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Abstract 

The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this 
methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-
function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various 
cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch 
constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, 
which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleo-
some collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating 
dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural 
features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-
(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we 
consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We 
also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in 
particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regula-
tion of the epigenomic functions of chromatin.
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Introduction
Eukaryotic genomic DNA is packaged into structural 
units called nucleosomes. Each nucleosome consists of 
146 base pairs (bp) of DNA that wrap around (1.6 turns) 
an octameric complex comprising two of each of his-
tones H2A, H2B, H3 and H4 [1, 2]. In most eukaryotes, 
there exists a linker histone H1 to stabilize the chroma-
tin structure and allow for further compaction of chro-
matin into more complex higher-order structures [2–5]. 
The amino acid residues of the core histone proteins are 
heavily decorated with post-translational modifications 
(PTMs), particularly on the unstructured histone tail 

domains, and these modifications help to regulate chro-
matin compaction and govern the availability of docking 
sites for chromatin-modifying factors [1, 6]. PTMs such 
as methylation, phosphorylation, acetylation, SUMOyla-
tion and ubiquitination occur via the transfer of chemi-
cal moieties onto specific residues of histone proteins 
[7] that engage in crosstalk and influence various DNA 
metabolic processes, including gene transcription [7–10], 
DNA damage repair [11, 12], specialized chromosomal 
loci assembly [13, 14], and cell cycle progression [15–18].

Lysine 36 of histone H3 (H3K36) can be modified by 
mono-, di- or trimethylation (H3K36me1, H3K36me2 
and H3K36me3, respectively). In human, this is orches-
trated by a redundant series of enzymes: nuclear recep-
tor-binding SET domain (NSD) protein 3, which only 
catalyzes monomethylation in vivo; NSD1, NSD2,ASH1L 
and MYND domain-containing 2 (SMYD2), which 
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catalyze dimethylation in  vivo;  and SET domain-con-
taining 2 (SETD2) , which catalyzes trimethylation 
in  vivo; albeit, SETD2 is capable of catalyzing all forms 
of methylation in vitro [19–32]. Yeasts, such as budding 
yeast Saccharomyces cerevisiae and fission yeast Schizo-
saccharomyces pombe, encode a single H3K36 meth-
yltransferase (HMTase) in their genomes, known as 
Set2, which bears a high sequence similarity to SETD2 
(Fig. 1A) and is responsible for generating all three forms 
of histone methylation in yeast [12, 33–35]. Like mam-
malian H3K36 methyltransferases, yeast Set2 is recruited 
to chromatin during transcription elongation to catalyze 
H3K36me in a co-transcriptional manner [33, 36–38].

Proper H3K36me epigenome function is critical for main-
taining genomic stability, with defects in this process widely 
observed to be associated with human diseases, includ-
ing prenatal developmental disorder [39, 40], and cancer 
[41–45]. These conditions arise presumably due to defects in 
processes linked with transcription, splicing [46–49], and cell 
cycle regulation [15–18]. In yeast cells, mutations in Set2 or 
H3K36 lead to a decreased lifespan, presumably by reasons 
of a global loss of histone methylation [44] and an inability 
to mount a proper response to environmental stressors like 
genotoxic insult [12, 16] or nutrient deprivation [50].

Here, we consolidate the structural, functional and 
physiological research—garnered predominantly from 
studies in yeast Set2 and human NSD2, NSD3, ASH1L 
and SETD2—pertaining to the catalysis of H3K36 meth-
ylation, and cross-reference yeast studies against those 
carried out using human SETD2 and other H3K36 
methyltransferases.

Physiological roles of Set2/SETD2 in DNA damage 
repair and tumor suppression
SETD2 is a known tumor suppressor and is involved 
in several molecular pathways that maintain genomic 
stability. SETD2 mutations are associated with 

progression, recurrence, and survival rates, especially 
among patients with clear cell renal cell carcinoma 
(ccRCC) [45, 51–53]. We reviewed this topic in detail 
recently, so here we will only briefly discuss some of 
these findings [54]. Mutations affecting H3K36 meth-
ylation—particularly SETD2 truncation mutations—
account for > 30% of pediatric high-grade gliomas [54, 
55]. SETD2 loss-of-function mutations were observed 
in 10% of primary and 30% of metastatic ccRCC 
tumors, whereas H3K36 methylation is significantly 
reduced in ccRCC cell lines and patient samples [56]. 
In ccRCC, an R1625C point mutation in SETD2 desta-
bilizes SETD2 protein, reduces its capacity for substrate 
binding, diminishes H3K36me3, and delays the DNA 
damage response, with evidence of reduced γH2A.X 
foci formation in an H3K36me3-dependent manner. 
Interestingly, introduction of the equivalent mutation 
in budding yeast (R195C) results in a similar attenua-
tion of H3K36me3; albeit it affects less H3K36me1 and 
H3K36me2 levels, implicating a preferential role of 
R1625 in the formation of H3K36me3 [57]. In contrast, 
R2510H mutation within the SETD2 SRI domain—
another common ccRCC-associated mutation—has no 
effect on H3K36me3. This may indicate that the interac-
tion between SETD2 and RNA polymerase II (RNAPII) 
is a functionally discrete mechanism in ccRCC carcino-
genesis [57]. In the case of acute lymphoblastic leuke-
mia, H3K36me3 is enriched on most genes regulated 
by leukemia-associated transcription regulator MLL. 
Indeed, the downregulation of H3K36me3 by SETD2 
mutation can attenuate leukemia cell proliferation [58].

At the molecular level, Set2/SETD2 regulates sev-
eral processes that are essential for the maintenance 
of genomic stability, including response and repair 
of various types of DNA damage, alternative splicing 
and ensuring proper progress of the cell cycle. These 
three processes may compositely underlie major tumor 

(See figure on next page.)
Fig. 1   Set2/SETD2 is generally conserved among fungi and metazoans. A Multiple sequence alignment (MSA) of Set2 homologs across fungi and 
metazoan species. MEGAX software and NCBI MSA viewer 1.13.1 [230] were used to generate an alignment of the primary amino acid sequences 
of  Set2/SETD2 homologs from fission yeast, budding yeast, fungi Aspergillus turcosus, and metazoan species including human, rat, mouse, zebrafish, 
fruitfly, and nematode worm C. elegans. 35% of the human SETD2 amino acid sequence is conserved in  fission yeast Set2 , even for sequences 
beyond the catalytic SET domain. 53% of the amino sequence in the catalytic SET and post-SET domains is identical in fission yeast Set2 and human 
SETD2. Residues that are generally conserved across species are indicated in red. Residues that are identical or similar in polarity across species 
are, respectively, highlighted in black or grey. Conserved “decision-making” residues that regulate the degree of methylation are circled in blue. 
Non-conserved aromatic residues that make contact with histone tails and possibly participate in methylation regulation are circled in red. Domain 
structure of fission yeast Set2 and human SETD2 are also shown to indicate the relative amino acid positions of the MSA sequences in the SETD2 
homologues. B Conserved motifs in human SETD2 SET-domain. i Surface representation: sections of conserved motifs are highlighted (green, teal, 
cyan, and orange). Pymol visualization is derived from the crystallized structure database in the Protein Data Bank, entry 5V21 [74]. ii Projection of 
the conserved sequence of yeast Set2 and human SETD2. The SET domain crystalized structure highlights (1) a regulatory LIN loop, (2) a triangular 
core motif separated from the catalytic site, and (3) histone-interacting residues (refer Figs. 3 and 4). Conserved residues in the triple β-sheet in the 
triangular core of the SETD2 SET domain (green) endow the SET domain with its recognizable triangular shape, which maintains the structure of 
the domain. Conserved LIN-loop (teal, cyan and orange) and α8 (short, white α-helix region) in the closed conformation secure the histone tail in 
position for methylation.
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Fig. 1  (See legend on previous page.)
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suppression pathways regulated by SETD2 in human 
cancers.

