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Abstract. The recently started SHA-3 competition in order to find a
new secure hash standard and thus a replacement for SHA-1/SHA-2 has
attracted a lot of interest in the academic world as well as in industry.
There are 51 round one candidates building on sometimes very different
principles.
In this paper, we show how to attack two of the 51 round one hash func-
tions. The attacks have in common that they exploit structural weak-
nesses in the design of the hash function and are independent of the
underlying compression function. First, we present a preimage attack on
the hash function Blender-n. It has a complexity of about n · 2n/2 and
negligible memory requirements. Secondly, we show practical collision
and preimage attacks on DCH-n. To be more precise, we can trivially
construct a (28 + 2)-block collision for DCH-n and a 1297-block preim-
age with only 521 compression function evaluations. The attacks on both
hash functions work for all output sizes and render the hash functions
broken.

Key words: Hash functions, collision attacks, preimage attacks, SHA-3,
Blender, DCH

1 Introduction

Until 2005, the number of papers on the cryptanalysis of hash functions was
quite easy to overlook. This changed significantly with the dawn of the work of
Wang et al. [25,26]. The weaknesses discovered in MD5 and SHA-1 had wide
reaching consequences and were a wake-up call for both academia and industry.
The SHA-2 family [18] was only considered to be a temporary solution. Although
no full attacks on a member of SHA-2 have been found to date, the fact that
the design and security principles are very close to those of SHA-1 raised doubts
about the long term security of the SHA-2 family.

As a consequence, the National Institute of Standards and Technology (NIST)
has launched a similar competition [19] as it has done for the Advanced Encryp-
tion Standard (AES) to replace DES. This time, the goal is to find a new secure
hash standard SHA-3. As of now, 51 submissions have advanced to the first
round of the SHA-3 competition. Supported by the cryptographic community,
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the task of NIST is now to find the best hash function in terms of a wide spec-
trum of requirements, such as speed and security.
The proposals of round one are based on a great variety of security considerations
and design principles. Many of them are block cipher based, using especially AES
or parts of AES as building blocks. Some hash functions are based on asymmetric
primitives and again others are mere curiosities. From the design perspective,
there are Merkle-Damg̊ard [5,17] constructions and variations thereof, sponge
constructions [2], HAIFA constructions [3], wide pipe constructions [15], etc.

In this paper, we want to demonstrate vulnerabilities of two designs, namely
the hash functions Blender-n [4] and DCH-n [27]. Although they are both based
on quite different design principles, they have in common that an attacker can
omit the tedious task of going into the details of the respective round transfor-
mations. We have identified weaknesses in both design principles.

We present a structural preimage attack on the hash function Blender-n
that has a complexity of about n · 2n/2 and negligible memory requirements.
Furthermore, we show practical collision and preimage attacks on DCH-n and
show that we can trivially construct a 28 + 2-block (multi)-collision for DCH-n
and 1297-block preimages with only 521 compression function evaluations.

Our paper underlines the importance of a well founded design principle for
a hash function since a bad choice of the iteration mode renders the efforts put
in the compression function design ineffectual.

The paper is organized as follows. Section 2 describes our preimage attack
on Blender-n. Then, Section 3 demonstrates a practical collision and a practical
(second) preimage attack on DCH-n. In Section 4 we conclude.

2 A Preimage Attack on Blender-n

In this section, we present a preimage attack on Blender-n with a complexity of
about n · 2n/2 and negligible memory requirements. The attack is independent
of the compression function of Blender-n and works for all output sizes. A very
similar preimage attack for Blender-n was independently proposed in [20]. It has
a slightly higher attack complexity of about n ·2(n+w)/2, where w is 32 or 64 bits
depending on the word size of the hash function. We are well aware of the attacks
on Blender-n which concentrate on the internal structure of the compression
function presented in [10,11,13]. Even though our attack is less efficient compared
to the attack [11], it is superior in the sense that it isn’t affected by any tweak to
the compression function. Furthermore, due to the generic nature of our attack,
it may be applicable to a wider range of hash function designs. For example,
the SHA-3 candidate AURORA has been recently broken by similar principles
[6,23,24].

2.1 Description of Blender-n

The hash function Blender-n is an iterated hash function. It processes message
blocks of 32 (or 64) bits and produces a hash value of 224, 256 (or 384, 512)
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bits. If the message length is not a multiple of 32 (or 64) bits, an unambiguous
padding method is applied. For the description of the padding method we refer
to [4]. Let W = W1‖W2‖ · · · ‖Wt be a t-block message (after padding).

