state space from 2M x 2V to

(M + 1) x (N + 1), without relevant information and accuracy loss. However, this does
not imply there is no complexity problem. In practice, when hundreds of components exist in
the system, for example M = N = 999, then (M + 1) x (N + 1) = 10°. This is still a
large number, so that even the storage may become a problem with limited memory, let alone
the analysis of the state space. The following table, Table 4.5, gives the runtimes of deriving
the state space in several different scenarios. All experiments were carried out using the PEPA
Plug-in (v0.0.19) for Eclipse Platform (v3.4.2), on a 2.66GHz Xeon CPU with 4Gb RAM run-

ning Scientific Linux 5. The runtimes here are elapsed times reported by the Eclipse platform.

If there are 400 users and 300 providers in the system, the Eclipse platform reports the error

message of “Java heap space”, while 400 users and 400 providers result in the error information
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(M, N) | (300,300) | (350,300) (400,300) (400,400)
time 2879 ms | 4236 ms | “Java heap space” | “GC overhead limit exceeded”

Table 3.1: Elapsed time of state pace derivation

of “GC overhead limit exceeded”. These experiments show that the state-space explosion prob-
lem cannot be completely solved by just using the technique of numerical vector form, even
for a tiny PEPA model. That is, in order to do practical analysis for large scale PEPA models
in terms of both qualitative and quantitative aspects, we need to go further to investigate PEPA
and develop associated efficient computational methods and tools. The study of these topics
constitutes the content of the next three chapters, whilst some basic technical preparation for
the further research is given in this chapter. In particular, in the following sections the activity
matrices and transition rate functions are defined to capture, especially in numerical forms, the

structural and timing information of PEPA models respectively.

3.3 Labelled Activity and Activity Matrix

The numerical representation of system states can not only decrease the size of the state space
and thus the associated computational complexity, but more importantly, it provides a numeri-
cal foundation for further qualitative and quantitative analysis for PEPA models. In the PEPA
language, the transition is embodied in the syntactical definition of activities, in the context of
sequential components. Since the consideration is in terms of the whole system rather than
sequential components, the transition between these system states should be defined and rep-
resented. This section presents a numerical representation for the transitions between system

states and demonstrates how to derive this representation from a general PEPA model.

3.3.1 Original definition of activity matrix

If a system vector changes into another vector after firing an activity, then the difference be-
tween these two vectors manifests the transition corresponding to this activity. Obviously, the

difference is in numerical forms since all states are numerical vectors.

Consider Model 1 and its transition diagram in Figure 3.2. Each activity in the model corre-

sponds to a vector, called the transition vector. For example, task; corresponds to the tran-
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, (2,0,2,0)"
reset wz
(2011/ skl (11.2,0)"
reV T fask2 r%y, T Vta\skZ ‘ Jtask: ‘ [task: ‘ [reset ‘
o taskl \ r skl . Usery -1 1 0
(200.2) (LLL1) ‘ (0.2.2,0) Usersy 1 -1 0
el task2 Provider -1 0 1
?m r/ tasl:\ T 4 . !
(1,1,0,2) (0,2,1,1) Provider, 1 0 -1
W ry
(0,2,0,2)

Figure 3.2: Transition vectors form an activity matrix

sition vector [t¢sk1 — (—-1,1,-1, l)T. That is, the derived state vector by firing task; from
a state, can be represented by the sum of 1****1 and the state enabling task;. For instance,
(2,0,2,0)7 4 1task1 = (1,1,1,1)7 illustrates that s; = (2,0,2,0)7 transitions into sy =
(1,1,1,1)7 after enabling task;. Similarly, s3 = (1,1,2,0)7 changing into s5 = (0,2,1,1)
after firing task; can be manifested as (1, 1,2,0)7 + [tesk1 = (0,2,1,1)T.

Similarly, tasks corresponds to 1****2 = (1,—1,0,0)T while reset corresponds to 1"%¢* =
(0,0, —1,1). The three transition vectors form a matrix, called an activity matrix, see the table
on the right side of Figure 3.2. Each activity in the model is represented by a transition vector
— a column of the activity matrix, and each column expresses an activity. So the activity
matrix is essentially indicating both an injection and a surjection from syntactic to numerical
representation of the transition between system states. The concept of the activity matrix for
PEPA was first proposed by Hillston in [CGHOS, Hil05a]. However, the original definition
cannot fully reflect the representation mapping considered here. This is due to the fact of that

the definition is local-derivative-centric rather than transition centric.

In order to present the formal definition of activity matrix in [Hil05a], some terminology is first
introduced. Consider a local derivative d;. An activity [; is an exit activity of d; if d; enables
l;. Similarly, an activity /; is an entry activity of d; if there is a local derivative which enables
l; such that d; is the resulting derivative after firing /;. The impact of activities on derivatives,
easily derived from the syntactic presentation of the model, can be recorded in a matrix form,

as defined below.

Definition 3.3.1. (Activity Matrix [HilO5a]). For a model with N 4 activities and Np distinct

local derivatives, the activity matrix M, is an Np x N 4 matrix, and the entries are defined as
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follows.
+1 ifl; is an entry activity of U;,
(Ui, ;) =4 —1 if l; is an exit activityof U; ,

0 otherwise.

This definition will lead to the matrix in Figure 3.2. An algorithm to automatically derive
the activity matrix from a given PEPA model is given in [Hil05a]. However, the definition
and algorithm are local-derivative-centric, which result in some limitations for more general
applications. For example, for some PEPA models (e.g. Model 2 in next subsection), some
columns of the defined matrix cannot be taken as transition vectors so that this definition cannot
fully reflect the PEPA semantics in some circumstances. In the following subsection, a modified
definition of the activity matrix is given. The new definition is activity- or transition-centric,
which brings the benefit that each transition is represented by a column of the matrix and vice

versa.

3.3.2 Labelled activity and modified activity matrix

It is very common that in a PEPA model, there may be a choice of derivatives after firing an
activity. For example, in the following Model 2, firing « in the component P may lead to two
possible local derivatives: P> and P, while firing § may lead to P; and Ps. In addition, firing
~ may lead to P;, Q1. See Figure 3.3. However, only one derivative can be chosen after each
firing of an activity, according to the semantics of PEPA. But the current definition of activity
matrix cannot clearly reflect this point. See the activity matrix of Model 2 given in Table 3.2.
In addition, the individual activity -y in this table, which can be enabled by both P; and ()o,

may be confused as a shared activity.

Model 2.
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o

0,

Figure 3.3: Transition diagram of Model 2

As a result, for Model 2 each column of its activity matrix cannot be considered as a transition
vector, since for example, the transition to the next state vector from the starting state cannot

be described using any column vector of the activity matrix.

a | (B | vy
Pl -1 11
Pl 1]=-1]0
Pyl 1] 1| -1
Q.| -1] 0 | 1
Q| 1] 0 |-1

Table 3.2: Originally defined activity matrix of Model 2

In order to better reflect the semantics of PEPA, we modify the definition of the activity matrix
in this way: if there are m possible outputs, namely {R;, R, - - , R, }, after firing either an
individual or a shared activity [, then [ is “split” into m labelled [s: "1 ["%2 ... ["m.  Here
{w; }*, are m distinct labels, corresponding to { R;}" ; respectively. Each [** can only lead
to a unique output R;. Here there are no new activities created, since we just attach labels to
the activity to distinguish the outputs of firing this activity. The modified activity matrix clearly
reflects that only one, not two or more, result can be obtained from firing /. And thus, each [*:

can represent a transition vector.

For example, see the modified activity matrix of Model 2 in Table 3.3. In this activity matrix,
the individual activity ~ has different “names” for different component types, so that it is not
confused with a shared activity. Another activity (3, is labelled as 372~ and 72—, to

respectively reflect the corresponding two choices. In this table, the activity « is also split and
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attached with labels.

l aP1—=P2,Q1—=Q2) | o (P1—P3,01—Q2) 5P2HP1 ,BPQHP?’ fypsﬂPl 7Q2HQ1
P —1 —1 1 0 1 0
P 1 0 -1 -1 0 0
P3 0 1 0 1 -1 0
Q1 -1 -1 0 0 0 1
Q2 1 1 0 0 0 -1

Table 3.3: Modified activity matrix of Model 2

Before giving the modified definition of activity matrix for any general PEPA model, the pre and

post sets for an activity are first defined. For convenience, throughout the thesis any transition

l, U—V . .
U M V' defined in the PEPA models may be rewritten as U ( L. ) V,orjust U v

the rate is not being considered, where U and V' are two local derivatives.

Definition 3.3.2. (Pre and post local derivative)

1. If a local derivative U can enable an activity |, that is U L -, then U is called a pre
local derivative of I. The set of all pre local derivatives of | is denoted by pre(l), called

the pre set of l.

2. If V is a local derivative obtained by firing an activity |, i.e. - LN V, then V is called
a post local derivative of I. The set of all post local derivatives is denoted by post(l),

called the post set of .
3. The set of all the local derivatives derived from U by firing I, i.e.
post(U,1) = {V | U -5V},

is called the post set of [ from U.

According to Definition 3.3.2, the pre and post sets of all activities in Model 2 are as listed

below.

pre(a) = {P1,Q1}, post(a) = { P2, P3,Q2},
pre(Py,a) = { P2, P3}, pre(Q1,a) = {Q2}.
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pre(8) = { P2}, post(8) = post(/%, 8) = {P1, Ps}.

pre(’Y) = {P3a QZ}v pOSt(’Y) = {Pla Ql}v
pOSt(P377) = {Pl}v pOSt(Q%'y) = {Ql}

Obviously, if  has only one pre local derivative, i.e. #pre(l) = 1, then [ is an individual activity,
i.e. an activity that is not synchronised with other activities, like 3 in Model 2. But [ being
individual does not imply #pre(l) = 1, see y for instance. If [ is shared, then #pre(l) > 1, for
example, see #pre(a) = #{P1,Q1} = 2. For a shared activity [ with pre(l) = k, there are k
local derivatives that can enable this activity, each of them belonging to a distinct component
type. The obtained local derivatives are in the set post(pre(l)[i], ), where pre(l)[i] is the i-th
pre local derivative of [. But only one of them can be chosen after [ is fired from pre(l)[].
Since for the component type, namely i or C;, there are #post(pre(l)[i], ) outputs, so the total

number of the distinct transitions for the whole system is
k
[ #post(pre()[il. D).
i=1

That is, there are Hle #post(pre(l)[i], ) possible results but only one of them can be chosen
by the system after the shared activity [ is fired. In other words, to distinguish these possible
transitions, we need Hle #post(pre(l)[i], 1) different labels. Here are the readily accessible
labels:

(pre()[1] = Vi, pre()[2] — Va, -, pre() ] — V&),

where V; € post(pre(!)[i], ). Obviously, for each vector
(Vi,Va, -+, Vi) € post(pre(l)[1],1) x post(pre(l)[2],1) x - -+ X post(pre(l)[k],1),

the labelled activity [ (Pre(Dl—=Vipre(D[2l=Va, - .pre()[k]=Vi) represents a distinct transition. For

example, o in Model 2 can be labelled as o(F17F2:Q1—@2) and (1 —F5,Q1—Q2)

For an individual activity [, things are rather simple and easy: for U € pre(l), [ can be la-
belled as [V—Post(UD[L] jU—post(UD)[2] jU—post(Ul)lku]  where kyy = #post(U,1). Varying

U € pre(l), there are Y jc,.q() #Post(U, 1) labels needed to distinguish the possible transi-
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5P2 — Py , 5P2 —Ps ,

tions. See P3P ~Q2=Q1 iy Model 2 for instance. Now we give the formal

definition.

Definition 3.3.3. (Labelled Activity).

1. For any individual activity l, for each U € pre(l),V € post(U, 1), label l as 1Y~V
2. For a shared activity |, for each
(V1,Va, -+, Vi) € post(pre(1)[1],1) x post(pre()[2],1) x --- x post(pre(l)[k], ),
label | as %, where

w = (pre(D)[1] — Vi,pre(1)[2] — Va,--- , pre()[k] — V&).

Each 1Y~V or I is called a labelled activity. The set of all labelled activities is denoted by
Ajabel. For the above labelled activities 1Y~V and 1V, their respective pre and post sets are
defined as

pre(l"~") = {U}, post("™") = {V},

pre(l") = pre(l), post({¥) = {Vi, Vo, -+, Vi }.

According to Definition 3.3.3, each (VY

or [ can only lead to a unique output. No new
activities are created, since labels are only attached to the activity to distinguish the results after

this activity is fired.

The impact of labelled activities on local derivatives can be recorded in a matrix form, as defined

below.

Definition 3.3.4. (Activity Matrix). For amodel with N 4,,, , labelled activities and Np distinct
local derivatives, the activity matrix C is an Np X N 4,,,., matrix, and the entries are defined
as follows
+1 ifU; € post(l;)
C(Ui,lj) = -1 ifU; € pre(l;)

0 otherwise

where l; is a labelled activity.
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The modified activity matrix captures all the structural information, including the information
about choices and synchronisations, of a given PEPA model. From each row of the matrix,
which corresponds to each local derivative, we can know which activities this local derivative
can enable and after which activities are fired this local derivative can be derived. From the
perspective of the columns, the number of “—1"s in a column tells whether the corresponding
activity is synchronised or not. Only one “—1” means that this transition corresponds to an
individual activity. The locations of “—1” and “1” indicate which local derivatives can enable
the activity and what the derived local derivatives are, i.e. the pre and post local derivatives. In
addition, the numbers of “—1”s and “1”’s in each column are the same, because any transition
in any component type corresponds to a unique pair of pre and post local derivatives. In fact, all
this information is also stored in the labels of the activities. Therefore, with the transition rate
functions defined in the next section to capture the timing information, a given PEPA model

can be recovered from its activity matrix.

Hereafter the terminology of activity matrix refers to the one in Definition 3.3.4. This definition
embodies the transition or operation rule of a given PEPA model, with the exception of timing
information. For a given PEPA model, each transition of the system results from the firing of
an activity. Each optional result after enabling this activity corresponds to a relevant labelled
activity, that is, corresponds to a column of the activity matrix. Conversely, each column of
the activity matrix corresponding to a labelled activity, represents an activity and the chosen
derived result after this activity is fired. So each column corresponds to a system transition.
Therefore, we have the following proposition, which specifies the correspondence between

system transitions and the columns of the activity matrix.

Proposition 3.3.1. Each column of the activity matrix corresponds to a system transition and

each transition can be represented by a column of the activity matrix.

As Proposition 3.3.1 reveals, the syntactically defined activity matrix provides the numerical
representation for the transitions between system states. Moreover, it is convenient for utilis-
ing mathematical techniques such as linear algebra and linear programming to investigate the

structural properties of PEPA models (see the next chapter for details).

An algorithm for automatically deriving the activity matrix from any PEPA model will be given
in the next section. For convenience, in the following we define the pre and post activity

matrices for PEPA, which can be directly obtained from the activity matrix.
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Definition 3.3.5. (Pre Activity Matrix, Post Activity Matrix) Let C be the activity matrix of a

CPost

PEPA model. The pre activity matrix CF™® and post activity matrix of the model are

defined as follows:

+1 CU;,l;) =-1
CPre(Ui,l]’) _ ( J) ’
0 otherwise.
+1 C(U,l;) =+1

0 otherwise.

CPost (U“ l]) —

Clearly, the pre activity matrix indicates the pre local derivatives for each labelled activity, i.e.
the local derivatives which can fire this activity. The post activity matrix indicates the post local
derivatives, i.e. the derived local derivatives after firing an activity. The activity matrix equals

the difference between the pre and post activity matrices, i.e. C = CPre — CPost,

3.4 Transition Rate Function

As illustrated in previous sections, the system states and the transitions between them can be
described using numerical vector forms. The structural information of any general PEPA model
is captured in the activity matrix, which is constituted by all transition vectors. However, the du-
ration of each transition has not yet been specified. This section defines transition rate functions

for transition vectors or labelled activities to capture the timing information of PEPA models.

