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Abstract

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of

mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the

brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the

corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons.

We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community

structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional

specialization of the brain cortex.

c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Real-world complex systems are composed of interacting

entities with nontrivial dynamical behavior and complicated

interaction topology. Over the years, the complex network

approach has been playing an increasing role in the study

of complex systems [1–4]. The main research focus has

been on the topological structures of complex systems based

on simplified graphs, paying special attention to the global

properties of complex networks, such as the scale-free and

small-world features, or to the presence or absence of some very

small subgraphs, such as network motifs [5]. The topological

studies have revealed important organization principles in the

structures of many realistic network systems [1–4]. Recently,

significant research interests have been shifted to understanding

the dynamics of such network systems beyond the interaction

topology (for a recent review see Ref. [4]). A problem of

fundamental importance is the impact of topological structures

on the dynamics of the networks. For example, synchronization

of oscillators [6–11] is one of the crucial dynamical behaviors
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cszhou@agnld.uni-potsdam.de (C. Zhou).

on complex networks, for its relevance in various fields,

especially in neural systems.

A mammalian brain is a complex system consisting of a

hierarchy of interacting elements on different levels, of different

functions and different interconnections. There are at least

three basic levels in the hierarchical structure: the microscopic

level of interacting neurons, mesoscopic level of mini-columns

and local neural circuits, and macroscopic level of large-scale

organization of the brain areas [12–14]. The complex network

approach has been widely applied to obtain information about

the segregation and the integration of different brain parts.

Neural network structures on various levels are found to

display properties of many other complex networks, such

as high clustering coefficient and short average pathlength.

Especially, significant progress has been made in the study of

the large-scale organization of the corticocortical connections

in the brain of animals, like cat and macaque monkey [15,16].

The topological properties of human connectome, however,

remain largely unclear [14]. The anatomical connectivity of

the animal brain displays features of small-world and scale-

free networks [16], and organizes into clusters (communities)

[17,18].

It is known that different areas of the brain cortex are func-

tionally correlated, which is manifested by interdependence
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Fig. 1. (a) Connection matrix MC of the cortical network of the cat brain. A symbol at the entry MC (I, J ) indicates an afferent connection to the area I from the

area J . The different symbols represent different level of the connection weight: 1 (•sparse), 2 (◦ intermediate) and 3 (∗ dense). The organization of the system

into four topological communities (functional sub-systems, V, A, SM, FL) is indicated by the solid lines. (b) The small-world sub-network (schematic plot) used to

model each node of the cat cortical network in (a).

and synchronization of the dynamical activities of different ar-

eas [16]. The network approach has been also applied to inves-

tigate the organization of the functional connectivity based on

large-scale measurement of brain activities [19–22]. Interest-

ingly, the functional brain networks also exhibit basic proper-

ties of small-world and scale-free networks.

In spite of the progress made in revealing the general princi-

ples of structural and functional networks, the relationship be-

tween these two parts is still an open problem and a big chal-

lenge requiring significant development in various fields rang-

ing from neurobiology to complex system theory. A complete

understanding of this problem would involve detailed infor-

mation about the hierarchical structures of the anatomical and

functional connectivities. Unfortunately, such detailed informa-

tion crossing various hierarchies is still largely not available,

and research has to mainly focus on certain levels separately.

This, however, does not prevent us from accessing the prob-

lem from the viewpoint of dynamical complex network sys-

tems. Conceptual modeling of the dynamics of the neural sys-

tem based on a realistic network of corticocortical connections

and investigating the synchronization behavior should provide

meaningful insight into the problem.

In this paper, we simulate the functional connectivity by

modeling each node of the cat cortical network [12] with a

sub-network of interacting FitzHugh–Nagumo (FHN) excitable

neurons in the presence of noise. The functional connectivity

among the cortical areas is measured by the correlation between

the mean activities of the sub-networks. We will study different

regimes of synchronization in the networks. We will analyze

the clustering behavior of the dynamical patterns and study

their relationship with the underlying anatomical structures

of the network. Our main finding is that in the biologically

plausible regime, the dynamical clusters reveal the topological

communities of the anatomical network.

The paper is organized as follows. In Section 2 we

present an introduction of the cat corticocortical network

and our dynamical model. The overall dynamical properties

of the model are discussed in Section 3. We then study

in detail cluster formations in Section 4. In Section 5, we

compare the cat cortical network with randomized networks

and demonstrate different mechanisms of synchronization

organization. Section 6 is devoted to discussion and outlook.

