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Structural and magnetic properties 
of multi-core nanoparticles 
analysed using a generalised 
numerical inversion method
P. Bender1, L. K. Bogart2, O. Posth3, W. Szczerba4,5, S. E. Rogers6, A. Castro7, L. Nilsson7,8, 

L. J. Zeng9, A. Sugunan10, J. Sommertune10, A. Fornara10, D. González-Alonso1, 

L. Fernández Barquín1 & C. Johansson11

The structural and magnetic properties of magnetic multi-core particles were determined by numerical 

inversion of small angle scattering and isothermal magnetisation data. The investigated particles 

consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough 
physical characterisation of the particles included transmission electron microscopy, X-ray diffraction 
and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect 
Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron 

scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly 

indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) 
spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-

core particles (immobilised and dispersed in water) were analysed. The study stands out by applying 
the same numerical approach to extract the apparent moment distributions of the particles as for the 

indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions 

correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed 

which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, 

indicating weak dipolar interactions.

Biomedical applications of iron oxide nanoparticles have attracted considerable interest in the last decades, as 
summarised by the numerous recent review articles1–4. Of the many proposed uses of iron oxide nanoparti-
cles the most promising examples are cancer treatment by magnetic hyperthermia5–11, magnetic resonance12,13 
and particle imaging14,15, magnetic biosensing16,17 as well as magnetic drug targeting11–13. �e required magnetic 
response of the nanoparticles is typically determined by the application, and is in turn intrinsically dependent on 
the structural properties of the particle system. For individual particles the theoretical framework regarding the 
correlations between the structural properties, such as size and shape, and magnetic properties, such as magnetic 
moment18,19 and relaxation times20,21, is well established.

A classic example of the delicate interplay between magnetic behaviour and structure in nano-particulate 
systems is that of dilute ensembles of superparamagnetic particles. Here, the size distribution p(V) can be directly 
translated into a moment distribution p(µ), which feeds into the Langevin expression to model the isothermal 
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magnetisation behaviour M(H)22–24. Whilst this model o�ers an adequate description for single-core nanoparticle 
systems under consideration of polydispersity, recent work has suggested that so called multi-core particles25–27 
may be more suited to magnetic hyperthermia. Refs 5–10 each observe an increase in magnetic heating for 
multi-core particles compared to single-cores under the same conditions. Multi-core particles consist of several 
magnetic cores per particle and consequently, long range dipolar interactions within one multi-core particle can 
be present. Both experimental studies28–30 and simulations31–34 indicate that the presence of magnetic interactions 
between particles signi�cantly distort the observed magnetisation behaviour of the ensemble.

In the literature, there are several approaches to include dipolar interactions into the classical Langevin frame-
work, which enable to analyse the magnetisation data of coupled nanoparticle ensembles28–30,32. In the current 
work we applied an alternative approach. �e magnetisation curves of a magnetic nanoparticle ensemble were 
numerically inversed in order to extract the apparent moment distribution, using simply the classical Langevin 
function as model function. �e working hypothesis was that in case of dipolar interactions the extracted appar-
ent moment distribution exhibits characteristic distortions compared to the intrinsic moment distribution of the 
nanoparticle ensemble. Similar approaches can be found in refs 35–37, where di�erent numerical methods were 
used to determine the discrete moment distribution of nanoparticle ensembles. �is study stands out in so far that 
the numerical approach to extract the moment distribution is identical to the numerical inversion method used 
to analyse the scattering data.

In this paper the structural and magnetic properties of multi-core particles were determined which consist of 
iron oxide nanoparticle cores embedded in poly(styrene) spheres and which have been established as promising 
candidates for a wide range of biomedical applications27. �e main goals of this study were to disclose the arrange-
ment of the cores within the poly(styrene) spheres and to investigate the in�uence of dipolar interactions on 
their magnetisation behaviour. For this purpose a combination of static light scattering (SLS), small angle X-ray 
scattering (SAXS), small angle neutron scattering (SANS) and quasi-static DC magnetisation measurements 
was applied. Additionally, the core size and hydrodynamic size of the multi-core particles were determined by  
transmission electron microscopy (TEM), X-ray di�raction (XRD) and asymmetrical �ow �eld-�ow fractiona-
tion in combination with multi-angle light scattering (AF4-MALS).

To determine the structural arrangement of the cores the SLS, SAXS and SANS experiments of the particles 
dispersed in water were analysed with a model-independent approach38,39. Here initially the real space function 
P(r) is determined by an indirect Fourier transform of the reciprocal scattering data I(q)38–41. �e indirect Fourier 
transform is simply a numerical inversion of the data and no a priori assumptions have to be done regarding 
the particle shape, in contrast to classical model �ts42. �e extracted function P(r) is the so-called pair distance 
distribution function, which has characteristic shapes depending on the geometry of the scatterers41. Physical 
data analysis is ultimately performed by comparing the extracted pair distance distribution functions with the 
distribution functions of particles with known geometries. �is approach is o�en used for the structural analysis 
of complex biological systems – such as micellar42–44 or polymer solutions41,45.

�e same numerical approach as for the indirect Fourier transform was also applied to isothermal magneti-
sation measurements to extract the apparent moment distributions p(µ). As model function simply the Langevin 
function was used and data analysis was ultimately performed by comparing the extracted apparent distributions 
p(µ) with the expected intrinsic moment distributions of the cores. As mentioned above, the working hypothesis 
was that for example in case of dipolar interactions, the apparent moment distributions exhibit characteristic 
distortions. Hence, this is an alternative approach compared to established model �ts28–30,32 where the in�uence 
of dipolar interactions is a priori included in the model functions.

�is work was performed within the European FP7 project NanoMag46 which aims to implement a roadmap 
for the standardisation of the characterisation of magnetic nanoparticles and rede�ne existing analysis meth-
ods47. We show that the numerical method presented here provides a valid approach with which to determine the 
intrinsic properties of any nanoparticle system.

Sample
Synthesis. �e synthesis of the multi-core particles used in this study is described in detail in refs 25 and 27. 
Brie�y, the sample comprises iron oxide nanoparticle cores embedded in poly(styrene) spheres. �e multi-core 
particles were prepared by a controlled precipitation process of the polymer which traps the cores in emulsion 
droplets via solvent evaporation27. For the majority of the characterisation techniques, the particles were colloi-
dally dispersed in water with an iron content of cFe =  6.9 mgFe/ml.