3.4.1 Model 2 continued
Let us start from Model 2 again:
P o Q, Tla P+ (a Tg).Pg

CH)

Py =(8,15)

P3 Z(v,r,).P,
CH)
(v,73)

Ql =&, To 'QQ
Q2 Z(7,7,).Q
P[A] Q1 [B]
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As Table 3.3 shows, activity v in Model 2 is labelled as v/3~%1 and vQ2—~Q1, For v,
there are x[Ps] instances of the component type P in the local derivative P in state x, each
enabling the individual activity concurrently with the rate 7.,. So the rate of P3P in state
x is f(x,vP*7) = r,x[P;]. Similarly, the rate for y927@1 in state x is 7,/x[Q2]. This is
consistent with the definition of apparent rate in PEPA, that states that if there are NV replicated
instances of a component enabling a transition (I, ), the apparent rate of the activity will be

r X N.

In Model 2 activity 3 is labelled as 3721 and 37213, to respectively reflect the correspond-
ing two choices. According to the model definition, there is a flux of rgx(Pg) into P; from Py
after firing 3 in state x. So the transition rate function is defined as f(x, 372711) = rsx[P).
Similarly, we can define f(x,s72~) = r5X[F]. These rate functions can be defined or
interpreted in an alternative way. In state x, there are x[P] instances that can fire 3. So the

apparent rate of 3 is (15 + 73)x[2]. By the semantics of PEPA, the probabilities of choosing

the outputs are r[;:fr, and r;fr, respectively. So the rate of the transition 3727171 is
f o
. r
Flx, TP = - (5 ) X[Pa] = rox(Pa) (3.3)
B

while the rate of the transition 572773 is

/

Flo, BPP) = m:ﬂr’g (rg + r'5)x[P3] = ryx[Py). (3.4)

In Model 2, « is a shared activity with three local rates: r,,, 7/, and /.. The apparent rate of « in
Py is (v, +r!)x[P1], while in Q1 itis r,x[Q1]. According to the PEPA semantics, the apparent
rate of a synchronised activity is the minimum of the apparent rates of the cooperating compo-

nents. So the apparent rate of « as a synchronisation activity is min{(r/, + 2 )x[Py], rox[@Q1]}-

/ 1"
After firing a,, P; becomes either P» or Ps, with the probabilities r{;ﬁrg and r';frg respec-

tively. Simultaneously, (); becomes ()2 with the probability 1. So the rate function of transition

(P, — Py, Q1 — Q). represented by f(x, a(F1—F2.@1—@2)) g

f(x, aPr=Pe@i=G2)y — / min{ (!, + " )x[P1], rax[Q1]}. (3.5)

/ "
o T To
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Similarly,

"

Fx,aP=Pe@=Q2)y = Ta pyine! X Py, rax[Q:]). (3.6)

/ n
To T Ta

The above discussion about the simple example should help the reader to understand the def-
inition of transition rate function for general PEPA models, which is presented in the next

subsection.

3.4.2 Definitions of transition rate function

. . L, L=V
In a PEPA model, for convenience, we may rewrite any U (—T)> VasU ( T, ) V, where r
is denoted by rlU V. The transition rate functions of general PEPA models are defined below.

We first give the definition of the apparent rate of an activity in a local derivative.

Definition 3.4.1. (Apparent Rate of | in U) Suppose l is an activity of a PEPA model and U
is a local derivative enabling | (i.e. U € pre(l)). Let post(U,l) be the set of all the local

(Z,T’U*}V

derivatives derived from U by firing [, i.e. post(U,1) = {V | U ~*— " V}. Let

n= Y " 3.7)

Vepost(U,l)

The apparent rate of | in U in state x, denoted by r;(x,U), is defined as

ri(x,U) = x[U]r(U). (3.8)

The above definition is used to define the following transition rate function.

Definition 3.4.2. (Transition Rate Function) Suppose | is an activity of a PEPA model and x

denotes a state vector.

U—-V
1. If l is individual, then for each U (l’r—> ) V., the transition rate function of labelled

activity IV~ in state x is defined as
fx, 197V =x[ur =V, (3.9)
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2. Iflis synchronised, with pre(l) = {U1,Us, - - - , Uy}, then for each

(Vi,Va, -+, V&) € post(Uy,1) x post(Us, 1) x - -+ x post(Ug, 1),

let w = (U — V1,Uy — Vo, - Uy — Vi). Then the transition rate function of

labelled activity I" in state X is defined as

k TlUi—>Vi
foe = (1;1 ri(Ui) ) ie{nlf}-l-r-l,k}{n(x’ vl

k PUi—Vi
f(x,lw):<H ll ) min  {x[U;]r(U;)}. (3.10)

Remark 3.4.1. Definition 3.4.2 accommodates the passive or unspecified rate T. If there are
some rlUHV which are T, then the relevant calculation in the rate functions (3.9) and (3.10)
can be made according to the following inequalities and equations that define the comparison

and manipulation of unspecified activity rates (see Section 2.3.3 in Chapter 2):

r<wT forall? € RT and for all w € N
wi T <wyT if wy < wo for all wi,wy € N
wi T +wo T = (w1 + U)Q)T for all wi,wy € N
w1l _ wq

T = ws for all wi,wy € N

Moreover, we assume that 0 - T = 0. So the terms such as “min{AT,rB}” are interpreted

as [BGHO7]:
rB, A>0,

min{AT,rB} =
0, A=0.

The definition of the transition rate function is consistent with the semantics of PEPA. We state

this result in a proposition.

Proposition 3.4.1. The transition rate function in Definition 3.4.2 is consistent with the opera-
tional semantics of PEPA.

The proof is given in Appendix B.1. Moreover, this kind of transition rate function has the

following properties.
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Proposition 3.4.2. The transition rate function is nonnegative. If U is a pre local derivative of
l,i.e. U € pre(l), then the transition rate function of | in a state X is less than the apparent rate

of lin U in this state, that is
0 < f(x,1) <m(x,U) =x[U]r(U),
where 11 (U) is the apparent rate of l in U for a single instance of U.

The proof is trivial and omitted.

Proposition 3.4.3. Let | be an labelled activity, and x,y be two states. The transition rate
function f(x,1) defined in Definition 3.4.2 satisfies:

1. Forany H > 0, Hf(x/H,l) = f(x,1).

2. There exists M > 0 such that |f(x,1) — f(y,l)| < M||x —y|| foranyx,y and .

Hereafter || - | denotes any matrix norm since all finite matrix norms are equivalent. For exam-
ple, we may define Al = />, ; a?j for a matrix A = (a;;). The first term of this proposition
illustrates a homogenous property of the rate function, while the second indicates the Lipschtiz
continuous property, both with respect to states. These characteristics will be utilised to in-
vestigate the fluid approximations of PEPA models in the following chapters. The proof of

Proposition 3.4.3 is given in Appendix B.2.

3.4.3 Algorithm for deriving activity matrix and transition rate functions

This section presents an algorithm for automatically deriving the activity matrix and rate func-

tions from any PEPA model, see Algorithm 1 (on page 66).

The lines 3-12 of Algorithm 1 deal with individual activities while lines 13—32 deal with shared
activities. The calculation methods in this algorithm are the embodiment of the definitions of
labelled activity and apparent rate as well as transition rate function. We would like to use an
example to illustrate this algorithm. Recall the discussion in Section 3.3.2 and 3.4.1. The shared
activity o in Model 2 is labelled as aP1—=P2.Q1=@2) gpg o(P1—Ps.Q1—@2) with the following

corresponding transition rate functions respectively:

/
F(x, aPi—P2Qi=Q2)) _ - : — min{ (rf, + ri)x [P, rax( @i}, (.11)
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Algorithm 1 Derive activity matrix and transition rate functions from a general PEPA model

1: Ajapel = 0; D is the set of all local derivatives
2: for all activity [ € A do
3:  if [ is an independent activity then

4 for all local derivatives U,V € D do

5. if 7 %V then

6: Alabel = Alabel U {ZUHV} // Label [ as [V—V

7 // Form a corresponding column of the activity matrix and the rate function
-1, d=U

8 My(d,1"=V)=¢ 1, d=V
0, otherwise

9: f(x, V=Y = rx[U]

10: end if

11: end for

12:.  endif

13:  if [ is a synchronised activity then
14: pre(l) = 0, post(U,1) = 0, YU € D

15: for all local derivatives U,V € D do
I6: if 7 %V then
17: pre(l) = pre(l) U{U}
18: post(U, 1) = post(U,1) U{V}
19: rlU_’V =r
20: end if
21: end for
22: Denote pre(l) = {pre(l)[1], pre(])[2], - - - , pre(l)[k]}, where k = #pre(l)
23: fori=1...kdo
24: ri(pre(l)[i]) = ppreli=v
Vepost(pre(l)[i],l)
25: end for
26: K (1) = post(pre(l)[1],1) x post(pre(l)[2],1) x -+ - x post(pre(l)[k], )
27 for all (Vy,Va, -+, Vi) € K(I) do
28: w = (pre(l)[1] — Vi, pre(l)[2] — Va,- -+ ,pre(l)[k] — Vi)
29: Alabel = Alabel U {lw} // Label [ as [
30: /I Form a column of M, and the rate function corresponding to [*
-1, d € pre(l)
My(d,1*)y=<¢ 1, de{Vi,Va, - Vi}
0, otherwise
y k TZPYE(Z)M—*VZ- . . .
f(X,l ) - (ZE!: ’I"l(I)I'Q(l)[’L])) Ze{rln}nk}{rl(pre(l)[l])x[pre(l)[2]]}
31: end for
32:  endif
33: end for

34: Output Ajaper; Ma; f(x,1) (VI € Apaper)-
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"

f(x, aP1=P@i—@2)y - Ta min{(rl, + r)x[P1], rox[Q1]}. (3.12)

/ "
To +Tq

Now we show in detail how Algorithm 1 derives the labelled «, the corresponding columns of
the activity matrix, and the rate functions (3.11) and (3.12). Since « is a shared activity, let us

begin at Line 13 of the algorithm.

— First (by Lines 13 — 21 of Algorithm 1),
pre(a) = {P1, Q1},

post(Pl,a) = {Pg,Pg}, post(Ql,a) = {QQ},

and

Pi—Py _ ./ P1—Ps3
T - To

Q1—Q2
Tos T

=T =Tq-

— Then (by Lines 22 — 26 of Algorithm 1),
ro(Pr) =it it =gl g gl

Ta(Q1) = Tgl_%b =Ta,
and

K(a) = post(Pl,a) X post(Ql,a) = {PQ,Pg} X {QQ}

— Finally (by Lines 27 — 33 of Algorithm 1), since there are two labels for a: w; and wo,

where w1 = (P1 — PQ,Ql — QQ) and wo = (Pl — P3,Q1 — Qg) So

My(-,a®") = (=1,1,0, -1, )T, My(-,a"") = (-1,0,1,-1,1)T.

P—Py, . Q1—Q2
r TS

f(X, awl) = Ta(Pl) Ta(Ql) min{ra(Pl)X[Pl]vTQ(QI)X[QI]}
= e min{ (G + XA rex Qi

s T(I;l*’PS T§1—>Q2 _
f(x,a"?) = (P mmln{?‘a(Pl)X[Pl],Ta(Ql)X[Ql]}

r .
= r _Sr// mm{(T; + rg)X[Pl]v raX[Q1]}.
(e} o
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3.5 Associated Methods for Qualitative and Quantitative Analysis
of PEPA Models

The activity matrices and transition rate functions defined in the previous subsections capture
the structural and timing information of PEPA models respectively. When this information
is available numerically, some efficient mathematical methods, including linear programming
and ordinary differential equations can be directly utilised to help to overcome the problem of
state-space explosion encountered in both qualitative and quantitative analysis for PEPA. This
section briefly introduces these new approaches as well as technical foundations for employing

them in the context of PEPA.

3.5.1 Numerical and aggregated representation for PEPA

As we know, for quantitative performance analysis, model simplification techniques such as
fluid approximation can bring acceptable accuracy at a very low computational complexity. As
for qualitative analysis, e.g. deadlock checking, mathematical tools including linear algebra
and linear programming have been proven very powerful. Basically, the application of these
tools and techniques needs appropriate mathematical models. This motivates and stimulates the
new representation—numerical rather than the original syntactical representation—for PEPA
models, for the purpose of directly exploiting these new methods. The numerical state vector,
transition vector, and transition rate function previously defined in this chapter, have provided

a fundamental numerical platform for the utilisation of the new approaches.

Syntactic and Separated Representation Numerical and Aggregated Representation
number of instances of components in Iocal

derivatives (system equation) state vector

action type; pre and post local derivative;

synchronisation labelled activity

operational semantics activity matrix, transition rate function
action rate; apparent rate transition rate function

Table 3.4: From syntactical and separated to numerical and aggregated representation for
PEPA

The comparison between these two representation is given in Table 3.4. The justification of
the equivalence between them, i.e. the consistency of the new definitions, has been shown in

Proposition 3.4.1. The word “Aggregated” in this table reflects two things: there is no distinc-
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tion made between different instances of the same component type; the system states, and the
transitions between them represented by transition vectors, are considered holistically rather
than locally based on sequential components. ‘“Numerical” in this table emphasises that the
system states, the transitions between the states, and the average duration of the transitions, are
represented numerically. Again, the main benefits brought by the new representation scheme
are the significant decrease of the size of the state space and the convenience for employing

new mathematical methods.

3.5.2 Place/Transition system

Overcoming the state-space explosion problem is the basic motivation and stimulation for de-
veloping new methods for PEPA. The state space of a model is the foundation for both qual-
itative and quantitative analysis. Typical qualitative problems which can be addressed based
on state-space related analysis include state space derivation and storage, deadlock checking,
etc. Generally, qualitative analysis is structure-related rather than timing-related. Since the
structural information has been numerically represented in activity matrices, it is possible and
feasible to do qualitative analysis such as deadlock-checking based on activity matrices directly,

and thus avoid the state-space explosion problem.

The numerical representation for system states and transitions, helps to find and manifest the
P/T structure underlying each PEPA model. Thus some powerful techniques and theories such
as linear algebra and linear programming developed for P/T systems [STC96] can be directly
utilised for the qualitative analysis of PEPA. In the next chapter, the readers will see that
through this approach, the derivation and storage of the state space of a class PEPA models will
no longer be a problem since the state space can be expressed using linear algebraic equations.
Moreover, structure-based rather than state-space-based theories and algorithms for deadlock
checking have been developed based on these equations. They are particularly efficient for large
scale systems with repeated components since they can avoid searching for deadlocks in the en-
tire state space. Further, a kind of interesting and useful structural property —invariance—has
been found in many PEPA models, which can be used to reason about the system. Of course,
the foundation for the applications of these new methods is the numerical and aggregated rep-
resentation for PEPA, which is already presented in this chapter. The detailed investigation and

discussion of the qualitative analysis of PEPA models will be given in the next chapter.
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3.5.3 Aggregated CTMC and ODEs

As we have mentioned in Chapter 2, for each PEPA model, there is a CTMC underlying the
model. By solving the global balance equations associated with the infinitesimal generator of
this CTMC, the steady-state probability distribution can be obtained, from which performance
measures can be derived. According to the original definition of the PEPA language in which
each instance of the same component type is considered distinctly, the size of the state space of
this CTMC (called the original CTMC) may increase exponentially with the number of com-
ponents. Since there is no difference between components of the same type, the number rather
than the identity of the components in the local derivatives can be captured, introducing the
concept of numerical vector form to represent the system state, which results in the aggregated
CTMC. The size of the state space can thus be significantly reduced, as Proposition 3.2.1
shows, together with the computational complexity of deriving the performance by solving
the corresponding global balance equations since, the dimension of the infinitesimal generator

matrix is the square of the size of the state space.

Alternatively, the aggregated CTMC can be achieved by constructing a partition over the state
space of the original CTMC. In the aggregated CTMC, each partition of states in the original
CTMC forms a state, which can be represented by the numerical vector form as defined in
Definition 3.2.1. This partition is induced by an equivalence relation defined over the state
space of the original CTMC: the state s and s’ are equivalent if and only if the numbers of the
components in each local derivative at s and s are the same. The infinitesimal generator and
steady state distributions of the aggregated CTMC can also be formed from the ones of the
original CTMC. For detailed information of aggregation of Markov processes, please refer to

Section 5.4 in [Hil96].