2. Dynamical neural network model

2.1. Corticocortical network of cat

The corticocortical network that we study in this paper

represents the long-range projections between cortical areas

in mammalian brains. For the cat brain, the cortex can be

divided into 53 areas from four major systems: 16 areas in

the visual system (V), 7 areas in the auditory part (A), 16

areas in the somato-motor (SM) and 14 areas in the fronto-

limbic system (FL). The connectivity between these areas was

identified by collating data from various anatomical tracer

studies [12]. The 53 areas in the cat cortical network are

linked with approximately 830 fiber connections. The fibers

connecting the areas have different axon densities, and the

sparse connections are weighted as 1, dense connections as 3

and intermediate or unknown density are labeled as 2. This

gives rise to a weighted complex network, as shown in Fig. 1(a).

The complex topology of cortical networks is the subject of

many recent analyses, see Ref. [16] for a recent review. The

cat network displays typical small-world properties, i.e., short

average pathlength and high clustering coefficient, indicating

optimal organization for effective inter-area communication

and for achieving high functional complexity [15,18]. The

degree (the number of connections) of the nodes is

heterogeneous, for example, some nodes have only 2–3 links,

while some others have up to 32 connections. Due to the small

number of areas it is difficult to claim a scale-free degree

distribution [18], nevertheless, our analysis comparing the cat

cortical network to a scale-free network model with the same

size and connectivity density does suggest a scale-free degree

distribution [23].

Hilgetag et al. have analyzed the cluster organization of

the cat cortical network using an evolutionary optimization

algorithm [17,18]. The clusters have been identified based

on the rationale that clustered areas should be more densely

connected within the respective clusters than with areas in
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other clusters. Maximizing the intra-cluster connections and

minimizing the inter-cluster ones with this optimization scheme

identifies a small number of clusters. Interestingly, these

topological clusters agree broadly with the four functional

cortical sub-divisions, i.e., the V, A, SM and FL systems.

We note that this way of defining clusters in Refs. [17,18] is

essentially the same as the modularity measure used to find

network communities [24]. Because the network communities

based on the connectivity topology coincide with the functional

sub-systems, we will give these topological communities the

corresponding names of the cortical sub-systems V, A, SM and

FL to contrast them from the dynamical clusters.
Our following analysis of the dynamics of this network

shows that the dynamical patterns are also clustered, and

strikingly, in the biologically plausible regime, the dynamical

clusters also coincide with the anatomical communities and the

functional sub-divisions V, A, SM and FL. Our finding thus

provides a dynamical link between the topological structure and

functional specialization of brain networks.

2.2. Dynamical model

Each node of the cat cortical network corresponds to a

cortical area composed of a large ensemble of interacting

neurons. However, detailed information about the connectivity

at the neuronal level is still largely missing, so we introduce

a conceptual model. For the purpose of dynamical modeling,

we represent each node (area) of the cat cortical network with

a sub-network of Na interacting neurons. These neurons are

coupled with the small-world network (SWN) model proposed

in Ref. [3], i.e., a regular array of N neurons with a mean degree

ka is rewired with a probability p, as depicted in Fig. 1(b).

In spite of its simplicity, such a model incorporates the basic

features of neuronal networks in the local area of the cortex,

i.e., neurons are mainly connected to their spatial neighbors,

but also with some additional distant synapses. Much previous

work has studied synchronization in SWNs of neurons [8–11],

and has found that SWNs enhance the ability of the system to

synchronize. In our investigation of the dynamical organization

of the cat cortical network at the systems level, we do not

pay special attention to the detailed synchronization behavior

of the sub-network, but mainly consider the correlations of

mean activity between the sub-networks. Reflecting biological

observations, 25% of the Na neurons are set as inhibitory

neurons, with the rest being excitatory. It has been observed

that only a small number of neurons (about 5%) of one area

receive excitatory synapses from another connected area [25].

To our knowledge, no information about the output synapses is

available, and for simplicity, we assume that the output signal

from one area to another area is the mean activity of the output

area.
Specifically, our model of the neural network of cat cortex

is composed of a large ensemble of neurons connected in a

network of networks, and the dynamics of the neuron i at area

I is:

ǫ ẋ I,i = f (x I,i ) +
g1

ka

Na
∑

j

M L
I (i, j)(x I, j − x I,i )

+
g2

〈w〉

N
∑

J

MC (I, J )L I,J (i)(x̄J − x I,i ), (1)

ẏI,i = x I,i + aI,i + DξI,i (t), (2)

where

f (x I,i ) = x I,i −
x3

I,i

3
− yI,i . (3)

Here, the matrix MC represents the corticocortical connec-

tions in the cat network (MC (I, J ): I, J = 1, . . . , N = 53).