Basic physical characterisation. We begin the discussion by �rst comparing the results of TEM, XRD and 
AF4-MALS. Together, these techniques provide a visualisation of the particle system and the ensemble.

The size and shape of both individual cores and multi-core particles were primarily analysed by TEM 
(Fig. 1(a)). �e diameter of 200 cores was measured and combined to form a frequency distribution (inset, 
Fig. 1(a)). �e core diameters are at �rst approximation log-normally distributed, with the best �t yielding a mean 
core diameter of 〈 D〉  =  9.0(2) nm. �e core size was additionally determined by analysing the XRD pattern of the 
freeze-dried powder, using Rietveld analysis48. The Rietveld refinement of the scattering pattern shown in 
Fig. 1(b) was obtained by assuming a Fd 

−3m space group. �e lattice parameter was determined to be 8.355, which 
lies between the values of bulk maghemite (8.336) and magnetite (8.397)18 and indicates that the iron oxide cores 
are non-stoichiometric mixtures of maghemite/magnetite. �e best �t of the data indicates a mean core size of 
7(1)nm, which is slightly less than that observed by TEM.

TEM also provides insight into the total diameter of the multi-core particles. We observe that the particle 
diameter is polydisperse and lies in the range ~100–150 nm. �e hydrodynamic size distribution of the multi-core 
particles was determined by AF4-MALS49,50.
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�e two key parameters determined by AF4-MALS that are of most use to this study are the weight-based 
size distribution and the shape parameter Rg/Rh (Fig. 1(c)), where Rg is the radius of gyration and Rh the hydro-
dynamic radius. Figure 1(c) shows that the shape parameter is essentially constant with a value of Rg/Rh ≈  0.79 
for Rg <  100 nm. For Rg <  100 nm, however, this ratio Rg/Rh rapidly decreases, which implies that particles with 
gyration radius larger than 100 nm signi�cantly deviate from the geometry of the primary particles. We surmise 
that particles with Rg >  100 nm are actually agglomerates of the individual particles.

We observe on distinct peak in the region up to 100 nm in the weight-based size distribution pW(Rg) with 
its maximum at Rg =  49 nm. Assuming that this peak arises from individual particles, we can gain further 
insight by modeling with a log-normal size distribution �e best �t result, shown in Fig. 1(c), indicates a mean 
radius of 〈 Rg〉  =  57 nm. Quanti�cation of the shape parameter allows us to calculate both the mean and max-
imum value of the hydrodynamic diameter of the particles. With Rg/Rh ≈  0.79 the mean hydrodynamic size  
〈 Dh〉  ≈  2 ⋅  57 nm/0.79 =  144 nm and the maximal value Dh,max ≈  2 ⋅  100 nm/0.79 =  253 nm. �e hydrodynamic 
diameter, however, is typically larger than the physical size due to the presence of solvation layers51, and thus 
these values should be regarded as upper limits of the particle sizes.

Finally, we note that the value of the shape parameter (0.79) con�rms our assertion that the cores are distrib-
uted in the outer surface of the polymer spheres, as schematically shown in Fig. 1(a). For a sphere with radius R 
and a homogeneous scattering length density, the gyration radius is related to the physical radius by 
=R R(3/5)g . However, in the extreme case of a hollow sphere with mass distributed within an in�nitesimally 

thin shell, the ratio Rg/R approaches 152. �e particles measured here have a value that is systematically greater 
than (3/5) . �is indicates that the density in the outer shell of the spherical multi-core particles is increased, 
which makes sense physically as the scattering length density of iron oxide is larger than that of poly(styrene). We 
have tested this assumption by analysing the small angle scattering behaviour of the particles, described below.

Structural properties
Here, we describe the characterisation of the structural properties of the nanoparticles, which have been ascer-
tained using a model independent approach to analyse both light, X-ray and neutron scattering data. It is perti-
nent to begin this discussion by brie�y describing the theoretical basis of the scattering techniques. Our approach 
is �rstly illustrated by applying the indirect Fourier transformation (IFT) to an ideal model system to yield the 
pair distance distribution functions and subsequently to the experimentally observed data. Further details on the 
numerical approach used to analyse the data can be found in the Methods section.

Theory. With SLS, SANS and SAXS the angular distribution of the time-averaged scattering intensity I as a 
function of the scattering wave vector q =  (4π/λ)sinΘ  is measured. Here, 2Θ  is the scattering angle and λ the 
wavelength of light (SLS), X-rays (SAXS) or neutrons (SANS). �e wavelength of visible light used for SLS is in 
the order of 600 nm whereas for SAXS and SANS λ ≈  0.1 −  1 nm. Hence, with SLS the scattering intensity I(q) is 
measured in a much lower q-range compared to both SAXS and SANS, and so which enables the characterisation 
of larger scatterers.

�e scattering intensity in reciprocal space, I(q), is related to the real space function P(r) in the following way:

∫π= +
∞

I q P r
qr

qr
r bkg( ) 4 ( )

sin( )
d ,

(1)0

where bkg is the q-independent background due to incoherent scattering contributions53. �is real space function 
P(r) is the so-called pair distance distribution function (PDDF). For a particle with arbitrary shape, this PDDF 
can be written54

Figure 1. Results of the basic physical characterisation of the multi-core particles via TEM, XRD and AF-
MALS. (a) TEM image of the multi-core particles. Inset 1: High resolution image of the iron oxide nanoparticle 
cores. Inset 2: Histogram of measured diameters of the cores and �t with a log-normal function (〈 D〉  =  9.0 nm, 
σ =  0.23). Inset 3: Sketch of the envisioned sphere-shell particle structure of the spherical poly(styrene) particles 
with the embedded iron oxide nanoparticle cores as the shell. (b) Rietveld re�nement of the X-ray di�raction 
pattern obtained at 300 K, including the residuals. Vertical tick marks indicate the position of the allowed 
di�raction peaks. (c) Weight-based particle size distribution pW (blue circles) and ratio of gyration and 
hydrodynamic radius (shape parameter) Rg/Rh (green triangles) as a function of Rg determined by AF4-MALS. 
Red line: Distribution p R( )

W
mc

g  determined by �tting �rst peak of pW(Rg) with a log-normal distribution.
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γ=P r r r( ) ( ), (2)2

where γ(r) is the convolution square of the scattering length density (SLD) contrast ∆ ρ(r) averaged over all 
directions in space.

