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The other-race effect was examined in a series of experiments and simulations that looked at
the relationships among observer ratings of typicality, familiarity, attractiveness, memorabil­
ity, and the performance variables of d' and criterion. Experiment 1 replicated the other-race
effect with our Caucasian and Japanese stimuli for both Caucasian and Asian observers. In Ex­
periment 2, we collected ratings from Caucasian observers on the faces used in the recognition
task. A Varimax-rotated principal components analysis on the rating and performance data for
the Caucasian faces replicated Vokey and Read's (1992) finding that typicality is composed of
two orthogonal components, dissociable via their independent relationships to: (1) attractiveness
and familiarity ratings and (2) memorability ratings. For Japanese faces, however, we found that
typicality was related only to memorability. Where performance measures were concerned, two
additional principal components dominated by criterion and by d' emerged for Caucasian faces.
For the Japanese faces, however, the performance measures of d' and criterion merged into a
single component that represented a second component of typicality, one orthogonal to the
memorability-dominated component. A measure of face representation quality extracted from an
autoassociative neural network trained with a majority of Caucasian faces and a minority of
Japanese faces was incorporated into the principal components analysis. For both Caucasian and
Japanese faces, the neural network measure related both to memorability ratings and to human
accuracy measures. Combined, the human data and simulation results indicate that the memo­
rability component oftypicality may be related to small, local, distinctive features, whereas the
attractiveness/familiarity component may be more related to the global, shape-based properties
of the face.

For many years, it has been suspectedthat faces of one's

own race are recognized more accurately than faces of
other races (Feingold, 1914). Indeed, there is abundant

empirical evidence for this other-race phenomenon, as

two recent metaanalyses of the face recognition literature

attest (Bothwell, Brigham, & Malpass, 1989; Shapiro &
Penrod, 1986). In addition to the empirical support for

this phenomenon, the other-race effect is widely known
outside of the laboratory. Deffenbacher and Loftus (1982),
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for example, showed that approximately half of potential

jurors believe that a recognition bias exists.

Recent advances have been made by Vokey and Read

(1992) in understanding how facial characteristics (e.g.,

rated typicality), which are important for recognition of
same-race faces, are interrelated. They examined the

structure inherent in ratings of typicality, familiarity,

memorability, likableness, and attractiveness, using a

principal components analysis, and looked also to see how

different components of this structure related to various

measures of recognition.
The purpose of the present study was twofold. First,

we wished to undertake a similar structural analysis for

other-race face recognition. It has long been known that

there is a quantitative difference in recognition accuracy

for same and other-race faces, but whether or not there

are qualitative differences in how other-race faces are
processed is less certain. A paradigm similar to that used

by Vokey and Read (1992), which uncovers the structural

aspects of recognition, seemed to us to be an excellent

method for comparing the qualitative aspects of same- and
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other-race face recognition. The second purpose of this
study was to incorporate a more stringent control than has
been used in previous work for assessing the relationship
between individual or combined ratings of faces and sig­
nal detection measures of recognition performance. We
have incorporated this control both for same- and for
other-race faces, and we will show that, while the struc­
tural aspects of the ratings of same-race and other-race
faces remain very similar to those found by Vokey and
Read (1992), some qualification of the relationship be­
tween ratings and performance may be needed.

In the present study, we have looked at the effects of
rated typicality, attractiveness, context-free familiarity,
and memorability. We have also used Vokey and Read's
(1988) measure of false recognition-an observer judg­
ment that a face has appeared previously, when, in fact,
no faces have appeared more than once. Henceforth, we
shall refer to the latter measure as repetition. Since Vokey
and Read (1992) have provided a thorough discussion of
the nature of the effects for each of these variables, we
shall limit ourselves to a discussion of how their results
qualify the generally accepted role of typicality in pre­
dicting recognizability and how this may give us insight
into understanding other-race face recognition.

Over the years, the relationship between rated typical­
ity and recognizability of faces has been studied by a num­
ber of investigators (e.g., Cohen & Carr, 1975; Going
& Read, 1974; Light, Kayra-Stuart, & Hollander, 1979).
This relationship has generally been interpreted in terms

of the existence of a facial prototype, with typical faces
being recognized less well than unusual faces. Recentfind­
ings of Vokey and Read (1992), however, indicate that
rated typicality is a more complicated concept than had

been thought previously. Applying a principal components
analysis followed by a Varimax rotation to a set of faces
rated for typicality, memorability (i.e., "one that the ob­
server thought would be easy to remember"), familiar­
ity (i.e., "a face that they believe they may have seen
around campus"), attractiveness, and likableness, Vokey

and Read show convincingly that the rated typicality of
faces is composed of two orthogonal components-one
related to rated familiarity, attractiveness, and likability,
and a second component related inversely to the rated
memorability of a face. The assertion that rated typical­
ity is composed of two orthogonal components means that
observers' typicality ratings are a joint function of two

independent aspects of a face. These aspects can be dis­
sociated via their independent relationships to familiar­
ity, attractiveness, and likability, which appear on one axis
of the principal components analysis,' and to memora­
bility, which appears on a separate axis.

The finding that rated typicality is composed of two or­
thogonal components is consistent with earlier work
(Valentine & Bruce, 1986; Vokey & Read, 1988) indicat­
ing various measurable dissociations among typicality,
measures of distinctiveness, and context-free familiarity.
While these terms are somewhat confusing, the general
idea is that the part of typicality due to the distinctive­
ness of faces affects the encoding and retrieval processes,
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whereas the part of typicality called context-free (see, e.g.,
Bartlett, Hurry, Thorley, 1984) or general familiarity is
an aspect oftypicality that is due to an experience or epi­
sode that fails to index a source or episode of encounter.

Vokey and Read (1992) further extend their findings
by applying a regression analysis to the general familiar­
ity and memorability components to predict recognition
discrimination, criterion, and hit and false alarm rates.
They reason that if the effect of typicality on recognition
is a function of both general familiarity and memorabil­
ity, each of these should be a significant predictor of rec­
ognition performance. To do this, they derived a regres­
sion equation composed of differential additive weightings
of the general familiarity and memorability components
to predict discrimination performance. In fact, they found
that both familiarity and memorability were significant
predictors of discrimination performance, but not of cri­
terion. They also found a dissociation between the predict­
ability of hit and false alarm rates by the separate com­
ponents of typicality. Specifically, both the familiarity and
memorability components predicted false alarms, but only
the memorability component predicted hits.

One difficulty that arises in interpreting relationships
between observer ratings such as typicality (or the com­
ponents of typicality) and performance measures such as
d', criterion, hit rate, and false alarm rate is that there
are systematiccovariations occurring among measures de­
rived from signal detection theory. In particular, both hit
and false alarm rate confound d' and criterion. For ex­
ample, if the false alarm rate for a face is high, it may
be because the face has a low d' (its "old" or "new"
status is difficult to discriminate, given its value on the
attribute being used to make recognition judgments) or
because observers have adopted a loose criterion for
categorizing the face as "old," or because of some com­
bination of the two. Thus, certain combinations of rec­
ognition difficulty and criterion within a set of faces can
artificially inflate or deflate correlations between facial
characteristics and either hit or false alarm rate. Specifi­
cally, false alarm and hit rate are each composed of two

independent components, d' and criterion. Since the tech­
nique of univariate correlation is not sensitive to the poten­
tially multidimensional nature of the variables to be cor­
related, interpreting correlations between rating data and

hit or false alarm rate is problematic, because neither hit
nor false alarm rate alone is interpretable without know­
ing both the d' and criterion variations within a set of
faces. These difficulties are even more profound when
a relationship exists between d' and criterion for a set of
faces (i.e., when d' and criterion are not independent).
This confounding is important in the present study for
Caucasian observers recognizing Japanese faces. To ad­
dress this problem, we applied a principal components
analysis to the rating and performance data simulta­
neously. Using d' and criterion as performance measures
in the principal components analysis provides a simpli­
fied and more comprehensive picture of the relationships
among performance measures and facial characteristic
ratings.
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This paper is organized as follows. The first experi­

ment replicates the other-race effect with our stimuli. We

used both Asian and Caucasian observers for this study,

to ensure equal discriminability of the faces in the two
categories. In Experiment 2, we used only Caucasian ob­

servers to obtain ratings of typicality, attractiveness, mem­

orability, and familiarity on the faces used in Experi­

ment 1. We incorporated these measures into separate

principal components analyses for the Caucasian and

Japanese faces. Finally, we trained an autoassociative neu­
ral network with a majority of Caucasian faces and a

minority of Japanese faces. Face images are represented

in the network in a parallel and distributed way that al­

lows for relatively natural interference effects related to

the similarity of the faces to each other. We (O'Toole,

Deffenbacher, Abdi, & Bartlett, 1991) have shown re­
cently that this kind of autoassociative memory can model

some qualitative aspects of the other-race effect. Valen­

tine and Ferrara (1991) have also used an autoassocia­

tive memory to simulate the effects of typicality in face

identification and categorization. Although their model

did not use face encodings that preserve the perceptual
information in faces, their results illustrate the potential

usefulness of the autoassociator as a tool for modeling psy­

chological phenomena in face processing.