M L
I denotes the local SWN of the I th area (M L

I (i, j): i, j =

1, . . . , Na). A neuron j is inhibitory if M L
I (i, j) = −1 for all

of its connected neighbors. The label L I,J (i) = 1 if the neu-

ron i is among the 5% within the area I receiving the mean-

field signal x̄J = (1/N )
∑Na

l xJ,l from the area J , otherwise,

L I,J (i) = 0. The coupling strength normalized by the mean de-

gree ka of the SWNs, g1, corresponds to the amount of internal

interactions within one area. The strength of the external inter-

action between areas, g2, is normalized by the average weight

of connection (〈w〉 ≈ 2).

We use the FHN model [26] for the dynamics of individual

neurons, mainly because of its simplicity and biological

plausibility [27]. The fast variable x (ǫ = 0.01 in Eq.

(1)) denotes the membrane potential and the slow variable

y describes a recovery of the dynamics. The FHN equations

model class II excitable neurons, which are characterized by

a Hopf bifurcation from the excitable regime to an oscillatory

regime. In our modeling, all the neurons are set in the excitable

regime with the parameters aI,i > 1. To take into account

the non-identity of the neurons, a is randomly and uniformly

distributed in the interval a ∈ (1.05, 1.15). Additionally,

independent Gaussian white noise 〈ξI,i (t)ξJ, j (t − τ)〉 =

δI,J δi jδ(τ ) with an intensity D = 0.03 is added to each

neuron in order to simulate perturbations, e.g., from sub-

cortical areas. For isolated neurons, the noise can generate

sparse, Poisson-like irregular spiking patterns as in realistic

neurons. Diffusive coupling is mainly considered to represent

the electrical interaction between neurons for the simplicity

of simulation at this stage, although it is not the most typical

manifestation found in the mammalian cortex. More realistic

interactions through chemical synapses will be studied in

ongoing work.

3. General dynamics of the model

The above system of Eqs. (1)–(3), the network of networks

of neurons, is simulated using the first order Euler algorithm

with a time step 1t = 0.001, which is sufficiently small for the

stochastic dynamics. To keep the simulation time reasonable,

we fix the small-world sub-networks with Na = 200, ka = 12

and p = 0.3. We have checked that Na = 200 is large enough

to exclude the system size effects on the amplitudes of the

mean field x̄ of the individual SWNs without external coupling

(g2 = 0).

For a fixed input noise level D, the spiking dynamics and

the synchronization of the neurons in the SWNs are mainly
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Fig. 2. Typical time series of the mean field dynamics x̄ of one area with different internal coupling strengths g1 = 0.06 (a) and g1 = 0.12 (b). Notice the different

scales on the vertical axes.

Fig. 3. Spatio-temporal patterns of the mean activity x̄ I at different coupling strengths: (a) g1 = 0.06, g2 = 0.12 and (b) g1 = 0.12, g2 = 0.12. Note the different

gray-scales in the colorbars.

controlled by the internal coupling g1 [28]. For small g1,

a neuron is not often excited by the noise-induced spiking

of its connected neighbors, and the mean field x̄ displays

irregular fluctuations. Weak synchronization in the SWNs is

manifested by some clear deviations of x̄ from the baseline

(Fig. 2(a)). However, for large enough g1, the neurons are

excited mutually and achieve strongly synchronized and regular

spiking behavior, as illustrated by the time series of x̄ in

Fig. 2(b). The external coupling g2 also has an effect on the

synchronization of the local network (amplitudes of x̄), as well

as controlling the synchronization between the areas. For small

g1, the infrequent and irregular spiking activity of one area does

not very much affect the behavior of the other connected areas,

and the correlations between the areas are not strong even for

significantly large g2, mainly due to the fact that only 5% of

the neurons are receiving signals from another connected area.