In the following ¬ denotes the bitwise complement and Σ denotes summation
modulo 2w where w is the wordsize (32 or 64-bit). The hash value h is computed
from the chaining values Ai as follows (see Figure 1):

h = Σt+2
i=1Ai .

The chaining values Ai are computed as follows:

A0 = IV (1)

Ai = f(Ai−1,Wi) for 0 < i ≤ t (2)

At+1 = f(At, Σ1) (3)

At+2 = f(At+1, Σ2) , (4)

where Σ1 = ¬Σt
i=1Wi, Σ2 = Σt

i=1¬Wi and IV is a predefined initial value.

f f f ff

1 2 t 1 2

Fig. 1. Structure of the hash function Blender-n.

As can be seen in (3) and (4), Blender-n specifies two checksums (Σ1 and
Σ2) consisting of the modular addition of all message blocks, which are then
input to the two final application of the compression function f . Computing this
checksum is not part of most commonly used hash functions such as MD5 and
SHA-1.

The compression function f basically consist of 4 steps:

1. Compute the preliminary intermediate values using add-with-carry.
2. Compute the rotation factor r.
3. Rotate the intermediate values.
4. Compute the next state Ai.

For a detailed description of the Blender-n compression function we refer to [4],
since we do not need it for our analysis.

2.2 A Preimage Attack on Blender-n

In this section, we present a preimage attack on the hash function Blender-n.
It has a complexity of about n · 2n/2 and negligible memory requirements. It is
based on the following two observations.
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Observation 1 The checksums Σ1 and Σ2 are strongly related.

In other words, the second checksum does not increase the security of Blender-n.
This will be very useful for our attack. Let X = Σt

i=1Wi then:

Σ1 = ¬Σt
i=1Wi = ¬X

Σ2 = Σt
i=1¬Wi = Σt

i=1(−Wi − 1) = −t−Σt
i=1Wi = −t−X

Note that −Wi = ¬Wi + 1 and hence ¬Wi = −Wi − 1.

Observation 2 The final hash value h of Blender-n is computed from the chain-

ing values Ai by modular additions.

In other words, the computation of h is invertible. This will be very useful for
our attack. Assume, that we can find 2n messages w∗ (and hence chaining values
A∗

i for 0 < i ≤ t), such that all produce the same value At and X, then we have
constructed a preimage for h. This is similar to recent attacks on GOST [16] and
Damg̊ard-Merkle hash functions with linear or additive checksums [7].

Based on this short description, we will now show how to find messages w∗

which all produce the same value At and lead to the same checksum value with
a complexity of about n ·2n/2 and negligible memory requirements. For the sake
of simplicity let n = 512 for the remainder of this section. Note that the attack
works similar for the other output sizes of Blender-n.

Assume we want to construct a preimage for Blender-512 consisting of 2561
message blocks, i.e. m = W1‖W2‖ · · · ‖W2561. The attack basically consists of
two steps and uses multicollisions. It can be summarized as follows.

STEP 1: Constructing the multicollision. A multicollision is a set of mes-
sages of equal length that all lead to the same hash value. As shown in [8],
constructing a 2t collision, i.e. 2t messages consisting of t message blocks which
all lead to the same chaining value, can be done with a complexity of about
t · 2n/2 for any iterated hash function.

In the attack we want to construct a 2512 collision for the iterative part
(chaining values), to get 2512 messages w∗ (and hence chaining values A∗

i ) leading
to the same value At and X. This has a complexity of about 512 · 2288 = 2297.

However, in the case of Blender-n constructing a multicollision is slightly
more complicated. First, due to the small size of the message blocks (64 bits)
we need several blocks to construct a collision in the chaining values. Second,
to ensure that Σ1 and Σ2 (respectively, X = Σk

i=1Wi) are equal we need one
additional block. In detail, by using 5 message blocks we can construct a collision
in the iterative part (chaining values) and the checksums. Since for Blender-512
the chaining value has 512 bits and X has 64 bits, this has a complexity of about
2288 using a generic birthday attack.

However, due to the simple structure of the checksum value X, we can easily
guarantee that X collides by choosing the message blocks carefully in the attack.
It can be summarized as follows:
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1. Choose an arbitrary value for d.
2. For all 24·64 = 2256 choices of Wi, . . . ,Wi+3 adjust Wi+4 accordingly such

that Σi+4
j=iWj = d is fulfilled and compute Ai+4 with i > 0.

3. After computing all 2256 candidates for Ai+4 we expect to find a collision
due to the birthday paradox.

In other words, we can find a collision for the iterative part (chaining values) and
X with a complexity of about 2256 instead of 2288. Furthermore, the memory
requirements can be significantly reduced by applying a memory-less variant of
the birthday attack [22].