In the present study, the autoassociative network stores

face images and yields a measure of representation qual­

ity for each face. We will define this measure precisely
in the autoassociative model section. For the present pur­

poses, suffice it to say that when the model represents

new or unlearned faces, the representation quality is de­

pendent both on the interface similarity of the learned

faces and on the similarity of the new faces to the learned

faces. Intuitively, this can be seen as a confounded mea­
sure of typicality, familiarity, and memorability. Since

the model was able to replicate some qualitative effects

of the other-race effect, we incorporated the model's rep­

resentation quality measure directly into the principal com­

ponents analysis of human rating and performance mea­

sures taken on the same faces used in Experiments 1 and
2. We show that this measure is related to human observer

ratings and to recognition performance for both the Cau­

casian and the Japanese faces.

EXPERIMENT 1

The purpose of this experiment was to replicate the

other-race effect with a yes/no recognition task, testing

Caucasian and Asian observers with Japanese and Cau­

casian faces.

Method
Caucasian observers. Twenty-six Caucasian observers from the

University of Texas at Dallas undergraduate population were

recruited in exchange for a core psychology course research credit.

They were assigned in pseudorandom fashion to one of three dif­

ferent random-order stimuluspresentation conditionsand were tested
in groups of 1 to 5 members.

Asian observers. We had difficultyin obtaining a sample of Asian
observers, since we generally recruit observers from the popula­

tion of undergraduate psychology majors, which has only a small

proportion of Asian students. Nonetheless, we were able to recruit
9 students of Asian backgrounds (Chinese, Korean, and Viet­

namese), varying in the number of years they had spent in the United
States (from I to 17 years). Despite the modest size of the sample,

we were able to demonstrate the other-race effect reliably.
Stimuli. Three hundred and nineteen faces were digitized from

slides to a resolution of 16 gray levels, using a Fotovix digitizer
attachedto a Zenith 286-based microcomputerequipped with a 16-bit

TARGA board (True Vision). The faces were of young adults, with

each race set consisting of approximately half male and half female
faces. None of the slides pictured persons with facial hair or glasses.

The images were aligned so that the eyes of all faces were at about
the same height and so that the center point between the eyes was

at the same place in all the photographs. The faces were not nor­

malized explicitly for size. However, since the photographs were

taken under the same general distance conditions, the faces were

roughly equal in size. All experiments and computer simulations
used subsets of these faces. The images were also cropped to elim­
inate clothing cues.

The digitized faces were transferred to videotape. Three video­

tapes, each consisting of a study list and a test list of faces, were

created by using different random orders of faces. The study phase

of each tape consisted of the presentation of 120 randomly ordered
Caucasian and Japanese faces for 3 sec each, with an interstimulus

interval of 5 sec. These 120 faces included 30 Caucasian female
(CF), 30 Caucasian male (CM), 30 Japanese female (JF), and 30
Japanese male (JM) faces. In the test phase of each tape, 120 target

(old) faces and 120 new faces were presented for 5 sec each, with

an interstimulus interval of 5 sec. The new ones consisted of equal

sets of 30 CM, 30 CF, 30 JM, and 30 JF faces. These test faces

were blocked by race, and the order of presentation of the Japanese
and Caucasian faces was counterbalanced across observers.

Procedure. Observers were instructed that they would be asked
first to view a series of Japanese and Caucasian faces, after which

they would be asked to participate in a recognition test. Because
of the length of the study list, the observers were offered a break

halfway through the list. All observers took a 5-min break between

study and test lists. During the recognition test, the observers indi­

cated their certainty that a face had previously appeared on the study
list by circling the appropriate number on a response sheet. The
response sheet contained a 6-point rating scale, varying from "I,"

absolute certainty that the face was "old," to "6," absolute cer­
tainty that it was "new." These certainty ratings were used cate­

gorically to calculate a d'; with ratings less than or equal to three

considered an "old" response and ratings greater than or equal to

four considered a "new" response.

Results and Discussion

We performed a signal detection analysis of the data

and used the d's in a correlated t test, with each observer
contributing a d' score for Caucasian and for Japanese

faces. Since there were no differences as a function of

study/test list order, the results were collapsed across the
three lists. As predicted, the Caucasian observers were

significantly better at recognizing Caucasian faces than

Japanese faces. For the Caucasian observers, mean d's

were 1.36 and 0.77 for Caucasian and Japanese faces,

respectively [t(25) = 3.95, P < .001]. Comparable

means for the Asian observers were .84 and 1.53 for the
Caucasian and Japanese faces, respectively [t(8) = 6.16,

p < .001]. Nonparametric versions of d' such as A' gave



identical results, so d' was used as the measure ofrecog­

nition accuracy in subsequent analyses.

EXPERIMENT 2

The purpose of this experiment was to obtain ratings

of typicality, attractiveness, memorability, familiarity, and

repetition on the Caucasian and Japanese faces used in

Experiment 1. Because of the large amount of data in­

volved, and because of the fact that Experiment 1 estab­

lished the equal discriminability of the two sets of faces,
we used only Caucasian raters in this experiment. Because

of the possibility of overtaxing observers by asking them

to rate a face for all of these qualities, and because of the

possibility of interference among some combinations of

ratings, we subdivided the task into parts. Different groups

of observers rated faces for (1) typicality, (2) familiarity
and repetition, and (3) attractiveness and memorability.

A summary of the instructions for the rating tasks appears
in Table 1.

Method
Observers. Caucasian volunteers were recruited from the Uni­

versity of Texas at Dallas undergraduate psychology program and

again received a research credit for a core course as compensation.

Each observer participated in only one of the rating subexperiments.

Twenty-five observers rated faces for typicality, 20 observers rated

familiarity and repetition, and 20 observers rated memorability and
attractiveness.

Stimuli. The stimuli were the recognition test sections of the video­
tapes described above. Each tape contained all 240 faces, blocked

by race. The order of rating Japanese versus Caucasian faces was

counterbalanced across the observers in each of the subexperiments.
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Procedure. Observers were tested in groups of 1 to 5 and were

given response sheets to make the appropriate ratings. Again, be­

cause of the length of the list, the observers were given breaks

periodically.

Results
The typicality, familiarity, memorability, attractiveness,

and repetition ratings for each face were collapsed across

the observers in Experiment 2. For clarity of interpreta­

tion and ease of reading, we present all the rating data

so that the high numbers indicate high values of the fa­
cial characteristic in question. The proportion of "yes"

responses is reported for the yes/no scales. The recogni­
tion performance measures of d' and criterion for each

face were also collapsed across the Caucasian observers
in Experiment 1. That is, d' and criterion scores were cal­

culated for every face for which both hit and false alarm
rates could be generated, rates based on the responses of

different observers. Hit and false alarm rates could not

be generated for all faces , since the selection of faces for

the three videotapes was random. Thus, some faces did

not appear as both old and new in Experiment 1. From

the faces that were seen as both old and new across ob­
servers, a randomly chosen subset of 80 Caucasian faces

(40 male and 40 female) and 80 Japanese faces (40 male

and 40 female) was used for all subsequent analyses. Ta­

ble 2 contains the means and standard deviations for all

seven of these variables for both the Japanese and the Cau­
casian faces.

In addition to the difference seen in Experiment 1 in

recognition performance for Caucasian observers with

Caucasian and Japanese faces, there were statistically reli-

Table 1
Rating Tasks Summary

Rating

Typicality*

Familiarity

Memorability

Repetition

Imagine you were to meet someone in a train
station-How difficult would it be to pick the
person out of a crowd? For Japanese faces, the
observers were instructed to imagine that they
were in a train station in Japan.
4-point rating scale

Is the face confusable with someone you know?t
yes/no?

Is the face easy to remember?
4-point rating scale

Has the face appeared previously?
yes/no?

Valentine & Bruce (1986)

Vokey & Read (1988)

Vokey & Read (1992)

Vokey & Read (1988)

Attractiveness Is the face attractive? Vokey & Read (1992)
4-point rating scale

*This is not the definition used by Vokey and Read (1992). They described a "typical" face to their
subjects as one that was "average." The similarity of our results to those of Vokey and Read (1992)
indicates that these definitions may be generally compatible.
tTo obtain somewhat higher affirmative rates, Vokey and Read (1992) modified this definition to imply
that the photographs were taken from students around campus and, hence, that they might have been
seen by the observers. In the present experiment, we used the 1988 definition and replicated the results
found by Vokey and Read (1992) for familiarity, thus indicating that the two definitions are capturing
a similar aspect of the faces.
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Note-An r with absolute value greater than .22 is significant with ex =

.05 and a nondirectional test.

Finally, since we will be presenting eight structurally
similar principal components analyses, for ease of under­

standing and comparison, we have arranged all tables of

axis loadings into a set order. The proportion of explained

variance for each axis, and hence, the information about
the actual order of the axes in any given analysis, appears

under each of the columns. Additionally, for convenience,

we include the ordered rank of the axes below the pro­

portion of variance explained. It was possible in the

present study to arrange the axes in a fixed order, since

in all cases the rotated axes can be interpreted, at least
in a prima facie way, as either rating dominated or per­

formance dominated. To coordinate our discussion with

that ofVokey and Read (1992), we have arranged the ta­

bles as follows. Rating-dominated axes appear in the first

two columns, with an axis comparable to Vokey and

Read's (1992) memorability axis in column 1 and one
comparable to their general familiarity axis in column 2.