At large values of g1, the frequent and regular spiking activity

of one area has significant effects on the spike timing of the

other connected areas, and the whole network exhibits strong

synchronization even for relatively small g2. Fig. 3 illustrates

the typical behavior in these two regimes. We can observe some

weakly synchronized activities among certain areas in Fig. 3(a)

and some temporal interruption of the strong synchronization

at some other areas in Fig. 3(b). The infrequent spiking

and weak synchronization regime is biological plausible,

like in normal brain activity, and the regular spiking and

strong synchronization regime could correspond to pathological

situations, such as epileptic seizure [29].

To measure the degree of synchronization among the

stochastic signals of the mean field activities x̄ I , we compute

Fig. 4. Dependence of the average correlation coefficient R on the internal and

external coupling strength g1 and g2.

the correlation coefficient between the areas using long time

series after the transient, namely,

r(I, J ) =
〈x̄ I x̄J 〉 − 〈x̄ I 〉〈x̄J 〉

σ(x̄ I )σ (x̄J )
, (4)

where 〈·〉 denotes averaging over time.

First, we quantify the level of synchronization of the

whole network system by computing the average correlation

coefficient over all the N (N−1) pairs of areas, R = [1/(N (N−

1))]
∑

I 6=J r(I, J ). A plot of R as a function of the coupling

strengths g1 and g2 is shown in Fig. 4. Here, the results
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Fig. 5. Correlation matrices r(I, J ) corresponding to the spatio-temporal patterns in Fig. 3. (a) g1 = 0.06, g2 = 0.12 and (b) g1 = 0.12, g2 = 0.12. Note the

different gray-scales in the colorbars.

Fig. 6. Graphical representation of cluster hierarchy (dendrogram) in both

synchronization regimes. (a) g1 = 0.06, g2 = 0.12 and (b) g1 = 0.12,

g2 = 0.12.

are averaged over 10 realizations of the sub-networks and

initial conditions for each set of the parameters. As already

discussed, an increase of the coupling strengths g1 leads to

stronger interaction of the neurons and to a rapid growth of their

synchronous activity within and across areas for non-vanishing

g2. In the region with an intermediate internal coupling strength

g1 (e.g., g1 = 0.09) the transition from a very low to a high

degree of correlation is evident with increasing g2.
The patterns of the correlation matrix r(I, J ) for the two

representative regimes of weak and strong synchronization are

shown in Fig. 5(a) and (b) respectively. Although the average

levels of synchronization (R) are very different, both of the

correlation patterns display some dynamical clusters, where a

dynamical (functional) cluster is defined as a group of the brain

areas communicating much more strongly within this set than

with the areas in the rest of the brain [30]. In our case, these

clusters are also seen in the spatio-temporal patterns in Fig. 3.

4. Cluster analysis

In the following section, we investigate the structure of the

correlation matrix by using cluster analysis and discuss the

relationship of the resulting clusters to the anatomy of the

network.
As mentioned above, in the original matrix of the cat

cortical network, the anatomical connections create specific

communities consistent with the functional sub-systems V, A,

SM and FL. To analyze the dynamical clusters, we calculate

the dissimilarity matrix d = [d(I, J ) = 1 − r(I, J )] and apply

a hierarchical clustering algorithm to create a cluster tree [31]

(using the Statistics Toolbox in Matlab, version 7.0.1). Typical

hierarchy of the clusters (dendrogram) is shown in Fig. 6(a) and

(b) for the weak and strong synchronization regimes.

In order to compare the anatomy with the correlation

clusters, we concentrate on the level in the hierarchy of

the cluster where the correlation matrix decomposes into the

number of clusters (here 4), corresponding to the number of

anatomical communities.

On this level the cluster formation in the weak and the

strong synchronization regimes is demonstrated and described

in detail.

4.1. Weak synchronization regime

In the weak synchronization regime, neurons fire with low

frequencies characterized by irregular spiking sequences and

irregular mean activity (Fig. 2(a)). The mean field signals

are similar to those observed experimentally (e.g., EEG

data [32]) and thus this regime is not biologically implausible.