For a particle with a homogeneous scattering length density ρp, and which is dispersed in a matrix with ρm, the 
absolute value for the contrast of the scattering length density is determined by the di�erence between the par-
ticles and the matrix (∆ ρ =  ρp −  ρm), and is ultimately technique dependent. For example, in SLS the di�erence 
is proportional to the refractive index di�erence, whilst for SAXS it is proportional to the di�erence in electron 
density contrast (determined by atomic number Z)55. Neutrons, on the other hand, interact with the nuclei and 
their scattering is ultimately determined by the strength of the neutron-nucleus interactions.

In a conventional two-phase system, however, the pro�le of ∆ ρ(r) - and hence γ(r) and P(r) - is independent 
of the applied technique, and instead depends only upon the shape of the scatterer. In the most simple case of a 
spherical particle with diameter D, the PDDF is expressed as:
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for 0 <  r <  D and P(r) =  0 for r ≥  D, as shown in ref. 41. �e maximum of P(r) is at = −r D(( 105 5)/10).
When characterising an ensemble of nanoparticles, however, one must also consider the inherent polydis-

persity. In this case, the experimentally detected scattering intensity is proportional to the Fourier transform of 
the average PDDF with the absolute values dominated by P(r) ∝  D5 i.e. large particles. �e real space distribution 
function is typically extracted from reciprocal space scattering data using an indirect Fourier transform (IFT)38–41. 
We have used an approach based upon a regularised numerical inversion similar to references38,39. Precise details 
of the approach are provided in the Methods section. In the following section we describe the type of information 
that can be extracted from the pair distance distribution functions.

Calculated data. AF4-MALS measurements suggest that the multi-core particles consist of poly(styrene) 
spheres, which were surrounded by a surface layer with embedded iron oxide cores (Fig. 1(a)). In order to sim-
ulate physically meaningful PDDFs, we �rst need to model the neutron and X-ray scattering patterns of these 
particles. For this purpose we need to make some assumptions regarding the particle geometry.

�e scattering intensities I(q) were calculated with the form factor of a sphere surrounded by a shell with 
homogeneous scattering length density56. For all scattering experiments the particles were colloidally dispersed 
in water (solvent). For the sphere, the shell and the solvent the SLDs expected for neutrons and X-rays were used 
for the calculations, respectively (Table 1).

For neutrons, the SLDs for both poly(styrene) and iron oxide are above that of water but in case of X-rays the 
SLD of poly(styrene) is below. Hence, in SANS, the particles can be at �rst approximation represented by particles 
with ρshell >  ρsphere >  ρsolvent. For SAXS, however, the particles constitute particles with ρshell >  ρsolvent >  ρsphere, pro-
vided the number of iron oxide nanoparticle cores is su�cient to raise locally the SLD in the shell above ρsolvent. 
For the calculations, we have assumed that the presence of iron oxide nanoparticles either on or at the surface 
of the poly(styrene) spheres increases the scattering length density moderately and that on average the shell 
has a homogeneous SLD. For neutrons we assumed for the calculations ρshell =  1.8 ⋅  10−41/nm2 and for X-rays 
ρshell =  9.7 ⋅  10−41/nm2 (Table 1).

Regarding the geometry of the particles a diameter of the poly(styrene) sphere of Ds =  120 nm and a shell 
thickness of t =  20 nm was assumed. �us the total size of the simulated particles was Dmax =  Ds +  2t =  160 nm 
which is in the range of the mean hydrodynamic size of the multi-core particles, as determined by AF4-MALS. 
With these assumptions we have been able to model the scattering pro�les, to which we added a reasonable stand-
ard deviation of σ(q) =  0.01 ⋅  I(q).

At this stage we can now numerically inverse the simulated scattering data I(q) (details provided in the 
Methods section). To test the IFT, the maximum size Dmax was varied from 100–200 nm in 2 nm steps although 

neutrons X-rays

ρH2O =  ρsolvent − 5.6 · 10−5 1/nm2 9.5 · 10−4 1/nm2

ρpoly(styrene) =  ρsphere 1.3 · 10−4 1/nm2 9.2 · 10−4 1/nm2

ρiron oxide 6.7 · 10−4 1/nm2 40.6 · 10−4 1/nm2

ρshell 1.8 · 10−4 1/nm2 9.7 · 10−4 1/nm2

Table 1.  SLDs of H2O (solvent), poly(styrene) (sphere) and iron oxide for neutrons and X-rays. As iron 
oxide magnetite (Fe3O4) was assumed. For poly(styrene) (chemical formula (C8H8)n) the volumetric mass 
density 1g/cm3 was used for the calculation. �e SLDs ρshell >  ρsphere were used for the calculations of the PDDFs 
of the particles (Fig. 2).
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the actual size of the particles was known. �e regularisation parameter, α, was varied over several orders of mag-
nitude in 70 steps. Figure 2 compares the distribution functions obtained with the highest evidence for SANS 
(P r( )SANS

sim ) and SAXS (P r( )SAXS
sim ).

For both distributions Dmax was determined to be 160 nm, which is in agreement with the real size of the sim-
ulated particles. �e pro�le of both distributions is, however, signi�cantly di�erent due to the di�erent scattering 
length density distributions used for the scattering of neutrons and X-rays. As can be seen in Fig. 2, the PDDF 
obtained for neutrons is bell-shaped with one distinct maximum at r =  87 nm. �e distribution is basically iden-
tical to the PDDF Psphere(r) calculated for a homogeneous sphere with equation 3 for D =  160 nm, where the max-
imum is at = − =r D(( 105 5)/10) 84nm. Only in the large r-range the values are slightly increased due to the 
higher scattering length density assumed for the shell.

However, a signi�cantly di�erent distribution is observed for X-rays and this is due to the fact that ρsphere <  ρsol-

vent but ρshell >  ρsolvent. As a result, the pair distance distribution function exhibits two distinct peaks and takes on 
negative values in the region Ds/2 <  r <  Ds.

Comparable particle systems were experimentally analysed e.g in refs 43–45,57 and simulated in ref. 58. 
Interestingly, in these cases the authors observed quasi-symmetric functions when the main body of the particle 
scattered more than the solvent, and functions qualitatively identical to that observed here – with two peaks – 
when ρshell >  ρsolvent >  ρsphere.