Unless otherwise stated, hereafter the CTMC underlying a PEPA model refers to the aggregated
CTMC, and the state of a model or a system is considered in the sense of aggregation. As
discussed previously, a transition between states, namely from x to x + [, is represented by a
transition vector [ corresponding to the labelled activity, namely /. The rate of the transition [

in state x is specified by the transition rate function f(x, ). That is,
X (L7 C<f)) X+ 1.

Given a starting state X, the transition chain corresponding to a firing sequence lg, l1,- - - , I, - -
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is

(lo,f(x0,l0)) (I1,f(x0+10,l1))
X0 — l — (

. I, f(x,l
- L (LFG)

The above sequence can be considered as one path or realisation of a simulation of the aggre-
gated CTMC, if the enabled activity at each state is chosen stochastically, i.e. is chosen through
the approach of sampling. After a long time, the steady-state of the system is assumed to be
achieved. The averaged occurrence number of an activity during one unit time, and the aver-
aged proportion of the number of components appearing in a local derivative can be calculated
from the simulation, which are referred to as the throughput of this activity and the utilisation
of the local state respectively. Moreover, given a starting state and a stopping state, the duration
between these two states, which is called response time, can be also obtained. In Chapter 7, we
will provide a stochastic simulation algorithm (Algorithm 3), which is based on our numerical
representation scheme, to derive these performance measures from PEPA models. The weak-
ness of the simulation method is its high computational cost, which makes it not suitable for
real-time performance monitoring or prediction. See Chapter 7 for a case study and detailed

discussions.

A promising approach for quantitative analysis of PEPA is fluid approximation, which brings
acceptable accuracy at a very low computational complexity for some models. The state space
of an underlying CTMC is inherently discrete, with the entries within the numerical vector form
always being non-negative integers and always being incremented or decremented in steps of
one. As pointed out in [Hil05a], when the numbers of components are large these steps are
relatively small and we can approximate the behaviour by considering the movement between
states to be continuous, rather than occurring in discontinuous jumps. This approach results in

a set of ODEs:
dx _ Y if(x0) (3.13)
dt - 9 Y .

l€Alabel
where the vector x is short for x(¢), representing the populations of components in local deriva-

tives at time ¢; and [ is a transition vector while f(x, 1) is a rate function.

These ODEs are immediately available as long as the activity matrix and the transition rate
functions are generated by Algorithm 1. The fluid approximation approach was first proposed
by Hillston in [Hil96] for a class of restricted PEPA models. The restrictions include: indi-

vidual activities must occur only once within derivative definitions and cannot appear within
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different component definitions; shared activities cannot have different local rates, etc.. These
restrictions are relaxed here, since our derived ODEs (see (3.13)) only depend on the activity
matrix and transition rate functions, which are defined for general PEPA models. At this mo-
ment, there are some natural problems: does the ODE solution exist and is it unique? what
is the relationship between that solution and the CTMC? how to derive performance measures

from ODEs, etc. In the following chapters these problems will be discussed in detail.

3.6 Summary

This chapter has defined the labelled activities, activity matrices and transition rate functions for
PEPA, to capture the structural and timing information respectively. These definitions are used
to describe PEPA models numerically rather than syntactically. This numerical representation
scheme provides a platform for the direct application of some powerful mathematical tools
such as linear algebra, linear programming and ODEs, and non-mathematical methods such as
P/T theory, for the purpose of qualitative and quantitative analysis of large scale PEPA models.
Some fundamental properties of these definitions have been discussed and will be utilised for

further investigation of PEPA in the following chapters.
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Chapter 4
Structural Analysis for PEPA Models

4.1 Introduction

Structural analysis provides an important route to gaining insight about how systems will per-
form qualitatively. However, the size and complexity of such systems challenge the capabilities
of the current approaches for structural analysis. For example, the current method to check
whether there is a deadlock in a PEPA model relies on exploring the entire state space of the
model. Therefore the computational complexity is mainly determined by the size of the state
space. For large scale PEPA models, particularly the models with more than ten million states,
even the derivation of the state space becomes impossible due to the state-space explosion
problem, let alone deadlock-checking for these models. This chapter will demonstrate a new

approach for structural analysis of PEPA, which avoids the state-space explosion problem.

The previous chapter has presented the definitions of numerical vectors and labelled activity,
activity matrix, as well as transition rate functions, for the PEPA language. These definitions
will closely relate PEPA to other formalisms such as Petri nets. Petri nets or P/T nets are an-
other modelling language which is widely used in the analysis of systems that exhibit complex
behaviour due to the interleaving of parallelism and synchronisation. In this chapter we will
show there is a P/T structure underlying each PEPA model. Based on the techniques developed
in the context of P/T systems in Petri nets, we will demonstrate how to find invariants and how
to efficiently derive and store the state space for large scale PEPA models. In particular, we will
present a structure-based deadlock-checking approach for PEPA which avoids the state-space

explosion problem.

The PEPA models considered in this chapter satisfy two assumptions: there is no cooperation
within groups of components of the same type; and each column of the activity matrix of a
model is distinct, i.e. each labelled activity is distinct in terms of pre and post local derivatives.
The remainder of this chapter is organised as follows: Section 2 presents the P/T structure

underlying PEPA models; Section 3 discusses how to derive invariants from PEPA models;
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Linearisation of the state space for PEPA is given in Section 4, based on which a new deadlock-

checking method will be provided in Section 5. Finally, Section 6 concludes the chapter.

4.2 Place/Transtion Structure underlying PEPA Models

In Chapter 3 we have defined the numerical state vector and the activity matrix for the PEPA
language. With the exception of time information, a PEPA model can be recovered from the
activity matrix since it captures all the structural information of the system. These definitions

and representations lead to a P/T structure underlying any PEPA model.

4.2.1 Dynamics of PEPA models

As we have mentioned, the numerical vectors indicate the system states while the activity ma-
trix embodies the rules of system operation. Regardless the activity periods, we can use the
numerical vector and activity matrix to describe the operational behaviour of PEPA models. In
particular, the non-timing dynamics of the model can be described using the activity matrix.

For example, recall Model 1 in Chapter 3:

User) Z(tasky, a).Users
Users dé(taskg, b).User;
Providery dé(taskl, a).Providers
Providery Z(reset, d). Provider,

Useri[M] B Provideri|[N].

{taskq}

The activity matrix C and pre activity matrix CF*® of Model 1 are demonstrated in Table 4.1.
For convenience, here the labelled activities are just denoted by 1t25F1, [t@sk2 and [7es¢t respec-
tively. Assume there are two users and providers in the system, i.e. M = N = 2. Therefore,
the starting state is mg = (2,0,2,0)”. The diagram of the transitions between the states is

presented in Figure 4.1.

According to the semantics of PEPA, in the starting state mg only task; can be fired. The
requirement for enabling fask; in a state m is that there are at least one instance of Usery

and one instance of Provider; in this state. The mathematical expression of this statement is
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(a) Activity Matrix C (b) Activity Matrix CFre
‘ ltask1 ‘ ltaskg ‘ lreset ‘ ‘ ltask1 ‘ ltaskrg ‘ lreset ‘
User;y -1 1 0 Usery 1 0 0
Users 1 -1 0 Users 0 1 0
Providery -1 0 1 Provider, 1 0 0
Providers 1 0 -1 Providers 0 0 1

Table 4.1: Activity matrix and pre activity matrix of Model 1

(2,0,2,0)

task1

(2,0,1,1)" (1,1,2,0)"

reV W reset/' Vm\gkz

skl
(2002 (LLL1) skl (0,2,2,0)"

\ reV wz /
task2 reset

(1, ]’0’2)T task1 (0’ 21, 1)T

0,2,0,2)"

Figure 4.1: Transition diagram of Model 1 (M = N = 2)

m > (1,0,1,0)7, ie. m > CPre(. [tesk1) where CF® is the pre activity matrix. Throughout
this thesis, a vector being greater than another vector means that each entry of the former one
is greater than the corresponding entry of the latter one. Each column of the pre activity matrix
reflects the required condition for enabling the labelled activity corresponding to this column.
That is, if a state m is equal or greater than a column of the pre activity matrix, then the corre-
sponding activity can be enabled at m. Otherwise, m cannot fire this activity. For example, at
the starting state mg of Model 1, task; can be fired because mgy > CPre(-, [task ). Both tasks

and reset cannot be enabled due to mg # CFre(-,1'*%2) and mo # CFre(.,[7eset).

After firing task; at mg, there is one User; and one Provider; changing into Usery and
Providery respectively and simultaneously. So the state vector becomes m; = (1,1,1,1)7.
Notice that the column of the activity matrix corresponding to task, i.e. [!4¥1, can fully reflect

this transition. Therefore the mathematical expression using [/***1 is

m; = mg + ltaskl.

Since my > CFre(. [esk2) and my > CPre(. ["¢*¢!), m; can fire either tasky or reset.
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Suppose tasks is fired, then we get mg = (2,0,0,1)7. That is

ms = mp + ltask2 =mg + ltaskl + ltask2. (41)

Notice that each column of a matrix can be extracted by multiplying a corresponding vector at

the right side of this matrix:
1k = C(1,0,0)", 1"*** = C(0,1,0)", 1" =C(0,0,1)".
So (4.1) can be written as

my = mg + [/4F 1 [th2 — my + C(1,1,0)T. 4.2)

Generally, the firing of a labelled activity [ in state m yields the state m’, denoted by m LW ,
can be expressed as

m’ = m+ C(,, ) 4.3)

where C(-, () is the transition vector corresponding to [, i.e. the column of the activity matrix
that corresponds to [. If a firing sequence o = Iy - - - Iy, - - - | € A}y, from my yields the state

m, i.e.

then we denote mgo % m. We define the firing count vector of a sequence o as o[l] = #(I, o),
where £([, o) is the number of occurrences of [ in o. Integrating the evolution equation in (4.3)
from mg to m we get:

m=mg+C-o. (4.4)

The formula (4.4) is called the state equation, reflecting that each state in the state space is
related to the starting state through an algebraic equation. This is consistent with the fact that
each system state results from the evolution of the system from the starting state. Of course,
the state equation does not involve the time information, so it cannot be used to do quantitative

analysis. However, for qualitative analysis of the system it is powerful.
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4.2.2 Place/Transition Structure in PEPA Models

Observe the activity matrix C in Table 4.1, each local derivative is in fact like a place and the
state vector records the population of components in each place, i.e. each local derivative. Each
transition vector, i.e. each column of the activity matrix represents the transition of components
from one place to another place. Such structure involving “place” and “transition” can be
formally defined. See the following concepts of P/T net and P/T system, which originate in
Petri net theory (“P/T” signifies “place/transition”) but they can also be interpreted in terms of

conditions and events.

Definition 4.2.1. (P/T net, Marking, P/T system, [CTS98])

1. A P/T net is a structure N' = (P, T, Pre, Post) where: P and T are the sets of places
and transitions respectively; Pre and Post are the |P| x |T| sized, natural valued,

incidence matrices.

2. A marking is a vector m : P — IN that assigns to each place of a P/T net a nonnegative

integer.

3. AP/T system is a pair S = (N, my): a net N with an initial marking my.

In order to take advantage of the theory developed for P/T systems in the context of PEPA
models we must first establish the P/T system corresponding to a given PEPA model. This is

straightforward given the definitions presented in the previous chapter.

From Definition 4.2.1, it is easy to see that the structure N = (D, Ajaper, CF™¢, CPOSt) de-
rived from a PEPA model is a P/T net, where D, A;,pe are the sets of all local derivatives and
all labelled activities of the PEPA model respectively, and CPr®, CPost are the pre and post ac-
tivity matrices respectively. Given a starting state mg, S = (N, my) is a P/T system. Clearly,
each reachable marking m from my is a state of the aggregated CTMC underlying the given

PEPA model. This leads us to:

Theorem 4.2.1. There is a P/T system underlying any PEPA model, that is (N, mg), where my
is the starting state; N' = (D, Alabel, CPTe, CPOSt) is P/T net: where D is the local derivative
set, Alabel is the labelled activity set; CP*® and CPOSt are the pre and post activity matrices

respectively.
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Remark 4.2.1. Throughout this thesis, the P/T structure underlying a PEPA is referred to as
N = (D, Alabel, CPTe, CPOSt) or 8 = (N, my), which are constituted by the local derivative
and labelled activity sets, the pre activity matrix and post activity matrix, as well as the starting

State.

A P/T net, a particular class of Petri net, like PEPA provides a mathematical modelling language
for discrete, distributed systems. A Petri net or P/T net associated with time information, i.e. the
transitions are associated with time delays, is called a timed Petri net [Chi98] or a timed P/T net.
In particular, if the delays are random variables, usually satisfying exponentially distributions,
the timed Petri net is called a stochastic Petri net. In the PEPA language, the delay of a transition
[ in a state m is specified by the transition rate function f(m, ) which are defined in Chapter 3.
For any given PEPA model, the underlying P/T net with incorporated transition rate functions

is obviously a stochastic Petri net.

In [Rib95] Ribaudo has defined a stochastic Petri net semantics for stochastic process alge-
bras, including PEPA. As in our work here, her approach associated each local derivative with
a place and each activity with a transition. To cope with the difference between action types
and transitions, she defined a labelling function that maps transition names into action names.
Similarly, our approach is to attach distinct labels to each action name, as indicated by the defi-
nition of labelled activity. However, since Ribaudo’s approach does not include aggregation as
we do, the mapping semantics in [Rib95] does not help with the state-space explosion problem
in structural analysis for large scale PEPA models with repeated components. In fact, since the
instances of the same component type are considered as distinct copies, their local derivatives
are consequently distinct. So the number of places will increase with the number of repeated

components, which is in contrast to the fixed number of places in our approach.

Moreover, our transition rate functions that capture the time information are defined on each
system state and each transition. Therefore, our approach is more convenient for quantitative
application, such as simulation and fluid approximation for PEPA models. Ribaudo’s work
was motivated by investigation into the relationship between formalisms whereas our work
is more application-oriented. We should point out that although our approach seems more
mathematical, the definitions of labelled activities and transition rate functions are essentially

syntactical.
Previous work on structural analysis of PEPA models in [GHR97] has some similarities with
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our approach. However, the class of PEPA considered in [GHR97] is somewhat restricted; in
particular no repeated components are allowed, which is also because no aggregation technique
is employed. Moreover, the problem of the difference between actions and transitions is not
considered. Furthermore, there is no time information considered in [GHR97], and therefore
their considerations cannot be extended to quantitative analysis. For convenience, some com-

parison between the work by different authors are presented in the following table.

Ribaudo [Rib95] | Gilmore et al. [GHR97] | This thesis
Mathematical representation No Yes Yes
Syntactical representation Yes No Yes
Time involved Yes No Yes
Generality for PEPA Yes No Yes
Aggregation technique No No Yes
Derivation algorithm No No Yes
Suitable for qualitative analysis No Yes Yes
Suitable for quantitative analysis No n/a Yes
Suitable for simulation No n/a Yes

Table 4.2: Comparison between three approaches

4.2.3 Some terminology

Now we introduce some terminology related to P/T systems for PEPA models (see [CTS98]
for reference). For convenience, if the concepts and conclusions that are defined and given for
P/T systems are used in the context of the PEPA language, they will be referred to as the P/T
structure underlying PEPA models.

As illustrated by the example in the last subsection, a transition [ is enabled in a state m if
and only if m > CPre[. []; its firing yields a new state m’ = m + C[-,]. This fact is denoted
l : . . . .
by m — m’. We should point out that [ is enabled in m can be equivalently stated using the

transition rate function f(m, [) defined in the previous chapter. In fact, we have a proposition:

Proposition 4.2.1. Let f(m, ) be the transition rate function given by Definition 3.4.2 in Chap-
ter 3, then

m > CP™®[. || <= f(m,l) > 0. (4.5)

Proof. Notice that [ is a labelled activity. First, assume [ is individual. Then [ has only one pre

local derivative, namely U. So CP*[-, [] = ey, where ey is a vector with all entries being zeros
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except ey[U] = 1. Thus m > CPre[. [] implies m[U] > ey[U] = 1. By Definition 3.4.2,
f(m,l) = rm[U] > 0, where r is a positive constant. Conversely, if f(m,[) = rm[U] > 0,
then m[U] > 0. Since each entry of a state vector is an integer, so we have m[U] > 1.