The integration of areas into the dynamical clusters due to

synchronization closely resembles the pattern of communities

obtained using the graph theoretical tools based on anatomical

structures [17,18]. Typical dynamical clusters for the weak

synchronization regimes are shown in Fig. 7. The four

dynamical clusters correspond to the functional sub-division of

the cortex — C1 (V), C2 (A), C3 (SM), C4 (FL). However, it

is also important to notice that there are a few bridging nodes

which belong to one anatomical community but join another

dynamical cluster. For example, the area I = 49 (anatomically

named as 36 in the cat cortex) of the fronto-limbic system

is in the dynamical cluster C2, which is mainly composed

of areas from the auditory system (Fig. 7 (C2)). A detailed

inspection reveals that these nodes are the areas sitting in one

anatomical community but in close connectional association
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Fig. 7. The four dynamical clusters (constituting correlation pairs indicated

by (◦) in the respective panel) obtained at weak internal coupling strength

g1 = 0.06 and g2 = 0.12. The underlying anatomical connections are indicated

by (·).

with areas in other communities [12]. As displayed in Table 1,

we calculate the degree (total number of connections) and

the intensity (total weights) of the input connections of these

areas from other areas within the respective communities and

from other communities. Comparing to the overall connection

degrees (intensities) among the four anatomical communities in

Table 2, we can see that these few bridging nodes identified in

our dynamical clustering analysis take over a significant part of

the inter-community connections. In particular, the three areas

I = 12, 13 and 16 account for about 40% of the afferent

connections from FL to V, and dynamically they join the cluster

C4 in Fig. 7.

With variation of the coupling strengths in the weak

synchronization regime, we can observe slightly different

combinations of such bridging areas. The areas we identified

are: I = 12 (20a), 13 (20b), 14 (7), 15 (AES), 16 (PS),

22 (EPp), 23 (Tem), 33 (6m), 43 (Ia), 44 (Ig), 46 (CGp)

and 49 (36); this list is in strikingly good agreement with all

those special areas pointed out previously [12] that may play

special roles in the information processing in the brain. Our

results suggest that, due to the role of the inter-community

association played by these nodes, they are acting as the bridge

of communication among the functional communities, in the

sense that the dynamics of these nodes integrates the dynamics

of different anatomical communities.

To measure in a more quantitative way the coincidence

of the dynamical clusters and the anatomical communities,

we examine each dynamical cluster and check from which

anatomical communities the areas are from. On the other hand,

we also examine how the areas of a topological community are

involved into different dynamical clusters. The distribution of

Table 1

Input degree (intensity) from the four communities (V, A, SM, FL) to the

bridging nodes (identified in Fig. 7) from one topological community (CM)

but in another dynamical cluster (CL)

Area(name) CM(CL) V A SM FL

12(20a) V(C4) 10 (23) 1 (2) 2 (2) 7 (9)

13(20b) V(C4) 6 (10) 1 (2) 2 (2) 8 (11)

16(PS) V(C4) 10 (15) 0 (0) 0 (0) 6 (8)

14(7) V(C3) 6 (8) 1 (2) 9 (18) 7 (10)

43(Ia) FL(C3) 5 (5) 3 (4) 9 (10) 8 (16)

49(36) FL(C2) 8 (10) 4 (8) 9 (9) 11 (20)

Table 2

Input degree (intensity) of the areas among the four anatomical communities

CM V A SM FL

V 140 (264) 11 (15) 51 (76) 53 (71)

A 11 (14) 34 (63) 1 (2) 27 (42)

SM 28 (38) 2 (2) 178 (340) 53 (67)

FL 45 (57) 20 (31) 54 (65) 118 (225)

E.g., the community V receives 51 connections from SM.

Fig. 8. Upper panel: composition of dynamical clusters from different

anatomical communities. Lower panel: participation of the areas in a

community into different dynamical clusters. The results correspond to the

clusters in Fig. 7.

the dynamical clusters into the anatomical communities and

vice versa is summarized in Fig. 8. The agreement between the

dynamical clusters and topological communities is clearly seen

by a major bar with a ratio ≈1 in the respective histograms.

Our analysis of the dynamical clusters provides a

meaningful bridge that mediates the gap between the topology

(communities) and function (functional sub-division) of the

brain cortex, even though the sub-networks we consider here

are strongly simplified and the dynamics does not reflect

specific information processing.

4.2. Strong synchronization regime

In the second synchronization regime, typical for stronger

internal coupling, the mean field signals of the areas exhibit

regular spikes with high amplitude and frequency, which have

a higher correlation between the areas. However, this type of
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Fig. 9. Dynamical clusters at strong internal coupling strength g1 = 0.12

(g2 = 0.12). C1 and C4 contain only a single node, I = 8 from V and I = 53

from FL, respectively.

clustering dynamics is mainly characterized by two dominant

clusters that contain the majority of nodes, with a few single

areas as separate clusters (Fig. 9). When the coupling strength

g1 is increased (e.g., from 0.08 to 0.09), the three dynamical

clusters corresponding to the major parts of the V, SM and FL

communities as in Fig. 7 (C1, C3, C4) merge to give rise to a

large cluster containing most of the nodes of the network (Fig. 9

(C3)). The community SM plays a crucial role in the formation

of this large dynamical cluster: by increasing the coupling

strength, the cluster expands and absorbs large parts from the

V and FL communities due to the strong inter-community

connections of the SM community with the latter ones.

