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Abstract. Service matchmaking is the process of finding appropriate
services for a given set of requirements. We present a novel service match-
making approach based on the internal process of services. We model
service internal processes using finite state machines and use various
heuristics to find structural similarities between services. Further, we
use a process ontology that captures the semantic relations between pro-
cesses. This semantic information is then used to determine semantic
similarities between processes and to compute match rates of services.
We develop a case study to illustrate the benefits of using process-based
matchmaking of services and to evaluate strengths of the different heuris-
tics we propose.

1 Introduction

Web services are pieces of software that provide a functionality and can be
invoked over the Web in a machine independent manner [1]. An important chal-
lenge in the usage of Web services is finding appropriate Web services for different
service needs. Current standards, such as UDDI, only provide limited keyword
search capabilities, which are insufficient to handle the requirements of the cur-
rent users. With such protocols, users try to guess keywords that are relevant
to their requests and Web services that advertise themselves with the same key-
words are assumed to be good matches for each other.

Another influential trend in Web service matchmaking is that of input-output
matching, where a service request is considered to match a Web service if the
inputs and outputs are identical [2]. An enhancement to this approach is the
addition of semantic information, where instead of identical matching partial
matches are computed using the underlying semantic knowledge in the service
descriptions [3][4]. In these semantic approaches, input-output fields are associ-
ated with semantic concepts represented in ontologies. The result of the match-
making operation is a degree of semantic similarity, such as exact, plug-in and
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subsumes match. Exact match shows that the request and service interfaces
match exactly to each other. Plug-in match shows that the service returns a
more general output concept than the requested. Subsumes match shows that
the service returns a more specific output concept than the requested.

Although input-output matching is easy to implement, it has two important
drawbacks.

– Granularity: The results of the matchmaking is coarse-grained. That is, the
matching services are associated only with some general similarity degrees
(exact, plug-in, and so on) and we cannot further discriminate between ser-
vices that have the same similarity degree. This level of granularity is unac-
ceptable, especially when the number of matching services is large. A better
matching approach should provide more precise matching information and
should be able to rank the services based on this rating.

– Precision: The matchmaking algorithm should provide high precision; mean-
ing that those Web services that are actually labeled as matching should be
compatible with the requests. Most input-output matching techniques suffer
from low precision, since they do not consider the internal processes of ser-
vices while performing the matchmaking operation [5]. As a result, different
services with identical interfaces are counted as good matches although they
perform completely different tasks.

Accordingly, in this paper we propose a novel service matchmaking approach
that uses internal process models of the services to achieve good precision and
recall performances, while providing fine-grained similarity degrees. To achieve
this, we propose to represent the underlying processes of Web services and the
requests for Web services as finite state machines (FSMs). We perform match-
making of requests to Web services by comparing the two FSMs and measuring
their similarity using different metrics. Further, we associate each atomic pro-
cess with a semantic concept represented in a process ontology and compare
the semantic similarity of atomic processes during matchmaking. Our matching
results combine the structural similarity with semantic similarity and provide
fine-grained scores.

The rest of this paper is organized as follows. Section 2 shows our modeling of
services as FSMs. Section 3 explains our matching approach in detail. Section 4
explains our case study and elaborates on our evaluations. Finally, Section 5
reviews some relevant literature and provides directions for future work.

2 FSM for Service Modeling

An FSM [6] is a formalism to capture the flow of processes. Using FSMs we
can model the fundamental control structures (sequences, choices and loops) of
process flows. A finite state machine is a 5-tuple (Q, Σ, δ, q0, F ), where Q is
a finite set called states, Σ is a finite set called alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final states.



A is the language (the set of all strings) that machine M recognizes and we show
this by A L(M).

In our approach, each element of the alphabet Σ represents an atomic process
(or simply a process) of the modeled service. We use the states in Q to investigate
the order of flow. Each transition function captures a process can be performed
in the internal flow of the service. The start state is the entry point of the service
and final states are the termination points. Each string in the language A is a
sequence of consecutive processes that corresponds to a service flow.

#Search
#Exit

#Order
#Pay

#Cancel

Fig. 1. A sample e-commerce service flow

Figure 1 shows an example of an e-commerce service’s internal process flow
modeled as an FSM. From the entry point (the start state) of the e-commerce
service, the first process that we can perform is the #Search process, which
returns some item(s) according to the requesters search criteria. According to
the result of the #Search process, the requester may choose to buy the resulting
item by performing #Order process or may end the interaction with the service
by #Exit process. If the requester selects #Order process in the previous step,
she may continue with the payment by performing the #Pay process or quit the
service by canceling the order via #Cancel process. Figure 2 shows all possible
flow sequences for the FSM presented in Figure 1.

