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Abstract

Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through
the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled
receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The
structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and
an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by
residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-
HT. Compared to the accompanying structure of the 5-HT2B receptor, the 5-HT1B receptor
displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open
extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies,
these structures provide a comprehensive structural basis for understanding receptor-ligand
interactions and designing subtype-selective serotonergic drugs.

The neuromodulator serotonin (5-hydroxytryptamine; 5-HT) is essential for diverse
functions at nearly every organ system in the human body (1–4). The activity of 5-HT is
mediated through activation of members of a large family of 5-HT receptor proteins, which
can be grouped into seven subfamilies (5-HT1-7) on the basis of sequence homology and
signaling mechanisms (5). Except for the 5-HT3 receptor, which is a ligand-gated ion
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channel, the other twelve members are heterotrimeric guanine nucleotide binding protein (G
protein) coupled receptors (GPCRs). The serotonergic system is a target of many widely
prescribed drugs including atypical anti-psychotics, anti-migraine medications, anxiolytics
and anti-depressants (1), and the recently approved anti-obesity medication lorcaserin (6, 7).
However, clinical use of several serotonergic drugs caused unexpected side effects arising
from off-target interactions with 5-HT receptor subtypes and related receptors for biogenic
amine (1, 4, 8, 9).

The 5-HT1B receptor couples to G protein alpha subunits Gi or Go and is widely expressed
in the brain and the cardiovascular system. In the CNS, the 5-HT1B receptor functions as an
inhibitory presynaptic receptor to modulate the release of 5-HT and many other
neurotransmitters (1, 2). The 5-HT1B receptor is a primary molecular target for the anti-
migraine drugs ergotamine (ERG) and dihydroergotamine (DHE), which are efficacious 5-
HT1B receptor agonists (10). Off-target activation of the related 5-HT2B receptor is
responsible for the valvulopathic activity of many approved drugs and is the main reason for
their withdrawal (9–12). We report two crystal structures of the human 5-HT1B receptor
bound to the full agonists, ERG and DHE (tables S1 and S2). Comparison with the
accompanying structure of the human 5-HT2B receptor bound to ERG (13) reveals critical
structural determinants for ligand recognition and subtype selectivity, and provides a
structural rationale for designing safer and better serotonergic drugs.

Crystallization studies of the 5-HT1B receptor were done with engineered constructs, 5-
HT1B-1 and 5-HT1B-2 (14), which crystallized with ERG and DHE at resolutions of 2.7 Å
and 2.8 Å, respectively. Due to the high similarity between these two structures (figure S2),
for brevity we focus on the structure of the 5-HT1B-1/ERG complex for analysis and
discussion of key structural features for ligand recognition and selectivity in 5-HT1B versus
5-HT2B receptors.

The main fold of the 5-HT1B receptor consists of a canonical seven-transmembrane (7TM)
α-helical bundle (Fig. 1A). The extracellular loop 2 (ECL2) that partially covers the ligand
binding pocket is stabilized by a C1223.25-C199ECL2 disulfide bond, highly conserved in
GPCRs. Part of the N terminus folds on top of the binding pocket where Y40 forms
hydrogen-bond interactions with ligand binding residue D3527.36 (figure S5) (15, 16). This
feature suggests that the N terminus could have a role in ligand recognition in the 5-HT1B
receptor by interacting with residues within the binding pocket.