For Caucasian faces, there were two performance axes,

one related to criterion and one related to accuracy; they

appear for all the analyses in columns 3 and 4, respec­

tively. For Japanese faces, a singleperformance-dominated

axis appears in column 3 of all the analyses.
Separate Varimax-rotated principal components analy­

ses" were performed for the Caucasian and Japanese faces

by using the z scores (calculated by race) for the perfor­

mance and rating variables. The z scores were used to
ensure that the principal components analysis results were

not perturbed by differences in the absolute range of scores
for the rating scales and performance measures.

For completeness, intercorrelations among ratings and

performance measures for both Caucasian and Japanese

faces appear in Table 3. These correlations must be in­

terpreted with caution, however, for a reason analogous

to the one mentioned in the introduction on interpreting
correlations between facial characteristic ratings and false

alarm or hit rate. In that case, we noted that false alarm

and hit rate are each two-dimensional entities composed

of the independent components of d' and criterion. As we

shall see shortly, and as Vokey and Read (1992) have

found, typicality is also composed of two orthogonal com­
ponents. Thus, if typicality and a facial characteristic cor­

relate (do not correlate), the role of the memorability and

familiarity/attractiveness components in establishing (can-

Table 3
Intercorrelation Matrices of the Ratings and Performance

for the Caucasian Faces (Upper Triangle) and for
the Japanese Faces (Lower Triangle)

7

-.18

.01

.10

.17
-.71

.40

6

.00

.02
-.03

.28

.03

.12 -.09 .10 .19
-.52 -.12 -.11

-.01 .01

.06

1 2 3 4 5

1 d'

2 Criterion .44

3 Repetition -.42 - .62
4 Familiarity -.12 -.34 .39
5 Memorability .20 .06 -.16 -.11
6 Attractiveness -.14 -.21 .14 .50 -.23

7 Typicality - .38 - .34 .60 .29 - .57 .18

Caucasian Japanese

Rating M SD M SD

Four-Point Scale

Attractiveness 2.21 .40 2.18 .37
Memorability 2.48 .28 2.46 .21
Typicality 1.55 .36 2.20 .30

Yes/No

Familiarity .10 .06 .07 .06

Repetition .23 .16 .29 .19

Performance

d' 1.36 1.00 .77 .97
Criterion -.11 .59 -.05 .64

Table 2
Performance and Rating Measures for Caucasian and

Japanese Faces by Caucasian Observers

able differences in ratings of Japanese and Caucasian faces

for the attributes of typicality [t(158) = 4.83,p < .0001],

familiarity [t(158) = 2.45, P < .02], and repetition
[t(158) = 2.03, p < .05]. In general, Caucasian observ­

ers rated Japanese faces to be more typical and less fa­

miliar than Caucasian faces. Further, Caucasian observers

mistakenly judged Japanese faces as having appeared

earlier in the series more often than Caucasian faces.

Before presenting the principal components analyses,
we need to define and explain some conventions that we

adopt in interpreting and presenting the results of this and

all subsequent analyses in this paper. Although the con­

ventions we adopt are necessarily arbitrary, we believe

that they will facilitate comparisons: (1) between the anal­

yses for Japanese and Caucasian faces, (2) between the
human and simulation data, and (3) between the present

study and that of Vokey and Read (1992).

First, in any application of principal components or fac­

tor analysis, a decision must be made concerning the num­

ber of axes to present. The axes in a principal compo­

nents analysis are ordered by their eigenvalues, which are
directly related to the percentage of variance explained

by each axis." If all axes were used, 100 percent of the

variance in the rating and performance measures would

be explained." There is no universally established rule to

indicate the number of axes of a principal components

analysis that should be retained in any given case, although
there are many rules of thumb that give quite different

recommendations. In the present study, we have chosen

to retain axes that explain more than 10% of the variance.

Second, with principal components or factor analysis,

it is impossible to test the statistical reliability of the load­

ings or differences between loadings for the individual
variables. Thus, it is necessary to chose an arbitrary

threshold for loadings that will be considered important

in interpreting the axes. In the present paper, we will ar­

bitrarily confine our major conclusions to be based only

on loadings greater than or equal to .30. To facilitate read­

ing the tables presenting these loadings, all loadings

greater than or equal to this value will be in boldface.

Faces



celing) this relationship is not clear from the correlation

alone. The situation is even more perilous in other cases

where correlations between typicality, a two-dimensional
entity, and false alarm or hit rate, also two-dimensional

entities, are reported.

Finally, one additional point should be made. While the

direction of the correlations reported here for the Cauca­

sian faces are identical to those found in the literature,
we found somewhat smaller correlations than those re­
ported by other authors. We attribute this difference to

the fact that our data may be somewhat noisier than that

of other studies, because of the use of both male and fe­

male observers and male and female faces. Further, the

exposure to other-race faces during the course of the rating
experiment, even with order counterbalancing of the Jap­
anese and Caucasian face rating tasks, may have added

noise to the consistency of the application of rating criteria.
Caucasian analysis. For the Caucasian faces, four axes

met our principal components analysis inclusion criterion.

The loadings for these components and the percentage of
variance explained by each appear in Table 4A. As noted,
a consistent result found throughout this and all subse­

quent analyses, including those in which the neural net­
work results are incorporated, was the clear identifiabil­

ity of the axes as either rating- or performance-dominated.

The rating-dominated axes were structurally very simi­

lar to those found by Vokey and Read (1992). Although
there is no way to compare directly the axes that emerge

from the present analysis with those of Vokey and Read
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(1992), we will proceed by making comparisons of how

the structure of the loadings is similar and different in each

case. On the axis appearing in column I of Table 4A,

memorability and typicality loaded strongly in opposing
directions. Following the terminology used by Vokey and

Read (1992), we will call this axis memorability. One dif­

ference from Vokey and Read (1992) is that memorabil­

ity and typicality have roughly equal loadings in our re­

sults, whereas memorability loaded more strongly than
typicality in their data.

A unidirectional manifold of attractiveness, familiar­

ity, and to a lesser degree, typicality, defined the second

rating-dominated axis (see column 2 in Table 4A). Again,

following the terminology ofVokey and Read (1992), we

will call this axis general familiarity, although we stress

that this axis might be labeled just as accurately as at­
tractiveness. Two points are worth noting. First, consis­

tent with Vokey and Read (1992), the magnitudes of the

attractiveness and familiarity loadings were larger on this

axis than that of the typicality loading. Second, in con­

trast to Vokey and Read (1992), typicality clearly did not
have an equal foothold on the memorability and general
familiarity axes. Typicality loaded more strongly on the

memorability axis than on the familiarity axis. Nonethe­

less, typicality appeared consistently at a level above our

chosen criterion on the general familiarity axis for Cau­

casian faces in all subsequent analyses. A comparison with

the analysis of Japanese faces will further support the con­
tention that typicality, despite its relatively small loading

Table 4A
Human Rating and Recognition Performance for Caucasian Faces

First Four Rotated Factors

Memorability Familiarity Indictability Accuracy

d'

Criterion
Repetition
Familiarity

Memorability
Attractiveness

Typicality

.11
-.11
-.09

.01

.94
-.11

-.88

.04 -.09
-.08 -.86

-.06 .87
.74 .12

.14 .06

.83 -.10

.34 .05

.95

.09
-.01

.23

.05
-.15

-.11

Proportion of variance

accounted for by axis

Actual order of axis

.27

I

.20

3

.22

2

.20

3

Table 4B
Human Rating and Recognition Performance for Japanese Faces

First Three Rotated Factors

d'

Criterion

Repetition
Familiarity

Memorability
Attractiveness

Typicality

Memorability

.23
-.07
-.16
-.01

.93
-.17
-.72

Familiarity Indictability/Accuracy

.05 .69
-.23 .82

.18 -.83

.83 -.27
-.11 .00

.86 .00

.12 -.51

Proportion of variance
accounted for by axis .21 .22 .31

Actual order of axis 3 2 I

Note-Boldface is used for loadings greater than or equal to .30.
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in comparison with that found on the memorability axis,
contributes in a substantial way to the familiarity axis for

Caucasian faces.

The performance-dominated axes appear in columns 3

and 4 ofTable 4A. On the axis that appears in column 3,

criterion loaded strongly in opposition to repetition on the

first axis. A low value of criterion" indicates a loose or
liberal criterion and hence goes with high judgments that

a face appeared earlier in the series. We will call this axis

indictabilitl since it would seem to indicate criterion vari­
ation or the tendency of a face to evoke a recognition re­

sponse regardless of its status as a learned or new face
in the recognition experiment. On the axis that appears
in column 4 of Table 4A, d' appears alone. This axis

might be interpreted, therefore, as an accuracy axis.

A final point is that the performance measures did not

load substantially on the rating-dominated axes, nor did
ratings load substantially on the performance-dominated

axes. Had any of the ratings related strongly to variations

in criterion or accuracy, we would expect to see cross­

loadings between the performance and rating measures.

In fact, we will see such loadings only in the analysis of

the Japanese faces. We will discuss this in more detail
after the Japanese analysis is presented.