We thus note that the PDDFs of particles obtained by an indirect Fourier transform of scattering data directly 
reveal two important structural parameters: �rstly, we obtain the maximum size (Dmax) of the particles. Secondly, 
we also gain qualitative insights on the nature of the scattering length density pro�le, which in turn tells us valu-
able information about the overall structure of the particles. Having now demonstrated our approach, we apply 
it to experimentally observed scattering measurements of the particles so as to ascertain their internal structure.

Experimental data analysis. In Fig. 3(a) we compare the scattering intensities from SANS and SAXS. 
We have combined each of the data sets with the scattering intensity from SLS, so that the total intensity of each 
method is given by I1(q) =  (c1 ⋅  ISLS(q), ISANS(q)) and I2(q) =  (c2 ⋅  ISLS(q), ISAXS(q)), respectively. In doing so we have 
expanded the q-range signi�cantly. Following this, the two combined data sets I1(q) and I2(q) were inversed with 
the IFT to extract the pair distance distribution functions, as shown in detail in the Methods section. For this 
purpose, the IFT of I1(q) and I2(q) was performed for 201 di�erent Dmax values and 51 di�erent values of the 
scaling factors c1 and c2. Additionally, for each parameter set [Dmax, c1,2] the regularisation parameter α was varied 
logarithmically over several orders of magnitude in 70 steps.

For I1(q) the maximum probability was calculated using a scaling factor c1 of 10000 and a Dmax of 198 nm. �e 
reconstructed curve I q( )rec

1  is displayed in Fig. 3(a) and the corresponding PDDF P r( )1  is shown in Fig. 3(b). In 
this case we observe that the distribution P r( )1  is a continuous curve with one distinct maximum. Such a pro�le 
was also observed in Fig. 2 and indicates that for neutrons ρshell >  ρsphere >  ρsolvent. �e maximum of P r( )1  is at 
r ≈  70 nm, which correlates for spherical particles with a homogeneous scattering length density pro�le to a mean 
diameter of = − =D 70nm/(( 105 5)/10) 133nm. �is is in quite good agreement with AF4-MALS were the 
weight-based mean diameter of the multi-core particles was estimated to be 〈 D〉  ≤  144 nm. Indeed, when we 
compare the shape of P r( )1  to the equivalent simulated distribution in Fig. 2 we see that it is considerably more 
asymmetric at large values of r. �is indicates a moderately broad size distribution with a maximal size of 198 nm, 
which is in excellent agreement with our observation via AF4-MALS (Fig. 1(c)). We thus conclude that the PDDF 
determined via numerical inversion of SANS data is a good indication of the size distribution of the individual 
multi-core particles.

If we now consider X-ray scattering data, we obtain the highest evidence of the combined data I2(q) with a c2 
of 10964.78 and a Dmax of 166 nm. �e reconstructed curve I q( )rec

2  is displayed in Fig. 3(a) and the corresponding 

Figure 2. Simulated PDDFs. Comparison of simulated PDDFs for small angle scattering via neutrons 

(P r( )SANS
sim ) and X-rays (P r( )SAXS

sim ) from a 120 nm poly(styrene) sphere with a 20 nm thick shell embedded in 
water, as well as the calculated pro�le of a homogeneous sphere with D =  160 nm (equation 3). Assumed 
scattering length densities for neutrons and X-rays are provided in Table 1.
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PDDF P r( )2  is shown in Fig. 3(b). �e PDDF P r( )2  signi�cantly deviates from P r( )1  and exhibits two distinct 
maxima, with two pronounced zero crossings (Fig. 3(b)). Again, this is qualitatively identical to the simulated 
distribution in Fig. 2, which was determined for ρshell >  ρsolvent >  ρsphere. Due to the zero crossing of P r( )2  with the 
minima at about r =  80 nm, the reconstructed scattering intensity I q( )rec

2  (Fig. 3(a)) has a negative slope in the 
region q ~ π/r =  0.04 nm−1. Similar scattering behaviour and PDDFs have previously been observed in the litera-
ture for small micelles43.

By combining the inversion of the SLS and SANS or SAXS data, we yield additional information about the 
scattering behaviour of the particles in the low q-range. However, the SLS data is not necessarily identical to the 
expected data for neutrons or X-rays due to the di�erent SLD contrasts for light, neutrons and X-rays. In order to 
verify that iron oxide cores are distributed in the surface region of the spheres, we limited our data analysis to the 
SANS and SAXS data, with Dmax as the only free �t parameter (Dmax =  100–500 nm, 201 steps).

�e obtained PDDFs are also shown in Fig. 3(b). For the SANS data we see that the pair distance distribution 
function P r( )SANS  is qualitatively identical to that obtained with inclusion of the SLS data (P r( )1 ). For SAXS only 
data, the q-range had to be limited to 1.8 nm−1, because of the high point density and noise for q <  1.8 nm−1. Even 
with the limited q-range, we �nd the highest evidence when Dmax is 166 nm, which is is identical to that deter-
mined from the inversion of the complete data set I2(q). Also, P r( )SAXS  exhibits the two characteristic peaks asso-
ciated with particle structure, which con�rms the previous results. Hence it can be concluded from the combined 
analysis of ISLS(q), ISANS(q) and ISAXS(q), that the iron oxide nanoparticle cores seem to be mostly embedded in the 
outer surface layers of the poly(styrene) spheres resulting in the structure illustrated in Fig. 1(a) (Inset 3).

Magnetic properties
Theory. According to TEM and XRD the small cores are spherically shaped and have a mean diameter in the 
range 7–9 nm. �us, they can be expected to be single-domain and superparamagnetic particles59 with macros-
pins µ π

→
= ⋅M DS

1

6
3, where MS is the material speci�c saturation magnetisation18,19.

Neglecting anisotropy and dipolar interactions between the cores, the isothermal magnetisation of a monodis-
perse, superparamagnetic spin ensemble can be described by a single Langevin-function60

µ
µµ

µµ
= = − .M H M L H

H

k T

k T

H
( )/ ( , ) coth

(5)
S

B

B0

0

Within polydisperse ensembles, however, there is a distribution of sizes and consequently the magnitude of 
moments is also distributed. In this case, M(H) is modeled by:

∫ µ µ µ=
∞

M H M p L H( )/ ( ) ( , )d ,
(6)S V0

where pV(µ) is the volume weighted moment distribution. As core diameters tend to be log-normally distrib-
uted, the standard approach is to model magnetisation via equation 6 assuming a log-normal distribution of the 
moments22–24. However, literature contains several di�erent approaches35–37 to extract discrete moment distribu-
tions with no a priori assumptions how the moments are distributed. In this study we apply the same numerical 
approach for the determination of the moment distribution p(µ) from the magnetisation data as for the indirect 
Fourier transform. �e numerical details are provided in the Methods section.