The 5-HT1B/ERG complex structure revealed a large ligand binding cavity defined by
residues from helices III, V, VI, VII and ECL2, comprising an orthosteric pocket embedded
deep in the 7TM core and an extended binding pocket close to the extracellular entrance
(Fig. 1). ERG adopts a binding mode with the ergoline ring system occupying the orthosteric
binding pocket and the cyclic tripeptide moiety bound to the upper extended binding pocket
(Fig. 2C). In the orthosteric pocket, the ergoline scaffold is anchored through the salt bridge
interaction between its positively charged nitrogen and the carboxylate of D1293.32 which is
fully conserved in 5HT and other monoamine receptors. The side chain of D1293.32 is
further stabilized by a hydrogen bond to the hydroxyl of Y3597.43. Side chains of C1333.36,
I1303.33, W3276.48, F3306.51 and F3316.52 form a narrow hydrophobic cleft, which packs
tightly against the nearly planar ergoline ring system. In addition, the indole N-H hydrogen
forms a hydrogen bond with T1343.37 (Fig. 2A). Comparison with the ERG bound 5-HT2B
receptor structure revealed that the orthosteric binding pockets in two receptors are very
similar, with the key interactions conserved (Fig. 2, A, D and E). The only difference is
observed in the region where residues from helix V contact ERG: due to the lack of a side
chain at G2215.42, the side chain of F2175.38 in the 5-HT2B receptor reaches into the ligand
binding pocket and packs on top of the ERG indole ring; by comparison, the corresponding
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interaction in the 5-HT1B receptor occurs between the side chain of S2125.42 and ERG,
while Y2085.38 does not interact with the ligand due to the outward shift of helix V (Fig. 2,
A and D). Significant differences are observed in the extended binding pockets: the
extended binding pocket of the 5-HT1B receptor is broader than that of the 5-HT2B receptor
(Fig. 1, B, C and D) due to the 3.0 Å outward shift of the top of helix V. Moreover, in
contrast to the relatively bulky M2185.39 of the 5-HT2B receptor, the corresponding residue
of the 5-HT1B receptor is a smaller threonine, which results in a further expansion of this
pocket (Fig. 2B). Despite these differences in contact residues between the two subtypes, the
cyclic tripeptide moiety of ERG maintains a similar overall orientation relative to the
ergoline moiety, likely stabilized by an intramolecular hydrogen bond (Fig. 2, D and E). The
conformations of the phenyl group of the ERG cyclic tripeptide do differ: it contacts with
L3476.58 and V3486.59 in the 5-HT2B receptor, whereas in the 5-HT1B receptor, it rotates to
occupy a cavity close to T2095.39 at helix V. Correspondingly, M3376.58 turns into the
pocket to contact with the phenyl ring of the ligand in the 5-HT1B receptor. As shown in the
accompanying paper, these differences in ERG interactions correlate with different
functional states: at the 5-HT1B receptor ERG causes full activation; whereas ERG induces
intermediate G protein activation and β-arrestin biased signaling at the 5-HT2B receptor
(13).

Mutations of several residues in the orthosteric binding site of the 5-HT1B receptor,
including the conserved D1293.32, abolished the binding of the radioligand lysergic acid
diethylamide (LSD) (table S4). The prototypical hallucinogen LSD has the same ergoline
moiety as ERG, and these interactions within the orthosteric pocket appear to be the main
driving force for binding of ergolines. In contrast, none of the tested mutations of the
extended binding pocket residues drastically reduced the binding affinity of ERG,
suggesting that the cyclic tripeptide moiety of ERG is accommodated without contributing
substantially to the binding affinity. This extended binding site partially overlaps with the
sites inferred in interaction with allosteric modulators in the M2 muscarinic acetylcholine
receptor (17, 18) suggesting its potential role in mediating allosteric modulations at 5-HT
receptors (13).

Alignment of all human 5-HT GPCRs sequences shows that the residues in the orthosteric
binding pockets are much more conserved than those in the extended binding pockets (figure
S7). This likely reflects an evolutionary pressure to maintain the structure of the orthosteric
binding pocket for recognition of the endogenous ligand 5-HT (19). Molecular docking of 5-
HT into the orthosteric binding pocket of the 5-HT1B and 5-HT2B receptors revealed
important residues involved in the recognition of 5-HT (Fig. 3A), many of which have been
previously implicated by site-directed mutagenesis and molecular modeling studies (20, 21).
5-HT shares a common chemical scaffold with ergolines (figure S4) and recognizes the 5-
HT receptors in a similar manner as ERG and DHE. D3.32 forms a salt bridge with the
positively charged amino group of 5-HT, while T3.37, which is highly conserved in 5-HT
receptors and most other aminergic GPCRs, forms a hydrogen bond with the indole N-H
hydrogen. This hydrogen bond appears to be important for the recognition of 5-HT by 5-
HT1B and 5-HT2B receptors because mutating T3.37 to alanine reduces the affinity of 5-HT
at both receptors by more than 10 fold (table S4). The indole ring points towards residues on
helix V: S2125.42 and A2165.46 at the 5-HT1B receptor; G2215.42 and A2255.46 at the 5-
HT2B receptor. This ligand-receptor interface is less polar in the 5-HT receptor family
compared with those of other biogenic amine receptors (table S5), thereby perfectly
matching the property of the 5-HT indole head group, which is less polar than those of other
aminergic receptor native agonists, such as epinephrine, dopamine and histamine.

LSD promiscuously binds to 5-HT receptors: it has agonist activity at most 5-HT receptors
(table S6), whereas it is a potent antagonist at 5-HT7A receptor (13). Docking of LSD into
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the 5-HT1B and 5-HT2B receptor structures suggests that binding of the LSD ergoline
moiety in the orthosteric binding pocket is essentially identical to that of the ERG ergoline
moiety (Fig. 3B). Many single point mutations within the orthosteric binding pocket reduce
or abolish the binding of LSD at both 5-HT1B and 5-HT2B receptors (table S4). The
conservation of the orthosteric binding pocket provides an atomic-level explanation for the
observed promiscuous interactions between drugs like LSD and 5-HT receptors.