H3K36 methylation has been linked to homologous 
recombination (HR) in response to various types of DNA 
lesions. For example, in the case of UV-induced DNA 
damage, SETD2 is involved in the recruitment of 53BP1 
to damaged DNA loci via its interaction with γH2AX and 
H3K36me3 [59]. In contrast, at strand breaks, lens epi-
thelium-derived growth factor (LEDGF; p75) is recruited 
onto DNA double-stranded breaks (DSB) via its interac-
tion with H3K36me3 marks to generate single-stranded 
break overhangs with the C-terminal binding protein 
interacting protein (CtIP) nuclease [60, 61]; RAD51 and 
PALB2 are then recruited via H3K36me3 binding to 
stabilize and guide strand invasion for DNA repair [59, 
62–65]. In fission yeast, Set2 has been reported to medi-
ate the timely localization of the HR factor Rhp54 as well 
as nucleotide excision repair factor Rhp23 when the cells 
are exposed to DNA alkylating damage following methyl 
methanesulfonate (MMS) treatment [12]. These DNA 
damage response factors have been shown to be tar-
geted to gene loci such as brc1+—which encodes a BRCT 
domain factor, similar to human BRCA1—to elicit the 
repair of damaged DNA [12].

Human SETD2 physically interacts with splicing fac-
tors, U2AF and SF-1, as well as heterogeneous nuclear 
ribonucleoproteins via SETD2-hnRNP Interaction (SHI) 
domain to regulate splicing [66]. Thus, not surprisingly, 
deregulation of alternative splicing has been shown to 
enhance tumorigenesis [47, 67–69]. Knockout of SETD2 
in   intestinal cells of a colorectal cancer mouse model 
deregulated the alternative splicing of Wnt/β-catenin 
signaling genes (e.g., disheveled segment polarity protein 
2) to promote metastasis [47]. Primary human kidney 
tumors bearing SETD2 mutations and hosting a global 
reduction in H3K36me3 were found to have disruptions 
in processes concerning mRNA processing, intron reten-
tion, and splicing in ~ 25% of genes in the genome [70]. 
Furthermore, the knockdown of SETD2 in human gastric 
cancer cell lines was shown to result in the accumulation 
of aberrantly spliced transcripts of the mismatch repair 
gene hMLH1, suggesting that interfering with the alter-
native splicing of DNA damage repair genes may also 
underlie defective DNA damage responses in the dis-
rupted function of SETD2 [67].

Fission yeast set2 null mutant showed reduced phos-
phorylation of the DNA damage checkpoint kinase Chk1 
(similar to mammalian CHK2), suggesting that Set2 also 
regulates proper activation of the DNA damage check-
point [12]. A similar effect on DNA damage checkpoint 
was also observed in the mammalian system, in which 
a leukemia-associated SETD2 F2478L point mutation 
caused a decrease in the activating phosphorylation of 

checkpoint kinases CHK1 and CHK2 and cyclin-depend-
ent kinase (CDK)-inhibiting WEE1 kinase [18]. Tran-
scriptomic analysis in the SETD2 F2478L leukemic cells 
revealed a downregulation in the genes associated with 
G2/M progression, DNA replication and p53 apoptotic 
pathways, suggesting that SETD2 may control cell cycle-
related transcription programs. Indeed, both human 
SETD2 and fission yeast Set2 have been reported to regu-
late the expression of ribonucleotide reductase (RNR) 
complex genes to ensure the precise progression of cells 
through S-phase [71, 72]. In osteosarcoma cells treated 
with WEE1 kinase inhibitor AZD1775, SETD2 knock-
out induced an accumulation of cells in S-phase because 
of reduced RRM2 RNR subunit expression; this, in turn, 
induced collapse of the DNA replication fork [71]. SETD2 
also regulates the cell cycle via phosphorylation of Lys-40 
of α-tubulin to mediate proper mitotic spindle formation 
and cytokinesis [15].

Domain structure in SETD2 homologs
 Set2 and SETD2     are modular enzymes bearing several 
defined molecular motifs that coordinate the molecular 
functions of the H3K36 methyltransferases (Fig. 1A and 
B). The primary amino acid (a.a.) sequence of mamma-
lian SETD2 is highly similar to the sequences of fly and 
yeast Set2 proteins (Fig. 1A); albeit, the lengths of these 
proteins vary greatly from 733 a.a. in Saccharomyces cer-
evisiae Set2 protein to 2,537 a.a. in Mus musculus SETD2 
[32, 57]. Despite the disparity in length, the function of 
these factors is highly conserved, owing to the dominant 
function of the SET domain. Indeed, the H3K36 methyla-
tion profiles on the genome are remarkably similar across  
Set2/SETD2  homologs, even across different orders of 
life [32, 73].

Set2/SETD2 homologs identified by PSI-BLAST 
search show similar domain architecture, consisting of 
post-SET, SET, Associated With SET (AWS), and Set2-
Rpb1 interaction (SRI) domains [33, 57, 74] (Fig.  1A). 
The AWS [75], SET, and post-SET domains are neces-
sary for the catalytic function of  Set2/SETD2 in meth-
ylating H3K36 [12, 76]. In contrast, the C-terminal SRI 
domain drives the binding between Set2/SETD2 and 
the C-terminus of the Rpb1 subunit of RNAPII. The SRI 
motif comprises three α-helices that recognize and bind 
to the phosphorylated Ser-2 residue within the hepta-
repeats of the hyperphosphorylated CTD of Rpb1 [36, 
37, 77]. In vitro electromobility assays have been used 
to confirm that the SRI domain of budding yeast Set2 
binds to nucleosomal linker DNA and hence deter-
mines Set2 enzyme substrate specificity [78]. Deleting 
the SRI domain has no effect on Set2 chromatin locali-
zation, indicating that there are other mechanisms reg-
ulating chromatin binding of Set2/SETD2 [79]. In fact, 
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the SET domain and flanking regions are reported to 
bind single-stranded nucleic acids, including RNA and 
single-stranded DNA [80], whereas the N-terminus of 
Set2 interacts with histone H4 [80], thus contributing 
to the stability of the protein and enhancing its binding 
to chromatin.

In H3K36 HMTases of mammals, nematode worm 
and fly, the tryptophan-tryptophan (WW) and the 
coiled-coil (CC) domains lie distal to the post-SET 
domain and function in protein–protein interactions. 
The WW domain binds a poly-proline (Pro) stretch 
within itself to constitute an intramolecular auto-
inhibitory module, which competes with the binding 
between the WW domain of SETD2 and the Pro-rich 
region of the Huntingtin protein [81]. The CC domain, 
on the other hand, promotes dimerization within 
another auto-inhibitory motif to regulate the extent of 
methylation [32, 78, 82].

Budding yeast Set2 also contains an auto-inhibitory 
domain (AID), which lies between the catalytic SET 
domain and the RNAPII-binding SRI domain. Trunca-
tion of the AID allows mutated Set2 to bind to unphos-
phorylated RNAPII, thereby generally promoting Set2 
catalytic activity and enhancing cryptic transcription 
[78]. However, this domain is not conserved in fission 

yeast or human. In addition, the detailed regulatory 
mechanism of the AID remains mostly unknown [32].