Data analysis. We con�rm that the cores are indeed superparamagnetic at 300 K (i.e. thermally unblocked) 
by the curves in Fig. 4. Both the magnetisation curve of the immobilised particles Mim(H) as well as of the 

Figure 3. Results of the structural characterisation of the multi-core particles via SANS, SAXS and SLS. (a) 
�e experimentally measured scattering intensities ISANS(q), ISAXS(q) and ISLS(q). �e static light scattering 
intensity was scaled by c1 and c2, respectively. �e reconstructed curves I q( )rec

1 , I q( )rec
2 , I q( )SANS

rec  and I q( )SAXS
rec  

were calculated for the distributions P r( )1 , P r( )2 , P r( )SANS  and P r( )SAXS  from Fig. 3(b). (b) �e pair distance 
distribution functions P r( )1 , P r( )2 , P r( )SANS  and P r( )SAXS  determined by an indirect Fourier transform of I1(q), 
I2(q), ISANS(q) and ISAXS(q).
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colloidal dispersion Mdi(H) are anhysteretic and exhibit zero remanence and coercivity. However, the measured 
saturation magnetisation MS ≈  101 Am2/kgFe of the particles is below the literature values for magnetite (128 Am2/
kgFe) and maghemite (118 Am2/kgFe)18. It is typical to observe a reduction in MS of nanoparticulate material 
because of structural defects leading to uncorrelated surface spins61,62.

In order to extract the intrinsic distribution of the core moments, �rst we have used equation 6 to �t the virgin 
curve of the magnetisation curve measured on the immobilised particles, Mim(H), under assumption of a 
log-normal distribution pV(µ). �e �tting curve M H( )im

fit  is shown in Fig. 5(a) and the corresponding distribution 
µ µ µ∝ ∆P p( ) ( )log V

 is displayed in Fig. 5(b). In doing this, we obtain a mean magnetic moment of 1.3 ⋅  10−19 Am2 
with σ =  1.06. Using the measured saturation magnetisation the distribution pV(µ) is transferred to a 
number-weighted size distribution pN(D) with the mean value 5.4 nm and the broadness σ =  0.35. �e residuals 
show systematic deviations over the whole �eld range (Fig. 5(a)) and illustrate the limitations of using a predeter-
mined moment distribution, a topic which has been discussed in35–37.

�erefore, in the following we apply the numerical inversion approach introduced in the Methods section to 
extract the discrete, apparent moment distribution. First we try to validate the approach. For this purpose, we 
numerically inversed the �tting curve M H( )im

fit  from Fig. 5(a) to which we arti�cially added reasonable noise and 
errors. In fact, we used as standard deviations the experimental error bars ∆ M(H) of the measured curve Mim(H) 
and shi�ed the data points randomly either by + ∆ M(H) or by − ∆ M(H). �e data set was numerically inversed 
for 200 di�erent α values and a�erwards the evidence was calculated for each regularisation parameter α. In this 
case, the highest evidence was obtained for α =  3007 and the corresponding distribution µP ( )log

inv
 is plotted in 

Fig. 5(b). Comparison of µP ( )log

inv
 with the intrinsic moment distribution µP ( )log  shows that they are identical and 

hence validates our approach. For comparison, when α is reduced to for example 0.01 the extracted distribution 
exhibits arti�cial and systematic oscillations over the whole µ-range (Fig. 5(b), dashed line).

We now use the numerical inversion approach to analyze the experimental data. Figure 5(b) shows the dis-
crete, apparent moment distribution µP ( )im  obtained by a numerical inversion of Mim(H) of the immobilised 
particles. A reconstruction of M(H) with µP ( )im  results in M H( )im

rec  plotted in Fig. 5(c). As shown in Fig. 5(a), the 
residuals −M H M H( ) ( )im im

rec  are signi�cantly reduced over the whole �eld range compared to the log-normal �t, 
indicating the high quality of the �t by numerical inversion. �e main feature of the extracted moment distribu-
tion µP ( )im  is that it exhibits two distinct peaks, in contrast to the single log-normal distribution µP ( )log . �e main 
peak of µP ( )im  displays the shape of a log-normal peak, which leads us to suggest that this peak is directly corre-
lated to the physical core sizes, which normally are log-normally distributed.

To further examine this, the main peak was modeled to extract the core size distribution from the moment 
distribution, assuming a log-normal size distribution. �e best agreement was found for the distribution Psize(µ) 
shown in Fig. 5(d), where µ µ µ∝ ∆P p( ) ( )size V

log  (∆ µ is logarithmically spaced). �is distribution was calculated 
for a particle ensemble with a saturation magnetisation of MS =  101 Am2/kgFe assuming the stoichiometry of 
maghemite. �e number weighted size distribution used for the computation of Psize(µ) was a log-normal distri-
bution with a mean value of 6.6 nm (σ =  0.28). This mean is smaller than the diameters observed by TEM 
(Fig. 1(a), 〈 D〉  =  9.0(2)nm and σ =  0.23(2)) although it is comparable to that deduced from XRD (7(1)nm). 
Indeed, it is typical for the so-called magnetic size to be up to 1 nm smaller than the physical size, an observation 
conventionally attributed to uncorrelated surface spins61–64. Hence, we conclude that the Psize(µ) distribution 
provides a good approximation of the intrinsic moment distribution of the individual cores.

�e small peak in µP ( )im  could then be interpreted as a second fraction of small particles with a quite narrow 
size distribution. �e peak position is at 1.4 ⋅  10−20 Am2, which corresponds to particle diameters of ≈ 3 nm. It is 
important to note that this distribution is volume-weighted; when we convert it to a number-weighted distribu-
tion then we would expect to observe the corresponding peak to be about 1 order of magnitude larger than the 
main peak. This would indicate that the overwhelming majority of cores were ≈ 3 nm in size, which is not 

Figure 4. Isothermal magnetisation curves of the immobilised particles (Mim(H)) and of the colloidal 
dispersion (Mdi(H)) at T = 300 K. Inset top: Zoom into low-�eld range. Inset bottom: Temperature dependent 
magnetisation curves of immobilised particles as function of H/T (log-normal scale).
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supported by TEM (Fig. 1(a)). A more reasonable explanation is that this peak is instead a signature for dipolar 
interactions within the particle ensemble, which would hinder the magnetisation of an ensemble as observed both 
by simulations31–34 and experimentally29. As a result, the apparent moments determined from analysing magnet-
isation curves of interacting nanoparticle ensembles are usually smaller than the real, intrinsic core moments65.