Triptans are 5-HT analogs that are among the most frequently prescribed anti-migraine
medications which act primarily through 5-HT1B and 5-HT1D receptors (1, 2, 22). A
common structural feature of triptans is the large substitution group at the 5′ position of the
indole ring. Functional assays indicate that triptans act as agonists of the 5-HT1B receptor,
but not the 5-HT2B receptor (table S7). To address the structural determinants of this
selectivity, we performed docking simulations at both 5-HT1B and 5-HT2B receptors (figure
S8). Whereas triptans were well accommodated in the 5-HT1B receptor binding pocket, the
narrower extended binding pocket in the helix V region of the 5-HT2B receptor forced the
ligands to adopt unfavorable positions (Fig. 3C and figure S8C). Among the tested triptans,
donitriptan and eletriptan showed relatively higher potency in Gq –mediated signaling at the
5-HT2B receptor (table S7). These two triptans have longer and more flexible linkers
between 5′ substituents and the indole ring, enabling them to fit better in the narrow binding
pocket of the 5-HT2B receptor. The M2185.39A mutation of the 5-HT2B receptor, which
increases the space in the binding pocket, significantly enhanced the potency of donitriptan
and eletriptan (figure S9), although their potency was still lower than that at the 5-HT1B
receptor. Thus, the broader opening near the extracellular end of helix V in the 5-HT1B
receptor appears to be important for selectively accommodating the 5′ substituents of triptan
ligands, whereas the narrower pocket in the 5-HT2B receptor shows reduced binding to these
compounds.

Norfenfluramine is the active metabolite of fenfluramine, which is one of the two
components of the infamous ‘Fen-Phen’ anti-obesity cocktail. The anti-obesity effect of
norfenfluramine occurs mainly through activation of the 5-HT2C receptor (1), but due to its
high potency and efficacy as a 5-HT2B receptor agonist, it can cause life-threatening side
effects including pulmonary hypertension and heart valve disease (9, 23–25). To elucidate
the structural basis for norfenfluramine’s subtype selectivity, we simulated its binding to the
5-HT1B and 5-HT2B receptor structures (Fig. 3D). Norfenfluramine tightly fit the orthosteric
binding pocket of the 5-HT2B receptor with F2175.38 and M2185.39 forming a hydrophobic
cap that interacted with the trifluoromethyl group. The F2175.38A mutation (table S8) and
the M2185.39V mutation (26), both reduce the potency of norfenfluramine compared to that
for the wild type 5-HT2B receptor. In the docking model of the 5-HT1B receptor, these close
contacts are missing, thus the potency of norfenfluramine is reduced compared to that at the
5-HT2B receptor (table S8).

Species-specific differences in the ligand binding properties of 5-HT1B and other 5-HT
receptors from rodents and humans have impeded the extrapolation of findings from animal
model to humans (27, 28). The rodent 5-HT1B receptors, for instance, have a much higher
binding affinity than the human 5-HT1B receptor for certain adrenergic compounds caused
by a difference at position 7.39 (N351 for rat and mouse, T355 for human) (27, 29).
Modeling of the T355N mutation into the binding pocket of human 5-HT1B receptor
revealed that N3557.39, together with D1293.32 and Y3597.43, form a polar interaction
network that anchors the propanolamine moiety of adrenergic antagonists, propranolol and
cyanopindolol, thereby mimicking the recognition modes observed in both the β1 and β2
adrenergic receptors (Fig. 4). Hydrophobic interactions of I1303.33, W3276.48, F3306.51 and
F3316.52 with the aromatic rings of propranolol and cyanopindolol are largely conserved
between 5-HT1B and β-adrenergic receptors (30, 31), allowing high affinity binding of these
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antagonists in the human 5-HT1B T3557.39N and rodent 5-HT1B receptors. These findings
thereby provide a structural explanation for the pharmacological differences between these
rodent and human GPCRs.