Japanese analysis. For the Japanese faces, only three

axes met our inclusion criterion. The loadings for the prin­

cipal components and the percentage of variance explained

by each component appear in Table 4B. As can be seen,

the Japanese faces also showed clearly identifiable rating­
dominated and performance-dominated axes. The rating­

dominated axes were generally similar to those seen for

the Caucasian faces and to those reported by Vokey and

Read (1992), but with one important difference on the gen­

eral familiarity axis. As for the Caucasian faces, the axis

appearing in column 1 of Table 4B can be interpreted as

memorability,with typicality opposing memorability. Con­

trary to the situation seen for Caucasian faces, however,
the axis appearing in column 2 ofTable 4B, while showing

a positive manifold of familiarity and attractiveness, shows

no substantive typicality loading. We will discuss this result

shortly in the context of the performance-dominated axis.
The axis appearing in column 3 can be interpreted as

a performance-dominated axis, but one that indicates that

d' and criterion are not independent for Caucasian ob­

servers recognizing Japanese faces. Since criterion loads

in the same direction as d', it suggests that there was a

systematic loosening of criterion with less discriminable
Japanese faces and a tightening of criterion with more dis­

criminable faces. A second difference from the Cauca­

sian data on this axis is the appearance of typicality on

the accuracy axis opposing d'. This suggests, in contrast

to the Caucasian data, that a component of rated typical­

ity for the other-race Japanese faces was related to per­
formance accuracy, but was unrelated to either general

familiarity or memorability. There is no completely ap­

propriate label for this axis. However, since the perfor­

mance measures are strongly represented, and since the

appearance of typicality is not unique to this axis, we label
this axis indictabilitylaccuracy.

Discussion
Several points are worth noting. First, little or no cross­

loading occurred between ratings and performance vari­

ables for the Caucasian faces. By cross-loading, we mean

simply the loading of performance variables on the rating­

dominated axes and the loading of rating variables on the
performance-dominated axes. The absence of cross­

loadings between the performance and rating variables for

the Caucasian faces could indicate that the ratings, while

internally consistent, have little to do with recognition.

This would be a very disappointing result. An alternative
possibility might be presented simply as follows. For both
the Caucasian and Japanese faces, the principal compo­

nents analysis reveals a robust structure among the vari­

ous rating measures, with several common points. For

Caucasian faces, the principal components analysis allows

us to see that the typicality rating is related independently
to memorability and to the composite of attractiveness and

familiarity. For the Japanese faces, by using the principal

components analysis, we can see two additional structural

aspects of the space: (1) the performance measures of d'

and criterion are related structurally to each other and to

typicality, and (2) the component of typicality related to

familiarity for Caucasian faces is not present for the
Japanese faces. The fact that there is a strong structure

among the rating variables does not necessarily mean that

there is no relationship between the ratings and perfor­

mance measures, but rather may indicate that the within­

rating structure is a good deal stronger for the Caucasian

faces than is the structure between the performance mea­
sures and the ratings.

To assess more directly the degree to which ratings and

performance measures are related, we used canonical cor­

relation, which is a statistical technique used to assess the

relationship between two sets of variables. It computes

a linear combination within each set of variables so as
to maximize the correlation between the two linear com­

binations of variables (Kshirsagar, 1972). The advantage

of using canonical correlation is that the strength of the

relationship can then be tested for statistical reliability.

The results of this analysis on the raw data for rating and

performance showed a reliable correlation between the
ratings and performance measures both for the Caucasian

(canonical correlation = .54, maximum likelihood ratio

test, p < .02) and the Japanese (canonical correlation =

.74, maximum likelihood ratio test, p < .0001) faces."

This indicates that, combined, the rating measures and

the performance measures are related to one another in
a way that explains roughly 29 % of the variance for the

Caucasian faces and 55 %of the variance for the Japanese

faces. The difference in the magnitude of this correlation

for the Caucasian and Japanese faces indicates that the

relationship between ratings and performance was stronger

for the other-race Japanese faces than for the same-race



Caucasian faces. This is consistent with the fact that we

see the presence of rating measures like typicality and fa­

miliarity (to a lesser extent) on the performance axes for

the Japanese faces but not for the Caucasian faces.

In summary, the structural analysis indicates two im­

portant sets of differences between the same-race Cauca­

sian faces and the other-race Japanese faces. First, for

same-race Caucasian faces, the present analysis replicates

Vokey and Read's (1992) finding that typicality is com­

posed of two orthogonal components, one related in­

versely to memorability and the other related directly to

attractiveness and familiarity. For Japanese faces, typi­

cality was also composed of two components, one indeed

related inversely to memorability. The other component,

however, was related to accuracy and indictability. We

will address the question of the role of typicality on the

accuracy axis in the context of the simulations. In addi­

tion, whereas familiarity and attractiveness remained a

structural component of the space, rated typicality for the

other-race Japanese faces was not related to this compo­

nent. Second, in general, the relationship between ratings

and performance data was stronger for the other-race

Japanese faces than for the same-race Caucasian faces.

This is a somewhat surprising result, in that in Experi­

ment I Caucasian observers were better able to recog­

nize the Caucasian faces than the Japanese faces. This re­

sult suggests that expertise in face recognition, which is

greater for same-race faces than for other-race faces, may

be inversely related to the predictive value of facial charac­

teristic ratings for recognition performance.

AUTOASSOCIATIVE MEMORY SIMULATIONS

One simple hypothesis of the other-race effect has been

put forth recently by some of us (O'Toole, Deffenbacher,

et al., 1991). We modeled the other-race effect as a prob­

lem in perceptual learning. By this account, exposure to

the many faces of one race allows the perceptual system

to make effective use of subtle variations in the form and

configuration of the facial features of the race of faces

learned. Unfortunately, other-race faces are not well char­

acterized by these highly specialized and primed features,

so we are less accurate at recognizing these faces. This

account of the other-race effect is not unlike what is known

about learning one's own native language. With a great

deal of exposure to a single language, people become

adept at processing the features of the language that are

most useful for distinguishing between speech sounds in

that language. This occurs at the cost of losing an ability

to distinguish speech sounds that are important in other

languages but not in one's own language.

To model a perceptual learning account of the other­

race effect, we used a linear autoassociative neural net­

work in conjunction with a low-level visual coding of

Japanese and Caucasian faces. This network implements
a principal components analysis of the face images on

which it is trained. We simulated a biased "face history"

by training a neural network to recognize a large number
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of faces of one race, a "majority" race, and a lesser num­

ber of faces of another race, a "minority" race. The

model was then used to reconstruct faces by using the prin­

cipal components derived from the learned set of faces.

This reconstruction will be referred to, henceforth, as the

model's representation of the face, since it is based not

only on the face itself, but on the statistical properties of

the set of faces learned by the model. The results of sim­

ulations using a biased face history showed three differ­

ences in the model's treatment of majority versus minority

race faces: (1) The model was more proficient at repre­

senting novel faces from the majority race than from the

minority race. In other words, the model's representa­

tion of a face was physically more similar to the actual

face for majority race faces than for minority race faces.
(2) The model's representations of novel faces from the

minority race were more similar to one another than the

codings with which it represented novel majority faces.

(3) The model was better at recognizing majority faces

than minority faces in an episodic memory task." Recog­

nition was defined for the model as its ability to discrimi­

nate learned from novel faces.

While there are no psychological data concerning Ef­

fect 1, Effects 2 and 3 can be related to anecdotal beliefs

and empirical results concerning other-race faces. Effect 3

is simply the frequently reported recognition accuracy dif­

ference between same- and other-race faces. Effect 2, the
fact that the model's codings of the minority race faces

were more similar to one another than were its codings

for the majority race faces, is reminiscent of the oft-noted

feeling that other-race faces "all look alike." It is also

consistent with Bruce's (1988) and Shepherd's (1981) sug­

gestion that other-race faces are less recognizable because

they are perceived as more similar to one another. They

suggest that the higher interface similarity for other-race

faces is due to the fact that the dimensions of the similar­

ity space are determined mostly by same-race faces.

By itself, Effect 1 would appear to have little testable

relevance for human processing of other race faces. How­
ever, since the model's representation quality measure was

the basis of the interface similarity effect seen in the sim­

ulation, this measure can be related to some theoretical

views of typicality (e.g., Light et al., 1979). Inasmuch

as the model captured some qualitative aspects of the

other-race effect, the purpose of the present simulations

was to examine the relevance of this representation qual­

ity measure to human facial characteristic ratings and face

recognition performance. To do this, we trained the as­

sociative memory with a majority of Caucasian faces and

a minority of Japanese faces. This was meant to simulate

a biased face history. Next, faces that were not learned

by the model were "reconstructed" by the memory, and

the representation quality measure for each face was in­

corporated directly into the principal components analy­

ses for the human ratings and performance measures de­

scribed in Experiment 2. This yielded one more measure

on each of the faces, but a measure that was based on

the model's ability to represent Caucasian versus Japanese
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faces when its face history was biased by training it with

a majority of Caucasian faces. This permitted a view of

the relationship between the Caucasian-biased autoassocia­
tive model's ability to represent faces and the ratings and

recognition performance of Caucasian subjects.