Therefore, m > ey and thus m > CPre[', ].

Secondly, we assume [ is a shared labelled activity with the pre set {Uy,Us,--- ,Ux}. So
CPre[. [] is such a vector €’ with all entries zero except €' [U;] = 1, i = 1,2, --- , k. Therefore,
m > CPre[. ] implies m[U;] > €'[U;] = 1. So f(m, 1) > 0, where f(m, ) is given by (3.10)

in Definition 3.4.2, i.e.

E UV
) = i Uslri(Ui) },
where rlUiHV", r1(U;) are some positive constants. Conversely, f(m,!) > 0 implies m[U;] > 1

and thus implies m > CFre[. []. O

According to this proposition, if f(m,l) = 0 then [ cannot be enabled in m. That is,
m # CPre[. []. Therefore, a transition rate function not only specifies the rate of the ac-
tivity but also determines whether the activity can be enabled in a state. Since this chapter
emphasises structural rather than quantitative aspects of PEPA, we prefer to use the comparison
between the state vector and the column of the pre activity matrix, to determine whether a state

can enable an activity.

An occurrence sequence from m is a sequence of transitions ¢ = tj---f;--- such that
t t .

m-5my - -Smy---. The language of S = (N, mg), denoted by L(S) or L(N', myg), is

the set of all the occurrence sequences from the starting state mg. A state m is said to be

reachable from my if there exists a o in L(S) such that mg — m, that is
m=mgy+C-: o,

where o is the firing count vector corresponding to o. The set of all the reachable states from
m, called the reachability set from m, is denoted by RS(A/, m). According to the definition,
the reachability set of the P/T system S = (N, my) is

RS(N,mO):{meﬂ\I'P' | 3o € L(S) suchthatm:mo—i-C-U},
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where o is the firing count vector of the occurrence sequence o, | P| represents the number of
elements in P, i.e. | P| = #P. Clearly, the reachability set RS(N, my) is the state space of the
CTMC underlying the given PEPA model starting from myg. The correspondence between P/T
systems and PEPA models is shown in Table 4.3.

P/T terminology PEPA terminology

P: place set D: local derivative set

T transition set Alapbel: labelled activity set

Pre: pre matrix CPre: pre activity matrix

Post: post matrix CPost: post activity matrix

C = Pre — Post: incidence matrix C = CPre _ CPost; activity matrix

m: marking m: state vector

RS(N, my): reachbility set (from mg) || RS(N, mg): state space (with starting state mg)

Table 4.3: P/T structure in PEPA models

For each PEPA model, as Theorem 4.2.1 reveals, there is a underlying P/T structure. This
structure involves the pre and post activity matrices and so involves the activity matrix and
captures the structure information for the given PEPA model. Therefore, the fruitful theories
developed for P/T systems in the past twenty years can be utilised to investigate the structural
properties of PEPA models. Of course, our studies in the context of PEPA, in particular the

efficient deadlock-checking method, are also valid for some classes of P/T systems.

4.3 Invariance in PEPA models

Invariance characterises a kind of structural property of each state and a relationship amongst all
component types. In this section, we will show what an invariant is and how to find invariants

for a given PEPA model.

4.3.1 What are invariants

Let us first consider an interesting system composed of two types of components, namely X and
Y, which are synchronised through the shared activities actionl and action2. The operations

of X and Y are illustrated in Figure 4.2. The PEPA model of the system is as below:
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/('OW‘

J
X Y Y.
(actionl, a, ) )
(actionl,a,) (action2,a,)
(acti()nZ, a, )
( Jjob3,c, )
X Y, Y,

Figure 4.2: Transition systems of the components of Model 3

Model 3.
X, o (actionl, ar).Xo
X o (action?2, ag).X;
Y, o (actionl,a;).Ys + (jobl,c1). Y
Yo o (job2, cz). Y
Y3 o (job3, cs). Y4
Y, o (action2, ag).Ys + (jobs,cy).Ys

(X1 [M;] || X2[M2)) (Yi[Ni] || Yo[No] || Ys[Ns] || Y, [N]).

{actionl,action2}

Let m[X;],m[Y;] (i = 1,2, j = 1,2,3,4) denote the numbers of the components X and Y in
the local derivatives X;, Y respectively. Now we state an interesting assertion for the specific
PEPA model: the difference between the number of Y in their local derivatives Y3 and Yy, and
the number of X in the local derivative X, i.e. m[Y3] + m[Y;] — m[X5], is a constant in
any state. This fact can be explained as follows. Notice that there is only one way to increase
m[Y3] + m[Yy], i.e. enabling the activity actionl. As long as actionl is activated, then there
is a copy of Y entering Y3 from Y;. Meanwhile, since actionl is shared by X, a corresponding
copy of X will go to X9 from X;. In other words, m[Y3] + m[Y}] and m[X5] increase equally
and simultaneously. On the other hand, there is also only one way to decrease m[Y3] + m[Y)]
and m[X>], i.e. enabling the cooperated activity action2. This also allows m[Y3] + m[Y,] and
m[X5] to decrease both equally and simultaneously. So, the difference m|[Y3]+m[Y;] —m|[X5)]

will remain constant in any state and thus at any time.

The assertion indicates that each state and therefore the whole state space of the underlying
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CTMC may have some interesting structural properties, such as invariants. A natural question
is how we can easily find all invariants in a general PEPA model. Before investigating this

problem, we need to define “invariant” first.
Definition 4.3.1. (Invariant) An invariant of a given PEPA model is a vector'y € Q such that
for any state m in the state space, y' m is a constant, or equivalently

y'm = y"'my, (4.6)

since the starting state my is a state and the constant is just y* my.

The assertion discussed previously, i.e. “m[Y3] + m[Ys] — m[X>] is a constant”, can be illus-

trated by this definition. That is, y = (0, —1,0,0,1,1)7 is an invariant of Model 3, since
yIm = m[Y3] + m[Y,] — m[X5] 4.7

18 a constant.

Once discovered, invariants may have potential applications such as model-based reasoning.
For example, based on the information on the server side, we may infer information about the
clients via an invariance relationship between them. For instance, by (4.7) and the number of
X9 we can know the numbers of Y in the local derivatives Y3 and Y,. In Chapter 7, a case
study shows how invariance can be used to prove the convergence of the fluid approximation of

PEPA models.

4.3.2 How to find invariants

In this subsection, we demonstrate how to find invariants in a given PEPA model. For any m in
the state space, there exists a corresponding sequence ¢ such that m = mg + Co. Multiplying

both sides of this equation by y ', we have
y'm =y mg +y'Co.

Obviously, y’ m = y"myg holds if and only if y’ Co = 0. Therefore, the following lemma is

ready.

Lemma 4.3.1. IfyI'C = 0, then y is an invariant.
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Lemma 4.3.1 provides a method to find invariants: any solution of y” C = 0, i.e. CTy = 0, is
an invariant. For Model 3, its activity matrix C is listed in Table 4.4 (the labels of those labelled

activities are omitted since there are no confusions).

actionl | action2 | jobl | job2 | job3 | job4
X1 -1 1 0 0 0 0
Xo 1 -1 0 0 0 0
Y -1 0 -1 1 0 0
Y, 0 1 1 -1 0 0
Y3 1 0 0 0 -1 1
Yy 0 -1 0 0 1 -1

Table 4.4: Activity matrix of Model 3

That is,
-1 1 0 0 0 0
1 -1 0 0 0 o0
-1 0 -1 1 0 0
C = 4.8)
0 1 1 -1 0 0
1

o -1 0 0 1 -1

Now we try to solve the linear algebraic equation CTy = 0. The rank of C is three. So by
linear algebra theory the rank of the solution space {y : C*y = 0} is 6 — 3 = 3. We can easily

find three vectors which form the bases of the solution space:

y1 = (17 170707070)T7 Y2 = (0707 17 17 17 1)T7 Y3 = (Oa 17 17 17070)T'

These vectors are invariants of Model 3. Check y; = (1,1,0,0, 0, O)T first,
yim=y{mg+y{Co =y{mg.
That is, for any state m,
m[X;] + m[Xs] = my[X;] + my[Xo).

In other words, the population of X, i.e. the sum of the instances of X; and X3, is a constant

in any state (thus at any time), which is usually termed conservation law satisfied by X.
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Similarly, yo = (0,0, 1,1,1,1)7 illustrates the conservation law satisfied by the component Y:
m[Y1]+m[Ys]+m[Y3]+m[Yy] is a constant for any state m. Moreover, y3 = (0,1,1,1,0,0)7
means that for any state m,

m[Xs] + m[Y;] + m[Y3]
is a constant. That is, the sum of the populations in X5, Y7 and Y5 always remains unchanged.

According to the definition of invariants, any linear combination of invariants is also an invari-

ant. For example, the following combination of y2 and ys3:
yi=y2—y3=(0,-1,0,0,1,1)"
is an invariant. Notice y1 C = 0, which implies that
m[Y3] + m[Ys] — m[X5]

is a constant. This coincides with the assertion mentioned at the beginning of this section.

We should point out that y” C = 0 is not a necessary condition for some invariant y. For exam-
ple, consider Model 3 with mg = (100, 0,0, 0,0, S)T. Then the state space of the underlying

aggregated CTMC has four elements: mg and
m; = (100,0,0,0,1,2)T, my = (100,0,0,0,2,1)T, m3 = (100,0,0,0,3,0).

y = (0,1,1,0,0,0)7 is an invariant since y’ my = 0 (k = 0, 1,2, 3), but y"' C # 0.

However, for a class of PEPA models, i.e. live PEPA models, the inverse of Lemma 4.3.1 is

true: y is an invariant can imply y” C = 0.

Definition 4.3.2. (Liveness for PEPA). Denote by (N, mg) the P/T structure underlying a
given PEPA model.

1. A labelled activity 1 is live if for any derivative in the derivative set, there exists a se-
quence of activities such that the derivative after performing this sequence can perform

an l activity.

2. If all activities are live, then both (N, mq) and the PEPA model are said to be live.

The liveness defined for PEPA is originally given for P/T nets (see [CTS98]). For some PEPA
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models, if they have no deadlocks then they are live, see Lemma 4.5.4 in this chapter. The
following proposition directly derives from a conclusion in P/T theory (page 319, [STC96]):

for a live P/T net y” C = 0 is equivalent to y’ m = y" my.

Proposition 4.3.1. If a given PEPA model is live, i.e. the underlying P/T structure

<(D, Alabel, CPT, CPOSt) , m0> is live, then for any state m in the state space,

yI'C=0+=y'm =y m,.

For the class of live PEPA models, finding invariants is much simpler—just solve the activity-

matrix-based linear algebric equation Cy’ = 0.

4.3.3 Conservation law as a kind of invariance

In the last subsection, we have seen that Model 3 satisfies a conservation laws, i.e. the popula-
tion of each component type is a constant in any state. In fact, this kind of conservation law is

universal for any PEPA model.

Let P be an arbitrary component type of a given PEPA model. The state transition of component
type P, i.e. any instance of P changing from one local derivative to another local derivative,
must occur within the set of P’s local derivatives. That is, it is not possible to change into any
other component type’s local derivative. For an arbitrary labelled activity [, if there is a pre
local derivative of [, there must exist a post local derivative of [ and this post local derivative
must be within component type P. Therefore, in each column of the activity matrix “1” and
“—1” must appear in a pair within the subvector corresponding to component type P. That is,

the sum of these “1” and “—1” within any component type is zero. So we have

Lemma 4.3.2. Let C be the activity matrix of a given PEPA model, D be the set of all local
derivatives. For an arbitrary component type P of this model, let Dp be the local derivative

set of P. Define a vector yp with #D entries:

1 ifU e€Dp

yplU] = ,
0 ifU € D\Dp

Then yEC =0.

Remark 4.3.1. Obviously, yp in Lemma 4.3.2 is an invariant by Lemma 4.3.1. Let P be the
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set of all component types of the given PEPA model. According to the definition of invariant,
a linear combination of invariants is also an invariant. So the sum ) p.pyp = 1 is also an

invariant. In fact, 17C =Y p ., y5C = 0.

Lemma4.3.2 and Lemma 4.3.1 imply the following: the population of each component type and
therefore all component types in any state are constants. This fact is termed the conservation

law.

Proposition 4.3.2. (Conservation Law) For a given PEPA model, let D be the local derivative

set. For an arbitrary component type P € P, let Dp be the local derivative set of P. Then

> m[U]= > mg[U]. (4.9)

UeDp UeDp
> m[U]= > mg[U]. (4.10)
UeD UueD

Proof. For any m, there exists a o such that m = mg + Co. By Lemma 4.3.2, y5C = 0

where y£ is given in this lemma. So we have

Z m([U] = ybm = yE(mg + Co) = yhmg = Z mo[U].
UeDp UeDp

Moreover, let P be the set of all component types of this model, then

U= Y muj=3 3 molv] = 3 molU].

ueD PePUEeDp PePUEeDp ueD

Proposition 4.3.2 can easily lead to the boundedness of the underlying state space.

Corollary 4.3.3. (Boundedness) The state space underlying a PEPA model is bounded: for

any state m and any local derivative U,

0< <
<m[U] <max{ D mo[U] o,
UeDp

where P is the component type set, Dp is the local derivative set corresponding to component

type P, my is the starting state.
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4.4 Linearisation of State Space for PEPA

As discussed in Section 3.2.3, the size of the state space underlying Model 1 is (M +1) x (N +
1). When M, N are large, the size is consequently large. Recall the following table:

(M, N) | (300,300) | (350,300) (400,300) (400,400)
time 2879 ms | 4236 ms | “Java heap space” | “GC overhead limit exceeded”

Table 4.5: Elapsed time of state space derivation

If there are 400 users and providers in the system, the support tool of PEPA reports the error
message of “GC overhead limit exceeded”. That is, the derivation of the state space becomes
impossible, let alone the storage of the state space and the deadlock-checking. Some questions
are naturally proposed: is there a better representation for the underlying state space which can
be derived and stored without the restriction of the number of components? Is there a more
efficient deadlock-checking algorithm which does not suffer the size of the state space, i.e.
avoid the state-space explosion problem? In the next section, some efficient deadlock-checking
methods will be presented. This section gives a new presentation of state space, to solve the

derivation and storage problems encountered in large scale PEPA models.

4.4.1 Linearisation of state space

As shown in Section 4.2, the states of a PEPA model can be expressed using the state equations.
If the state space of the underlying Markov chain can be described using some linear equations,
then the storage of the state space will be much more efficient and easier. This section presents
the linearised description of state space for PEPA. As we mentioned, the terminology of reach-

ability set is is also used to refer to the corresponding state space.

According to the definition, the reachability set RS(S) of a given PEPA model with the activity

matrix C and starting state my is

RS(N,mgp) = {m e NPl | 35 € L(S) such that m = mg + C - a} .

The reachability set given above is descriptive rather than constructive. So it does not help us

to derive and store the entire state space. Moreover, we should point out that, for some given
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o € NPl m = mg + Co € NPl may not be valid states because there may be no valid oc-
currence sequences corresponding to these o. However m is said to belong to a generalisation
of the reachability set: the linearised reachability set. Before giving these definitions, we first
define some kind of flow and semiflow in the context of PEPA. (For the definitions of these

concepts in the context of P/T systems, see [CTS98]).

Definition 4.4.1. (Flow, Semiflow, Conservative and Consistent). Let C be the activity matrix

of a given PEPA model with the underlying P/T structure <(D, Ajabel, CPTe, CPOSt) , m0>.

1. A p-flow is a vectory : D — Q such that y' C = 0. Natural and nonnegative flows are
called semiflows: vectors y : D — N such that yT C = 0. The model is conservative if

there exists a p-semiflow whose support covers D, that is {U € D | y[U] > 0} = D.

2. A basis (respectively, fundamental set) of p-flows (respectively p-semiflows),
B = {y1,y2, - ,yq} (respectively, ® = {y1,y2, - ,¥q}) is a minimal subset which
will generate any p-flow (respectively, p-semiflow) as follows: y = Zy]-e\ll kiy; kj €

Q.