Histone H3K36 di‑methyl transferases
Domain structure of NSDs and ASH1L
Histone H3K36 can be dimethylated by several enzymes 
[27] including ASH1L, NSD2 and NSD3; these NSD pro-
teins have been structurally studied in detail. The NSD 
family of proteins comprise the AWS, SET and post-SET 
domains, which compositely form the catalytic regula-
tory domain that is shared with Set2 and SETD2 trimeth-
ylase (Fig. 2). In addition, the family also contains three 
types of chromatin-associating domains, namely the 
plant homeodomain (PHD) domains: four PHD motifs 
are flanked by two proline-tryptophan-tryptophan-
proline (PWWP) domains at the N-terminus (PWWP1 
and PWWP2), with the fifth PHD motif located in the 
C-terminus, distal to the AWS-SET-post-SET catalytic 
domains. A high mobility group (HMG) motif is found 
solely in NSD2 (Fig.  2). The PWWP, PHD and HMG 
domains associate with various components of chroma-
tin: PWWP1 in NSD2 can bind with methylated H3K36 
to stabilize chromatin association of the enzymes and 
enable propagation of H3K36me3 [83]. PHD motifs 
are critical in sustaining the catalytic activity of NSD2; 

Fig. 2  Schematic diagram detailing the domain structure of common isoforms of NSD methyltransferases, ASH1L and SETD2. Numbers listed 
vertically refer to the relative amino acid positions of the domains in the different methyltransferases
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indeed, one study showed that ablation of the second 
PHD delocalized NSD2 from the nucleus to the cyto-
plasm, and this mislocalization correlated with complete 
abolishment of enzymatic activity [84]. The HMG box 
confers the nuclear localization of NSD2 by mediating its 
interaction with the DNA-binding domain of androgen 
receptor (AR) [85]. Overexpression of NSD2 provokes 
AR transcription, which in turn induces RAS signaling 
and promotes prostate cancer progression [86, 87].

ASH1L, of the Trithorax group of proteins, is another 
H3K36 di-methylase in fly and mammalian cells. ASH1L 
also shares the AWS-SET-post-SET catalytic domains, 
but differs to the NSD proteins, as it hosts a bromodo-
main and a BAH domain in its C-terminus (Fig.  2) [88, 
89].

Roles of H3K36 dimethylases in oncogenesis and cancer 
progress

Overexpression of the NSD family proteins is shown to 
be oncogenic. NSD1 promotes the progression of acute 
myeloid leukemia, multiple myeloma, and lung cancer, as 
well as cancer cell migration and invasion in hepatocellu-
lar carcinoma (HCC), pediatric glioma, and breast cancer 
[90–95]. The carcinogenic potential of NSD1 is mediated 
via activation of Wnt/β-catenin signaling [90, 94].

NSD2 overexpression is linked with tumor aggres-
siveness [96] in cancers of the breast [97], cervix [98], 
lung [99], kidney [100], head and neck [101], brain [91], 
blood [102], colorectum [103], prostate, skin [96], and 
ovary [24]. Carcinogenesis associated with changes in 
the expression of NSD2 is also linked with cell cycle dys-
regulation [102], VEGF-A-mediated angiogenesis [104], 
hematopoietic stem cell differentiation [105], metasta-
sis [91], chemoresistance (in osteosarcoma) [106], and 
the expression of various oncogenes (e.g., SYK, PTPN13 
and ETV5 in multiple myeloma) [107]. Gain-of-function 
mutations (E1099K and T1150A) in the SET domain of 
NSD2 have been associated with the enhanced enzymatic 
activity of NSD2 in mantle cell lymphoma and pediat-
ric acute lymphoblastic leukemia, in which they cause 
destabilization of the auto-inhibitory loop responsible 
for keeping signaling in check (refer below) [108, 109]. 
E1099K mutation is also found in 70% of patients with 
leukemia who experience relapse, and has been linked 
with aberrant global DNA methylation profiles in these 
patients [108, 110].

NSD3 is overexpressed in 58% of patients with 
advanced squamous cell carcinoma of the head and neck 
[92, 101]. NSD3 is also connected with metastatic cancers 
of the breast [111, 112], colorectum [113], pancreas [114] 
lung [115], and bone [116]. A short non-catalytic isoform 
of NSD3 that retains only the PWWP domain can pro-
mote oncogenesis by antagonizing proteasome-mediated 

degradation of the MYC oncogene [117]. Like NSD2, 
mutations in the SET domain of NSD3 (E1181K and 
T1232A), which counteract the auto-inhibition mecha-
nism of H3K36 methylation, are associated with mantle 
cell lymphoma and chronic lymphocytic leukemia [118, 
119].

ASH1L is involved in a global genomic nucleotide 
excision repair regulation and is recruited by DNA dam-
age specific DNA-binding protein 2 (DDB2) to promote 
cyclobutane pyrimidine dimer excision [120]. There is 
evidence to show that, in acute leukemic conditions, 
translocation of MLL1 leads to deletion of ASH1L, fol-
lowed by the transcriptional activation of various onco-
genes (e.g., HOXA9) and cancer transformation [89, 
121, 122]. ASH1L overexpression is associated with the 
progression and development of breast, liver, and thy-
roid cancers [123–125].

Neurodevelopmental roles of H3K36 dimethylases
NSD genes are important for pre- and postnatal neu-

rodevelopment and their loss-of-function mutations 
relate to neurological syndromes, particularly Soto’s 
and Wolf–Hirschhorn’s syndromes [126, 127]. Soto’s 
syndrome, which occurs in 1/14,000 births and is asso-
ciated with intellectual disability, facial deformation, 
and overgrowth phenotypes, is genetically mapped to 
NSD1 haploinsufficiency [126, 128]. Cells derived from 
a patient with Soto’s syndrome hosting an NSD1-inac-
tivating mutation was shown to have a global redistri-
bution of the DNA methyltransferase DNMT3A, along 
with promoter DNA hypomethylation, dysregulated 
synapse formation, and dysregulated neurodevelopmen-
tal gene expression [129–131]. Moreover, individuals 
hosting NSD1 whole-gene deletions exhibited early-
onset cerebrovascular diseases [132]. This phenotype 
was recapitulated by deletion of an NSD1-like gene in 
fly, with developmental symptoms accompanied by 
global H3K36me2 reduction, defective motor and mem-
ory functions, and body size overgrowth [133]. Con-
versely, overexpression of the NSD1 homolog induced 
neuronal apoptosis and larval locomotive defects [134].

Mutation or deletion of NSD2 is believed to underlie 
Wolf–Hirschhorn’s syndrome, which is clinically char-
acterized by pre- and postnatal neurodevelopmental 
disability and hypotonia [127, 135]. NSD2 point muta-
tions at C869Y (in  PHD domain), P895L (in  PWWP 
domain), K1019R (in  AWS domain), E1091K, E1099K, 
and S1137F (in  SET domain) are associated with a 
global decrease in H3K36me2 levels in patients with 
Wolf–Hirschhorn syndrome. In particular, C869Y 
mutation in the PHD domain disrupts the interaction 
between NSD2 and its zinc cofactor, which, in turn, 
disrupts proper protein folding and its subsequent 
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catalytic function. In contrast, P895L mutation in the 
PWWP domain causes steric clashes within the mol-
ecule, whereas K1019R mutation in the AWS domain 
inhibits the formation of a mobile loop in the catalytic 
domain that is necessary for methylation function [136].