Hence, we can construct a 2512 collision with a complexity of about 512·2256 =
2265 and negligible memory requirements.

STEP 2: Constructing the preimage for h. In the previous step we con-
structed a 2512 collision in the first 5 ·512 = 2560 iterations of the hash function.
Hence, we have 2512 messages w∗ leading to the same chaining value A2560 and
to a collision in X (and hence in the two checksums Σ1 and Σ2).

Next we append an additional message block W2561 to w∗ such that the
padding of each of the messages m∗ = w∗‖W2561 is correct. It is easy to see that
appending one message block has no effect on the multicollision in the iterative
part and the checksums.

From this set of 2512 messages m∗ that all lead to the same chaining value
A2560 and X, we now have to find a message m∗ having h as hash value. We
write h = h∗ +A2561 +A2562 +A2563 where h∗ is one of the 2512 values:

h∗ = Σ512
i=1(A

ri
5i−4 +Ari

5i−3 + · · ·+Ari
5i),

with ri ∈ {0, 1}. Here, (A0
5i−4, A

0
5i−3, . . . , A

0
5i) and (A1

5i−4, A
1
5i−3, . . . , A

1
5i) are

the corresponding 5-block chaining values constituting the multicollision. To
find the correct h∗ and hence the message leading to the preimage of h we make
use of a meet-in-the-middle attack.

First, we save all values for

S1 = Σ256
i=1(A

ri
5i−4 +Ari

5i−3 + · · ·+Ari
5i)

in the list L. Note that we have in total 2256 values for S1 in L. Second, we
compute

S2 = Σ512
i=257(A

ri
5i−4 +Ari

5i−3 + · · ·+Ari
5i)

and check if h∗ − S2 is in the list L. After testing all 2256 values for S2, we
expect to find a matching entry in the list L and hence a message w∗ that
leads to h∗ = S1 + S2. This step of the attack has a complexity of 2256 and
memory requirements of 2256. Once we have found w∗, we have found a preimage
for Blender-512 consisting of 2560+1 message blocks, namely m∗ = w∗‖W2561.
Note that the memory requirements of the attack can significantly be reduced
by applying a memory-less variant of the meet-in-the-middle attack introduced
by Quisquater and Delescaille in [22].
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Hence, a preimage can be constructed for Blender-512 with a complexity of
2265 and negligible memory requirements. Note that in a similar way one can
construct preimages for all output sizes of Blender-n with a complexity of about
n · 2n/2.

3 Practical Collision and Preimage Attacks on DCH-n

3.1 Description of DCH-n

The hash function DCH-n [27], proposed by Wilson, is an iterated hash function
based on the Merkle-Damg̊ard design principle and produces a hash value of n =
224, 256, 384 or 512 bits. It processes message blocks of 504 bits and preprocesses
the input blocks by adding 8 bits of dithering input. At the end, standard MD
strengthening is applied.

In each iteration the compression function f is used to update the chaining
value of 512 bits as follows:

Hi+1 = f(Hi,Mi) = Hi ⊕Mi ⊕ g(Mi) , (5)

where g(M) is some non-linear transformation. The author of DCH-n claims
that the hash function makes use of the Miyaguchi-Preneel mode of operation
for block cipher based hash constructions [21]. Nevertheless, a quick look at
equation (5) shows that the chaining value Hi is not introduced to the non-linear
function g. This fact will be exploited by our attack. For a detailed description
of DCH-n we refer to [27].

3.2 Cryptanalysis

In this section, we will present our collision and preimage attack on DCH-n. The
attack is an extension of the attack of Khovratovich and Nikolic [9] and is based
on similar principles as the attacks on SMASH [12].

A 512-bit block Mi in iteration i consists of mi‖M
′
i , where mi is the 8-bit

dithering input and M ′
i is the original message block. The 8-bit dithering mi

consists of two parts. The 5 least significant bits are a simple counter, that
increments with every iteration. The 3 most significant bits are determined by
an encoding of the optimal moves in the “Towers of Hanoi”-sequence, where a
new step is generated whenever the 5-bit counter is reset. This sequence is a
square-free sequence and therefore assumed to be a good choice for dithering.
For closer details, we refer to [27]. At this point, we also want to refer to the
work of Andreeva et al. [1] that studies the limits on dithering based designs in
general.