Second, to consider the reconstruction process in terms of a nu­

merical or statistical analysis, it is important to realize that the matrix
A, like any square, symmetric matrix, can be expressed as a

weighted sum of the outer products of its eigenvectors (e.g., Jack­
son, 1991):

(3)

SIMULATION 1

The purpose of this simulation was to examine the rel­

evance of the model's quality of representation measure

to human recognition performance and rating data.

Method

Stimuli. The stimuli consisted of the digitized version of a sub­

set of the 240 faces from Experiments 1 and 2. Each digitized face

image was 151 pixels wide and 225 pixels long. To teach a face

image to the autoassociative network, the face must be represented
as a vector of pixel intensities. We created a vector, f, from each
face image by concatenating the rows of the digitized image to pro­

duce a vector with 33,975 pixel elements. All face vectors were
normalized (i.e., f!fj = lor the dot/inner product of the face with

itself is one) prior to the simulations.

Apparatus. The simulations were performed on a Sun Spare­

Station and on a Convex C-l Vector computer.
Procedure. The autoassociative memory can be described equiva­

lently in neural network or in numerical/statistical analysis tenni­
nology. For the present purposes, we present both descriptions and
show that they are equivalent. An excellent review oflinear algebra,

as it applies to autoassociators and related neural networks, can be

found in Jordan (1986). This review covers all of the basic con­

cepts and terminology that we employ in this section.
An autoassociative memory was created by using 75 Caucasian

and 10 Japanese faces (approximately half male and half female
in each race) by summing the outer product matrices for each learned

face as follows:

(1)

where fj is thejth face, and where Tindicates the transpose opera­

tion. Thus, A can be thought of as a pixel by pixel matrix that rep­

resents a kind of composite memory of the faces. Each element au
of the matrix is a measure of the covariance between the ith and
jth pixel of the face vectors across all of the learned faces. A sim­

ple neural network interpretation of this linear autoassociator is that

each element au of the matrix represents the connection strength
between the ith andjth neurons. This is a distributed rather than

a localized code for the faces, since the representation of any given

face is not found in a localized part of the memory but is distrib­
uted across the connection strengths throughout the entire memory .

The next step of the process was to reconstruct or recall faces

from the memory and to measure the quality of the reconstructions
so that this quality measure could be incorporated into the Vari­

max analysis on the human rating and performance data.
First, using a neural network description, the jth face can be re­

called from the memory matrix as follows:

fj = Afj, (2)

where fj is the system estimate of the jth face, fj . A neural network
interpretation of this equation can be seen as follows. Each element

i of the retrieved jth face vector fj is interpretable as the output of

the ith neuron. Since this neuron is connected to all other neurons

its output is simply the sum of its inputs (the face vector), weighted
by the connection strengths between itself and all the neurons to

which it connects. These connection strengths are established by
the statistical properties of the set of learned faces, via the pixel
covariance structure captured by the summed outerproducts in A.

where Ai is the ith eigenvalue and e. is the ith eigenvector. The ei­

gen decomposition of the autoassociative matrix A is indicative of

the statistical structure of the stimulus set used to construct it, and
thus will depend on the kinds offaces stored in the memory. Viewed
in terms of eigenvectors, retrieval of a face vector from this matrix

c.an be illustrated by rewriting Equation 2 and substituting Equa­
tion 3 for A as follows for the jth face:

fj = A1(f!e1)e, + A,(f!e2)e2 + ... + An(f!en)en, (4)

where e, indicates the ith eigenvector, and where (f!e;) is the dot
product between the jth face and the ith eigenvector. It is clear from

this equation that recalling a particular face from the autoassocia­

tive matrix is equivalent to summing together a weighted combina­

tion of eigenvectors, where the weights are the eigenvalues multi­
plied by the dot products between the face vector and each
eigenvector. Furthermore, since the spatial position of pixels is

preserved by the autoassociative matrix, "retrieved" faces and their

constituent eigenvectors can be displayed as images, providing a

very useful analytical tool, as we shall illustrate shortly (cf. O'Toole
& Thompson, 1993).

In the present simulation, we added the Widrow-Hoff error cor­

rection procedure (delta rule) to the training of the network. This
is achieved in numerical analysis terms by dropping the eigenvalues

from Equation 4, leaving the weights to be only the dot products

between the face vectors and the eigenvectors. As noted previously,
the eigenvalues are related to the proportion of variance explained

by the associated eigenvectors, so dropping the eigenvalues serves

to increase the relative importance of eigenvectors that explain

smaller amounts of the variance. We shall consider the psycholog­
ical relevance of this operation in detail in the introduction to Sim­
ulations 2A and 2B.

It is worth pointing out, as we have done in detail elsewhere
(O'Toole, Abdi, Deffenbacher, & Valentin, 1993), that the autoas­

sociative memory implements principal components analysis on the

face images on which it is trained. In other words, the autoassocia­

tive model is carrying out the same kind of analysis on a physical
coding of faces, (i.e., pixel images), that we have used in analyz­

ing the rating and performance data in Experiment 2. The matrix

decomposed into its eigenstructure in Experiment 2 contained the

covariation among various performance and rating measures of
faces, whereas the autoassociative matrix decomposed here con­

tained the covariation among pixels in a set of face images. A sec­
ond important difference between the analysis in Experiment 2 and
the one carried out here is the use to which we put the autoassocia­

tive model of face images. Our end goal in this simulation was to
use this model to produce a representation of each face, which we

can evaluate in terms of its quality or goodness. This representa­

tion quality measure is defined simply as the cosine or normalized

correlation between the original and recalled face vectors. This is
a "goodness-of-fit" measure between the original and reconstructed
face, and it is defined formally as:

~ fTf
cos(f,f) = Ilfll Ilfll ' (5)

where Ilfll is the length of the face vector, defined as the square
root of the dot product of the vector with itself.

In sum, reconstructing faces from an autoassociativememory con­
taining a majority of Caucasian faces and a minority of Japanese

faces is like applying a perceptual filter (i.e., the autoassociative
matrix) to the face images. The properties of the filter have been



determined by the face history of the matrix. Intuitively, a face can

be thought of as the sum of a set of global "features" (the eigen­
vectors), with different faces requiring different combinations of
the features (for a discussion of eigenvectors as global features,

see O'Toole & Abdi, 1989). We have referred previously to the
particular set of weights needed to reconstruct a particular face as

its "coefficient profile" (O'Toole, Abdi, Deffenbacher, & Bartlett,

1991)and will address the uses of the weights for face categorization
in Simulations 2A and 2B.

A final theoretical and a procedural point should be made before

describing the results of the simulation. The difference between

reconstructing a face that the model has learned versus a face that
the model has not learned is important, although perhaps not obvi­

ous. The retrieval equation(s) (equivalently, Equations 2 and 4),

will produce an estimate of any input face vector (and indeed of
any input vector of the appropriate dimensions), regardless of
whether or not the model has learned (i.e., was trained on) that

vector. We know from previous studies (e.g., O'Toole, Deffen­
bacher, et al., 1991) that the quality of the reconstruction, as mea­

sured by the cosine between the original and reconstructed face vec­

tors, is generally better for learned than for novel faces. In this

sense the model can be said to recognize faces. We have previously
tested the model's ability to recognize faces with signal detection
methodology, by setting a "criterion cosine," usually the ideal ob­

server criterion (i.e., the mean of the mean cosines for the learned

and new faces). The model responds "old" for faces with cosines

higher than the criterion and "new" for faces with cosines less than

the criterion. This procedure gives rise to the standard measures
of signal detection theory (i.e., hits, false alarms, misses, and cor­

rect rejections), and so, d' can then be computed in the standard way.
In the present study, we reconstructed only unlearned faces be­

cause we wished to consider the autoassociative memory as a bi­

ased face history. We were interested more in the model's charac­

teristics as perceptual filter for same- versus other-race faces than
in its characteristics as a memory device for these faces. We have

considered the properties of the autoassociator as a memory device

for majority and minority race faces in detail in O'Toole, Deffen­
bacher, et a\. (1991). As a final procedural point, since we wished

to maximize the number of faces available for the principal com­
ponents analysis, and, since we wished these faces to be only "un­

learned" faces (i.e., those not used in creating the face history matrix

A), we actually created two face histories with nonoverlapping sets

of learned faces. This increased the number of faces available for
the analysis. Hence, the eigenvectors were then extracted from each
matrix, and reconstructions for each face were made from the set

of eigenvectors extracted from the matrix that did not learn the par­
ticular face.

Results and Discussion
The quality of the model's reconstruction for each of

160 unlearned faces (gathered from the two face history

matrices) was calculated as the cosine between the origi­

nal face vector and the vector reconstructed by the model

using Equation 2. A cosine of 1.0 indicates perfect recon­

struction: The higher the cosine, the more similar the

reconstruction to the original face.
Caucasian analysis. The cosine measure was incorpo­

rated into the principal components analyses of Experi­

ment 2 for Caucasian and Japanese faces separately. The

loadings on the first four axes appear in Tables 5A and

5B. As can be seen, the structure of the space for vari­
ables other than the cosine remains generally similar to
that previously discussed. Several points are worth not­

ing about the presence of the cosine in the space. First,
beginning with the performance-dominated axes, the co-
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sine loaded strongly on the accuracy axis in the direction

opposite to d' , but did not load on the indictability axis.
The direction of the loading of the cosine on the accuracy
axis in opposition to d' makes sense because we expect

the reconstructions to be best for unlearned faces that share

the most in common with the set of faces learned-in other
words, those most similar to the average face. For our

observers, however, conventional wisdom would indicate

that faces least similar to the average face should be rec­
ognized best. The fact that the cosine loads more strongly

on this axis than did any of the rating measures indicates
that the autoassociative memory model's quality of rep­

resentation measure is more strongly related to human rec­

ognition performance than any of the human rating mea­
sures are.