ASH1L has a role in synaptic plasticity via H3K36me 
at the promoter of neurexin-1α in response to action 
potentials [137]. Mutations in ASH1L are clinically 
associated with intellectual disability [138] as well as 
early-onset Lewy body dementia [139]. In addition, 
A2780P point mutation in the BAH domain of ASH1L 
is associated with autism spectrum disorder [140–143], 
whereas Y2077F (N-terminal region) and S2200G (SET 
domain) point mutations are bioinformatically linked to 
Tourette’s syndrome (TS) [144].

Determinants of H3K36 methylation catalysis
Recent cryo-EM studies on the interactions between 
H3K36M and Set2, NSD2 or NSD3 have uncovered 
universal structural determinants of H3K36me cataly-
sis, refining previous knowledge from X-ray diffrac-
tion and cryo-EM studies of SETD2 [75, 109, 119, 145]. 
Indeed, several structural features have been identified 
as being critical for regulating H3K36me reactions, in 
addition to positioning of the histone H3 tail within the 
catalytic pocket of the enzyme and the auto-inhibitory 
mechanism of human  SETD2 and filamentous yeast 
Chaetomium thermophilum Set2 [75, 145]. Of note, 
the auto-inhibitory loop has been identified within the 
dimethylases NSD2 and NSD3 [119, 146]. Furthermore, 
a hydrophobic surface constructed by the C-termini of 
histone H2A, the αN helix of histone H3, and the linker 
DNA of the nucleosome plays an important role in reg-
ulating the catalytic activity of Set2/SETD2. Here, we 
explore each of these determinants in more detail:

Structural motifs in Set2/SETD2 in H3K36me catalysis
Set2/SETD2 is a modular enzyme that hosts several well-
conserved domains. There is a 35% similarity in the a.a. 
sequences of the human SETD2 and  both budding and 
fission yeast Set2, with nearly half of these conserved 
residues found within the catalytic pre-SET and SET 
domains (Fig. 1A). Projection of the conserved sequences 
of the SET domain of yeast Set2 onto human SETD2 SET 
domain (Fig. 1B) highlights three features: (I) a regulatory 
LIN loop, (II) a triangular core motif juxtaposing the cata-
lytic site, and the presence of histone-interacting residues 
(Figs. 1B, 3, 4A and B) [145]. These features pose major 
impact on catalysis and the regulation of histone meth-
ylation [145, 147, 148].

(I) The regulatory LIN loop 

Various conserved residues are found within key 
regions of the LIN-loop. This loop connects the SET 
domain with the post-SET motif and is involved in load-
ing and positioning the H3 histone tail (Fig.  1B) [145]. 
Arg-1670 (SETD2 numbering) appears to serve as a key 
auto-inhibitory residue that dictates the opened and 
closed conformations of the H3K36 access pocket [145]. 
This residue aligns with budding yeast Arg-240 and fis-
sion yeast Arg-300, and is in close proximity to Lys-36 
of the histone H3 tail (Figs. 1B, 4C) as well as other key 
catalytic residues critical for HMTase activity: Met-1607, 
Phe-1664, and Tyr-1666 in human SETD2 (Met-177, Phe-
234 and Phe-236 in budding yeast; Met-237, Phe-294 and 
Tyr-296 in fission yeast Set2) [74, 145] (Figs. 1B, 4B).

Yang et al. (2016) observed that the LIN loop can adopt 
three major states—closed, partially open and open—in 
different stages of the auto-inhibitory model [145]. The 
‘closed’ LIN loop assumes a ‘compacted conformation 
with Arg-1670 inserted into the space within the catalytic 
center that is usually occupied by Lys-36 when histone 
H3 is loaded into SETD2. In this way, the LIN loop acts to 
inhibit the enzymatic activity of SETD2 by occluding the 
H3K36 substrate-binding site (Fig.  4C). In the ‘partially 
open’ state, Arg-1670 is displaced outward to prime the 
catalytic pocket for entry of the histone H3 tail. The LIN 
loop in the ‘open’ state adopts an extended conformation 
with Arg-1670 shifted approximately 4.5A away to cre-
ate sufficient space for loading of the histone H3 N-ter-
minus into the substrate channel of the SETD2 catalytic 
site (Fig. 4C). This binding of the H3-tail peptide subse-
quently triggers structural organization of the residues 
at LIN loop and the post-SET domain into a ‘knot-like’ 
structure that stabilizes the docked H3-peptide [145].

Similar auto-inhibitory conformational changes were 
also found in the NSD2, NSD3 and ASH1L dimethylases 

Fig. 3  SETD2 interaction with K36 and its flanking residues of 
Histone H3.3 residue from A29-R42. Note that the   summary is based 
on results derived from histone H3 peptides with M36K substitution, 
which stabilizes protein interaction [75, 145]
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[27, 109, 119, 149]. The compacted auto-inhibitory loop 
of NSD2 and NSD3 was observed to ‘open up’ upon bind-
ing of the enzymes to the nucleosome, thus making room 
for the K36M peptide to dock into the catalytic groove 
[109, 119]. Furthermore, the transition between the ‘open’ 
and ‘closed’ states is actively regulated via the interaction 
of transacting factors. Specifically, the chromatin remod-
eler MORF4-related gene on chromosome 15 (MRG15) 
binds to a FQLP motif proximal to the AWS-SET domain 
of ASH1L and, in so doing, displaces the auto-inhib-
itory loop [149]. In fly, loss-of-function mutations in 
MRG15 and ASH1 do not appear to impact genome-wide 
H3K36me2, but specifically reduce H3K36me2 levels at 
homeotic developmental genes, suggesting that the pres-
ence of additional factors can release the auto-inhibition 
on ASH1 [150].

(II) Residues that recognize and stabilize the H3 
N-terminus in the catalytic groove of the enzyme

Various structural analyses have helped to uncover the 
extensive interaction between the histone H3 tail pep-
tides and the H3K36 methyltransferases. Here, we will 
mainly limit our discussion to Set2/SETD2. Consist-
ent with the view that the AWS and SET domains are 

functionally sufficient for associating with the histone H3 
tail, an extensive array of hydrogen bonding (H-bond)—
both direct and water-mediated—and hydrophobic 
contacts are formed between residues of the AWS-SET-
post-SET domains of SETD2 (also NSD2 and NSD3) and 
the H3K36M peptide [75, 119, 145, 146] (Fig. 4).

SETD2 (probably also Set2, as observed from similari-
ties in the primary sequences) is endowed with differ-
entially charged channels to accommodate the H3 tail, 
which is enriched with proximal, non-charged and dis-
tal basic and bulky residues relative to the Lys-36 resi-
due [145] (Figs. 3, 4A and B). These interactions stabilize 
and position the K36 residue within a triangular core 
bounded by three juxtaposing arrays of trans-interacting 
β-sheets, constituting a pseudoknot-like structure that 
clamps the H3 tail (S31-K37) within the catalytic site, and 
positions the Lys-36 residue in proximity of the methyl 
donor (Figs. 1B, 4A) [145, 151].