3. A t-flow is a vector x : Ajapel — Q such that Cx = 0. Natural and nonnegative flows
are called semiflows: vectors x : Ajapel — IN such that Cx = 0. The model is consistent

if there exists a t-semiflow whose support covers Alapel.

By Proposition 4.3.2, any PEPA model is conservative. Obviously, a p-semiflow is a special
kind of p-flow while a t-semiflow is a special t-flow. Moreover, according to Lemma 4.3.1, a

p-flow is an invariant.

Let B and ® be a basis of p-flows and a fundamental set of p-semiflows respectively. Then
for any m € RS(N, mg), we have Bm = 0 and ®m = 0. However this does not imply that
any m € INIP! that satisfies Bm = 0 or ®m = 0 is in RS(N,mg). But they do belong to

generalised reachability sets. See the following definitions.

Definition 4.4.2. (Linearised Reachability Set, [STC96]) Let S be a P/T system.

1. Its linearised reachability set using the state equation is defined as
LRS*(S) = {m e N'PI'| 36 € N1 such that m = mg + C - o'} .
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2. Its linearised reachability set using the state equation over reals is defined as

LRSSER(S) = {m e NP | 300 > 0 such that m = mg + C - 0'} .

3. Its linearised reachability set using a basis B of p-flows is defined as

LRSY(S) = {mE]N|P| | B-m:B-mO}.

4. Its linearised reachability set using a fundamental set of p-semiflows is defined as

LRSP(S) = {m eNP | & . m=&- mo} .

All the sets defined above are characterised using linear algebraic equations which makes the
set structure simpler. The job of determining whether a state belongs to a set is reduced to

verifying the equations.

Obviously, RS(S) C LRSSE (S). The difference between the definitions of LRSSE(S) and
LRSSER(S) is embodied in the different conditions imposed on o. There is no doubt that
LRSSE(S) C LRSSER(S). Since for any m € LRSSER(S), m =mg + C - o, then

Bm = Bmy + BC - 0 = Bmy,

som € LRSPf(S) and thus LRSSER(S) C LRSPf(S). The definitions of LRSPf(S) and
LRSP Sf(S ) are directly related to the invariants in the system. Clearly, LRSPf(S ) C LRSPSf(S ).

The relationships between these reachability sets are shown in the following lemmas.

Lemma 4.4.1. [STC96]. Let S be a P/T system, then

1. RS(S) C LRSSE(S) C LRSSER(S) C LRSP(S) C LRSP(S).
2. If N is conservative, then LRST'(S) = LRS(S).

3. If N is consistent, then LRSSER(S) = LRSP(S).

For the P/T structure S underlying a given PEPA model, we will see LRSSE (S) = LRSSER (S).

Lemma 4.4.2. Let S be the P/T system underlying a PEPA model.

LRS®E(S) = LRSSER(S).
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Proof. For any m € LRSSER(S), there exists o > 0, such that m = mg + C - 0. Notice
m,mg € NPl all elements of C are either —1,0or 1, and the assumption that each column of
C is distinct. So all elements of o must be integers. Since o > 0, thus o € INlAiabetl That is
m € LRSSE(S). So LRSSE(S) D LRSSER(S). Since LRSSE(S) C LRSSER(S), therefore
LRSSE(s) = LRSSER (s). O

We should point out that this proof is based on the assumption of distinct columns of the activity
matrix. However, this assumption can be relaxed for the analysis of state space. If there are
two columns the same, i.e. the two corresponding labelled activities have the same pre and post
local derivatives, we can modify the model in this way: combine these two labelled activities
into one. The activity matrix of the modified model then satisfies the assumption. But the state
space of the modified model as well as the associated transition relationship without timing
information, is the same as the original one. So the structural analysis based on the new state

space is the same as the analysis based on the original state space.

Now we introduce the concept of equal conflict (see [CTS98]).

Definition 4.4.3. (Equal Conflict) Let N' = (P, T, Pre, Post) be a P/T net.

1. The P/T net N is called equal conflict (EQ), if pre(l) N pre(l') # 0 implies Pre|-, 1] =
Pre[,,!'].

2. The P/T net N is ordinary if each entry of Pre and Post is either zero or one.
3. An ordinary EQ net is a free choice (FC) net.

4. A PEPA model is called an EQ model if the P/T net underlying this model is EQ.

The following proposition will give an equivalent statement for an EQ PEPA model.

Proposition 4.4.1. For a PEPA model, we have

1. A PEPA model is an EQ model if and only if for any two labelled activities | and ', their

pre sets are either equal or distinct, i.e., either pre(l) Npre(l’) = () or pre(l) = pre(l).
2. An EQ PEPA model is a FC model.
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Proof. Let us first prove term 1. Let [ and [’ be two arbitrary labelled activities. Suppose

pre(l) Npre(l’) # (). What we need to prove is :

CPrel. 1] = CP™°[.,I'] <= pre(l) = pre().

It is easy to see that CP*e[. [] = CPre[. I'] implies pre(l) = pre(l’), since each nonzero entry
of a column of CPT® represents a pre local derivative of the corresponding activity. Now we
prove “<=". Assume pre(l) = pre(l') = {U1,Us,- - ,Uy}. By the definition of pre activity
matrix, in the columns corresponding to [ and [/, all entries are set zeros except the entries
corresponding to the local derivatives U; (i = 1,2,--- , k) are set ones. So these two columns

are the same, i.e. CPr®[. [] = CPre[. ['].

Now let us to prove term 2. According to the definition of pre and post activity matrices, each
element of them is either zero or one, that is, any PEPA model is ordinary. So an EQ PEPA

model is a FC model. O

Remark 4.4.1. For an arbitrary PEPA model, if the labelled activities | and l" are both individ-
ual, i.e. #pre(l) = #pre(l') = 1, it is easy to see that either pre(l) N pre(l') = 0 or pre(l) =
pre(l'). Suppose 1 is individual but ' shared, then #pre(l) = 1 < 2 < #pre(l') and thus
pre(l) # pre(l'). Therefore, as long as a local derivative can enable both an individual and a

shared activities, then the PEPA model is not an EQ model. For example, notice in Model 3
Y1 £ (actionl,al).Ys + (jobl,cl).Ys

where actionl is shared while jobl is individual, so Model 3 is not an EQ model.

Definition 4.4.4. [CTS98]. A P/T system S = (N, myg) is reversible!if the starting state is
reachable from any state in the reachability set, i.e., for any m € RS(S), there exists m’ €

RS(N, m) such that m’ = my.

A reversible system means that the starting state is reachable from any state in the reachability

set. A live, bounded, and reversible FC system has a good characteristic.

Lemma 4.4.3. (page 225, [CTS98]) If S is a live, bounded, and reversible FC system, then
RS(S) = LRSSE(S).

"Here the definition of reversible follows the convention of [CTS98], which is different from the reversible
definition in stochastic processes (see Section C.2 in Appendix C).
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Based on the above lemmas, we show that for a class of P/T system, all the generalised sets are

the same.

Theorem 4.4.4. If S underlying a PEPA model is a live, reversible and EQ P/T system, then

RS(S) = LRSSE(S) = LRSSER(S) = LRSP(S) = LRS™!(S). (4.11)

Proof. By Proposition 4.5.1 in Section 4.5, S is live implies that S is consistent. Since S is

conservative by Proposition 4.3.2, then according to Lemma 4.4.1,
LRSSER (8) = LRsP(s) = LRsPSE(s).
By Lemma 4.4.2,
LRSSE(s) = LRSSER () = LrRsPf(S) = LrsPSE(s).

Since S is a bounded FC system according to Corollary 4.3.3 and Proposition 4.4.1, therefore
by Lemma 4.4.3,

RS(S) = LRSSE(S) = LRSSER(5) = LrRSP($) = LrRsPSf(s).

For live, reversible and EQ PEPA models, because all the states can be described by a matrix
equation, the state space derivation is always available and easy. The storage memory can
be significantly reduced since what needs to be stored is an equation rather than its solutions.
The validation of a state, i.e. judging a vector belongs to the state space, is reduced to checking

whether this vector satisfies the matrix equation and thus avoids searching the entire state space.

4.4.2 Example

Let us see an example. Recall Model 1. Suppose the starting state is mg = (M, 0, N, 0)”. So
this is a live, reversible and EQ PEPA model. According to the operational semantics of PEPA,

it is easy to determine the state space:

RS(S) = {(z1, M — 21,91, N —y1)" | 21,1 € N,0 <21 < M,0< y1 < N)}
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There are (M + 1) x (/N + 1) states in the state space RS(S).

Now we determine LRSPSf(S ) based only on the activity matrix and the starting state. The

activity matrix of Model 1 (that was already shown in Table 4.1) is

-1 1 0
1 -1 0

C= . 4.12)
-1 0 1
1 0 -1

Solve CTy = 0, we get a basis of the solution space, which forms the rows of the fundamental

set :

1100
o — . (4.13)
0011

Notice that

LRSPS(S) = {m € N* | &m = &my}

={meN*| m[z1] + m[zs] = mo[z1] + mo[z:]
mly1] + m(ys] = mo[y1] + mo[yo]

— {me N* | m[z1] + m[ze] = M;mly;] + mlys] :N}
= {(@1, M = 21,91, N )" | 21,41 € N,0< 21 < M,0< gy < N}

= RS(S).
By Proposition 4.4.1, we have
RS(S) = LRSSE(S) = LRSSER(5) = LrRSP(5) = LrsPsf(s).

This is consistent with Theorem 4.4.4.

4.5 Improved Deadlock-Checking Methods for PEPA

A deadlock in a set characterises the existence of a state in this set, from which no transition
can be enabled. Deadlock-checking is an important topic in qualitative analysis of computer

and communication systems. It has popular applications, in particular in protocol validation.
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The current deadlock-checking algorithm for PEPA relies on exploring the entire state space to
find whether a deadlock exists. For large scale PEPA models, deadlock-checking can become
impossible since this kind of algorithm suffers from the state-space explosion problem. This
section will present an efficient deadlock-checking method which does not heavily depend on

the size of the state space.

4.5.1 Preliminary

We first introduce the definitions:

Definition 4.5.1. (Deadlock-free for PEPA) Let the P/T structure underlying any given PEPA
model be (N, my).

1. A deadlock of the model or the underlying P/T structure is a state in the state space which

cannot enable any transition, i.e. cannot fire any activity.

2. The model or the structure (N, mg) is deadlock-free if it has no deadlock.

We should point out that, as shown in Table 4.3, the state space of a PEPA model is the same
as the reachability set of the P/T structure underlying this model. So it is equivalent to give the

deadlock definition in the context of the model or the corresponding P/T structure.

When the activity [ is disabled in state m it can be expressed as:
m # CP™[. ] (4.14)

or

\/ m[U] <CPrm,i). (4.15)
Uepre(l)

If (4.14) or (4.15) holds for all activities in Aj,pe]. i-€., there is no activity that can be enabled
at m, then m is a deadlock. The following Theorem 4.5.1 gives a mathematical statement for

deadlock-free models.

Theorem 4.5.1. (Theorem 30, [STC96]). Let S be a P/T system. If there is no (integer) solution

to
m — Co = my,

m,o > 0,

\/Uepre(l) m[U] < CPre[Uv l] Vi € Apaber,
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then S is deadlock-free.

According to this theorem, to decide whether there is a deadlock, it is necessary to compare
each state in the state space to each column of the pre activity matrix. This is not an efficient

way to find a deadlock, especially for large scale PEPA models.

\/Uepre(l) m[U] < CP®[U, I] means that there exists U such that m[U] < CF®[U, []. Notice
that all elements of m are nonnegative integers, and any entry of CF*¢[U, [] other than 1 is zero

forall U and l. So

m[U] < CP™[U, 1] <= m[U] = 0 and CF™[U,]] = 1.

Of course, m > 1 cannot be a deadlock, since m > CPre[‘, [] for any [. Thus, only a state
m with zeros in some particular places can possibly be a deadlock. This observation is very
helpful but not enough for deadlock-checking. All such states with zeros in some entries, have
to be found for checking, which is not always feasible especially in the situation of the state
space derivation or storage being a problem. Theorem 4.4.4 specifies the structure of the state
space, but it requires the condition of “liveness” in advance, which has already guaranteed the

deadlock-freeness.

In the following first subsection, an equivalent deadlock-checking theorem for a class of PEPA
models is illustrated, which allows equivalent deadlock-checking in the linearised state space.

The second subsection illustrates an efficient checking algorithm with some examples.

4.5.2 Equivalent deadlock-checking

Before stating our main results, we first list several lemmas which are used in the proof of our

theorem.

The reachability set of a P/T net is in fact a directed graph, i.e., each state is a node, the transition
from a state to another state is essentially a directed edge between two nodes. A directed graph
is called strongly connected if it contains a directed path from u to v and a directed path from v
to u for every pair of vertices u, v. A graph is called connected if every pair of distinct vertices
in the graph can be connected through some path. Obviously, a strongly connected graph is a

connected graph. The two definitions have been introduced to nets (see [MR80]). For a net, the
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following lemma provides two sufficient conditions of strongly connected.
Lemma 4.5.2. (Property 6.10, page 217, [CTS98]) Let N be a graph and C its incidence
matrix.

1. If N is connected, consistent and conservative, then it is strongly connected.

2. If N is live and bounded then it is strongly connected and consistent.

If \V is the P/T net underlying a PEPA model, these conditions can be simplified.

Proposition 4.5.1. Suppose S = (N, mg) be a P/T system underlying a PEPA model.

1. If N is consistent, then the state space is strongly connected.

2. If S is live, then N is strongly connected and consistent.

Proof. By Proposition 4.3.2 and Corollary 4.3.3 the P/T systems underlying PEPA models
are conservative and bounded. Notice that each state in the state space is reachable from the
initial state, i.e. the state space is connected. So according to Lemma 4.5.2, Proposition 4.5.1

holds. =

Lemma 4.5.3. (Theorem 6.19, page 223, [CTS98]) Let S be a bounded strongly connected EQ
system. Then S is live iff it is deadlock-free.

Lemma 4.5.4. (Theorem 6.22, page 225, [CTS98]) If S is a live EQ system, then for any
Mq, mp € LRSSE(S), RS(N, mg) NRS(N, mp) # 0.
This lemma implies that there are no spurious deadlocks in live EQ systems, i.e. there are no
deadlocks in LRSSE(S ).
Theorem 4.5.5. If the P/T structure S underlying a PEPA model is a consistent, EQ system,
then

1. LRSSE(S) is deadlock-free <= RS(S) is deadlock-free.

2. LRSSER(S) is deadlock-free <=> RS(S) is deadlock-free.

3. LRSP(S) is deadlock-free <= RS(S) is deadlock-free.
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4. LRSP(S) is deadlock-free <= RS(S) is deadlock-free.
Proof. It is easy to see that all “=""holds because
LRSPSE(S) 5 LRSPE(S) 5 LRSSER () 5 LRSSE(8) 5 RS(S).

Now we show that each “<=" holds. Notice S is consistent, by Proposition 4.5.1, S is strongly
connected. Then according to Lemma 4.5.3, RS(S) is deadlock-free implies that S is live.
Since S is an EQ system, then by Lemma 4.5.4, LRSSE(S ) is deadlock-free. Since now we
have LRSSE(S) = LRSSER(S) by Lemma 4.4.2, so LRSSER(S) is deadlock-free. Notice
by Lemma 4.4.1, the conservativeness and consistence of the system imply that LRSPf(S ) =
LRSPSf(S) = LRSSER(S )- So LRSPf(S ) and LRSPSf(S ) are deadlock-free. O

Theorem 4.5.5 allows us to check the corresponding linearised state space to determine whether
a consistent and EQ model has deadlocks. We should point out that “consistent” and “EQ” can

be efficiently checked as properties of the activity matrix.

4.5.3 Deadlock-checking algorithm in LRSSt

According to Theorem 4.5.5, for a consistent, EQ system S, to tell whether RS(S) has dead-
locks it is sufficient to check whether LRSPSf(S ) has deadlocks.