For the rating-dominated axes, the cosine loaded moder­

ately on the memorability axis, but not on the familiarity

axis to a degree that met our criterion of .30. This indi­

cates that the cosine is capturing aspects of the human rat­

ing data related to memorability. However, the loading

of the cosine on this axis is in a counterintuitive direction
in comparison with what is seen on the accuracy axis. On

the accuracy axis, the cosine opposes d', On the memo­

rability axis, however, the cosine loads in the same direc­

tion as do memorability and d', and opposing typicality.

Hence, the orthogonal components of the cosine appear
paradoxical.

Since we foundthis result puzzling, we examinedthe con­

tributions of each face to the memorability axis. The con­

tribution of a face to a particular axis is simply the stan­

dardized projection (z score of the projection) of the face
on the axis. Specifically, we looked at faces whose stan­

dardized projection scores on the memorability axis were

large. We found that the faces contributing strongly and

positively to this axis had a relatively small, highly dis­

tinctive feature (a distinctive feature taking up a relatively

small amount of the face image). For example, the largest
contributor to this axis was a male face with a very un­

usual Elvis-like mouth shape. When the mouth was cov­
ered, the face appeared relatively typical. Other exam­

ples include a female face with a thick strand of hair hang­

ing down on her forehead and a male face with an

unusually shaped, small bushy eyebrow. Although these

faces would appear to be very memorable to the observers

and hence would generally yield high d's, the model's be­
havior on these faces is quite understandable. Since these

faces were not learned by the model, and since their highly
memorable aspects were confined to a relatively small area

of the face, the model would still do a reasonably good

job of reconstructing the faces (i.e., a high cosine). Thus,

the model gives insight into the component of typicality
related to memorability. It suggests that this component

may well be a function of relatively local, small distinc­
tive features, rather than due to unusual configural prop­

erties of the faces.

Additionally, and interestingly, d' appears on the mem­

orability axis at about the same strength and in the same
direction as does the cosine, whereas previously it had

failed to load. The preceding discussion makes it clear
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Table 5A
Simulation 1 with Human Rating and Recognition Performance

for Caucasian Faces: Autoassociative Model Trained with a

Majority of Caucasian and a Minority of Japanese Faces

First Four Rotated Factors

Memorability Familiarity Indictability Accuracy

d'

Criterion

Repetition
Familiarity

Memorability

Attractiveness

Typicality

Cosine

.33
-.08

-.06
.06
.90

-.18

-.88
.30

.18 -.17
-.07 -.87
-.03 .85

.78 .09

.11 .07

.78 -.07

.34 .05

.17 -.09

.74

.01
-.03

.06

.01

-.08

.00
-.79

Proportion of variance

accounted for by axis

Actual order of axis

.23

1

.18

3

.20

2

.15

4

Table 58

Simulation 1 with Human Rating and Recognition Performance
for Japanese Faces: Autoassociative Model Trained with a

Majority of Caucasian and a Minority of Japanese Faces

First Three Rotated Factors

Memorability Familiarity Indictability/Accuracy

d'

Criterion

Repetition
Familiarity

Memorability

Attractiveness

Typicality

Cosine

.16 .02 .69
-.12 -.28 .76

-.08 .21 -.82
- .03 .84 - .22

.86 -.06 .17
-.13 .84 -.03
-.62 .11 -.62

.50 -.11 -.41

Proportion of variance

accounted for by axis .18 .19 .29

Actual order of axis 3 2 1

Note-Boldface is used for loadings greater than or equal to .30.

that the memorability axis is due, at least in part, to the
presence of some faces that are made memorable by the
presence of a highly distinctive local feature. These faces
are generally well reconstructed by the model, but not
in a way that would preserve the highly distinctive fea­

ture. These faces create a moderate positive relationship
between d' and the cosine, which expresses itself as a
moderate loading on the memorability axis. We will see
in the second set of simulations a reversal of the positive
relationship between d' and the cosine on the memora­
bility axis when the kind of information that the cosine

is tapping is shifted.
While the cosine did not load on the general familiarity

component at a level that met our criterion, the fact that
faces that were judged "memorable" had a small local
distinctive feature led us to examine a few analogous faces
for the familiarity axis. Faces that were "atypical" for
this axis would also be judged generally unattractive and
unfamiliar. A few examples of faces fitting this combina­
tion of judgments were two female faces with small heads
and long skinny necks that lent them a rather ostrich-like
appearance and a male face with a very round-shaped hair
style. Thus, it would seem that whereas small local distinc­
tive features made faces atypical with respect to the mem-

orability axis, global features such as face and hair shape
made faces atypical with respect to the familiarity axis.

Japanese analysis. The qualitative aspects of the
Japanese analysis are generally similar to those seen in
the Caucasian analysis. The loadings for this analysis ap­
pear in Table 5B. Beginning again with the performance­
dominated axis, the cosine loads moderately strongly and
in an opposing direction to d' and criterion, but in a sim­
ilar direction to typicality on the accuracy/indictability
axis. The relationship between cosine and d' is analogous
to that seen with the Caucasian faces-good model recon­
structions occurred for new faces that were most similar
to the average face. By contrast, good recognition per­
formance for our observers occurred with faces that the
model indicated as least similar to the average face. In
addition, the presence of typicality on this axis indicates
that the cosine is related to the part of typicality that is
orthogonal to the memorability component of typicality
for these other-race Japanese faces.

For the rating subspace, the cosine appears strongly on
the memorability axis, in the same direction as memora­
bility, but opposing typicality-as was seen for the Cau­
casian faces. We looked at the Japanese faces that con­
tributed strongly to this axis. They too, contained a small



distinctive feature. The three largest contributors were

faces with unusually protruding ears.

Discussion

In general, the representation quality measure produced

by the autoassociative memory was relevant to both hu­

man recognition performance accuracy and human facial

characteristic ratings. In fact, for Caucasian faces, the au­

toassociative model's representation quality measure was

related more to human recognition performance than were

any of the human facial characteristic ratings. We think

that the relevance of the autoassociative memory to per­

formance accuracy indicates that human face recognition

performance may rely heavily on very subtle variations

in the form and configuration of visual information. Since

the model makes use of all of the faces learned in creating

its representation, these kinds of useful subtle variations

are captured well in the model's representation of faces.

While facial characteristic ratings attempt to quantify the

same kind of information, they fall short of tapping the

complicated image-based information that well-practiced

human observers may be using for face recognition.

The hypothesis of greater reliance on subtle variations

in the form and configuration of visual information for

same- versus other-race recognition is consistent with the

finding in Experiment 2 that the ratings for other-race

faces were more related to performance than were the rat­

ings for same-race faces. Specifically, these kinds of subtle

visual features may not be conducive to expression by fa­

cial characteristic ratings and hence ratings may be less

able to tap recognition processes for same- as opposed

to other-race faces.

The model's quality of representation measure was also

relevant to the memorability component of typicality. The

combination of its counter-intuitive loading direction and

an examination of the faces that strongly contributed to

this axis suggested that the memorability-related compo­

nent of typicality is likely to be related to highly distinc-
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tive local features. The final set of simulations lends more

insight into the kinds of information that may give rise

to the different components of typicality.

SIMULATIONS 2A AND 2B

In recent work, we have examined the kinds of infor­

mation that different eigenvectors provide in reconstruct­

ing a face. O'Toole, Abdi, et al. (1991) have shown that

the race and sex of a face can be predicted with relatively

good accuracy (> 80 %) by looking at the projection of

the face on a single eigenvector. Depending on the racial

and sexual homogeneity of the training set, the eigenvec­

tor with the greatest predictive value for these categories

is usually the eigenvector with the second or third largest

eigenvalue." A demonstration of the importance of the sec­

ond eigenvector in determining some aspects of the op­

position between male and female facial characteristics

appears in O'Toole et al. (1993). We show that when the

second eigenvector is added to the first, the resultant face

appears masculine, whereas when the second eigenvec­

tor is subtracted from the first, the resultant face appears

feminine. Analogously, this type of demonstration can be

carried out for the autoassociative memory when it is

trained with two races of faces. For example, when an

autoassociative memory is trained with half Caucasian and

half Japanese faces, good information about the race of

the face is found in the second eigenvector. This is illus­

trated in Figure 1. The first and second eigenvectors of

an autoassociative memory trained with 40 Caucasian and

40 Japanese faces appear in the first and second panels,

respectively, of Figure 1. The first eigenvector can be in­

terpreted as representing the common face-like aspects

of the entire set of images. The second eigenvector ap­

pears monster-like, and would, by itself, seem to contain

little information about the race of a face. However, when

the second eigenvector is added to the first eigenvector

(panel 3), the resulting face has a clearly Asian appear-

Figure 1. The first and second eigenvectors of an autoassociative memory trained with 40
Caucasian and 40 Japanese faces appear in the first and second panels, respectively. The
results of adding the second eigenvector to the first eigenvector appear in panel 3 of Fig­
ure 1, whereas panel 4 illustrates the results of subtracting the second eigenvector from the
first. The face in panel 3 appears Japanese, whereas the face in panel 4 appears Caucasian.
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ance. When the second eigenvector is subtracted from the

first (panel 4), the resulting face has a Caucasian appear­

ance. We have argued elsewhere (O'Toole, Abdi, et al.,

1991; O'Toole et al., 1993) that the eigenvectors with

relatively large eigenvalues contain what Bruce and Young

(1986) have referred to as visually derived semantic in­

formation about faces. Visually derived semantic infor­

mation can be extracted from unfamiliar faces and includes

visually based categorical information such as the race,

sex, and age of a face.