Several conserved residues within SETD2 flank the 
histone tail in this catalytic space, especially Tyr-1579, 
Met-1607, Phe-1664 and Tyr-1666 with Met-36 of the 
peptide (where Met-36 is used in place of Lys-36) [145]. 
These residues potentially stabilize the interaction 
between the histone tail and the HMTase (Figs. 1B, 4B) 
by conferring proper positioning of the histone H3 tail 

Fig. 4  Conserved histone-interacting residues in the SET domain of SETD2. Asterisk (*) and white arrow in the figure, respectively, label the position 
of SETD2 β15 beta sheet and α6 helix to depict relative orientation of SETD2 crystalized structure in different sub-figures. A F1589, Y1604, F1606, 
F1668, and Y1671 (green) interact with G33-V35 (dark red) of the histone H3 peptide (red) via hydrogen bonding. B Key catalytic residues Tyr-1578, 
Met-1607, Phe-1664 and Tyr-1666 (green) of the SETD2 SET domain (yellow) surround the K36/M36 residues (dark red) of the histone H3 peptide 
(red). C Key auto-inhibitory residue R1670 (green) of the LIN loop (brown) in SETD2 SET domain (yellow) is in proximity to K36 (dark red) on histone 
H3 peptide (red). D E1636 and T1637 (green) interact with Y41 (dark red) of the histone H3 peptide (red) via hydrogen bonding. Pymol visualization 
is derived from the crystalized structure database in the Protein Data Bank entry 5V22 [160].
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and accommodating steric alignment of the K36 residue 
within the catalytic pocket. Similar residues were also 
found to embrace H3M36 in NSD2, except for a leu-
cine residue (Leu-1120) in the place of methionine resi-
due within the FMFY motif of SETD2 (FLFY in NSD2). 
Future mutagenesis studies would help to reveal whether 
this substitution—that differentiates between a di- and 
trimethylase—can have an impact on the formation of di- 
and trimethylation [109]. Upon complex formation, the 
Pro-38 of the H3 tail kinks out to accommodate Met-36 
in C. thermophilum Set2 [75]. Pro-38 thus appears to act 
as a structural hinge to confer additional control over the 
catalytic pocket. In line with this view, Pro-38 was pliable 
to conformation change via cis–trans isomerization in 
budding yeast [152].

Nucleosomal DNA unwrapping aids in H3K36me catalysis
NSD3 associates with the nucleosome with 12-fold 

higher  affinity when it is wrapped with 187 bp of DNA 
over 147  bp of DNA, as shown  through microscopic 
thermophoresis-based binding assays [119]. Through 
cryo-EM analysis, the 20-bp DNA linker termini peel 
away from the histone octamer surface at the dyad axis—
where DNA enters and exits the nucleosome—permitting 
NSD3 to insert into the space between the unwrapped 
DNA and the core histones [119]. Similar unwrapping of 
DNA is also required for Set2 and NSD2 to bind H3K36 
at the nucleosomal dyad axis [75, 109]. In studying NSD2, 
Sato et  al. (2021) noted that H3K36 occupied a ‘con-
gested’ environment co-occupied by two gyres of DNA, 
with unwrapping of the DNA displaces a gyre to facilitate 
access for NSD2 to H3K36 [109]. Thereafter, upon gain-
ing access, the Arg-117 residue of Set2 stabilizes the dis-
placed DNA via electrostatic interactions, which, in turn, 
result in rearrangement of the post-SET domain, prob-
ably to facilitate the conformation change required for 
the release of the auto-inhibitory LIN loop [75, 145]. Simi-
lar stabilization of the DNA backbone was also observed 
with several lysine residues in NSD3 (Lys-1074, Lys-1077 
and Lys-1080) to sustain full catalytic activity [119].

The series of enzyme–DNA interactions allosterically 
stack  Lys-1234 of NSD3 (and Lys-1152 of NSD2) against 
histone H3Y41  (Fig.  4D), which is located at the junc-
tion between the H3 N-terminal tail and the histone fold 
domain [153, 154]; this is perhaps to restrict the mobil-
ity of the H3 tail for docking into the catalytic site of the 
enzymes in  vivo. Future structural studies using longer 
H3 tail peptides will be required to verify this possibility 
within the nucleosomal context. Conversely, the enzyme–
DNA binding, in turn, stabilizes enzyme–nucleosome 
binding, as observed for C. thermophilum Set2 [75, 109].

Taken together, these findings suggest that the bind-
ing site on the nucleosome at ground state is occluded 

by tight winding of DNA against the histone octamers. 
Upon binding with linker DNA, the HMTases displace 
the DNA gyres from the octamer surface, possibly in 
cooperation with chromatin remodelers such as Asf1, 
which can promote H3K36 trimethylation by Set2 [155]. 
The enzyme then wedges into the space that become 
accessible at the dyad axis. This binding between the 
enzyme and nucleosome then allosterically activates the 
enzyme by releasing the auto-inhibitory LIN loop, permit-
ting the insertion of H3 tail into the catalytic site in the 
formation of a stabilized enzyme–DNA-histone ternary 
complex.

Roles of other histones in H3K36me catalysis
Using immunoblotting to check H3K36me levels in a 

collection of budding yeast strains hosting mutations in 
histone residues, Endo and colleagues pinpointed several 
residues within the histone H2A C-terminus (Gly-107, 
Ile-112 and Leu-117) and histone H3 αN helix (Thr-
45, Arg-49 and Arg-52) that are critical for H3K36me. 
Subsequent computational modeling led the authors 
to propose the presence of a structured surface on the 
nucleosome constituted by these histones in the regula-
tion of H3K36me3 [156]. This hypothesis is confirmed 
by the cryo-EM study that revealed a hydrophobic patch 
constituted by Ile-111, Leu-116 and Lys-119 in histone 
H2A carboxyl domain and Leu-48 and Ile-51 in the αN 
helix of histone H3, which form hydrophobic and elec-
trostatic interactions with Asp-146, Ile-150, and Ala-
153 in the AWS domain of C. thermophilum Set2 [75]. 
Mutations of these histone residues abolished H3K36me, 
which was not observed in mutants of residues (H2A 
Gln-114 and Asn-115) that do not interact with Set2 
[157], supporting the functional essentiality of the dock-
ing of Set2 onto the hydrophobic patch for mediating the 
catalysis of H3K36 [119].

Histone H2AK119 and H2BK120, which are situated 
within the H2A-H3 surface, can be ubiquitinated to mod-
ulate the binding of the HMTases via the AWS motif [75, 
109, 119]. Artificially tethering ubiquitin to H2BK120 
stimulates Set2 activity, without affecting the binding of 
Set2 on the nucleosome; this suggests that ubiquitin may 
modulate the orientation of H3K36 within the Set2 cata-
lytic site [75]. Intriguingly, ubiquitination of H2AK119 
and H2BK120 inhibited NSD3 activity, unlike that of 
Set2 [119], lending support to the role of ubiquitination 
in differentially regulating the degree of methylation on 
H3K36.

Set2 was also reported to bind histone H4 at Lys-44 
[80]. Mutating H4K44 not only interfered with the H4–
Set2 interaction, but reduced H3K36me2/3, increased 
H3K36ac, and enhanced transcription from cryptic pro-
moters in gene bodies. However, these phenotypes were 
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not observed for all H4K44 mutants: whereas K44Q and 
K44E disrupted H3K36me2/3, H4K44R and H4K44A did 
not, pointing to a more complicated role of H4. In fact, 
cryo-EM failed to detect a direct H4–Set2 interaction, 
and histone H4 is situated furthest from the dyad axis at 
which the enzyme (NSD3) sits on the nucleosome [119]. 
However, H4K44 was observed to orientate histone H2A 
C-terminus within the hydrophobic surface, likely to 
affect Set2 activity [75].

In summary, H3K36 HMTase Set2 (and also NSD2 and 
NSD3) interacts with DNA and the histone H2A-H3 sur-
face to release the auto-inhibition and extended region 
of the H3 tail to position H3K36 for catalysis, which may 
bear consequences that impact the number of methyl 
groups that can attach to H3K36.