#Search #Order #Pay

#Search #Order #Cancel

#Search #Exit

Fig. 2. All process flow sequences (language) generated by the FSM in Figure 1.

3 Matchmaking Approach

Given a service request, it is necessary to match it to a set of services from a
pool of available services. To determine the similarity of a request to a particular
Web service, we compute its structural and semantic similarity.



3.1 Structural Similarity

Since we use FSMs to model services, our first option to perform matchmaking
is the use of formal definition of FSM equality. According to this definition, two
FSMs are equivalent to each other if they recognize the same language. In our
context this definition is too restrictive because the equality definition supports
only services that exactly match each other. However, we are also interested in
finding partially matching services as well as determining their match rates.

Because of these reasons we need a more flexible mechanism that can find
partially matching services in addition to exact matches. Further, the matchmak-
ing mechanism should assign a numeric similarity value to each service in order
to differentiate between services. To achieve these goals, we use the following
approach instead of the equality definition of the FSM.

Our approach is made up of the following steps:

1. Generate all possible flow sequences (all strings in the language) for the
service and request using the associated FSMs.

2. Compare each sequence of the request against all the sequences of the service.
3. For each sequence comparison, compute a similarity value between the com-

pared request and service sequence using a heuristic function (explained
below).

4. Select the sequence with highest similarity value from service sequences.

Optionally, we can compute the scores using different heuristics and combine
the results as the normalized sum of the selected pairs. We perform the above
procedure for all the available services and sort the services in decreasing order
according to their overall similarity values and return the top n percent as result.

To generate all flow sequences of the FSM, we expand the FSM from the start
state up to the final states. This procedure is simple if the FSM structure is an
acyclic directed graph. But if we introduce loops to the FSM, the graph turns
to a cyclic directed graph where the number of possible sequences is infinite. To
handle this case we modify our expansion algorithm so that it can detect loops
and stop expanding a sequence when the same loop occurs more than once.

To compute the structural similarities we use four heuristics. These heuristics
are common process count (CPC), longest common substring (LCStr), longest

common subsequence (LCSeq) and edit distance (ED). Below, s1 is a service
request and s2 is a Web service.

Common Process Count Heuristic The common process count (CPC)
heuristic calculates the number of processes that appear in the service request
and in given Web service sequences, without regard to the order of processes and
normalizes the count with the total number of processes in the sequences. The
underlying intuition is that when the number of common processes for the ser-
vices increase, the two sequences are more similar to each other. The similarity
between s1 and s2 is computed as follows where Np is the number of common
processes and Nsi

is the number of processes in si.



sim(s1, s2, CPC) =
2Np

Ns1
+ Ns2

(1)

Longest Common Substring Heuristic The LCStr heuristic [7] finds the
longest common contiguous substring of two strings. In our context, this corre-
sponds to the number of contiguous processes between the request and a Web
service. Formally, using LCStr heuristic, similarity between s1 and s2 is com-
puted and normalized as follows:

sim(s1, s2, LCStr) =
length(LCStr(s1, s2))

length(s1)
(2)

where length(s) is a function that returns the length of the string s. LCStr(si, sj)
is a function that returns the common longest substring of si and sj .

Longest Common Subsequence Heuristic The LCSeq heuristic [7] finds
the longest common subsequence (may not be contiguous) of two strings. In our
context, this corresponds to finding the number of common processes between
a request and a Web service without considering the contigiousness. Formally,
using LCSeq heuristic, similarity of s1 and s2 is computed and normalized as
follows:

sim(s1, s2, LCSeq) =
length(LCSeq(s1, s2))

length(s1)
(3)

where length(s) is a function that returns the length of the string s. LCSeq(si, sj)
is a function that returns the common longest subsequence of si and sj .

Edit Distance (Levenshtein) Heuristic Edit distance [7] is the minimum
number of operations needed to transform one string into another, where an
operation is an insertion, deletion, or substitution of a single character. In our
context the strings are the flow sequences and the characters are the processes.
We formally calculate the similarity of s1 and s2 as follows:

sim(s1, s2, ED) = 1 −
ED(s1, s2)

Max(length(s1), length(s2))
(4)

where ED(s1, s2) is the function that computes the edit distance of the sequences
and Max(l1, l2) is the function that returns the maximum of two integers.

3.2 Semantic Similarity

Our structural similarity method works only on the syntactic level and do not
take the underlying semantics into account. That is, if two Web services have
entirely different atomic processes, the structural similarity of these services will
be zero. However, if the atomic processes are related to each other, then the



two Web services can still be considered similar. For example, one Web service
may use allow payByCreditCard process whereas a second Web service may use
payByCash process to handle payment. For a structural similarity metric, these
are two totally different processes. However, one can easily see that they are two
variations of the same process and hence may substitute each other in many
settings. To consider such subtleties, the relations between the processes should
be captured. We do this using an ontology of processes that represents the mean-
ings and relations of the processes. Each concept in this ontology corresponds
to an atomic process. The children of a concept are the specializations of the
process. In this ontology we assume that a more general process can perform all
the tasks performed by its more specialized processes (sub-concepts). Figure 3
shows a part of our process ontology for the e-commerce domain.