A simple approach to investigate in the superparamagnetic state if dipolar interactions are present is to meas-
ure the magnetisation curve at di�erent temperatures T66. In case of a non-interacting superparamagnetic ensem-
ble the magnetisation curves as a function of H/T should superimpose. For this purpose we measured M(H) of 
the immobilised ensemble at T =  300, 240, 150 and 90 K. We observe that the curves M(H/T) do not superimpose, 
with deviations particularly in the intermediate to high �eld range (inset, Fig. 4). Such an observation strongly 
emphasises the assumption of the presence of weak dipolar interactions between the cores in the multi-core par-
ticles. In turn, we thus conclude that the small peak observed in µP ( )im  is in fact most likely the result of dipolar 
interactions.

�e presence of two distinct peaks in the moment distribution can then be thought of as a hallmark of a 
mixture of interactions. �e main peak (large moment range) corresponds to the magnetic moments that behave 
Langevin-like. �e second peak in the small moment range corresponds to cores that experience dipolar inter-
actions. For these cores the apparent moment distribution is shi�ed to smaller values compared to their real, 
intrinsic moment distribution, which is consistent with the mean �eld approach introduced in ref. 28. In ref. 
28, the authors model the magnetisation behaviour of interacting ensembles of magnetic nanoparticles using 
the Langevin model by introducing an apparent moment µa, which is related to the real moment µ by µa =  1/
(1 +  T*/T) ⋅  µ. Here T* is an e�ective temperature whose magnitude depends on the average dipolar energy within 
the ensemble. For small average distances between the particles and hence larger dipolar energies T* ≫  T and thus 
µa ≪  µ.

Figure 5. Magnetic characterisation of the multi-core particles at T = 300 K. (a) Initial magnetisation curve 
of Mim(H) from Fig. 4, �t M H( )im

fit  with equation 6 under assumption of a log-normal distribution pV(µ) and 
reconstructed data set M H( )im

rec  (numerical inversion). Inset: Residuals of the log-normal �t and of the 
numerical inversion. (b) Log-normal distribution of magnetic moments µ µ µ∝ ∆P p( ) ( )log V

 determined by 
�tting Mim(H) with equation 6. �e �tting curve M H( )im

fit  with arti�cially added noise was numerically inversed, 
resulting in the distribution µP ( )log

inv
 (dashed line shows the extracted distribution in case of a reduced 

regularisation parameter). With the same numerical approach the distribution µP ( )im  was extracted from the 
experimental data Mim(H). (c) Initial magnetisation curves of Mdi(H) and Mim(H) from Fig. 4 and the 
reconstructed data sets M H( )di

rec  and M H( )im
rec . For the reconstruction the moment distributions µP ( )di  and 

µP ( )im  from Fig. 5(d) were used. (d) Discrete moment distributions µP ( )im  (from Fig. 5(b)) and µP ( )di  
determined by numerical inversion of the initial magnetisation curves of Mim(H) and Mdi(H). �e distribution 
Psize(µ) was calculated for a particle ensemble with a mean core size from a log-normal distribution of 6.6 nm 
(σ =  0.28).
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This peak in the small moment range is also observed in the distribution µP ( )di  (Fig. 5(d)), which was 
extracted by numerical inversion of the measurement Mdi(H) of the colloidal dispersion. Another similarity 
between µP ( )im  and µP ( )di  is the position of the main peak, where we observe a shoulder in µP ( )di . �is strongly 
suggests that both peaks of µP ( )im  are real and correlate directly to the magnetisation behaviour of the iron oxide 
cores itself. As discussed above, the main peak corresponds to non-interacting cores whereas the small peak can 
be interpreted as a signature of core-core interactions. However, in contrast to µP ( )im , the distribution µP ( )di  
exhibits a third peak at large µ values. �is peak can be linked to the slightly increased susceptibility of Mdi(H) in 
the intermediate �eld range compared to Mim(H) (Fig. 5(c)). Considering that both samples contained particles 
from the same synthesis batch, and di�er only by the preparation method for the measurement, this observation 
indicates that some of the multi-core particles had remanent (e�ective) moments larger than the moments of the 
individual cores. In colloidal dispersion these multi-core particles could rotate in �eld direction by physical rota-
tion which increased the susceptibility of the ensemble. A possible explanation for remanent moments within 
such multi-core particles is that the superparamagnetic spins of the cores are slightly correlated due to dipolar 
interactions leading to the formation of a blocked e�ective moment67.

Conclusion
In this work the structural and magnetic properties of multi-core particles were investigated using the same 
numerical inversion method for the analysis of small angle scattering and magnetisation measurements. �e 
multi-core particles consisted of large poly(styrene) spheres (ca. 160 nm) with embedded superparamagnetic iron 
oxide nanoparticle cores (ca. 9 nm). By a numerical inversion (indirect Fourier transform) of the SANS and SAXS 
scattering intensities in combination with the SLS scattering intensity, the PDDFs of the multi-core particles were 
extracted. Analysis of the PDDFs strongly indicated that the cores were mostly accumulated in the surface layers 
of the poly(styrene) spheres.

�e same numerical approach was applied to analyse the isothermal magnetisation curves of the multi-core 
particles. First, the apparent, discrete moment distribution of the multi-core particles was extracted from the 
isothermal magnetisation measurement of the immobilised ensemble. This distribution exhibited two dis-
tinct peaks. Whereas the main peak could be correlated to the intrinsic moment distribution of the individual, 
non-interacting iron oxide nanoparticle cores, the second peak in the low moment range of the apparent moment 
distribution could be attributed to weak dipolar interactions.

In comparison to the immobilised ensemble, the magnetisation curve of the particles dispersed in water 
(colloidal dispersion) had a slightly increased susceptibility in the intermediate �eld range. Consequently, the 
extracted apparent moment distribution was partially shi�ed to larger moment values. As a possible explanation 
for this e�ect a coupling of the spins of the cores within some of the multi-core particles was proposed, resulting 
in the formation of �nite e�ective/remanent moments. In colloidal dispersion these particles could rotate in �eld 
direction by physical rotation which would explain the increased susceptibility of the ensemble.