We have found that variation of the internal and the external

coupling strengths g1 and g2 does not much affect the formation

of the cluster C2. This cluster is mainly composed of areas from

the auditory system (Fig. 7 (C2) and Fig. 9 (C2)) which are

strongly (weight = 2–3) and nearly completely connected. Such

connectivity provides a reason for the strong stability of the

dynamical clustering of these areas both in the weak and strong

synchronization regimes, irrespective of the coupling strengths.

There are some areas, different for various parameter

combinations, that preserve their independence and form single

clusters. These nodes are: I = 1 (17), 8 (VLS), 21 (VPc), 23

(Tem), 47 (RS) and 53 (Hipp). The separation of these areas

as relatively independent dynamical nodes comes perhaps from

their specific biological origin. For example, the exclusion of

the hippocampus from the dominant network dynamics can be

caused by its distance from the sensory periphery [12].

5. Comparison with random networks

To further understand the different mechanisms of cluster

formation in the weak and the strong synchronization regimes,

Fig. 10. Dynamical clusters (◦) with weak internal coupling strength g1 = 0.06

(g2 = 0.12), compared to the underlying random connections (·).

we compare the cat cortical network with corresponding

random networks. We apply a rewiring algorithm proposed by

Milo et al. [5] to generate random networks (M R) that preserves

the degrees and weights of the incoming connections of the

cat cortical network MC , but destroys any other topological

organization. Specifically, two pairs of connected nodes are

randomly selected, (x1, y1) and (x2, y2), and the connections

are changed to (x2, y1) and (x1, y2) if such connections do

not exist. This procedure is repeated until the network becomes

random. We then repeat the simulations of the dynamics and

the analysis of clusters with the randomized matrix M R for

the same sets of parameters as in Figs. 7 and 9. The behavior

of the mean activities of the sub-networks and the overall

degree of synchronization are very similar to the original cat

cortical network (Figs. 2 and 4), but the cluster formation has

been changed. As seen in Figs. 10 and 11 with one typical

realization of the random networks, for both the weak and the

strong synchronization regimes, we have one major cluster and

a few other clusters each containing only a few (1–3) nodes.

In the strong synchronization regime the auditory cluster (C2

in Fig. 9) is destroyed; most of these areas join the major

cluster in the random networks, since these nodes are no longer

strongly connected among themselves. Nevertheless, the major

cluster C3 and the independent single nodes C1 and C4 in Fig. 9

remain largely unchanged in the random network (Fig. 11).

This suggests that the dynamical organization in the strong

synchronization regime is mainly determined by the input

degrees and intensities of the nodes, which are the same in the

original and in the randomized networks.

The analysis below confirms the dependence of synchro-

nization on the intensities. First, we can assume the following
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Fig. 11. Dynamical clusters in the random network with strong internal

coupling strength g1 = 0.12 (g2 = 0.12).

Fig. 12. (a) Input intensity of the areas. (b) The correlation rX between the

local and global mean fields, as a function of the intensity S of the nodes, for

the randomized network (solid line) and for the original cat network (dashed

line).

dynamics for the mean activity of the sub-networks:

˙̄x I = F(x̄ I ) + geff

N
∑

J

M R(I, J )(x̄J − x̄ I ), (5)

where F(x̄ I ) represents the complicated collective dynamics of

sub-networks and geff denotes the effective coupling between

the mean activities, both depending on g1 and g2. According

to our recent analysis in general weighted networks of

oscillators [7], when the network is sufficiently random, the

input to a node I from its kI neighbors is already close to

the global mean field X = (1/N )
∑N

J x̄J if the degree kI

is large enough. Namely, we can take
∑N

J M R(I, J )x̄J ≈
[

∑N
J M R(I, J )

]

X and get the following approximation

˙̄x I = F(x̄ I ) + geffSI (X − x̄ I ), kI ≫ 1, (6)

where the intensity SI =
∑N

J M R(I, J ) is the total of the

input weights to the node I . This first-order approximation

Fig. 13. The relationship between dynamical clustering and node’s intensities

in random networks. (a) Major dynamical cluster as in Fig. 11 (C3). (b)