As we mentioned, the activity [ is disabled in m means that there exists a U such that m[U] <

CPre[U, 1]. Because
m[U] < CF™[U,]] <= m[U] = 0 and CP™[U,]] =1,

so only the state m with zeros in some particular places can possibly be a deadlock. Based on
this idea, we provide a deadlock-checking algorithm, see Algorithm 2. In this algorithm, K ([) is
the set of vectors that cannot enable [. The intersected set of all K (1), i.e. K = (¢4, K (1),

is the deadlock candidate set, in which each vector cannot fire any activity. K () LRrSPSE i

used to check whether the deadlock candidates are in the linearised state space LRrSPsE,

Since this algorithm depends on the system structure rather than the repeat instances of the com-
ponents, so does its computational complexity. Therefore, it is efficient for large scale systems

with repeated components. Our deadlock-checking algorithm is structure- or equation-based,
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Algorithm 2 Deadlock-checking in LrSPst
1: foralll € Ajy,q do
2:  if [ is an individual activity then

3: K(l) = {m € NPl | m[U] = 0,CP™[U,]] = 1}  // where {U} = pre({)
4:  elseif [ is a shared activity then
5: K= U {meNP|m[U]=o0CPreU,1] =1}
Uepre(l)

6: end if
7: end for
8: K= [ K()

l€A1apel

9 If K ﬂLRSPSf = (), then LRSPSF is deadlock-free. Otherwise, LRSPSF at least has one
deadlock.

rather than state-space-based, so it avoids searching the entire state space and thus avoids the
state-space explosion problem. Although Theorem 4.5.5 requires the conditions of consistent
and EQ, Algorithm 2 is free from these restrictions since it deals with the linearised state space.
That means, for any general PEPA model with or without the consistency and EQ restrictions, if
the generalised state space has no deadlocks reported by using Algorithm 2, then the model has
no deadlocks. But if it reports deadlocks in the generalised state space, it cannot tell whether

there is a deadlock in the model, except for a consistent and EQ model.

We should point out that each entry of each numerical state (regardless of whether it is in the
state space or the linearised state space) is an integer bounded between zero and the population
of the corresponding component type. So all the sets appearing in this algorithm are finite.
Thus, this algorithm is computable. However we have not implemented this algorithm. The
weakness of this approach is that if the populations of the entities are not specified then sym-
bolic computation is needed. But at this cost, a non-negligible advantage has been obtained:
this method can tell when or how a system structure may lead to deadlocks. The next subsection

will demonstrate the application of Algorithm 2 to some small examples.

4.5.4 Examples

This section presents two examples to illustrate how to use Algorithm 2 to check deadlocks for

PEPA models.
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4.54.1 Example 1: always deadlock-free

Recall Model 1,

Usery & tasky, a).Usersy
b).

Usery =(tasks,b).User;

%

(
Provider, Z(tasky, a). Providers
Providery Z(reset, d). Provider,

Useri[M] B Provider;|[N].

{tasky}

The activity matrix C and pre activity CF*® of Model 1 are

-1 1 0 10 0
o | 1o pre_ | 010
-1 0 1 10 0
1 0 -1 00 1

According to Algorithm 2,
K(taskl) = {m | m[User1] = 0 or m[Provider;] = 0},
K(task2) = {m | m[Users] = 0},
K(reset) = {m | m[Providers] = 0},
So
K = K(taskl) N K(task2) N K (rest)
= {m | m[User;| = 0,m[Users] = 0, m|[Providers] = 0}
U {m | m[Provider] = 0, m[Users] = 0, m[Providers] = 0}.

We have determined the LRSPSf(S ) in Section 4.4.2:

LRSPS(S) = {m € N* | &m = ®mo}
= {(x1, M —x1,y1, N —y1)" | 21,91 € N,0 <21 < M,0<y; < N}.
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So K NLRSPsf = (). That is to say, the system has no deadlocks.

4.54.2 Example 2: deadlocks in some situations

Now we consider Model 4, which has a consistent and EQ P/T structure.

Model 4.
User, =(tasky,1).Users
Usery =(tasky,1).User
Providery d:ef(taskzl, 1).Providersy
Providersy d:ef(taskzg, 1).Providery

(Usery[My] || Userg[Ms]) (Provideri[N1] || Providera[Na)).

B>q
{taskq,taskg}

‘ task ‘ tasks ‘

Usery -1 1

Usery 1 -1
Provider, -1 1
Providers 1 -1

Table 4.6: Activity matrix and pre activity matrix of Model 4

Table 4.6 lists the activity matrix of Model 4. The activity matrix C and pre activity matrix

CPre jre listed below:

Q

|

Q

)

=

o}

\
S = O =
_ o = O

First, let us determine LRSPSf(S). Solving CTy = 0, we get a basis of the solution space

which forms the rows of ®:

1100
®=10110
0011
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Notice mg = (M7, Ma, N1, No)T, so

LRSPS((S) = {m € N* | &m = ®m,}

m[User1] + m[Users] = My + Moy;
={meN* | m[Usery] + m[Provider,] = My + Ni;
m/[Provideri] + m[Providers] = N1 + Na

Note that each of the semiflows corresponds to an invariant of the model. The first and third
express the fact that the number of users, and the number of providers respectively, is constant
within the model. The second expresses the coupling between the components, i.e. the co-
operations ensure that the numbers of local derivatives in the two components always change

together.

Secondly, we determine the potential deadlock set K. According to Algorithm 2,
K(taskl) = {m | m[User;1] = 0 or m[Provider;] = 0},

K (task2) = {m | m[Users] = 0 or m[Providers] = 0},
K =K(taskl) N K (task2)
={m | m[User1] = 0,m[Users] = 0} U {m | m[User;] = 0, m[Providery] = 0}
U{m | m[Provider;] = 0,m[Users] = 0}

U {m | m[Provider,] = 0, m[Providers] = 0}
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Finally, the deadlock set in LRrsPsE i

K N LRSPS

m(User;] + m[Users] = My + Mo;
={meN* | m[Usery] + m[Provider,] = My + Ni;
m|Provideri] + m[Providery] = Ni + N

ﬂ {m | (m[Useri] = m[Providers] = 0) V (m[Provider;] = m[Users] = 0)}

(m = (0, My + Ms, Ny + N2,0)" A My + Ny = 0)

={mecIN*|

(m = (0, My + Mo, N1 + N,0)" A M = Ny = 0)

={mecIN*|
V (m = (M; + M5,0,0, Ny + No)T A My = Ny = 0)

In other words, for Model 4 with mg = (M, Ma, N1, N2)T, only when M; = No = 0 or
My =N =0, KN LRrsPst # (), i.e. the system has at least one deadlock. Otherwise, the
system is deadlock-free as long as M7 + Ny # 0 and Mo + Ny # 0.

This example illustrates that our deadlock-checking method can not only tell whether a partic-

ular system is deadlock-free but also how a system structure may lead to deadlocks.

4.6 Summary

This chapter has revealed the P/T structure underlying PEPA models. Based on the techniques
developed for P/T systems, we have solved the derivation and storage problems of state space
for a class of large scale PEPA models. For any general PEPA models, we demonstrated how to
find their invariants. These invariants can be used to reason about systems in practise, and used
to prove convergence results in the theoretical development for PEPA (see Chapter 6). Our main
contribution in this chapter, is the structure-based deadlock-checking method for PEPA. This
method can efficiently reduce the computational complexity of deadlock-checking and avoid
the state-space explosion problem. The philosophy behind our approach, i.e. structure-based
and equation-based considerations, can be applied to other problems such as logical model-

checking.
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Chapter 5

Fluid Analysis for Large Scale PEPA
Models—Part I: Probabilistic
Approach

5.1 Introduction

In the previous chapter we have discussed the techniques of structural analysis for large scale
PEPA models, to deal with the state-space explosion problem. Quantitative analysis of large
scale PEPA models also suffers from this problem, which is encountered in the calculation
of steady-state probability distributions of the CTMCs. The state-space explosion problem
is inherent in the discrete state approach employed in stochastic process algebras and many
other formal modelling approaches. Recently, for the stochastic process algebra PEPA [Hil96],
Hillston has developed a novel approach—continuous state-space approximation—to avoid this
problem [HilO5a]. This approach results in a set of ODEs, leading to the evaluation of transient

and, in the limit, steady state measures.

More recently, an extension of the previous mapping from PEPA to ODEs, relaxing some
structure restrictions, has been presented in [BGHO7]. In particular, synchronisations are al-
lowed between active and passive actions. The relationship between the derived ODEs and the
CTMC:s for a special example in the context of PEPA, was revealed in [GHSO08]: the set of
ODEs automatically extracted from the PEPA description are the limits of the sequence of un-
derlying CTMCs. However, for general applications the structure restrictions in both [BGHO07]
and [GHSO8] should be further relaxed. For example, an individual activity may occur more
than once within derivative definitions and can appear within different component definitions.

Moreover, shared activities may have different local rates in realistic scenarios.

In this chapter, we relax these conditions and extend the mapping semantics, by employing
the activity matrices and transition rate functions introduced in Chapter 3. Moreover, we will

establish some fundamental characteristics of the solutions of the derived ODEs, such as the
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existence, uniqueness and convergence. For PEPA models without synchronisations, we will
show that the solutions of the derived ODEs have finite limits and the limits coincide with
the steady-state probability distributions of the underlying CTMCs. For general PEPA models
with synchronisations, based on the pioneering work in [GHSO08], the consistency between the
derived ODEs and a family of underlying density dependent CTMCs has been demonstrated.
Furthermore, we will show the convergence of the solutions of the ODEs generated from gen-

eral PEPA models under a particular condition.

We assume in this chapter that the CTMCs underlying considered PEPA models are irreducible
and positive-recurrent [And91]. By Theorem 3.5.3 in [Hil96], the CTMC underlying a PEPA
model is irreducible if and only if the initial component of the model is cyclic. According
to the conclusion (Proposition 1.7, page 163, [And91]) that an irreducible Markov chain is
positive-recurrent if and only if there exists a steady-state distribution, it is natural to assume
the underlying CTMCs to be positive-recurrent because some discussions in the following are
based on the existence of steady-state distributions. Under the assumption of these two condi-
tions, i.e. irreducible and positive-recurrent, the CTMCs underlying considered PEPA models
have steady-state probability distributions, which has also been illustrated in Theorem 3.5.2

in [Hil96].

The remainder of this chapter is structured as follows. Section 2 describes the fluid approxima-
tions of general PEPA models, as well as the existence and uniqueness theorem for the derived
ODEs, while the convergence of the solutions in the nonsynchronisation case is presented in
Section 3. Section 4 presents the concept of density dependent CTMCs and the relationship be-
tween this concept and the derived ODEs, based on which the convergence of the ODE solutions
under a particular condition for general PEPA models will be shown in Section 5. Section 6
presents the further investigation of this particular condition. Finally, we conclude the chapter

in Section 7.

5.2 Fluid Approximations for PEPA Models

The section will introduce the fluid-flow approximations for PEPA models, which leads to some
kind of nonlinear ODEs. The existence and uniqueness of the solutions of the ODEs will be

established. Moreover, a conservation law satisfied by the ODEs will be shown.
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5.2.1 Deriving ODEs from PEPA models

Chapter 3 introduces a numerical vector form to capture the state information of models with
repeated components. In this vector form there is one entry for each local derivative of each
component type in the model. The entries in the vector are no longer syntactic terms represent-
ing the local derivative of the sequential component, but the number of components currently
exhibiting this local derivative. Each numerical vector represents a single state of the system.
The rates of the transitions between states are specified by the transition rate functions defined

in Chapter 3. For example, the transition from state x to x + [ can be written as

Lf(x,l
X( f(x ))X ¥,
where [ is a transition vector corresponding to the labelled activity / (for convenience, hereafter
each pair of transition vectors and corresponding labelled activities shares the same notation),
and f(x,1) is the transition rate function, reflecting the intensity of the transition from x to

x+ 1.

The state space is inherently discrete with the entries within the numerical vector form always
being non-negative integers and always being incremented or decremented in steps of one. As
pointed out in [Hil05a], when the numbers of components are large these steps are relatively
small and we can approximate the behaviour by considering the movement between states to be
continuous, rather than occurring in discontinuous jumps. In fact, let us consider the evolution
of the numerical state vector. Denote the state at time ¢ by x(¢). In a short time At, the change

to the vector x(¢) will be

X(,t+ At) = x(t) = F(x( 1)) At = At Y 1f(x(,1),1).

l€ Alabel

Dividing by At and taking the limit, At — 0, we obtain a set of ordinary differential equations
(ODEs):

dx

—=F 5.1

= F(x), (5.1
where

F(x)= Y If(x1). (5.2)

l€A1abel

Once the activity matrix and the transition rate functions are generated, the ODEs are immedi-
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ately available. All of them can be obtained automatically by Algorithm 1 in Chapter 3.

Let U be a local derivative. For any transition vector [, [[U] is either £1 or 0. If [[U] = —1
then U is in the pre set of [, i.e. U € pre(l), while [[U] = 1 implies U € post(l). According to
(5.1) and (5.2),

dx(U,t)
T D DL VYD

l
=— Y fx0+ Y fxD (5.3)

L[U]=-1 LIU)=1
—— > =D+ D) fxD).
{l|Uepre(l)} {l|Uepost(l)}

The term ¢y yepre(yy J (X, 1) represents the “exit rates” in the local derivative U, while the
term >y epose(ryy / (X, 1) reflects the “entry rates” in U. The formulae (5.1) and (5.2) are
activity centric while (5.3) is local derivative centric. Our approach has extended previous

results presented in the literature, see Table 5.1.

No. | Restrictions paper paper paper this
[HilO5a] | [BGHO7] | [GHSOS8] | thesis
1 | The cooperation set between interacting Vv vV

groups of components is not restricted to
be the set of common action labels be-
tween these groups of components.

2 | Shared activities may have different local Vv
rates.
3 | Allow passive rate Vv

<<

4 | Each action name may appear in differ-
ent local derivatives within the definition
of a sequential component, and may occur
multiple times with that derivative defini-
tion.

5 | Action hiding is considered. N

“Action hiding is not discussed in this thesis, but can be employed based on our scheme. In our scheme each
unknown action 7 can be distinguished since they have distinct attached labels.

Table 5.1: Comparison with respect to restrictions

For an arbitrary CTMC, there are backward and forward equations describing the evolution of
the transition probabilities. From these equations the evolution of probabilities distributed on

each state can be easily induced ( [BGAMT98], page 52). For example, for the (aggregated)
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CTMC underlying a PEPA model, the corresponding differential equations describing the evo-

lution of the probability distributions are

dm T

— =0, 5.4

X Q (5.4)
where each entry of 7(t) represents the probability of the system being in each state at time ¢,
and () is an infinitesimal generator matrix corresponding to the CTMC. Obviously, the dimen-
sion of the coefficient matrix @ is the square of the size of the state space, which increases as

the number of components increases.

The derived ODEs (5.1) describe the evolution of the population of the components in each
local derivative, while (5.4) reflects the the probability evolution at each state. Since the scale
of (5.1), i.e. the number of the ODEs, is only determined by the number of local derivatives
and is unaffected by the size of the state space, so it avoids the state-space explosion problem.
But the scale of (5.4) depends on the size of the state space, so it suffers from the explosion
problem. The price paid is that the ODEs (5.1) are generally nonlinear due to synchronisations,
while (5.4) is linear. However, if there is no synchronisation contained then (5.1) becomes
linear, and there is some correspondence and consistency between these two different types of

ODEs, which will be demonstrated in Section 5.3.