�e revelation of �ne details regarding the structural and magnetic properties of the multi-core nanoparticles 
proofs the validity and universal applicability of the inversion method as a tool to analyse such novel magnetic 
nanoparticle arrangements. �e code for the numerical inversion of the small angle scattering and isothermal 
magnetisation data was written in Python and is available from the authors.

Methods
Structural characterisation. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was car-
ried out with a �ermo Scienti�c iCAP 6500 ICP emission spectrometer, to determine the iron content in the 
colloidal dipsersion. For this purpose the colloidal dispersion was digested in 70% HNO3 for a week, followed by 
preparing a dilution series in MiliQ water.

Transmission electron microscopy (TEM) images were taken on a JEOL JEM 2100 (FEG) and a FEI Tecnai G2 
T20 TEM. �e samples were prepared by drop-casting diluted dispersions of the particles on a carbon coated 
copper grid.

X-ray di�raction (XRD) patterns were measured with a Bruker D8 Advance di�ractometer, using Cu-Kα 
radiation, with a Bragg-Brentano con�guration. �e freeze-dried sample was placed on a Si single-crystal low 
background sample holder that was rotated at 15 rpm in order to minimize the e�ect of preferred orientations in 
the sample. �e measurements were performed at room-temperature (T =  300 K) in the 23°–85° 2Θ  range. �e 
instrumental calibration is based on standard Si and LaB6 samples. �e Rietveld re�nement has been performed 
using the FullProf suite68.

Asymmetric flow field flow fractionation (AF4) was performed using the instrument Eclipse 2 (Wyatt 
Technology, Dernbach, Germany) which was connected to a multi-angle light scattering detector (MALS, Dawn 
Heleos II, Wyatt Technology) operating at a wavelength of 658 nm and to a RI detector (Optilab T-Rex, Wyatt 
Technology) operating at 658 nm. An Agilent 1100 G1311Aisocratic pump, with an in-line vacuum degasser and 
auto sampler, delivered the carrier �ow and handled sample injection onto the AF4 channel. �e AF4 channel 
(Wyatt Technology) had a tip-to-tip length of 17.4 cm, assembled with a 250 µm spacer and an ultra�ltration 
membrane of regenerated cellulose (cuto� 10 kDa, Merck Millipore, Billerica, MA, USA). �e carrier liquid con-
sisted of MilliQ water with 0.02% NaN3. A volume of 30 µl of the diluted colloidal dispersion (concentration 
0.2 mg/ml) was injected at 0.20 ml/min for 1 min. �e focus time was 5 min at a �ow rate of 1 ml/min. An expo-
nential decay cross-�ow rate of 1 to 0.15 ml/min, with half-life of 8 min, was applied during elution. At the end of 
the decay, the cross-�ow was held at 0.15 ml/min for 10 min and �nally turned o� for 10 min to �ush the channel. 
�e detector �ow was kept constant at 1 ml/min. Data processing was by the Astra so�ware (v.6.1.2.84, Wyatt 
Technology). �e molar mass (M) and the gyration radius (Rg) were obtained from the light scattering data using 
the Berry method69. �e hydrodynamic diameter (Dh) was determined based on the retention time50.
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Static light scattering (SLS) was performed using a multi-angle detector set-up equipped with a He-Ne laser by 
ALV, Langen, Germany. For the measurements the colloidal dispersion was diluted by factors 100, 200, 500, 1000 
and 2000 to receive a dilution series. �e SLS data were converted to I(q) sets, by using the expression q =  (4πn/λ)
sinΘ  with λ =  632.8 nm, and normalised so that the �rst data point I(qmin) =  1. All 5 data sets were averaged to 
obtain ISLS(q) but the �rst data point was excluded due to the fact that it naturally had no standard deviation.

Small Angle Neutron Scattering (SANS) of the colloidal dispersion was carried out on the Sans2d small angle 
di�ractometer at the ISIS Pulsed Neutron Source (STFC Rutherford Appleton Laboratory, Didcot, U.K.)70. A col-
limation length of 4 m and incident wavelength range of 1.75–16.5 Å was employed. Data were measured simul-
taneously on two 1 m2 detectors to give a q-range of 0.0042–1.45 Å−1. �e small angle detector was positioned 4 m 
from the sample and o�set vertically 60 mm and sideways 100 mm. �e wide-angle detector was position 2.4 m 
from the sample, o�set sideways by 980 mm and rotated to face the sample �e beam diameter was 8 mm. Each 
raw scattering data set was corrected for the detector e�ciencies, sample transmission and background scattering 
and converted to scattering cross-section data using the instrument-speci�c so�ware MANTID71. �e ISANS(q) 
data were placed on an absolute scale [cm−1] using the scattering from a standard sample (a solid blend of hydrog-
enous and perdeuterated poly(styrene)).

Small Angle X-ray Scattering (SAXS) measurements of the colloidal dispersion were carried out on a Kratky 
system with slit focus, SAXSess by Anton Paar, Graz, Austria. �e colloidal dispersion was measured as delivered 
a�er vortexing. �e measurement was performed as an absolute intensity measurement by measuring addition-
ally the scattering curves of the empty capillary and water. �ese were subtracted from the measured scattering 
curve of the sample during the data reduction procedure using SAXSquant so�ware shipped with the machine. 
�e resultant curve ISAXS(q) was deconvoluted with the beam pro�le curve to correct for the slit focus smearing.

Isothermal magnetisation measurements. �e magnetic properties of the composite particles were 
investigated by analysing the DC magnetisation curves of the immobilised particles (physical rotation of particles 
suppressed) as well as of the colloidal dispersion (as prepared).

To analyse the magnetic properties of the immobilised nanoparticles it was necessary to suppress a rotation 
of the particles in �eld direction. �is was achieved by depositing a droplet of 5 µl of the colloidal dispersion on 
cotton wool and letting it dry for 24 hours. �e isothermal magnetisation measurement was recorded with a 
Quantum Design SQUID VSM 7T with Quick Switch and Evercool at 300 K in a �eld range of µ0H =  ± 5.6 MA/m. 
�e magnetisation Mim(H) was obtained by normalising to the iron content, determined by ICP-OES.