In conclusion, comparative analysis of the 5-HT1B and 5-HT2B receptor structures and
functions, together with specific mutagenesis studies, provided a comprehensive framework
for understanding ligand promiscuity and selectivity, thereby aiding development of safer
and more effective medications that target the GPCR superfamily.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Overall architecture of the 5-HT1B receptor bound to ERG and comparison of the ligand
binding pocket shapes of the 5-HT1B receptor and the 5-HT2B receptor. (A) The 5-HT1B
receptor is shown as a light blue colored ribbon cartoon, with N terminus, ICL1 and ICL2
highlighted in yellow. Ligand ERG is colored magenta. The disulfide bond between C122
and C199 is shown as orange sticks. The Y40 and D3527.36 side chains, which mediate the
interaction between the N terminus and the ligand binding pocket, are shown as green sticks
with a dashed line indicating the hydrogen bond interaction. L80ICL1 and Y157ICL2 interact
with residues of the 7TM bundle stabilizing the local structures of ICL1 and ICL2. (B)
Shown at the bottom is the superposition of the 5-HT1B/ERG structure (light blue) and the
5-HT2B/ERG structure (white). The ligands are colored magenta for the 5-HT1B receptor
and green for the 5-HT2B receptor. The top panel shows an extracellular view of the ligand
binding sites. The arrow indicates a 3.0 Å shift (distance measured between the α-carbons of
T2095.39 in the 5-HT1B receptor and M2185.39 in the 5-HT2B receptor) at the extracellular
end of helix V. (C) and (D) The surface representation of the ligand binding pockets of the
5-HT1B receptor and the 5-HT2B receptor are shown in transparent pink and transparent
green, respectively.
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Fig. 2.
Comparison of ligand-receptor interactions in 5-HT1B/ERG and 5-HT2B/ERG structures.
(A), (B) and (C) Superposition of the ligand binding pockets of 5-HT1B receptor (light blue)
and 5-HT2B receptor (white). The carbons of ligand ERG in the 5-HT1B and the 5-HT2B
receptor structures are shown as magenta and green, respectively. (A) Residues forming the
orthosteric binding sites are shown as sticks and labeled in blue for 5-HT1B receptor and
black for 5-HT2B receptor. The salt bridge interactions between D3.32 and ERG, as well as
the hydrogen bond interactions between T3.37 and ERG, Y7.43 and D3.32, are shown as red
dashed lines for 5-HT1B receptor and green dashed lines for 5-HT2B receptor. (B)
Substantial differences in the extended ligand binding pockets resulted in different
conformations of the ligand ERG. (C) The overall binding pockets with the orthosteric and
the extended ligand binding sites shaded red and blue, respectively. (D) and (E) Diagram
representation of ligand interactions in the binding pockets of 5-HT1B and 5-HT2B receptors,
respectively. Intramolecular hydrogen bonds within the cyclic tripeptide moiety are
indicated as dashed lines. Residues in the orthosteric binding pockets are shown in red
boxes, while extended binding pocket residues are shown in blue boxes. The hydrogen bond
interaction between T3.37 and ERG and the salt bridge interactions between D3.32 and ERG
are indicated by red dashed lines. In (A), (B) and (D), Y2085.38 and P3386.59 which do not
interact with ERG are labeled in grey.
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Fig. 3.
Docking of the promiscuous (5-HT and LSD) and selective (sumatriptan and
norfenfluoramine) ligands into the binding pockets of the 5-HT1B and 5-HT2B receptor
structures. Docking of 5-HT (A), LSD (B), sumatriptan (C) and norfenfluramine (D) into the
orthosteric binding pockets of 5-HT1B (receptor colored light blue; ligands colored magenta)
and 5-HT2B (receptor colored white; ligands colored green) receptors. In (A) and (B), the
polar interactions between Y7.43 and D3.32, and between D3.32, T3.37 with the ligands are
shown as dashed lines. In (A), the non-polar interactions between the indole ring of 5-HT
and residues at positions 5.42 and 5.46 are shown as dotted lines. In (C), steric hindrance
from M2185.39 forced a reorientation of the sulfonamide group and a shift of the indole core
structure of sumatriptan when docked into 5-HT2B receptor. In (D), in the 5-HT2B receptor,
F2175.38 and M2185.39 form closed contacts with the trifluoromethyl group of the ligand,
which are absent in 5-HT1B receptor.
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Fig. 4.
Structural basis for differences in the pharmacological properties between human and rodent
5-HT1B receptors. The high affinity β-adrenergic antagonists propranolol (A) and
cyanopindolol (B), both shown in yellow colored carbons, are docked in the model based on
the human 5-HT1B/ERG structure with T7.39 mutated to N, as found in 5-HT1B rat and
mouse orthologs. The N7.39 side chain (magenta carbons) remained flexible in the docking
procedure. The hydrogen bond network involving N7.39, D3.32 and Y7.43 and propanolamine
moieties of the ligands is shown as orange dots. Carazolol (green carbons) from the
superimposed β2-adrenergic receptor structure (PDB ID: 2RH1) is shown for comparison.
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