In addition to representing visually derived semantic in­

formation, to be able to recognize faces (i.e., discrimi­

nate learned from unlearned faces), the autoassociative

memory must preserve information that is specific to in­

dividual faces. Sirovich and Kirby (1987) and Kirby and

Sirovich (1990) have shown previously that only a sub­

set of eigenvectors, those with the largest eigenvalues,

is necessary for reconstructing a face to recognizable

levels. They proposed that faces could be represented in

a low-dimensional space in a way that minimizes the er­

ror of reconstruction. Although this minimizes the error

of the reconstructions, our recent work (O'Toole et al.,

1993) indicates that the model's recognition performance

is actually better with ranges of eigenvectors that have

relatively small eigenvalues. We have simulated the im­

portance of different ranges of eigenvectors for recogni­

tion purposes. The model's d' for the discrimination of

learned from unlearned faces was at its optimum with

ranges of eigenvectors whose eigenvalues were relatively

small. This makes intuitive sense in that the principal com­

ponents with the largest eigenvalues are those that cap­

ture the largest proportion of variance in the stimulus set.

As noted, these larger components of variance are likely

to be related to large-scale visual categorical dimensions

of the faces such as sex and race, which can be ascer­

tained frequently by using primarily the global shape in­

formation in faces. Information that is specific to only a

single or to a few faces will be captured in eigenvectors

with smaller eigenvalues. These eigenvectors should pro­

vide better information for discriminating learned from

unlearned faces. We will call the information contained

in the eigenvectors with smaller eigenvalues identity­
specific information.

The final set of simulations was carried out to contrast

the model's quality of representation measure based on

eigenvectors with larger versus smaller eigenvalues. Fur­

ther, we examined how this measure would relate to hu­

man performance when the range of eigenvectors used

to reconstruct a face was shifted. It may be expected that

the results of Simulation 1 will be replicated in the range

of eigenvectors with larger eigenvalues. This is because

the eigenvectors with larger eigenvalues will dominate via

their larger weights when all of the eigenvectors are used

in reconstructing the faces. Recall that these weights are

defined as the dot products of the faces with the eigen­

vectors, which will be larger generally, for eigenvectors

that explain larger proportions of the variance in the face

set. For the range of eigenvectors with smaller eigen-

values, we would expect that identity-specific informa­

tion would dominate. If the autoassociative model is get­

ting at aspects of identity-specific information relevant to

human rating and recognition performance, we would ex­

pect the cosine to load in this principal components anal­

ysis, as well.

Method
The method was identical to that described for Simulation I with

the following exception. For Simulation 2A, Equation 4 contained
only the terms for Eigenvectors 1-35, (i.e., the eigenvectors with

the 35 largest eigenvalues). For Simulation 28, Equation 4 con­

tained only the terms for Eigenvectors 20-55. The particular ranges
used contain the same number of eigenvectors, but are somewhat

arbitrary. The results, however, were robust over several shifts in
this range. Sample face reconstructions in these two ranges are il­

lustrated in Figure 2. The leftmost panel shows two original faces.
The center panel shows each face reconstructed with the first 35

eigenvectors, whereas the rightmost panel shows the two faces

reconstructed with the 20th through 55th eigenvectors. As can be
seen, shape information is well preserved in the faces reconstructed

with the first 35 eigenvectors. Yet while this representation clearly
provides shape information appropriate to these particular faces,

much additional detailed information is provided in the faces recon­
structed with the 20th through 55th eigenvectors.

Results

Simulation 2A. As in Simulation 1, separate principal
components analyses were carried out on the Caucasian

and Japanese faces using the human data from Experi­

ments 1 and 2. The cosines from the faces reconstructed

in the two eigenvector ranges were incorporated into sep­

arate sets of principal components analyses. The loadings

for the principal components analyses of Simulation 2A

for Caucasian and Japanese faces appear in Tables 6A and

6B. As predicted, the pattern of results is very similar

to that seen in Simulation 1 for the Caucasian faces.

Perhaps the only appreciable difference in these results

in comparison with those of Simulation 1 occurs for the

Japanese faces. On the accuracy axis, the loading of the
cosine is reduced considerably. However, the direction

of the loading of both the cosine and typicality are the

same and are in opposition to d', We will discuss this re­

sult in conjunction with the results of Simulation 2B.

Simulation 2B. The loadings for the principal compo­

nents analysis of Simulation 2B for Caucasian and Japa­

nese faces appear in Tables 7A and 7B. We will start with

the Caucasian faces (see Table 7A). Two interesting dif­

ferences were observed between this simulation and Sim­

ulations 1 and 2A. First, while the cosine again loaded

very strongly on the accuracy axis, the direction of the

loading with respect to d' in this simulation was reversed

in comparison with that seen previously. This is to be ex­

pected if the eigenvectors with smaller eigenvalues are

tapping identity-specific information. The higher the qual­

ity of the representation of identity-specific information,

the higher we would expect human recognition perfor­

mance. This contrasts to the range of eigenvectors with
larger eigenvalues. In that case, the higher the quality of

representation, the more generally similar the faces were



Figure 2. The leftmost panel shows two original faces. The center
panel shows each face reconstructed with the first 35 eigenvectors.

Global shape information is well preserved in these reconstructions.

The rightmost panel shows the two faces reconstructed with the 20th
through 55th eigenvectors. Small local details are well preserved in

these reconstructions.
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to all learned faces, and hence, the worse the human rec­
ognition performance.

A second difference was that while the cosine again
loaded on the memorability axis, the direction was like­
wise reversed from the pattern observed in Simulations
1 and 2A. As noted, Simulation 1 indicatedthat faces con­
tributing strongly to this axis were characterized by the
presence of a small distinctive feature. When the eigen­
vectors used to reconstruct faces contained the informa­
tion/facial characteristicsmost common to all faces (eigen­
vectors with large eigenvalues), these memorable faces
were generally well reconstructed-that is, only a small
part of the face was badly reconstructed. This is because
what was unusual or "memorable" about each of these
faces was confmed to a very small area of the face. Within
a range ofeigenvectors with smaller eigenvalues, features
specific to a single or small subset of learned faces are
well represented, but those more common to the entire
set of faces are lost. However, the information necessary
to capture the identity-specific distinctive features of the
"memorable" faces was not likely to be contained in these
particular eigenvectors, since the faces reconstructed in
this simulation were not learned by the model. Given that
the more categorical information about all faces was also
not present in this range ofeigenvectors, a highly memo­
rable (unlearned) face that was memorable because of a
small distinctive feature would be badly reconstructed rel­
ative to the other faces. Hence, faces rated by human ob-

Table 6A
Simulation 2A with Human Rating and Recognition

Performance for Caucasian Faces: Eigenvectors 1-35

First Four Rotated Factors

Memorability Familiarity Indictability Accuracy

d' .33 .17 -.17 .76

Criterion -.08 -.07 -.87 .00

Repetition -.05 -.03 .85 -.02

Familiarity .07 .79 .08 .04

Memorability .90 .11 .08 .00
Attractiveness -.19 .77 -.06 -.05

Typicality -.89 .34 .05 .00

Cosine .33 .19 -.12 -.77

Proportion of variance

accounted for by axis .23 .18 .20 .15

Actual order of axis I 3 2 4

Table 6B
Simulation 2A with Human Rating and Recognition
Performance for Japanese Faces: Eigenvectors 1-35

First Three Rotated Factors

d'

Criterion

Repetition
Familiarity

Memorability
Attractiveness

Typicality

Cosine

Memorability

.07
-.15
-.02
-.07

.79
-.01

-.54
.66

Familiarity IndictabilityIAccuracy

.03 .71
-.22 .77

.17 -.85

.79 -.21

-.18 .22
.87 -.03

.17 -.65

.09 -.18

Proportion of variance
accounted for by axis .17 .19 .30

Actual order of axis 3 2 I

Note-Boldface is used for loadings greater than or equal to .30.
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Table 7A
Simulation 2B with Human Rating and Recognition

Performance for Caucasian Faces: Eigenvectors 20-55

First Four Rotated Factors

d'

Criterion

Repetition

Familiarity

Memorability

Attractiveness

Typicality

Cosine

Memorability

.39
-.06
-.03

.07

.90
-.19

-.87
-.32

Familiarity Indictability

.20 - .21
-.05 -.89

-.01 .83
.78 .09

.10 .08

.78 -.06

.35 .04
-.15 .11

Accuracy

.64
-.11

-.13
.06

-.06
-.08

.00

.81

Proportion of variance

accounted for by axis

Actual order of axis

.23

1

.18

3

.20

2

.14

4

Table 7B
Simulation 2B with Human Rating and Recognition

Performance for Japanese Faces: Eigenvectors 20-55

First Three Rotated Factors

Memorability Familiarity Indictability/Accuracy

d'

Criterion

Repetition

Familiarity

Memorability

Attractiveness

Typicality

Cosine

.05 .04 .73
-.11 -.27 .78

-.15 .19 -.81
-.07 .82 -.23

.80 -.02 .19
-.13 .82 -.03

-.67 .09 -.59
-.60 .14 .19

Proportion of variance

accounted for by axis .18 .19 .29

Actual order of axis 3 2 1

Note-Boldface is used for loadings greater than or equal to .30.

servers to be highly memorable due to the presence of

a small, local, distinctive feature would give rise to a low

cosine when the model tried to reconstruct the face with

identity-specific information that it had not learned. It is

worth noting also that in this range of eigenvectors, the
positive relationship between d' and the cosine on the
memorability axis that was seen in the first two simula­

tions was also reversed for analogous reasons.