“Decision‑making” motifs and residues in Set2 
regulate the degree of methylation
Yeast Set2 catalyzes all forms of H3K36 methylation 
[12, 36, 158]. There have been multiple theories put for-
ward to explain how Set2 regulates the degree of meth-
ylation (mono, di or tri). In fission yeast Set2, the SRI 
domain and a newly defined “domain of unknown func-
tion” (DUF) located proximal to the SRI domain [12] 
are two of the key motifs implicated in determining the 
H3K36me3 methylome. Indeed, deletion of the SRI and 
DUF domains from fission yeast Set2 causes a consider-
able reduction in total H3K36me3 levels without affect-
ing H3K36me2 [12]. In contrast, loss of the SRI domain 
in budding yeast diminishes both H3K36me2 and 
H3K36me3 marks [79]. This   discrepancy may be related 
to the speculative differences in binding abilities between 
budding yeast Set2 and fission yeast Set2 in their asso-
ciation with RNAPII [159]. An additional C-terminal 
auto-inhibitory domain located between the SRI and SET 
domains in both human and budding yeast Set2—but 
not in fission yeast—may also play a role in global meth-
ylation levels. This auto-inhibitory domain controls the 
DNA binding activity of the SRI domain and fine-tunes 
the involvement of Set2 in H3K36 methylation [78]: its 
deletion in budding yeast Set2 leads to a specific loss of 
H3K36me3, similar to that measured following deletion 
of the SRI domain in fission yeast Set2 [33].

H3K36me2 to H3K36me3 conversion depends on the 
SET domain, which encompasses the conserved resi-
dues Arg-1625 and Phe-1664 in human SETD2, Arg-
315 and Phe-359 in fission yeast Set2, and Arg-195 and 
Phe-234 in budding yeast Set2. These residues posi-
tion the H3K36me2-containing histone H3 tail [158]. 
The methyl group donor, S-adenosyl-L-methionine 
(SAM), then facilitates the transfer of an additional 
methyl group to the protein, resulting in trimeth-
ylation [57]. Through crystallography analysis, it was 

suggested that Phe-1664 of SETD2 lies near the his-
tone H3 tail, lending further support to the importance 
of this residue in regulating the methylation status of 
H3K36 [160] (Fig.  4A). Consistently, mutation of Arg-
1625 in SETD2 (R1625C) in ccRCC attenuates the level 
of H3K36me3 relative to that found in cells expressing 
the wild-type SETD2. However, the contribution of this 
R1625C mutation to the switch in H3K36 methylation 
is unclear, as the mutation causes a reduction in both 
SETD2 protein and mRNA levels and leads to a short-
ened SETD2 protein half-life [57]. The R1625C variant 
of SETD2 also has reduced substrate-binding capacity 
and H3K36 trimethylation catalytic activity, which may 
be linked to a disruption in the hydrogen bonding net-
work arising from possible steric clashes near the SAM 
binding site [57].

Amino acid substitutions, such as Phe-to-Tyr or Tyr-
to-Phe, within the catalytic domains of HMTases have an 
impact on histone substrate selectivity at different meth-
ylation states. Indeed, replacing Phe with Tyr results in 
steric clashing within the enzymatic site, thereby prevent-
ing the transfer of a third methyl group onto the dimeth-
ylated lysine residue. Conversely, a Tyr-to-Phe change 
creates more space, which can encourage trimethylation 
[161, 162]. A recent study took advantage of this princi-
ple, and mutated Phe-234 to Tyr in budding yeast Set2 
(Phe-1664 in SETD2). The resultant Set2-F234Y mutant 
caused a selective reduction in H3K36me3 without sig-
nificantly affecting the status of H3K36me1/2; conversely, 
a Tyr-to-Phe mutation at Tyr-149 within the SET domain 
of Set2 (Y149F) led to diminished H3K36me1/2 without 
affecting H3K36me3 levels [158].

Closer scrutiny of these conserved SET domains shows 
the presence of several Phe and Tyr residues, and raises 
the possibility that fine-contour modulation of the SET 
domain could influence the contact between catalytic 
pocket and the histone H3 tail and, in turn, affect the 
methylation status of H3K36. Several of these residues 
are only conserved in fission yeast, budding yeast, and fly 
(e.g., Phe-179, Phe-185, Phe-234, Tyr-244, fission yeast 
numbering) but not in SETD2 (Fig. 1A), which may sug-
gest a structural basis for the enzymatic promiscuity of 
these Set2 homologues in catalyzing all three forms of 
H3K36me. Further structural and mutagenesis studies 
will be required to confirm these hypotheses.

As mentioned above, screening of the histone mutants 
that resulted in H3K36me disruption identified that 
residues of the hydrophobic patch on histone H2A (Gly-
107, Ile-112 and Leu-117) and of the αN helix of histone 
H3 (Thr-45, Arg-49 and Arg-52) specifically disrupt 
H3K36me3 but not H3K36me2 or H3K36me [156]. It is 
therefore possible that Ile-150 and Ala-153 of C. thermo-
philum Set2 [75]—or equivalent residues in Set2/SETD2 
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from other species—may be involved in regulating the 
H3K36me2-to-me3 switch.

Interplay between H3K36me and other chromatin 
modifications in transcriptional regulation

Set2-mediated methylation of H3K36 depends on its 
physical interaction with RNAPII and its genetic inter-
action with other transcriptional elongation factors, 
including the histone chaperone, Spt6 [159]. Recent 
research has revealed interesting roles for the differ-
ent types of H3K36me in terms of crosstalk with other 
chromatin PTMs, as well as with DNA and RNA tem-
plates. The interactions between H3K36me marks and 
the associated reader protein(s) determines the impact 
of H3K36me on transcription and other cellular func-
tions. MRG15 is a multifunctional chromatin organizer 
that reads H3K36 marks by binding to H3K36me3 via 
its chromodomain to affect exon definition and splic-
ing through the recruitment of downstream effectors 
(Fig.  5) [163]. Comparatively, DNA methyltransferase 
(DNMT) binds to H3K36me3 via its PWWP domain 
to control DNA methylation (Fig. 5). Eaf3, on the other 
hand, interacts with H3K36 via its Tudor, PWWP, and 
chromodomain to prevent aberrant transcription, and 
Phf1 and Phf19 in PRC2 interact with H3K36me3 via 
their Tudor domains to orchestrate H3K27 methylation 
(Fig. 5) [164, 165]. These interactions purportedly fine-
tune the dynamic recruitment of transcription-related 
factors for different phases of transcription [166–168]. 
In the next section, we explore the recent insights 
into how H3K36me crosstalk with DNA methylation, 

histone PTMs (acetylation and H3K27 methylation), 
and N6-methyladenosine modifications on the RNA 
transcript.

Antagonism between H3K36me and H3K27me
Trimethylated Lys-27 on histone H3 (H3K27me3) 

confers silencing, particularly on developmentally regu-
lated genes. H3K27me3 and H3K36me2/3 are mutually 
exclusive on the same histone H3 and, consequently, 
do not co-occur across most of the genome [169–171]. 
Such H3K27me/H3K36me antagonism plays impor-
tant role in setting up developmental programs [169, 
172]. Indeed, disruption of H3K36 HMTase activities in 
worm, fly and Neurospora crassa (N. crassa) results in 
aberrant genome-wide H3K27me3 distribution, leading 
consequently to developmental defects that arise from 
transcriptional de-repression of genes that are typically 
repressed by downstream effectors of H3K27me3 silenc-
ing, such as Polycomb group proteins [173–175]. Stud-
ies performed in human glioma cells further point to the 
formation of a boundary by H3K36me2/3 to prohibit 
the spread of H3K27me3 on chromatin [176]. Consist-
ent with these observations, myeloma cells overexpress-
ing the H3K36 di-methylating MMSET HMTase exhibit 
hypersensitivity to an inhibitor of the Polycomb repres-
sive complex 2 (PRC2) H3K27 HMTase [177].