It is well known that for an irreducible and positive-recurrent CTMC, the solution of the corre-
sponding ODEs (5.4) has a unique limit, which is the unique steady-state probability distribu-
tion of the given CTMC. From this distribution, the performance measures such as throughput
and utilisation can be derived. Analogously, we want to know whether the solution of (5.1) has
a finite limit, from which similar performance measures can also be derived. If the limit exists,
what is the relationship between the limit and the steady-state probability distribution of the

underlying CTMC? These problems are the main topics of this chapter.
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5.2.2 Example

Now we show an example. Recall Model 2 presented in Chapter 3:

Q

0,

Figure 5.1: Transition diagram of Model 2

l aP1=PQ1=@2) [ ((Pi=P301-Q2) | gh—h [ gh—Fs APs=PL T Q2=
P -1 -1 1 0 1 0
P 1 0 -1 -1 0 0
Ps 0 1 0 1 -1 0
Q1 -1 -1 0 0 0 1
Q2 1 1 0 0 0 —1
L f(x0) ]| Ry Ry | rax[Py] | rjx[Po] | ryx[P3] | 1 x[Qo] |
Table 5.2: Activity matrix and transition rate functions of Model 2
The activity matrix and rate functions are listed in Table 5.2. In Table 5.2,
/
Ry = f(X, a(P1~>P2,Q1~>Q2)) — "o min((rg + TZ)X[Pl}ﬂ"aX[Ql]),

/ 1
To, + To
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7

rl f?“" min((r/a + TZ)X[P1]7 TaX[Ql])~

T

Ry = f(x7a(P1HP37Q1HQ2)) —

According to our approach, the derived ODEs are

+

that is

(dx(Pl) dx(P) dx(P3) dx(Q1) dx(Q2)

dt’dt’dt’dt’dt>

> If(x,)
l

-1 -1
1 0
f(x7a(P1—>P2aQ1—>Q2)) 0 + f(x,a(Pl_’P3’Q1_’Q2)) 1
—1 0
1 1
1 0 1 0
—1 -1 0 0
75X(P2) 0 + T,BX(PQ) 1 +rx(Ps) | -1 |+ 'I",,YX(QQ) 0 ,
0 0 0 1
0 0 0 -1
) — — min((r), + r)x(Pr), rax(Q1)) + rx(P2)) + 4% (Py)
BB = o min((rf, + r)x(P1), rax(Q1)) — (rg + 75)x(P2)

Q1)) —
) — e min((rf, + r)X(P), raxX(Q1) + rax(P2) — 4% (Ps) -
) r

Q) — —min((r), + r)x(P1), 7ax(Q1)) + 7x(Q2)
Sl€@2) — wmin((r, + r)x(P), rax(Q1)) — 7 x(Q2)

Hereafter the notation x|[-] indicates a discrete state x, while x(-) or x(+, t) reflects a continuous

state x at time t.

Notice that in the PEPA language the passive rate “T” is in fact a notation rather than a number.

Since 0- T = 0 is assumed in Chapter 3 (see Remark 3.4.1), in the above ODEs the terms such
as “min{ AT, rB}” are therefore interpreted as [BGHO7]:

rB, A>0,

min{AT,rB} =
0, A=0.
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For example, if r,, is a passive rate, i.e. 7, = T, then the derived ODEs are as

delh) mm((r +7)x(P1), x(Q1)T) + rix(Pa) + r4x(P3)

B = o min((rf, + r)x(P1), x(Q1)T) = (rg + ry)x(P2)
dxc(lfg) - rg::: " mln((r + T‘”) (Pl)vx(Ql) ) + T’ﬂX(PQ) — ’I“'YX(Pg) .
Q) — min((r, + #)x(P1), x(Q1)T) + 7,x(Q2)

Q) — min((r!, + r)x(P1), x(Q1)T) — . x(Q2)

Introducing the passive rate into ODEs is first considered in [BGHO7] and [Hay07b]. We should
point out that the above definition of “min{ AT, rB}” may result in jumps in the functions on
the right side of the ODEs. Then, by the theory of ordinary differential equations, these ODEs
may have no solutions. In this case, in order to guarantee the existence of solutions, these
ODEs should be interpreted as difference rather than differential equations, or considered as

integration equations.

In the remainder of this thesis, unless otherwise stated there are no passive rates involved in the
derived ODEs. As we will show in the following subsection, if there are no passive rates, then

the derived ODEs must have solutions in the time interval [0, c0).

5.2.3 Existence and uniqueness of ODE solution

For any set of ODEs, it is important to consider if the equations have a solution, and if so

whether that solution is unique.

Theorem 5.2.1. For a given PEPA model without passive rates, the derived ODEs from this

model have a unique solution in the time interval [0, c0).

Proof. Notice that each entry of F'(x) = >, 1f(x,1) is a linear combination of the rate func-
tions f(x,1), so F'(x) is Lipschitz continuous since each f(x,![) is Lipschitz continuous by

Proposition 3.4.3 in Chapter 3. That is, there exits M > 0 such that Vx, y,
IF(x) = F(y)ll < M|x =]l (5.5)
By Theorem C.1.1 in Appendix C.1, the derived ODEs have a unique solution in [0,00). [

In the remainder of this subsection, we introduce a proposition, which states that the ODEs
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derived from PEPA models satisfy a conservation law. As we have mentioned, in the formula
dx (U, t)
% Z f(x,0) + Z f(x,1),
{l|Uepre(l)} {l|[Uepost(l)}

the term > ¢y yepre(r)} S (%, 1) represents the exit rates in the local derivative U, while the term
> (ijuepost()y f (%, 1) reflects the entry rates in U. For each type of component at any time,
the sum of all exit activity rates must be equal to the sum of all entry activity rates, since the
system is closed and there is no exchange with the environment. This leads to the following

proposition.

Proposition 5.2.1. Letr C;; be a local derivative of component type C;. Then for any i and t,

dx (Cy;,
ZX(dt]) =0, andeX<Cij’t) :ij(cif’o)'

J

Proof. We have mentioned in Chapter 3 that the numbers of —1 and 1 appearing in the entries

of any transition vector [, which correspond to the component type Cj, are the same, i.e.

#{7 :1[Cy] = -1} = {5 - {[Cy;] = 1}. (5.6)
Let y be an indicator vector with the same dimension as [ satisfying:

1, if1[C;)] = +1,

0, otherwise.

So y'l = 0 by (5.6). Thus

yT% =y" Y U =Y yTIf(x0) =
l l

x (G, 1) d
That is, Z lj =y’ d)t( =0. SOZ (C’Z ,t) is a constant and equal toz (C’ij,O),

i.e. the number of the copies of component type C; in the system initially. O

Proposition 5.2.1 means that the ODEs satisfy a Conservation Law, i.e. the number of each

kind of component remains constant at all times.
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5.3 Convergence of ODE Solution: without Synchronisations

Now we consider PEPA models without synchronisation. For this special class of PEPA models,
we will show that the solutions of the derived ODEs have finite limits. Moreover, the limits

coincide with the steady-state probability distributions of the underlying CTMC:s.

5.3.1 Features of ODEs without synchronisations

Suppose the PEPA model has no synchronisation. Without loss of generality, we suppose that
there is only one kind of component C' in the system. In fact, if there are several types of
component in the system, the ODE:s related to the different types of component can be separated
and treated independently since there are no interactions between them. Thus, we assume there
is only one kind of component C' and that C' has & local derivatives: C1,C5,--- ,Cy. Then
5.1)is

T
d (x(C1,1), 2 X(Cry )" S Uf(x,0). (5.7)
l

Since (5.7) are linear ODEs, we may rewrite (5.7) as the following matrix form:

d(x(C1,1), -, x(Ck,1)"

o = Q" (x(C1,t), -+, x(Cp, 1), (5.8)

where ) = (g;;) is a k x k matrix.

(@ has many good properties.

Proposition 5.3.1. Q = (qij) ., in (5.8) is an infinitesimal generator matrix, that is, (Gi;),. .

satisfies

1. 0 < —qj < oo foralli;
2. qij > O foralli # j;

3. Z?:l ¢ij = 0 for all i.

Proof. According to (5.8), we have
k
Cz,t
= x(Cj, t)gji- (5.9)
7j=1
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Notice by (5.3),

dX(Ci, t)
a4 Z f(x,0) + Z f(x,1).
{l|C;epre(l)} {l|C;€post (1)}
So
k
Zx Cj t)qj = — Z f(x, 1) + Z f(x,1). (5.10)
Jj=1 {l|C;epre(l)} {l|Ci€epost(l)}

Since there is no synchronisation in the system, the transition function f(x,!) is linear with
respect to x and there is no nonlinear term ,“min”, in it. In particular, if C; € pre(l), then
f(x,1) = r(C;);x[C;], which is the apparent rate of  in C; in state x defined in Definition 3.4.1
in Chapter 3. We should point out that according to our semantics of mapping PEPA models to
ODEzs, the fluid approximation-version of f(x, 1) also holds, i.e. f(x(t),l) = ri(C;)x(C;,1).
So (5.10) becomes

x(Cist)gii + Y _x(Cj,t)azs = x(Ciyt) > (—m(C))+ D fxD). (1D

JF#i {l|C;epre(l)} {l|Ci€post(1)}
Moreover, as long as f(x,l) = r;(C;)x(C;) for some | and some positive constants 7;(C;),
which implies that [ can be fired at C;, we must have C; € pre(l). That is to say, if C; € post(l)
then f(x,!) cannot be of the form of rx(Cj, t) for any constant > 0. Otherwise, we have

C; € pre(l), which results a contradiction! to C; € post(l). So according to (5.11), we have

x(Ci,t)gis = x(Ciyt) Y (=m(Cy)), (5.12)
{1|Ciepre(t)}

d x(Cit)gi= Y fxD). (5.13)
A {l|C;epost(1)}

Thus by (5.12), Gii = 3¢, epreqyy (—71(Ci)), and 0 < —g;; < oo for all i. Item 1 is proved.

Similarly, for any C}, j # i, if f(x,l) = rx(C},t) for some [ and positive constant 7, then

obviously Cj is in the pre set of [. That is C; € pre(l). So by (5.13),

x(Cj,t)qj = Z f(x,1) =x(Cj,t) Z (5.14)
l

{l|Cjepre(l),C;epost(l) }

'In this chapter we do not allow a self-loop in the considered model. That is, any PEPA definition like

«o ¥ (a,7).C” which results in C' € pre(a) and C' € post(«) simultaneously, is not allowed.
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which implies ¢;; = 37,777 %" > 0 forall i # j, i.e. item 2 holds.

We now prove item 3. By Proposition 5.2.1,

X(Cl,t) X(Cg,t)
dt * dt +

Then by (5.9) and (5.15), for all ¢,

k k
X(Cl, t) Z qi15 + X(CQ, t) Z q25 +
= =

p”q;r

X th ZQU
k
Zx Ci, t)qij

=1

-

Jj=11i=1
k

4 dt
7j=1

=0.

This implies Z?:l ¢i; = 0 for all 4.

X(Ck, t) .

dt

k
=1

(5.15)

We point out that this infinitesimal generator matrix (Jrx; may not be the infinitesimal gen-

erator matrix of the CTMC derived via the usual semantics of PEPA (we call it the “original”

CTMC for convenience). In fact, the original CTMC has a state space with k¥ states and the

dimension of its infinitesimal generator matrix is k™ x k™, where NV is the total number of com-

ponents in the system. However, this Qg is the infinitesimal generator matrix of a CTMC

underlying the PEPA model in which there is only one copy of the component, i.e. N = 1. To

distinguish this from the original one, we refer to this CTMC as the “singleton” CTMC.

In the proof of Proposition 5.3.1, we have shown the relationship between the coefficient matrix

@ and the activity rates:

Qii = — Z ri(Ci

{liCsepre(l)}

We use an example to illustrate the above equalities:
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Model 5.
p ¥ (a,70r). Py + (7o ). Ps
Py = (B,rp).Ps
Py = (v, 77)- P21
Model 5 = (Pi[A] || P2[B] || F5(C1)

P—Ps ﬂPQ"P3 fyPS"PI

l « «

P -1 -1 0 1
b 1 0 -1 0
P 0 1 1 -1

’ f(x,1) ‘ T X[ P1] ‘ ronX[P] ‘ X[ ] ‘ X[ Ps] ‘

Table 5.3: Activity matrix and transition rate function of Model 5

The transition diagram of Model 5 is shown in Figure 5.2. The activity matrix and transition

rate functions are presented in Table 5.3. The derived ODEs are

P — (4!, 4 r)x(Pr) + o x(Py)
dx((ifQ) =rix(P)— rx(Pa)
W) — 1% (Py) + rx(Pa) — 1%(Ps)
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or
dxc(lfﬂ —(Tor + 7o) 0 1y x(Pp) x(Py)
7dx(§52) = To! -3 0 X(PQ) = QT X(Pg) 5
=i e s w1y )\ x(B) x(Py)
where
—(T'a/ —+ Ta//> To! To
Q = 0 —-rg g
Try 0 —Tn
is clearly an infinitesimal generator matrix. Obviously, g11 = —(ro/+rar) = — Z ri(Pr).

{l|P1€pre(l)}
Similarly, gi; = 3,71 (i # ).

5.3.2 Convergence and consistency for the ODEs

Proposition 5.3.1 illustrates that the coefficient matrix of the derived ODE:s is an infinitesimal
generator. If there is only one component in the system, then equation (5.8) captures the proba-
bility distribution evolution equations of the original CTMC. Based on this proposition, we can

furthermore determine the convergence of the solutions.

Theorem 5.3.1. Suppose x (Cj,t) (j = 1,2,--- k) satisfy (5.7), then for any given initial
values x (C,0) >0 (j = 1,2,--- , k), there exist constants x(C}, 00), such that

lim x(Cj,t) = x(Cj,00), j=1,2,--- k. (5.16)

t—o00

Proof. By Proposition 5.3.1, the matrix @) in (5.8) is an infinitesimal generator matrix. Con-
sider a “singleton” CTMC which has the state space S = {C1,Cy, - - , C}}, the infinitesimal
x(C5,0 .

generator matrix () in (5.8) and the initial probability distribution 7(C},0) =
1,2,---, k). Then according to Markov theory ([BGAMT98], page 52), w(C},t) (j = 1,2,--- , k),
the probability distribution of this new CTMC at time ¢, satisfies

d(m(Ch,t), - ,7(Ck,t))
dt

- (W(Clat)v'” 77T<Ck7t))Q (517)
Since the singleton CTMC is assumed irreducible and positive-recurrent, it has a steady-state
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probability distribution {7 (C, c0)} ?:1’ and
lim 7(Cj,t) = 7(Cj,00), j=1,2,-- k. (5.18)

t—o00

Note that W also satisfies (5.17) with the initial values w equal to 7(C}, 0), where N

is the population of the components. By the uniqueness of the solutions of (5.17), we have

X(?\fj’t) - ﬂ-(ijt)a J=12k, (5.19)

and hence by (5.18),

lim X(Cj7t) = thm NW(Cjat) = NW(CjﬂOO)7 J=12--- ,]{3.

t—o0

O
Remark 5.3.1. Suppose there are m types of components in the system: Cy,Cs, - -+ ,Cp,, each
with k1, ko, - - -, kp, local derivatives respectively. Since there is no cooperation between dif-

ferent types of component, we can deal with each type independently. Thus, by Theorem 5.3.1,

for each component type C;,
lim X(Cz‘j,t) :NiW(CZ‘j,OO), j: 1,2,--' ,ki, (5.20)
t—o0

where {m1(C;,)}j=1,2,.. k; are the corresponding steady state distributions, and N; is the popu-

lation of C, 1 = 1,2,--- ,m.

It is shown in [GilO5] that for some special examples the equilibrium solutions of the ODEs
coincide with the steady state probability distributions of the underlying original CTMC. This

theorem states that this holds for all for PEPA models without synchronisations.

5.4 Relating to Density Dependent CTMCs

For a PEPA model without synchronisation, the solution of the derived ODEs through the fluid
approximation has a finite limit that is consistent with the steady-state distribution of the cor-
responding singleton CTMC, as Theorem 5.3.1 exposes. However, a general PEPA model may
have synchronisations, which result in the nonlinearity of the derived ODEs. Generally, it is

difficult to rely on pure analytical methods to explore the asymptotic behaviour of the solution
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of the derived ODEs from an arbitrary PEPA model (except for some special classes of models,

see the next chapter).

Fortunately, Kurtz’s theorem [Kur70, EK86] establishes the relationship between a sequence
of Markov chains and a corresponding set of ODEs: the complete solution of some ODE:s is
the limit of a sequence of Markov chains. In the context of PEPA, the derived ODEs can be
considered as the limit of pure jump Markov processes, as first exposed in [GHSO08] for a special
case. Thus we may investigate the convergence of the ODE solutions by alternatively studying

the corresponding property of the Markov chains through this consistency relationship.