A generally similar pattern of reversals can be seen for

the Japanese faces. Whereas the cosine loaded in opposi­

tion to d' in Simulations 1 and 2A, it loaded in the same

direction in this simulation. Likewise, where the cosine,
loaded with memorability and against typicality in Simu­

lations 1 and 2A, it opposed memorability and loaded with

typicality in this simulation.

GENERAL DISCUSSION

The present study was undertaken to look for qualita­
tive differences in the processing of same- versus other­

race faces. Some differences were evident in the human

performance data that were clarified through comparison

with the performance of the neural network modeL The

structure of ratings for faces replicated Vokey and Read's

(1992) claim that typicality is composed of orthogonal com­
ponents related to memorability and familiarity for same-

race Caucasian faces. This result is impressively robust

given that Vokey and Read (1992) used faces of 10th and

12th graders, whereas we used young adult faces. For the

other-race Japanese faces, we found a similar rating sub­

space with the exception that typicality did not load on
the familiarity axis, but rather loaded on the accuracy axis.

An examination of faces that were important deter­

miners of the memorability axis, in conjunction with the

loading of the cosine in a surprising direction on this axis,

gave insight into the differences in typicality on the fa­
miliarity and memorability axes. Faces that contributed

strongly to the memorability axis were characterized by

the presence of a small local distinctive feature. This also

appeared to be the case for the Japanese faces.

Since the cosine did not appear on the familiarity axis

for any of the present simulations at a level that met our
criterion, the model gives less direct insight about its role

in typicality and recognition performance for same- versus

other-race face processing. However, some speculative

and suggestive information can be gleaned from the data

as a whole. First, we observed informally that Caucasian
faces fitting an atypical profile with respect to this axis
(i.e., atypical, unattractive, and unfamiliar) generally

deviated from the set of faces in terms ofglobal face and
head shapes. Second, the contrast between the appearance

of typicality on the familiarity axis for the Caucasian faces



and its absence for the Japanese faces, in conjunction with

the appearance of typicality on the accuracy/indictability
axis for Japanese faces and its absence for the Caucasian

faces, suggests the possibility that the kind of informa­
tion tapped by "typicality" in these two contexts may be

related. If this kind of information is related to the global­

shape-based properties of faces, as the informal obser­

vation of Caucasian faces suggests, it would appear that
the effects of the global structural properties of faces may

bemore related to performance for the Japanese faces than

for the Caucasian faces. In other words, it is possible that

the global or structurally based typicality status of a face

perturbs the performance of Caucasian observers to a

greater extent for Japanese faces than for Caucasian faces.
This is reasonable, since Caucasian observers have greater

expertise with Caucasian faces and hence should be bet­

ter able to code small variations in facial form for these

faces than for Japanese faces. In any case, more data will

be required for this hypothesis to be tested explicitly.

Another important finding of this paper was that the
cosine measure was more related to human recognition

accuracy for Caucasian faces than were any of the ob­

server face ratings. We believe that this result stresses

the importance of considering faces as images that pro­

vide observers with very rich and elaborate information

that is quite difficult to capture in discrete ratings. In the
present study, we used face stimuli that were rich in per­

ceptual information, and we have shown that even a rela­
tively simple neural network model with an extremely

simple visual code was able to capture more of this in­

formation than observer ratings were. An interesting point

is that the kind of information that the model captures is
relevant to what researchers mean when they ask ob­

servers to rate faces for typicality->"How like all other

faces is this face?" This is a large part of what the cosine

measure captures effectively. Observer ratings, however,

appear less able to tap this information, or may simply

behighly variable in terms of the strategies that observers
use. It may be that the orthogonal components of typical­

ity that we see are due to "typicality's" being a single

entity composed of two parts. Alternatively, the separate

components could be due to some observers' using a

strategy of rating any face with a small distinctive fea­

ture "atypical," and other observers' rating any face that
deviates in global shape or structure as "atypical." Hence,

the components that Vokey and Read (1992) and we have

found could bebased on strategy differences. More likely,

there is a tradeoff between the two strategies within a sin­

gle observer across faces.
As noted by Valentine and Endo (1992), the simula­

tion approaches used in O'Toole, Deffenbacher, et al.

(1991)-and the one we apply here-are broadly similar

to their view that the mental representations of faces can

be thought of metaphorically as points in a multidimen­

sional space. The present approach is different from their

multidimensional model, primarily in that Valentine and
Endo do not specify the number and nature of the dimen­

sions of this space and conceptualize these dimensions as
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abstract parameters derived from faces. In the present

study, the dimensions of the autoassociative network

emerge spontaneously from the statistical structure of the

set of face images learned by the autoassociative model.
Hence, the present model, as it captures some aspects of

human facial characteristic judgments and recognition per­

formance, may lend insight into the nature of the dimen­

sions that a multidimensional representation implies.

Finally, the existence and form of the accuracy and in­

dictability axes, especially for the Japanese faces, in which
typicality, d'; and criterion are all interrelated, serve to

remind us of the mechanics of a face recognition task and

suggest that there are potential problems in interpreting

correlations between ratings and single performance mea­

sures derived from signal detection theory.
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NOTES

1. Although Vokey and Read (1992) label this axis "general famil­

iarity," they note that it is a manifold of attractiveness, typicality, fa­

miliarity, and likableness, with attractiveness and likability more strongly

weighted than either familiarity or typicality. For consistency, we will

use their label of general familiarity for this manifold, regardless of the

actual order of loadings.

2. The proportion of variance explained by a particular axis is equal

to the eigenvalue associated with the axis divided by the sum of the eigen­

values for all axes.

3. All axes are all those with nonzero eigenvalues.

4. Since all analyses of the human rating data used Varimax-rotated

principal components analysis, for convenience, henceforth we shall refer

to these analyses simply as principal components analysis.

5. We used C, a measure of the displacement in z-score units of the

criterion, computed as -0.5(ZH + ZFA). With this measure, smaller

values imply looser criteria (Snodgrass & Corwin, 1988).

6. Our use of the coined word indictability is inspired by the eye­

witness memory literature and is meant to indicate the tendency of a

face to be "recognized" or judged as "familiar" regardless of whether

or not it is actually familiar. Hence, we try to capture, with our use

of this word, the likelihood that a particular face will be falsely

recognized-or by analogy to the problem for eyewitness identification­

falsely "indicted." Although we realize that this label may not be a

perfect description for the axis, the alternative labels, such as "crite­

rion" and "response bias," seemed even less appropriate. "Criterion"

seemed problematic because it would be easy to confuse with the crite­

rion variable, while "response bias" seemed problematic in that it is

a property of the perceiver and not of the face.

7. Hit and false alarm rates are included as performance measures

in this analysis. We have done the principal components analysis both

with and without hits and false alarms. We have reported the principal

components analyses without them for two reasons: (I) without them,

the resulting principal components analysis structures are simpler; and

(2) the simpler structures do not change any important conclusions to

be drawn from the principal components analysis.

The analysis reported defines repetition as a performance measure,

since its status as a performance or rating measure is not entirely clear.

When repetition is defined as a rating measure in the canonical correla­

tion analysis, the correlation for Caucasian faces is increased substan­

tially, though, we think, somewhat artificially. Furthermore, with repe­

tition defined as a rating, the analysis still shows a larger correlation

for the Japanese faces (.73) than for the Caucasian faces (.64).

8. Both Japanese and Caucasian faces served alternately as the majority

and minority race faces for tests yielding Conclusions (I) and (2). Due

to a shortage of Japanese faces for the episodic recognition task, Con­

clusion (3) was tested with only Caucasian faces as the majority race

faces.

9. The second eigenvector is related to the sex of the face when the

autoassociative matrix is trained with a relatively homogeneous set of

faces of a single race. When we have trained the autoassociative model

with Caucasian and Japanese faces, the second eigenvector is related

to the race of the face and information about the sex of the face moves

to the third and fourth eigenvectors (O'Toole, Abdi, et al., 1991).
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