... ... ...

...

...

...

Thing

Add Order Pay Find

PayCash PayCreditCard PayTransfer

PayCashDollar PayCashEuro

Fig. 3. A part of the process ontology for e-commerce domain.

To compute the semantic similarity of two concepts we develop a new seman-
tic similarity metric called semantic cover rate (SCR). Using the SCR semantic
similarity of two concept c1 and c2 is calculated as follows:

SCR(c1, c2) =















1, if c1 ⊇ c2

θ‖c1,c2‖, if c1 ⊂ c2

γ‖R,c1‖, if c1 + c2 and c1 * c2 and R ⊃ c1 and R ⊃ c2

0, otherwise

(5)

where θ and γ are two control parameters in the range [0,1] and ‖ci, cj‖ is the
arc distance in the ontology between the concepts ci and cj . It is important to
note that SCR(ci, cj) 6= SCR(cj , ci).

In the first case, the request is a subset of a given Web service. Since we
assume that a general process can perform all the tasks performed by its more
specialized processes, we assign a SCR value of 1 for this case. However, if the
service provides a more specific process than the requested process, the service
process can handle only some of the needs of the requested process and therefore
we assign a SCR value smaller than 1 by using θ parameter. In the third case, the



considered concepts are siblings. Although in this case there is no super or sub-
concept relation between the two concepts, since these concepts have a common
root they are still related to each other. However, in this case the resulting SCR
value must be smaller than the previous case, since the relation between the
concepts are weaker. We achieve this effect by assigning γ a smaller value than
θ. In the last case, since there is no relation between the concepts, we assign zero
as SCR value.

4 Evaluation

The following case study presents a service request and six services, which match
to the request by different degrees.

4.1 Case Study Setup

Both the request and the services consist of only one flow sequence. We ignore
the case of multiple choices and loops in our case study, since these control
structures are converted into single sequences during the matchmaking process
and do not have any effect on the computation of the similarity values.

Request: #ConnectNonSecure → #SearchBook → #AddCartBook →
#OrderCartBook → #Authenticate → #PayCreditCard. This request is for a
book shopping service. It requires a nonsecure connection and basic shopping
functionalities like search and order. For payment it requires a credit card pay-
ment capability using any kind of authentication mechanism.

Service-1: #ConnectNonSecure → #SearchBook → #Authenticate →
#AddCartBook. This service provides search and cart functionalities but it is not
possible to order the card or make any payments. This service is a bad match
for the request, since it does not provide most of the fundamental functionalities
of the request like ordering the cart and payment.

Service-2: #ConnectSecure → #SearchBook → #AddCartBook →
#OrderCartBook → #AuthenticateHTTPS → #PayMoneyTransfer. This service
provides all the fundamental functionalities required by the request. However
some processes that provide these functionalities are different than the requested
service. For example the service provides the payment functionality by money
transfer, which is different than the requested credit card payment. This service
is an average match for the request, since it provides all the functionality to buy
a book, but with some different processes.

Service-3: #ConnectNonSecure → #SearchDVDBasicTitle → #AddCartDVD

→ #OrderCartDVD → #Authenticate → #PayCreditCard. This service is to
buy a DVD but not a book. Therefore this is not a good match for the request.

Service-4: #Connect→ #Search→ #AddCart→ #OrderCart→ #CancelOrder

→ #Authenticate → #PayCreditCard. This service is a general service where
it is possible to search, order and pay for any consumable item. It is also possible



to cancel a given order, which is not required by the request. Since this service
covers also purchase of a book, it is a good match for the request.

Service-5: #ConnectNonSecure→ #SearchBookBasicTitle→ #AddCartBook

→ #OrderCartBook → #AuthenticateSSH → #PayCreditCardVisa. This ser-
vice provides more specific functionalities than the requested service. For exam-
ple it accepts search only by book title, where the request looks for a service
that can provide any type of search capabilities. This service can be accepted as
an average match, since it mostly provides the requested functionalities.

Service-6: #ConnectNonSecure → #Authenticate → #SearchBook →
#AddCartBook → #OrderCartBook → #PayCreditCard. This service provides
exactly the requested functionality but in a different order. The authentication
is performed after the connection instead of before payment, which causes shift
of all processes in the flow order.

Overall, one would expect services 4 and 6 to be the better matches for the
request. Next, we study the performance of our approach.