Let us introduce the function γi(M
′
i) := g(mi‖M

′
i) ⊕ (mi‖M

′
i), that is, we

combine the XOR from the definition and the dithering corresponding to block
i into one function. Then (5) can be rewritten as:

Hi+1 = H0 ⊕ γ0(M
′
0)⊕ γ1(M

′
1)⊕ · · · ⊕ γi(M

′
i) (6)
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Collision Attack. We now describe the collision attack. We start with a mes-
sage consisting of N + 1 message blocks, m = M0‖M1‖ . . . ‖MN . Each Mi =
mi‖M

′
i , where mi is computed according to the dithering rule, for i = 0, . . . , N .

For an 8-bit dithering, there are only 28 possible dithering blocks, so if N is large
enough, there must be 0 ≤ i, j ≤ 28 with i 6= j such that mi = mj and thus,
γi = γj . Based on (6), we have

HN+1 = H0 ⊕ γ0(M
′
0)⊕ γ1(M

′
1)⊕ · · · ⊕ γN (M ′

N ).

So setting M ′
i = M ′

j = a ∈ {0, 1}504 for the above i 6= j implies that these blocks
don’t contribute to the value HN+1 and can thus be freely chosen.

Without looking on the dithering rule for DCH-n, we simply could set N = 28

to get colliding messages having 28 + 2 blocks (one final block for the padding).
Note, that since the “Towers of Hanoi”-sequence only has 6 valid states, a smaller
choice for N would be N = 6 · 25 = 192. The bottom line is that we can trivially
construct collisions for DCH-n, independently of the concrete dithering method.
The messages in the colliding message pair consist of 28 + 2 message blocks.

Every choice of a ∈ {0, 1}504 leads to a collision. Hence, we can trivially
construct t-collisions (for 0 < t < 2504) for DCH-n. Note that these attacks
apply to DCH-n for all output sizes. Due to size considerations, we don’t include
an actual colliding message pair.

Preimage Attack. The core observation for the preimage attack is that the
outputs of DCH-n form a vector space of dimension n over GF (2). This can
be easily seen when looking at the alternative description of DCH-n in (6). A
similar approach was used in the attack on the hash function family SMASH-n
in [12]. Therefore, the task is to compute a basis of the vector space generated
by the DCH-n outputs in order to construct preimages for DCH-n. Again, the
only technicality we have to take care of is the dithering of the message blocks.

In the following we assume n = 512 since the other output lengths of DCH-n
result from truncations of DCH-512. To describe our preimage attack, we will
use he following two technical lemmas. As in the collision case we will need to
find different indices (i, j) for which the dithering blocks mi and mj , and thus,
γi and γj , are the same. For the collision attack we needed only one such index
pair whereas for the preimage case this won’t suffice. The first lemma will tell
us how many message blocks our preimage needs to have to guarantee a certain
number of such index pairs.

Lemma 1 For a message having N = 2 · ℓ + 28 or more message blocks, we

can be certain to have at least ℓ index pairs (i0, j0), . . . , (iℓ−1, jℓ−1) that satisfy

γik = γjk for all k and where all occurring indices are unique.

Proof. We need to guarantee that among all indices from 0, . . . , N − 1 we can
find ℓ pairs as described above. If we take a look at the 8-bit dithering strings
mi for i = 0, . . . , N − 1 we know, that the 3 non-counter bits can only have 8
different values 0, 1, . . . 7 (actually 6 for the “Towers of Hanoi”-sequence). Let
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n0, . . . , n7 denote the frequencies with which the values 0, . . . , 7 occur in the non-
counter part of the first N dithering messages. To every non-counter block, there
correspond 25 counter blocks. Thus, N = 32 ·

∑7
i=0 ni. From this, the number

of sought pairs (ik, jk) is

32 ·
7

∑

i=0

⌊ni

2

⌋

= 32 ·
7

∑

i=0

(ni

2
−
{ni

2

})

≥
N

2
− 27.

Therefore, N = 2 · ℓ+ 28 is a valid choice of N . ⊓⊔

The second lemma is concerned with the probability that random vectors
from GF (2)n contain a basis and is a well known result (cf. [14]).

Lemma 2 The probability for ℓ ≥ n vectors drawn uniformly at random from

GF (2)n, to span a space of dimension n is

n−1
∏

i=0

2ℓ − 2i

2ℓ
=

n−1
∏

i=0

(1− 2i−ℓ).

Now, the attack can be summarized as follows:

1. Assume we want to construct a preimage for h consisting of N + 1 message
blocks. Thus, we have to find a message M such that:

h = H0 ⊕
N
⊕

i=0

γi(Mi) .