Effective cluster C S defined by Eq. (7) with the threshold Sth = 12. (c) The

correlation rC between the dynamical cluster in (a) and the effective cluster

C S , as a function of the threshold Sth.

in Eq. (6) means that nodes with large intensities S are more

strongly coupled to the global mean field X and synchronize

closer to it. The nodes synchronizing commonly with X form

an effective cluster, while the nodes with small intensities S are

not significantly influenced by the activity of other nodes and

preserve their own rather independent dynamics. Comparing

the intensities of the nodes in Fig. 12(a) with the clusters in

Fig. 11 already provides some evidence for the above argument.
We can compute the correlation between the local mean field

x̄ I and the global mean field X , denoted by rX (I ), for each

area I . A plot of rX as a function of the intensity S (taking the

average value among the nodes with the same intensity S) is

shown in Fig. 12(b). We can see that, for the random network,

rX is an almost monotonously increasing function as we expect

from Eq. (6) (except for S = 11 corresponding to the node 19

(degree = 7) which connects to several neighbors with large

intensities in this realization of the random network). From

this, we conclude that the major cluster is composed of nodes

with intensities S larger than some threshold Sth, because these

nodes are dynamically close enough to the global mean field X .

We obtain such an effective cluster C S based on the intensities

S as

C S(I, J ) =

{

1 if SI ≥ Sth and SJ ≥ Sth;

0 otherwise.
(7)

A suitable value of the threshold Sth can be obtained

by examining the correlation rC between the matrix of the

dynamical cluster C3 in Fig. 11 and the matrix of the

effective cluster C S defined in Eq. (7). The relationship of this

correlation coefficient rC to the threshold value Sth is shown

in Fig. 13(c). The matrix C S corresponding to the maximal

correlation rC at Sth = 12 is shown in Fig. 13(b). We can
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Fig. 14. As in Fig. 13, but for the original cat cortical network. (a) Major

dynamical cluster as in Fig. 10 (C3). (b) Effective cluster C S defined by Eq.

(7) with the threshold Sth = 14. (c) The correlation rC between the dynamical

cluster in (a) and the effective cluster C S , as a function of the threshold Sth.

see that it differs from the dynamical cluster (plotted again in

Fig. 13(a)) only by a single area I = 21 in this realization

of the random network. The area 21 has an intensity S = 13

just beyond the threshold Sth and the dynamics is marginal to

the major cluster. The other two areas I = 8 and I = 53

having intensities smaller than the threshold Sth are considered

as independent clusters, which is also consistent with the

observation directly from the dynamical pattern.

Now we perform the same analysis for the original cat

cortical network. The correlation rX between the local mean

field x̄ I and global mean field X displays a similar trend as

the random networks. The lowest correlation corresponds to

the area I = 53 (Hippocampus) from the FL system with the

minimal intensity S = 8. However, there are several areas

with intermediate intensities S ∼ 12–13 and S ∼ 20, but

with significantly lower correlation. These are the areas I =

19, 17, 21, 20 (AAF, AI, VPc, P) belonging to the auditory

system which form another dynamical cluster (Fig. 9 (C2)).

The effective cluster C S obtained by thresholding the intensities

with the optimal value Sth = 14 is shown in Fig. 14(b).

Apart from a few nodes (I = 18, 20) from the auditory

system, the argument based on intensities also explains the

major dynamical organization in the system.

The above comparison shows that when the coupling is large

and synchronization is strong, the organization of the systems

into topological communities may not generate corresponding

dynamical specialization. The communities having significant

inter-community interactions (V, SF and ML) will merge to

form a single cluster. The nodes having low connectivity to

the rest of the network stay relatively independent, and the

dynamical organization is mainly controlled by the intensities,

regardless of the network topology.

6. Conclusion and discussion

One of the major challenges in neuroscience as well

as in other fields of complex systems is understanding

the relationship between the function and the underlying

structure of systems. The synchronization dynamics of complex

networks can be used to investigate this problem, since

synchronization bridges the structure and the function of

various systems, including neural systems. We have studied

in this paper the relationship between topological structures

and synchronization dynamics of neural networks using a

realistic network of corticocortical connectivity of cat. With

a simplified network model and generic spiking dynamics

for the simulation of the otherwise biologically complicated

structure and dynamics of each cortical area, we have observed

interesting dynamical organization. In the biologically plausible

regime of weak synchronization, we have demonstrated a

close correspondence between the topological communities and

the dynamical clusters. In the light that structure determines

dynamics and dynamics controls function, our results provide

an explanation from the viewpoint of network dynamics for

the coincidence between the topological communities and the

functional sub-division in the brain cortex [17,18]. The areas

important for inter-community communication and information

integration were seen to act as bridges between different

topological communities and dynamical clusters. These areas

are the same as those previously found to be crucial for the

global functioning of the system, as identified in previous

studies [12].