4.2 Results

To measure the individual performance of each structural heuristic first we com-
pute the similarity between the request and all services for each heuristic sep-
arately. Than we integrate the SCR heuristic to each structural heuristic and
perform the same procedure to observe the effect of the semantic knowledge. In
addition to the individual heuristics, to observe the effect of the combination of
different heuristics, we also compute the weighted linear combination of all the
heuristics.

Table 1 presents our results. Each column shows the computed similarities
between the request and each service using the associated heuristic. We add the
letter S to the beginning of the heuristic names to indicate that they use SCR
metric in addition to the structural similarity. The column named as Comb shows
the results that we obtain by the linear combination of all heuristics (with equal
weights). In the SCR computations we take θ as 0.75 and γ as 0.5. Considering

Table 1. Matchmaking results of each heuristic

CPC SCPC LCStr SLCStr LCSeq SLCSeq ED SED Comb SComb

Serv-1 0.60 0.94 0.50 0.33 0.75 0.50 0.33 0.46 0.55 0.56
Serv-2 0.50 0.79 0.50 0.79 0.50 0.79 0.50 0.79 0.50 0.79
Serv-3 0.50 0.69 0.33 0.69 0.50 0.69 0.50 0.69 0.46 0.69
Serv-4 0.15 0.86 0.14 0.67 0.14 1.00 0.14 0.86 0.15 0.85
Serv-5 0.50 0.84 0.33 0.84 0.50 0.84 0.50 0.84 0.46 0.84
Serv-6 1.00 1.00 0.50 0.50 0.83 0.83 0.67 0.67 0.75 0.75

these results, we observe the following:



– CPC is particularly useful when the request and the service have the same
functionality but different process flows like in the case of Service-6. CPC
can also successfully differentiate the unrelated services such as Service-3.
However, it cannot detect that Service-1 is not a good match since CPC
does not consider the difference between the number of processes in the
request and the number of processes in the service.

– In general LCStr shows the worst performance compared to the other heuris-
tics, since it is strictly dependent on the order of the process flow. It is only
successful in the case of Service-1, where the service provides less function-
ality and therefore the longest common substring between the service and
request is short.

– LCSeq is especially successful if the service covers the request and provides
some additional functionality like in the case of Service-4. It can also suc-
cessfully detect the two poor matches Service-1 and Service-3.

– ED can successfully differentiate between good and poor matches. The only
exception occurs when flow orders are different like in the case of Service-6.

– Considering both the structural and semantic similarity gives more accurate
results compared to the use of structural similarity alone.

– An intuitive approach to improve the quality of results is to use a combina-
tion of the heuristics instead of using them individually. The results obtained
by the Comb prove this idea.

5 Discussion

In this study we propose a new semantic matchmaking approach for Web ser-
vices that is based on the internal process flows of the services. Our approach
combines structural similarity heuristics with a semantic similarity metric based
on ontologies. To determine the similarity of two services, structural heuristics
compare the individual atomic processes that are involved by the service flows. In
this comparison if two atomic processes are identical, structural heuristics assign
1 as the similarity value and 0 otherwise. This approach restricts us to exactly
matching processes. To be able to discover partially matching processes, we re-
lax the similarity of non-identical processes into the range [0,1]. Our approach
requires that both services and requests are modeled as FSMs by developers and
users. Especially for the users developing a FSM of a service might be complex.
However, in real life applications of this approach , we can count on the existence
of support tools that can help users define their requests as FSMs.

Klusch et al. [5] extend the signature matching approach by using syntactic
matching techniques from information retrieval on service descriptions in order to
improve granularity and precision performance. Although this approach provides
a mechanism to associate each service with a numeric similarity value, it still
suffers from low precision. Additionally, Dong et al. [8] state that syntax based
information retrieval techniques are not efficient for Web service matching, since
in most of the real world situations service descriptions do not contain enough
textual data that is required by syntactic methods to work properly.



There are other approaches for matchmaking that use process modeling tech-
niques. Klein and Bernstein [9] propose an indexing mechanism to create a hi-
erarchical ontology of process models and develop a query language to perform
matching on the created ontology. Wombacher et al. [10] propose another ap-
proach which also use FSA to model Web services. Different than our approach
they concentrate on the syntactic level matching of FSA. They do not consider
any ontologies for semantics or do not work on a rank mechanism or partial
matching. Addition to discovery processes modeling, FSA is also studied for
other Web service issues like composition. Berardi et al. [11] propose a service
composition approach that can work with time constraints.

In our future work, we plan to optimize SCR performance by deciding on
the δ and γ values at run time. This will enable us to achieve more accurate
matches. Another interesting direction is the investigation of fuzzy is-a relations
to represent the domain. The weights again may be learned at runtime to improve
personalized match performance.
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