This approach leads to the result presented in the next section: under a particular condition
the solution will converge and the limit is consistent with the limit steady-state probability
distribution of a family of CTMCs underlying the given PEPA model. Let us first introduce the
concept of density dependent Markov chains underlying PEPA models.

5.4.1 Density dependent Markov chains from PEPA models

In the numerical state vector representation scheme, each vector is a single state and the rates
of the transitions between states are specified by the rate functions. For example, the transition

from state s to s + [ can be written as

Lf (s,
s WIEM +1.

Since all the transitions are only determined by the current state rather than the previous ones,
given any starting state a CTMC can be obtained. More specifically, the state space of the
CTMC is the set of all reachable numerical state vectors s. The infinitesimal generator is

determined by the transition rate function,

Gss+1 = f(s,1). (5.21)

Because the transition rate function is defined according to the semantics of PEPA, the CTMC
mentioned above is in fact the aggregated CTMC underlying the given PEPA model. In other
words, the transition rate of the aggregated CTMC is specified by the transition rate function in

Definition 3.4.2.
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It is obvious that the aggregated CTMC depends on the starting state of the given PEPA model.
By altering the population of components presented in the model, which can be done by varying
the initial states, we may get a sequence of aggregated CTMCs. Moreover, Proposition 3.4.3
indicates that the transition rate function has the homogenous property: H f(s/H,l) = f(s,l),
VH > 0. This property identifies the aggregated CTMC to be density dependent.

Definition 5.4.1. [Kur70]. A family of CTMCs { X, }, is called density dependent if and
only if there exists a continuous function f(x,1), x € R, | € Z% such that the infinitesimal

generators of X,, are given by:

) =nfls/nl), 140,

where qé’? 4 denotes an entry of the infinitesimal generator of Xy, s a numerical state vector

and | a transition vector.

This allows us to conclude the following proposition.

Proposition 5.4.1. Let {X,,} be a sequence of aggregated CTMCs generated from a given
PEPA model (by scaling the initial state), then {X,,} is density dependent.

Proof. For any n, the transition between states is determined by
qéns)_u - f(S, l)7

where s, s + [ are state vectors, [ corresponds to an activity, f(s,[) is the rate of the transition

from state s to s + [. By Proposition 3.4.3,
nf(s/n,l) = f(s,0).
So the infinitesimal generator of X, is given by:
qgs)ﬂ = f(s,l) =nf(s/n,l), 1#0.
Therefore, { X, } is a sequence of density dependent CTMCs. O

In particular, the family of density dependent CTMCs, {X,,(¢)}, derived from a given PEPA
model with the starting condition X,,(0) = nxg (Vn), is called the density dependent CTMCs
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associated with xg. The CTMCs Xn®) are called the concentrated density dependent CTMCs.

n

Here n is called the concentration level, indicating that the entries within the numerical vector

states (of X”T(t)) are incremented and decremented in steps of %

For example, recall Model 1,

de,

g

Usery :'(ta,skl, a).Users
Usery d:ef(taskg, b).User;
Providery déf(taskl, a).Providersy
Providery Z(reset, d). Provider,
(User1[M]) (Provideri[N])

{taskl}

The activity matrix and transition rate functions have been specified in Table 5.4. In this table,
Ui, P; (i = 1,2) are the local derivatives representing User; and Provider; respectively.
For convenience, the labelled activities or transition vectors taskl(UlﬂUQ’P 1P 2), taskg ZHUI,

reset> =1 will subsequently be denoted by [t@sk1 [taskz [reset regpectively.

l taskl(Ul_’U27P1_’P2) task:2UQHU1 resett 2=
U, -1 1 0
Us 1 -1 0
P -1 0 1
Py 1 0 -1
| [, D) | amin(x[U1],x[P1]) | bx[Us] | dx[P] |

Table 5.4: Activity matrix and transition rate function of Model 1

Suppose xg = (M, 0, N,0)T = (1,0,1,0)7. Let X;(t) be the aggregated CTMC underlying

Model 1 with initial state x¢. Then the state space of X (¢), denoted by S7, is composed of

s;1 = (1,0,1,0)7, sy =(0,1,0,1)7T,

(5.22)
s3 = (1,0,0,1)T, s, =(0,1,1,0)7T.

According to the transition rate functions presented in Table 5.4, we have, for instance,

qé}?sz = gy gy Hitasks = f(s1, lt%kl) = amin(sl[Ul],sl[Pl]) =a.

Varying the initial states we may get other aggregated CTMCs. For example, let X (¢) be the
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aggregated CTMC corresponding to the initial state X5(0) = 2xo = (2,0,2,0)7. Then the
state space Sz of X(t) has the states

s1=(2,0,2,007, so=(1,1,1,1)7, s3=(1,1,2,0)7,
se=(1,1,0,2)", s5=(0,2,1,1)", s¢=(2,0,1,1)7, (5.23)
s7=(0,2,0,2)7, sg=(0,2,2,0)7, sg=(2,0,0,2)T.

The rate of transition from s; to s is determined by
2
Qél?SQ = dg, 5y +iteskt = f(s1, ltaSkl) =2a=2f(s1/2, ltaSkl).

Similarly, let X, (t) be the aggregated CTMC corresponding to the initial state

X1 (0) = nxg. Then the transition from s to s + [ is determined by

0V = f(s.1) = nf(s/n.1).

Thus a family of aggregated CTMCs, i.e. {X,, ()}, has been obtained from Model 1. These
derived { X, (¢)} are density dependent CTMCs associated with x¢. As illustrated by this exam-
ple, the density dependent CTMCs are obtained by scaling the starting state xg. So the starting
state of each CTMC is different, because X,,(0) = nxg, i.e. X,,(0) = n(M,0, N,0).

5.4.2 Consistency between the derived ODEs and the aggregated CTMCs

As discussed above, a set of ODEs and a sequence of density dependent Markov chains can
be derived from the same PEPA model. The former one is deterministic while the latter is
stochastic. However, both of them are determined by the same activity matrix and the same rate
functions that are uniquely generated from the given PEPA model. Therefore, it is natural to

believe that there is some kind of consistency between them.

As we have mentioned, the complete solution of some ODEs can be the limit of a sequence of
Markov chains according to Kurtz’s theorem [Kur70, EK86]. Such consistency in the context
of PEPA has been previously illustrated for a particular PEPA model [GHSO08]. Here we give
a modified version of this result for general PEPA models, in which the convergence is in the
sense of almost surely rather than probabilistically as in [GHSO08]. A sequence converges to a
limit almost surely means that events for which this sequence does not converge to this limit

have probability zero. Convergence in this sense can imply the convergence in probability, so
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it is stronger.

Theorem 5.4.1. Let X (t) be the solution of the ODEs (5.1) derived from a given PEPA model
with initial condition x¢, and let { X,,(t)} be the density dependent CTMCs associated with X
underlying the same PEPA model. Let Xn(t) = X0® tpen foranyt > 0,

n il

lim sup || X, (u) — X (u)|| =0 a.s. (5.24)
n—oo uSt
Proof. According to Kurtz’s theorem, which is listed in Appendix C.1, it is sufficient to prove:

for any compact set K ¢ RV¢,

1. 3Mg > Osuchthat [|[F(x) — F(y)| < Mkl|x—yl;

2. Zl HZH SUDPxc K f(X7 l) < .

Obviously, above term 1 is satisfied. Since f(x,[) is continuous by Proposition 3.4.3 in Chap-
ter 3, it is bounded on any compact K. Notice that any entry of [ takes values in {1, —1,0}, so

||I7]| is bounded. Thus term 2 is satisfied, which completes the proof. O

Based on such a relationship between the derived ODEs and the aggregated CTMC:s, the con-
vergence problem of the solutions will be discussed in the next section, while the boundedness

and nonnegativeness will be first presented in the following subsection.

5.4.3 Boundedness and nonnegativeness of ODE solutions

Theorem 5.4.1 allows us to investigate the properties of X (¢) through studying the characteris-
tics of the family of CTMCs X, (t) = X"T(t) Notice that X, (¢) takes values in the state space
which corresponds to the starting state nxp. The structural properties of these state spaces,
such as boundedness and nonnegativeness of each entry in the numerical state vectors, have
been demonstrated in Chapter 4. So the ODE solution X (¢) inherits these characteristics since
X (t) is the limit of X,,(¢) as n goes to infinity. That is, X (¢) is bounded and nonnegative. The
proof is trivial and omitted here. Instead, a purely analytic proof of these properties will be
given in the next chapter. Moreover, the proposition of X () satisfying a conservation law, i.e.
Proposition 5.2.1, can also been easily obtained because any state in the state space satisfies the

law as presented in Chapter 4.
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Theorem 5.4.1 just states the approximation but does not state how to approximate the ODEs by
the family of CTMCs, i.e. it does not provide the error bounds of the approximation. Detailed
techniques and discussions of this topic have been presented in [DNOS8]. The reader is referred
to that paper since this thesis does not discuss this topic theoretically. However, experimental
results will be provided to show the error bounds of this kind of approximation (see the case
study in Chapter 7). Moreover, some other topics about the fluid approximations, such as the
comparison between accuracy and computational cost, numerical solution methods, and how to

derive performance measures from ODEs, will be discussed in detail in Chapter 7.

5.5 Convergence of ODE Solution: under a Particular Condition

Analogous to the steady-state probability distributions of the Markov chains underlying PEPA
models, upon which performance measures such as throughput and utilisation can be derived,
we expect the solution of the generated ODEs to have similar equilibrium conditions. In par-
ticular, if the solution has a limit as time goes to infinity we will be able to similarly obtain the
performance from the steady state, i.e. the limit. Therefore, whether the solution of the derived

ODEs converges becomes an important problem.

We should point out that Kurtz’s theorem cannot directly apply to the problem of whether or
not the solution the derived ODEs converges. This is because Kurtz’s theorem only deals with
the approximation between the ODEs and Markov chains during any finite time, rather than
considering the asymptotic behaviour of the ODEs as time goes to infinity. This section will

present our investigation and results about this problem.

We follow the assumptions in Theorem 5.4.1. Denote the expectation of X,,(t) as M, (t), i.e.
M, (t) = E[X,,(t)]. For any t, the stochastic processes { X, ()}, converge to the deterministic
X (t) when n tends to infinity, as Theorem 5.4.1 shows. It is not surprising to see that { M, (£) },

the expectations of {X,,(t)},, also converge to X (t) as n — co:

Lemma 5.5.1. For anyt,
lim M, (t) = X (t).

n—oo

Proof. Since X (t) is deterministic, then E[X (¢)] = X (t). By Theorem 5.4.1, for all ¢, X,,(t)
converges to X (t) almost surely as n goes to infinity. Notice that X,, () is bounded (see the

discussion in Section 5.4.3), then by Lebesgue’s dominant convergence theorem given in Ap-
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pendix C.1, we have

lim E||X,(t) — X(t)| = 0.

n—oo
Since a norm || - || can be considered as a convex function, by Jensen’s inequality (Theo-
rem2.2 [BZ99]), we have || (E[])|| < E]|| - ||]. Therefore,

i ([ 8L,(t) ~ X ()] = lim |[E[X,(6)] — ELX(0)]
< lim B|X, (1) X(1)]

=0.

O

Lemma 5.5.1 states that the ODE solution X (¢) is just the limit function of the sequence of
the expectation functions of the corresponding density dependent Markov chains. This pro-
vides some clues: the characteristics of the limit X (¢) depend on the properties of { M, (¢)},.

Therefore, we expect to be able to investigate X (¢) by studying { M, (t)},.

Since M,,(t) is the expectation of the Markov chain X,,(¢), M,,(t) can be expressed by a for-

mula in which the transient probability distribution is involved. That is,

where S, is the state space, 77 (+) is the probability distribution of X, at time ¢. Let S, and

77(-) be the state space and the probability distribution of X, (¢) respectively>. Then

i) = B 0] = 8 | 220 = 3 Xapge),

n
XES™

We have assumed the Markov chains underlying PEPA models to be irreducible and positive-
recurrent. Then the transient probability distributions of these Markov chains will converge to
the corresponding steady-state probability distributions. We denote the steady-state probability

distributions of X,,() and X,,(t) as 7" (-) and 7" (-) respectively. Then, we have a lemma.

Lemma 5.5.2. For any n, there exists a Mn(oo), such that

lim M, (t) = My (o).

2We should point out that the probability distributions of X, (¢) and X, () are the same, i.e. 7}'(x) = 7} (x/n).
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Proof.

lim M, (t) = lim §7rl?(x)
n

Clearly, we also have M,,(c0) = > xes, XMoo (X).

Remark 5.5.1. Currently, we do not know whether the sequence {Mn(oo)}n converges as
n — o0o. But since {Mn(oo)}n is bounded which is due to the conservation law that PEPA
models satisfy, there exists {n'} C {n} such that {M,s(c0)} converges to a limit, namely
Moo (o). That is

lim My (00) = Mo (o0).

Thus,
lim lim My(t) = lim M, (00) = Mu(c0). (5.25)

n’/—o0 t—00 n’—o0

At the moment, there are two questions:

1. Whether limy_,og limy_, o0 M,y (t) exists?

2. If im0 limyy o My (t) exists, whether

lim lim M,y(t) = lim lim M, (t)?

t—o0o n/—oo n’/—oo0 t—0o0

If the answer to the first question is yes, then the solution of the ODEs converges, since by
Lemma 5.5.2,

lim X (t) = lim lim M,(t).

t—o0

t—oon’—oo

If the answer to the second question is yes, then the limit of X (¢) is consistent with the station-
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ary distributions of the Markov chains since

lim X(t) = lim lim My (t) = lim lim My (t) = Ms(c0).

t—o00 t—oo n/—oo n/—o0 t—00

~

Mo (t) —=2 s X(#)(= Maol(t))

Lemma 5.5.1
t—>oolLemma 552 ‘.’??lt—wo
~ Remark 5.5.1 ~
My (o0) ————— My (00)
n/—oo

Figure 5.3: Convergence and consistency diagram for derived ODEs

In short, the positive answers to these two questions determine the convergence and consistency
for the ODE solution, see Figure 5.3. Fortunately, the two answers can be guaranteed by the

condition (5.26) in the following Proposition 5.5.1.

Proposition 5.5.1. (A particular condition) If there exist A, B > 0, such that

~

Mo () — Mn/(oo)H < Be At (5.26)

sup
n/

then limy_oo X (t) = Mag(c0).

Proof.
[x0 - st(e)]| = | gim 1) - N0
< limsup HMn/ (t) — Mn/(oo)H
n’—oo
< limsup [sup My (t) — Mn/(oo)H]
n'—o0 n’
< limsup Be
n’—oo
= Be 0,ast — oc.
S0 limy oo X (t) = Moo (00). O
Notice that M,,(t) = Z E7r,?(x) and M,,(c0) = Z E7r§o(x), so in order to estimate
xesn " xeSn n

HMn(t) — M,(c0) H in (5.26), we need first to estimate the difference between 7}* and 7% .
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Lemma 5.5.3. If there exists A > 0 and By > 0, such that for any n' and all x € S",

| (x) — 7% (x)] < wh (x) Bre~ 4, (5.27)

then there exists B > 0 such that sup,, || M (t) — M, (c0) H < Be= holds.

A 0
Proof. We know that X,,(0) = ﬁ = xg for any n. By the conservation law, the population
n
of each entity in any state is determined by the starting state. So for any n’ and all x € S ",
l|x/n/|| < C1 > pep Xo[P] < 0o, where D is the set of all local derivatives and C' is a constant

independent of n’. Let C' = sup,, max__ . ||x/7/||, then C' < occ.

xeSn
~ ~ X n X n
|3 = (o) = | Y T = Y Sao)
xesn’ xesn

IN

sup max
n’ XGS"I

A
Q
S
8=
®
o)
%\
=

Let B = C'Bj. Then sup,,

My (t) — Mn/(oo)H < Be= 4, O

5.6 Investigation of the Particular Condition

This section will present the study of the particular condition (5.26). We will expose that the
condition is related to well-known constants of Markov chains such as the spectral gap and the
Log-Sobolev constant. The methods and results developed in the field of functional analysis of

Markov chains are utilised to investigate the condition.
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5.6.1 An important estimation in the context of Markov kernel

We first give an estimation for the Markov kernel which is defined below. Let () be the in-