2. We choose the last message block MN such that the padding is correct.
3. Once we have fixed the last message block, we have to find the remaining

message blocks M ′
i for 0 ≤ i < N such that:

N−1
⊕

i=0

γi(M
′
i) = h⊕H0 ⊕ γN (M ′

N ) (7)

4. According to Lemma 1 we choose N = 2 · ℓ + 28 in order to have ℓ ≥ 512
index pairs (i0, j0), . . . , (iℓ−1, jℓ−1) satisfying γik = γjk (where every ik, jk is
unique).

5. Next, we compute ℓ vectors ak = γik(M
k
0
′
) ⊕ γjk(M

k
1
′
) for k = 0, . . . , ℓ − 1

with random Mk
0
′
and Mk

1
′
and save the triples (ak,Mk

0
′
,Mk

1
′
) in a list L.

6. From the set of ℓ ≥ 512 vectors ak we try to compute a basis of the out-
put vector space of DCH-n. If we succeed, this means that we can basically
construct such a basis with a complexity of 2 · ℓ compression function evalu-
ations. This can be reduced to ℓ+1 evaluations of the compression function
by fixing the block Mk

0
′
and letting only the block Mk

1
′
vary when generating

the vectors ak in the previous step.
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Lemma 2 implies that for a choice of ℓ = 520 we already have a probability
of 0.9961 for finding a basis among the ak and thus need 521 compression
function evaluations. Note, that constructing the basis is a one time effort.
Let now B = {ak0 , . . . , ak511} denote the basis for the output vector space

and let I =
⋃511

k=0 ik ∪ jk be the union of all the indices contributing to these
basis vectors. (For simplicity we assume that the first n pairs correspond to
the basis vectors.)

7. We divide the indices N = {0, . . . , N−1} into I and N \I. For every index i

in N \I we set M ′
i = 0 . . . 0. These message blocks correspond to the indices

not contributing to the basis. From (7) we thus get

⊕

I

γi(M
′
i) = h⊕H0 ⊕ γN (M ′

N )
⊕

N\I

γi(0 . . . 0).

Once a basis B and the indices I are computed, the right side of the equation
is completely known and thus we have

⊕

I

γi(M
′
i) = c

8. An arbitrary c can be represented with respect to this basis c = x0a
k0 +

· · ·+ x511a
k511 by solving the linear system over GF (2). Now we choose the

blocks M ′
i for i ∈ I as follows:

– If xk = 0 for 0 ≤ k < n, we set M ′
ik

= α and M ′
jk

= α for some arbitrary

value of α ∈ {0, 1}504 (as in the collision attack). In this case, γik and γjk
are equal, these two values cancel out and don’t contribute to the result.
– If xk = 1 for 0 ≤ k < n, we set M ′

ik
= Mk

0
′
and M ′

jk
= Mk

1
′
such that

γik(M
k
0
′
)⊕ γjk(M

k
1
′
) = ak for 0 ≤ k < n.

Hence we can construct a preimage by solving a linear system of equations
of dimension 512× 512 over GF (2). Constructing the basis has a complexity of
ℓ+ 1 compression function evaluations and is a one time effort.

Furthermore, the preimage attack can be used to construct second preimages
for DCH-n with the same complexity. Note that by using the above described
method, preimages (or second preimages) always consist of N + 1 = 2ℓ+ 28 + 1
message blocks.

4 Conclusion

In this paper, we were investigating two round one candidates of the SHA-3 hash
function competition of NIST. Namely, we were interested in a cryptanalysis of
DCH-n and Blender-n by solely investigating the iteration mode.

We showed a preimage attack on the hash function Blender-n for all out-
put sizes. The attack has a complexity of about n · 2n/2 compression function
evaluations and negligible memory requirements. It is based on structural weak-
nesses in the design of the hash function and is independent of the compression



Structural Attacks on Two SHA-3 Candidates: Blender-n and DCH-n 77

function f . Furthermore, we also presented that it is trivial to construct colli-
sions and (second) preimages for DCH-n. The presented attack applies to all
similar constructions not introducing the chaining variable into the compression
function.

We want to emphasize once more that the main target of the underlying
paper was to identify weak design philosophies of hash functions and to learn our
lessons from the attacks. It has to be noted that the vulnerabilities pinpointed
in this paper are not isolated cases. Our attack on Blender-n has quite some
resemblance to the attack on the Russian hash function standard GOST [16]
and the recent attack on the SHA-3 candidate AURORA [6,23,24]. The attacks
on DCH-n are relying on similar principles as the attacks on the hash function
SMASH [12].
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