In HeLa cells and in the human genome, when histone 
H3 is unmethylated on H3K36 it tends to be mostly 
methylated on H3K27; this is except for any newly 
synthesized histone H3. Furthermore, the enzymatic 
activity of PRC2 is inhibited on H3K36 pre-methylated 

Fig. 5  Proposed crosstalk between di- and tri-methylated H3K36 and other modifications on histones, DNA, and RNA. Abbreviations: K36me: 
di- and/or tri-methylated H3K36, K36me2: dimethylated H3K36, K36me3: tri-methylated H3K36, ac: histone acetylation, CD: chromodomain, PWWP: 
proline-tryptophan-tryptophan-proline motif, m6A: N6-methyladenosine RNA modification, RNAPII: RNA polymerase II, meCpG: methylated cytosine 
in CpG motif on DNA. Rpd3S-K36me interaction is observed in human, budding yeast and fission yeast; Mst2-Pdp3-K36me interaction is reported 
solely from fission yeast system thus far, while interactions of DNMTs and MTTL14-K36me are studies from human
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nucleosomal substrates [171]. This inhibition requires 
the presence of H3K36me2/3 (or H3K4me3) in cis on 
the same or opposite histone tail hosting the H3K27 
substrate [169, 171, 178]. H3K36me2/3 does not coun-
teract docking of PRC2 onto histone H3 but, rather, 
inhibits its catalytic activity [170, 179]. Through 
mutagenesis analysis, a H3K36me-sensing motif—
D630PVQK634—was uncovered on the catalytic EZH2 
subunit of PRC2. This motif forms a solvent-accessible 
pocket for the insertion of an unmodified H3 tail [170]. 
Using cryo-EM, H3K36 was shown to be strategically 
situated at a critical site that permits the correct align-
ment of the histone H3 tail along the EZH2 interface to 
ensure H3K27 methylation [179].

The antagonism between H3K36 and H3K27 methyl-
ation is envisioned to stabilize epigenetic states in vivo, 
which is essential to target chromatin modifiers for 
enforcing transcriptional specificity in key develop-
mental genes [172]. In line with this view, sequencing 
of cancer patient genomes revealed mutually exclusive 
occurrence of K27M and K36M mutations in histone 
H3.3 genes in several pediatric cancers, with K27M 
alteration found in brain tumors (pediatric diffuse 
pontine glioma and pediatric glioblastoma) [180, 181] 
and K36M mutation in bone tumors (chondroblas-
toma, chondrosarcoma and giant cell tumor of bone) 
[182, 183]. Loss of H3K36me in undifferentiated sar-
coma cells is correlated with upregulation of H3K27me 
preferentially at intergenic regions. These ectopically 
induced H3K27me is proposed to compete for bind-
ing of reader proteins with H3K27me-enriched gene 
loci, leading to the transcriptional de-repression of 
these genes [183]. Various mutants of H3.3-Gly-34 
were also identified in these pediatric cancers [180, 
182]. Study of ectopically expressed G34L and G34W-
mutated histone H3.3 proteins in HeLa cells revealed 
reduced H3K36me3 and increased H3K27me3 in cis, 
which correlated with augmentation of H3K27me3-
interacting PRC1 and PRC2 complexes and obstruction 
of H3K36me3-reader ZMYND11 binding at the incor-
poration sites of these Gly-34-mutated histone H3.3. 
These observations show that H3K27me–H3K36me 
balance fine-tune localization of effector proteins to 
enforce epigenetic programs at specific genomic loci 
[172, 184].

Even though there is a general exclusivity of H3K27me 
and H3K36me on the genome, a small proportion of 
nucleosomes was, however, detected via mass spectrom-
etry to contain both H3K36me2 and H3K27me1/2/3. 
Computational modeling supported the co-occurrence 
of these usually mutually exclusive marks in the same 
nucleosome if Lys-27 is first methylated on the histone 
H3 tail before Lys-36. This prediction is consistent with 

the reported evidence that H3K36me3 directly inhibits 
EZH2 methylation of H3K27, whereas similar evidence 
has not been reported for the reverse scenario [169–172, 
178].

Regulation of histone acetylation by H3K36me
H3K36me2 and H3K36me3 tend to show a higher 
enrichment within gene coding sequences [185–189] 
with H3K36me2 preferentially enriched closer to the 
transcriptional start site than H3 K36me3. The level of 
H3K36me2 appears to be less correlated with transcrip-
tion than H3K36me3 [190]. Set2-mediated methylation 
of H3K36 acts at the end of the coding sequence in a neg-
ative feedback mechanism to slow RNAPII transcription; 
this action counteracts histone acetylation, thereby com-
pacting chromatin to limit RNAPII accessibility, via the 
recruitment of the Rpd3S histone deacetylase (HDAC) 
complex [191]. The Rpd3S HDAC complex employs two 
of its subunits—Rco1 and Eaf3—to engage H3K36-meth-
ylated nucleosomes [192]. The recruitment of Rpd3S also 
depends on elongation factor Spt4/5 (yeast equivalence 
of human DSIF) and association with phosphorylated 
RNAPII CTD (Fig. 4) [193]. The targeting of HDAC com-
plexes to localities of H3K36me counters histone acetyla-
tion, which promotes the formation of a less compacted 
chromatin conformation besides serving as the binding 
sites for recruiting transcriptional activators [194, 195]. 
Deacetylation of chromatin represses transcription of 
antisense and aberrant non-coding transcripts that arise 
from cryptic promoters in the wake of the elongating 
RNAPII, especially in genes with long coding sequences 
[196, 197, 198].

Eaf3–H3K36me interaction is essential for keeping the 
Rpd3S complex active (Fig. 5) [193]. Eaf3 binds H3K36me 
at a shallow histone binding surface cleft comprising 
a C-terminal α-helix and a β-barrel core, in which the 
conserved Tyr and Trp residues (Tyr-23, Tyr-81, Trp-84 
and Trp-88 for budding yeast Eaf3) confer selective rec-
ognition of H3K36me3 [192]. This selectivity is imposed 
by a conformational switch that occurs when the Rpd3S 
complex contacts chromatin: this contact leads to allos-
teric enhancement of the binding strength of the CD 
on H3K36me2/3 and is thought to constitute one of the 
strongest chromatin–protein interactions documented 
to date [32, 35, 192, 199]. H3K36me3 and the yeast Eaf3 
homolog , Alp13, also co-localize on heterochromatin in 
the fission yeast genome during S-phase, when the het-
erochromatic repeat sequences are preferentially tran-
scribing [200, 201]. Deletion of alp13 or set2 in budding 
and fission yeast increases antisense transcription in 
euchromatin and heterochromatin regions of the genome 
[33, 200, 202–204], indicating a conserved interaction 
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among Eaf3/Alp13, Set2, and H3K36me across different 
species; albeit, a direct interaction between Alp13 and 
H3K36me is yet to be structurally determined.