We have shown that the relationship between structure and

function varies in different dynamical regimes. In the region

of large couplings and strong synchronization, the organization

of the network into communities does not always separate the

dynamics into corresponding clusters. This case corresponds to

abnormal synchronous activity of large neuronal assembles, for

example, during epileptic seizures. The failure to form different

dynamical (functional) clusters indicates the failure to perform

distinct functional tasks in different functional sub-systems of

the cortex during such pathological events, as is intuitively

consistent with experimental observation.

Our modeling and simulation can be extended and improved

in several ways, in order to address more realistic informa-

tion processing in the brain. In our present implementation, the

model displays a large region of frequent and regular spiking

in the neurons and strong synchronization even without strong

external influence. This situation is closer to the epileptic type

of abnormal activity [29]. In normal brain, the neurons usually

do not exhibit such large activity, and fire for a relatively short

time only in the presence of strong enough stimuli from other

neurons [32]. Thus, a plausible extension is to implement the

sub-network with biologically balanced states, i.e., by consider-

ing synaptic interaction (pulse-coupling) and stronger synapses

for inhibitory neurons like in balanced networks [33,34].

The interesting clustering dynamics, especially in the

biologically plausible regime of weak synchronization,

originates from our modeling of the node of the cortical

networks with a sub-network of excitable/spiking elements.
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Other generic models of excitable/spiking neurons, such as

the simple integrate-and-fire (I&F) model, would generate

similar results reported in this paper, especially on the

systems level. However, cortical neurons display rich dynamics

which would require more subtle neuron models to be

simulated. Furthermore, biologically, a system of 105 neurons

corresponding to a cubic millimeter of cortex is the minimal

system size at which the complexity of the cortex can be

represented, e.g., the number of synapses a neuron receives

is 104 [35]. Such large sub-networks and other biologically

realistic features, such as more detailed spatial structure of

neural circuits, seem to be important for the modeling and

simulation of experimentally observed hierarchical activity

characterized by synchronization phenomena over a wide range

of spatial and temporal scales. We are exploring parallel

computation for the simulation of such more realistic large-

scale neural network models. Another possibility is to model

each node of our sub-network by another population of

neurons and to employ neural mass models [36] for the node

dynamics. The biologically based neural mass models are

complicated oscillators describing the mean activities of the

neural populations and can reproduce all frequency ranges

observed in brain dynamics under different physiological

states [36]. In addition, thalamo-cortical connectivity [12] can

also be taken into account. With such meaningful extensions,

our model could be used to study stimulus evoked brain

activities and information processing, and the model dynamics

then could be compared to the observed activity spread in

cortex [13,37,38] and to the functional connectivity [19–22]

at suitable spatio-temporal scales. The analysis and modeling

based on the approaches of dynamical complex networks thus

can help to obtain a better understanding of the interplay

between structures and functions of the neural systems.

Our findings are also interesting in the general aspects

of network dynamics. Previous analysis of synchronization

dynamics has mainly focused on the stability of ideal

case of the complete synchronization state as a function

of the global statistics of the networks, such as the mean

degree, or the ratio of maximal and minimal eigenvalues,

etc. [6–8]. Here we have shown that the detailed dynamical

organization varies in different dynamical regimes, determined

by different underlying topological structures of the same

network (e.g., more local feature of communities, or more

global measure of intensities). Other mechanisms of cluster

formation in sparsely connected networks have been also

reported [39]. Our study reveals both the possibilities and

the limitations of the complex network approach for the

understanding of complex systems based on the interaction

topology. The results also provide an additional motivation to

characterize complex network systems beyond global statistics,

since more local or detailed connection structures can be the

most important determinants for the dynamical behavior of

the system. Significant recent interests in this direction are

the detection of communities in realistic networks [24,40]. We

suggest that the definition of what a community is may have to

include the dynamical characterization beyond the topological

measures of the systems.
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