Magnetisation measurements were performed on the colloidal dispersion at 300 K in a Magnetic Property 
Measurement System (MPMS)-XL (Quantum Design, USA). �e magnetic �eld was varied between ± 3.9 MA/m 
and the size of consecutive �eld step was changed logarithmic to ensure a su�cient number of points at low �elds. 
From the measured magnetic moment the magnetic contribution of the empty sample holder and the diamag-
netic signal of water were subtracted. �e corrected magnetic moment was normalised to the mass of iron, which 
was determined by ICP-OES, to obtain the magnetisation Mdi(H).

Numerical inversion. Small angle scattering data (Indirect Fourier transform). �e measured scattering 
intensity I(q) is a vector with M data points. At each data point I(qi) the integral equation 1 can be written in the 
discrete form

∑π= ∆ +

=

I q n P r
q r

q r
r bkg( ) 4 ( )

sin( )
,

(7)
i

j

N

av j
i j

i j
j

1

with n being the number density of the particles and Pav(r) their averaged PDDF. �e histogram Pav(r) is divided 
in N bins with width ∆ rj. To extract the N-dimensional vector P r( ) with =

P r nP r( ) ( )av  the functional

σ

−
P r I qA

1

2
( ) ( )

(8)2 0
2

has to be minimised, with σ =  σ(q) being the standard deviation of each data point. Here I0(q) is the measured 
scattering intensity I(q) minus the incoherent scattering background (I0(qi) =  I(qi) −  bkg). �e matrix A in equa-
tion 8 is the M ×  N data transfer matrix with π= ∆A r4i j

q r

q r j,
sin( )

( )
i j

i j

. Due to e.g. measurement uncertainties solving 

equation 8 is normally an ill-conditioned problem, which can give rise to unphysical peaks in the determined 
histogram. To make the problem less ill-conditioned a Tikhonov regularisation was applied to force smooth dis-
tributions. In this case the functional72

σ

α− + P r I q P rA L
1

2
( ) ( ) ( )

(9)2 0
2 2

is minimised instead of equation 8. �e matrix L is a N ×  N regularisation matrix, which is weighted by the regu-
larisation parameter α. To penalise oscillations within the extracted distributions and to force =

P r( ) 0 at the start 
and end point, the following non-singular approximation of the discrete second-order derivative operator was 
used within this work:
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�is operator is basically identical to the regularisation functional used in ref. 39 and is similar to Glatter’s 
original smoothness constraint40. For numerical computation equation 9 is inconvenient and the least square 
solution of
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was determined. Here 0N,1 is a zero vector of length N.
�e �nd the optimal value for the regularisation parameter α, the posterior probability or evidence P(α) was 

calculated according to38,39
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Equation 12 was calculated in refs 38 and 39 within the Bayesian framework and proven to result in correct 
estimations for the regularisation parameter and hence the extracted pair distance distribution functions. Here 
χ2 is de�ned in the usual manner, i.e.
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with Irec(qi) being the reconstructed data points:
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and H is the Hessian of the Tikhonov functional (equation 9):
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In this work the IFT was used to determine the PDDFs of the particles by inversing the SANS scattering 
intensity ISANS(q), the SAXS scattering intensity ISAXS(q) or combinations of ISANS(q) and ISAXS(q) with the SLS scat-
tering intensity ISLS (I1(q) =  (ISLS(q), ISANS(q)), I2(q) =  (ISLS(q), ISAXS(q))). For this purpose the bkg-values had to be 
subtracted from the scattering intensity (equation 11, I0(qi) =  I(qi) −  bkg). In principal bkg can be included as a �t 
parameter as done in ref. 39. However in this work the values were pre-determined by a linear �t of the scattering 
data in the high q-range to bkgSANS =  0.0182 cm−1 and bkgSAXS =  0.0602 cm – 1 and subtracted before the IFT.

Another prerequesite for the IFT is that the histogram P r( ) is restricted to the range 0 <  r ≤  Dmax, with Dmax 
being the maximum size of the largest scatterers within the ensemble39. According to AF4-MALS, Dmax of the 
individual multi-core particles can be roughly estimated to be Dmax ≤  253 nm. Additionally some agglomerates of 
the multi-core particles were observed with maximum Rg values up to 180 nm (Fig. 1(c)). To certainly �nd the 
optimal value for Dmax for the IFT, the IFT was performed for a total of 201 Dmax values ranging from 100 to 
500 nm in 2 nm steps. For each Dmax value the distribution P r( ) was set to be from rj >  0 →  Dmax, divided in 
N =  500 bins with a linear spacing. Furthermore, at each Dmax value the regularisation parameter α was varied 
over several orders of magnitude in 70 steps with logarithmic spacing. After each IFT the evidence P(α, 
Dmax) =  P(α) was computed with equation 12 to �nd the most probable values for α and Dmax (highest evidence). 
�e distribution P r( ) determined by the IFT for these particular values of α and Dmax was regarded as the most 
probable solution for the PDDF.

However, for the inversion of the combined data sets I1(q) and I2(q), additionally the absolute values of ISLS(q) 
in relation to ISAXS(q) and ISANS(q) were not known. Hence, the scaling factors c1 and c2 of the intensity ISLS(q) were 
introduced as third �t parameters with I1(q) =  (c1 ⋅  ISLS(q), ISANS(q)) and I2(q) =  (c2 ⋅  ISLS(q), ISAXS(q)). �ese scaling 
factors were varied in both cases over two orders of magnitude from 103 to 105 in 51 steps with logarithmic spac-
ing. Finally, for a given set of α, Dmax and c1,2 the IFT was performed and a�erwards the corresponding probabil-
ities P(α, Dmax, c1,2) =  P(α) calculated with equation 12. �e distribution P r( ) determined with the parameters for 
which the highest evidence was calculated was then interpreted as the best estimation for the PDDF.
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Isothermal magnetisation data. Identically to the scattering intensity (equation 7), the magnetisation data is a 
vector and equation 6 can be discretised as:

∑ µ µ µ= ∆ .
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By �nding the least square solution of (see equation 11)
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the vector µ µ µ= ⋅ ∆P M p( ) ( )S V
 was determined, with Ai,j =  L(Hi, µj).

For the inversion the range of the extracted moment distribution was set to be from 10−21–10−15 Am2, divided 
into N =  121 bins (20 points per decade) with a logarithmic spacing ∆ µ. �e inversion was performed for 200 
di�erent values of α, with α being varied logarithmically over several orders of magnitude. A�erwards, the evi-
dence was calculated with equation 12, as for the IFT, and the distribution with the highest evidence interpreted 
as the most probable solution µP( ).
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