The transcription spike    is accompanied by the 
momentary de-repression of the non-coding repeats 
at constitutive heterochromatic loci induces the acti-
vation of RNA interference during S-phase of the cell 
cycle, along with high levels of histone acetylation [200]. 
These events suggest the possibility that HAT, including 
the Mst2 complex, may be targeted to heterochroma-
tin in normal cell cycling. H3K36me, which functions 
to coordinate non-coding sequence transcription dur-
ing S-phase, will temporarily co-localize with the HAT 
and HDAC effectors, which possess opposing enzymatic 
activities on histone acetylation [200, 205]. It is possi-
ble that H3K36me can maintain a dynamic equilibrium 
wherein transcriptional activation is fine-tuned in con-
junction with chromatin packaging to accommodate the 
needs of chromatin unraveling during DNA replication 
and transcription [154, 200]. During S-phase, although 
heterochromatin becomes less compacted, it is rarely 
completely disrupted (as in mutants of heterochromatin 
factors, such as that of H3K9 HMTase). H3K36me may 
facilitate the maintenance of the partially opened state 
of heterochromatin during the DNA replicative phase by 
regulating a balance between silencing and anti-silencing 
activities in conjunction with other chromatin factors 
and histone modifications. For instance, crosstalk is likely 
to be established with H3Y41 phosphorylation (H3Y41p), 
which functions to differentially modulate chromatin 
binding of CD-containing proteins. The release of Swi6/
HP1 and the recruitment of RITS component Chp1—
both CD-containing proteins—by H3Y41p extends the 
duration in which centromeric heterochromatin becomes 
accessible to RNAPII to transcribe underlying non-cod-
ing repetitive sequences [154, 206].

Apart from recruiting the Rpd3S HDAC complex, 
H3K36me3 also anchors the Mst2 H3K14 histone acetyl-
transferase (HAT) complex to euchromatin to prevent 
HAT from being mistargeted (Fig.  5); mistargeted HAT 
purportedly antagonizes silenced chromatin at the het-
erochromatic loci in fission yeast [201]. The budding 
yeast Sas3-dependent NuA3 complex and fission yeast 
Mst2 complex (equivalent to human MYST3 complex) 
is localized to H3K36me3 via its PWWP domain within 
the Pdp3 subunit and Yng1 subunit, respectively [207, 
208]. A mutation at residue Phe-109 of the PWWP 
domain (F109A) abolishes the interaction between the 
Mst2 complex and H3K36me3; this allows HAT to be 
misplaced from the euchromatic gene loci and leads to 
aberrant activation and transcription of heterochromatic 
sequences, along with a dissolution of transcriptional 
silencing [207].

Interactions between H3K36me and DNA 
methylation
DNA methylation is important for heterochromatin for-
mation not only in mammals, but also in some yeast spe-
cies [209, 210]; consistently, DNA methylation occurs 
on 0.3%-1% and 3%-8% of total cytosine (C) residues in 
yeast and mammalian (of total C) genomes, respectively 
[211, 212]. DNA methyltransferase 3A (DNMT3A) and 
DNMT3B in mammals and Pmt1 in fission yeast are 
capable of catalyzing methylation at the 5’-position of 
cytosine (C) residues on the CpG nucleotide pair [212, 
213].

A specific interaction occurs between H3K36me2 and 
the N-terminus of the PWWP domain of DNMT3A 
(Fig.  5): DNMT3A is recruited onto nucleosomal or 
linker DNA where its enzymatic activity is stimulated 
[40, 210, 214]. Studies show that mutation of the con-
served Lys-295 residue on the DNA-interacting surface 
of the PWWP domain in DMNT3A disrupts its binding 
to both DNA and H3K36me2, leading to an aberrant sub-
nuclear localization of the DNA methyltransferase [210]. 
Yet, unlike the recognition of H3K36me2 by DNMT3A, 
the PWWP domain of DNMT3B preferentially binds 
to SETD2-induced H3K36me3 to anchor itself onto 
gene bodies in CpG-rich regions [210, 215]. Indeed, a 
genome-wide increase in H3K36me2 levels correlates 
with an increase in nucleosomal 5-methylcytosine levels; 
this, in turn, is correlated with an overexpression of the 
NSD2 (Nuclear Receptor Binding SET Domain Protein 2) 
cancer-driver and an upregulation in genes enriched in 
oncogenic pathways [24]. However, removal of genomic 
H3K36me2 via the concurrent knocking down of NSD1 
and NSD2 results in a genome-wide reduction in DNA 
methylation at intergenic loci, along with hypersensitiv-
ity to the DNA-hypomethylating agent decitabine. In 
contrast, Setd2-knockdown cells, which become depleted 
of H3K36me3, show no decitabine sensitivity, providing 
evidence for the differential regulation of H3K36me2 and 
H3K36me3 on DNA methylation [216].

Interaction of H3K36me with RNA 
N6‑methyladenosine (m6A) modification

N6-Methyladenosine (m6A) is an abundant modifica-
tion imposed on messenger RNA (mRNA), ribosomal 
RNA (rRNA), and small nuclear RNA (snRNA) of higher 
eukaryotes [217, 218]. A stable and accurate level of 
m6A modification ensures proper nuclear RNA export 
and splicing, mRNA stability, circular RNA translation, 
microRNA biogenesis, and long non-coding RNA metab-
olism. This type of methylation is also physiologically 
implicated in counteracting obesity, immune dysregula-
tion, the generation of meiotic defects and carcinogenesis 
[219–221].
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The METTL14 methyltransferase, responsible for 
m6A modifications, directly binds H3K36me3 (Fig.  5) 
and methylates adjacent nascent RNAPII transcripts; 
in the human transcriptome, this was observed at more 
than 12,000 loci of consensus RRACH sequences ([G/A]
[G > A]m6AC[U > A > C]) [222–225]. Most m6A peaks are 
close to stop codons or 3’ untranslated regions, with the 
methylation status fluctuating along with meiosis events 
and cellular stress [226]. m6A marks on mRNA tran-
scripts can be significantly depleted by SETD2 knockout, 
R1625C mutation in the SET domain, or a disruption in 
the RNAPII-interacting SRI domain of SETD2 [227]. It 
remains unknown how METTL14 recognizes H3K36me3 
for specific mRNA methylation, as no known H3K36me3-
interacting domains have been identified from the 
METTL3–METTL14 complex crystal [228]. Yeast Set2 is 
also believed to interact with a defined group of nascent 
RNAPII transcripts, and this interaction likely affects 
chromatin occupancy in a manner similar to the related 
protein, Set1. It has been hypothesized that RNA binding 
structurally stabilizes Set2 chromatin binding [229].

Conclusions and future questions
The structural and physiological studies reviewed here 
show that HMTases, including NSD2, NSD3, Set2 and 
SETD2, possess structural features across multiple 
domains that confer the catalytic specificity of di- and 
tri-methylated histone H3K36. These HMTases act in 
conjunction with various nucleosomal determinants and 
via crosstalk with other modifications and transacting 
factors. The selectively of H3K36me2/3 elicits specific 
physiological outcomes in the chromatin context in con-
junction with co-occurring modifications on histones, 
DNA, and RNA, as well as various transacting factors. 
However, many questions remain to be answered. For 
example: (1) What is the sequence of events concerning 
the interactions of the enzymes with DNA and histone 
H2A/H3 hydrophobic patches in terms of stimulating 
the release of the auto-inhibitory loop, and how the lat-
ter can further potentiate stronger binding? (2) How is 
(1) reversed after catalysis is completed? (3) How does 
the ubiquitination of histone H2A and H2B contribute 
to the selectivity of di-to-trimethylation? (4) What are 
the critical residues within the full-length enzyme(s) 
that influence di-to-trimethylation within the catalytic 
AWS-SET-post-SET domains and beyond (such as DUF, 
AID and SRI)? (5) What is the impact of these structural 
mechanisms on various H3K36me-regulated cellular 
processes? And, finally, (6) Does the disruption of any 
of these regulatory pathways underpin the cancer-driv-
ing capability of the mutated HMTases in various can-
cers? Future structural studies and in  vivo analyses are 
expected to provide the answers to these questions.
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